WO2013073475A1 - ナノ中空粒子およびその製造方法 - Google Patents

ナノ中空粒子およびその製造方法 Download PDF

Info

Publication number
WO2013073475A1
WO2013073475A1 PCT/JP2012/079138 JP2012079138W WO2013073475A1 WO 2013073475 A1 WO2013073475 A1 WO 2013073475A1 JP 2012079138 W JP2012079138 W JP 2012079138W WO 2013073475 A1 WO2013073475 A1 WO 2013073475A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
core
particles
particle
nano hollow
Prior art date
Application number
PCT/JP2012/079138
Other languages
English (en)
French (fr)
Inventor
正督 藤
白井 孝
ヴィ.リベラ ヴェルトウダゾ レイモンド
千加 高井
Original Assignee
国立大学法人名古屋工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋工業大学 filed Critical 国立大学法人名古屋工業大学
Priority to US14/357,949 priority Critical patent/US9527750B2/en
Priority to EP12850399.2A priority patent/EP2781485A4/en
Publication of WO2013073475A1 publication Critical patent/WO2013073475A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/02Oxides or hydroxides
    • C01F11/12Oxides or hydroxides from silicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention is used as a biomaterial or food additive, and more preferably used as a carrier for drugs, cosmetic ingredients, catalysts, fertilizers, fragrances, and the like, mainly composed of calcium silicate.
  • the present invention relates to a calcium silicate nano hollow particle having a shell and a particle size of nano size and a method for producing the same.
  • Hollow particles consist of a hollow structure and a shell, and the structure has characteristics such as low density, high specific surface area, substance inclusion ability, and heat insulation.
  • calcium silicate hollow particles whose shell is composed of calcium silicate have high chemical stability, are harmless to the human body and the environment, and are inexpensive. It can be used as a support for fertilizers, fragrances, catalysts, and the like.
  • Patent Document 1 relates to calcium silicate hollow particles having a hollow particle diameter of micro size.
  • Patent Document 1 obtains hollow porous spherical calcium silicate fine particles having an average particle diameter of 3.5 ⁇ m. According to this, it is possible to narrow the particle size distribution of the spherical calcium silicate fine particles by using a W / O type emulsion and passing the emulsion through the porous membrane.
  • the shape of the fine particles to be produced is only spherical due to the characteristics thereof, and it is difficult to make the fine particles nano-sized. Furthermore, it is difficult to form a dense shell having an average pore diameter of 1 nm or less and a shell thickness of 20 nm or less because of the generation mechanism.
  • the first object of the present invention is to provide nano hollow particles having a shell mainly composed of calcium silicate and having a nano particle size. Further, the present invention has a shell mainly composed of calcium silicate, and when producing nano hollow particles having a nano size, the particle size, shape and shell thickness of the nano hollow particles can be freely set.
  • a second object is to provide a controllable manufacturing method.
  • nano hollow particles composed of shells composed of calcium silicate As a result of intensive studies, the present inventors have found nano hollow particles composed of shells composed of calcium silicate and a method for producing the same, which solve the above-mentioned problems. That is, the following nano hollow particles and a method for producing the same are provided.
  • the first feature of the present invention is nano hollow particles having an average particle diameter of 30 to 300 nm and having a shell mainly composed of calcium silicate.
  • the shell may be constituted by a composite of crystalline calcium silicate and amorphous silica. Further, the average diameter of the pores of the shell can be 1 nm or less. Further, the thickness of the shell can be 3 to 20 nm.
  • the form of the nano hollow particles can be spherical, spheroid, or cubic.
  • a second feature of the present invention is a method for producing the nano hollow particles of the first feature, A first step of forming core-shell particles having a coating layer made of amorphous silica on the surface of core particles containing calcium; A second step in which a coating layer of core-shell particles is formed by a hydrothermal method to form a shell mainly composed of calcium silicate; And a third step of removing the core particle part of the core-shell particle while leaving the shell part of the core-shell particle.
  • a step of dispersing the core particles in an organic solvent and a step of forming a coating layer on the surface of the dispersed core particles by a sol-gel reaction of silicon alkoxide it can be carried out.
  • the heating temperature in the hydrothermal method is 80 ° C. or higher and lower than 200 ° C.
  • the first object described above is achieved by the first feature of the present invention.
  • the second object described above is achieved by the second feature of the present invention. That is, the particle diameter and shape of the nano hollow particles obtained by the second feature of the present invention depend on the particle diameter and shape of the core particles. Therefore, according to the 2nd characteristic of this invention, the particle diameter and shape of a nano hollow particle can be freely controlled by changing the particle diameter and shape of a core particle.
  • the shell thickness of the nano hollow particles obtained by the second feature of the present invention depends on the mixing ratio of the coating layer raw material and the core particles and the hydrothermal reaction conditions. Therefore, according to the second feature of the present invention, the shell thickness of the nano hollow particles can be freely controlled by changing these conditions.
  • FIG. 4 is a diagram showing a procedure for producing nano hollow particles of Examples 1 to 14 of the present invention. It is a TEM photograph of nano hollow particles concerning Example 2 of the present invention. It is a figure showing the TEM photograph of FIG. 2A. It is a TEM photograph of nano hollow particles concerning Example 2 of the present invention. It is a TEM photograph of the nano hollow particle which concerns on Example 3 of this invention. 4B is a TEM photograph of FIG. 4A. It is a TEM photograph of the nano hollow particle which concerns on Example 3 of this invention. It is a XRD measurement result of the nano hollow particle which concerns on Example 3 and Comparative Example 1 of this invention.
  • the method for producing nano hollow particles of the present invention includes a first step of forming core-shell particles having a coating layer made of amorphous silica on the surface of core particles containing calcium, and a coating layer of core-shell particles By a hydrothermal method, and a third step of removing the core particle portion of the core-shell particle while leaving the shell portion of the core-shell particle while leaving the shell portion of the core-shell particle.
  • Nano hollow particles are manufactured by performing a process.
  • the first step specifically, a step of dispersing the core particles in an organic solvent and a step of forming a coating layer on the surface of the dispersed core particles by a sol-gel reaction of silicon alkoxide are performed.
  • the core particles containing calcium can be coated with a silica coating on the core surface by utilizing the interaction between calcium and silica.
  • the core particles containing calcium before silica coating may be inorganic nanoparticles made of calcium ions, and examples thereof include calcium carbonate and calcium phosphate.
  • the core particle has a nano particle size.
  • the organic solvent in which the core particles containing calcium are dispersed is not particularly limited as long as it is soluble in silicon alkoxide and water and can promote hydrolysis of silicon alkoxide.
  • alcohols, glycols, glycols Examples include esters, ketones such as acetone, simple solvents such as aliphatic carbon and aromatic hydrocarbons, or a mixed solvent of two or more of these.
  • disperser that disperses the core particles containing calcium in a dry powder state in an organic solvent
  • examples thereof include a homomixer, a homogenizer, and an ultrasonic disperser.
  • stirrers include Disper (manufactured by PRIMIX), Clearmix (manufactured by M-Technique), and Cavitron (manufactured by Taiheiyo Kiko).
  • the silicon alkoxide used for the silica coating is not particularly limited as long as silica can be precipitated by hydrolysis.
  • silica can be precipitated by hydrolysis.
  • tetraethoxysilane, trimethoxysilane, tetramethoxysilane, triethoxysilane, tripropoxysilane, tetrapropoxy Silane, tributoxysilane, tributoxysilane, or the like can be used.
  • a base catalyst When performing the sol-gel reaction, a base catalyst is preferably used, and examples of the base catalyst include ammonia and amines.
  • the formation of the coating layer by the sol-gel reaction is performed by adding silicon alkoxide and a base catalyst to the organic solvent mixed liquid in which the core particles are dispersed. At this time, the formed coating layer is made of amorphous silica. In this way, core-shell particles having a silica coating layer on the surface of the core particles are produced.
  • the hydrothermal method of the second step is performed by putting the core-shell particle mixture dispersed in distilled water into a pressure vessel and reacting at a predetermined temperature for a predetermined time.
  • a silica coating layer reacts with calcium of core particles, and becomes a shell mainly composed of calcium silicate.
  • the heating temperature in the hydrothermal method is preferably in the temperature range of 80 ° C. or more and less than 200 ° C. This reason is based on the experimental results of the present inventors. That is, when the heating temperature is less than 80 ° C., it takes a long time until the shell of calcium silicate is formed, and the productivity of the nano hollow particles is deteriorated. On the other hand, when the heating temperature is 200 ° C. or higher, not only the silica coating layer but also the core particles are calcium silicate, and the core-shell particles are solid calcium silicate particles.
  • the thickness of the shell mainly composed of calcium silicate formed in the second step depends on the thickness of the silica coating layer and the hydrothermal reaction conditions.
  • the thickness of the silica coating layer is determined by the addition ratio of silicon alkoxide and core particles in the first step. For example, as can be seen by comparing Examples 1 and 4 described later, the shell thickness increases by increasing the reaction temperature and the reaction time. As can be seen from a comparison of Examples 2 and 6, the shell thickness increases as the TEOS addition ratio increases.
  • the thickness of the shell can be set to a desired thickness by changing the formation conditions of the silica coating layer and the hydrothermal reaction conditions.
  • the pore diameter of the pores present in the shell depends on the hydrothermal reaction conditions. Therefore, it is possible to control the average diameter of the pores existing in the shell by changing the hydrothermal reaction conditions. In order to reduce the pore diameter, the reaction temperature is mainly increased and the reaction time is increased.
  • an acidic aqueous solution is added to the core-shell particle dispersion to remove the core particle portion of the core-shell particles.
  • the coating layer made of amorphous silica is formed by the sol-gel reaction of silicon alkoxide.
  • the amorphous silica is adsorbed on the surface of the core particle.
  • the coating layer may be formed by other methods. In this case, the thickness of the silica coating layer is determined by the ratio of silica adsorbed on the surface of the core particle or the raw material of the silica and the core particle.
  • nano hollow particles can be obtained.
  • the nano hollow particles have a particle size of nano size, that is, an average particle size of 30 to 300 nm, and have a shell mainly composed of calcium silicate.
  • this shell is formed by a hydrothermal reaction between silica constituting the coating layer and the core particle calcium.
  • the shell is composed of a composite of crystalline calcium silicate and amorphous silica.
  • the shell of the hollow particles may be composed only of crystalline calcium silicate.
  • the crystalline calcium silicate is specifically crystalline calcium silicate hydrate, for example, tobermorite as shown in Examples described later.
  • this shell is a dense shell having pores and having an average pore diameter of 1 nm or less.
  • the thickness of the shell can be 3 to 20 nm. It has been confirmed from the experiment results of the present inventors that the thickness of the shell can be reduced to 3 nm. Moreover, although it can control freely about thickening a shell, when trying to manufacture the nano hollow particle whose thickness of a shell exceeds 20 nm, the nano hollow particle aggregated. For this reason, the thickness of the shell is preferably 20 nm or less from the viewpoint of producing dispersed nano hollow particles.
  • the shape of the nano hollow particles depends on the shape of the core particles used in the first step. For this reason, for example, by using nanoparticles having a spherical, spheroid, or cubic form as a core particle in a dry powder state, the resulting nano hollow particles are spherical, spheroid, or cubic. It has the form.
  • the spherical shape is not limited to a spherical shape, and includes a shape similar to a spherical shape, and a spheroid shape and a cubic shape also include similar shapes.
  • the average particle diameter of the hollow particles is the average of the long and short diameters in the case of a spheroid, and the length of one side in the case of a cube.
  • the above-described nano hollow particles of the present invention have a shell mainly composed of calcium silicate, and have biocompatibility by containing calcium silicate. For this reason, the nano hollow particles of the present invention are expected to be used as bone and tooth regeneration materials. In this case, the nano hollow particle of the present invention has a hollow structure, so that a chemical solution can be enclosed in the hollow according to the above-described use.
  • the shell may be composed of a composite of crystalline calcium silicate and amorphous silica.
  • the number of pores present in the shell increases and the chemical solution can be easily sealed and released as compared with the case where the shell is composed of only crystalline calcium silicate.
  • Core particles made of cubic calcium carbonate (CaCO 3 ) are dispersed in ethanol (dispersion treatment), tetraethoxysilane (TEOS) is added to the dispersion, and sol- in an ammonium (28% NH 4 OH) catalyst.
  • Silica-coated calcium carbonate particles were obtained by gel reaction (sol-gel reaction treatment). That is, core-shell particles having a coating layer made of silica on the surface of the core particles made of calcium carbonate were obtained.
  • the average particle diameter of the core particles used is 60 nm in Examples 1 to 8, and 150 nm in Examples 9 to 14.
  • the weight ratio of added TEOS and CaCO 3 and the NH 4 OH concentration in the system are as shown in Tables 1 and 2.
  • the temperature and time of the sol-gel reaction are room temperature and 2 hours.
  • the core-shell particles were transferred to a pressure vessel and subjected to hydrothermal treatment at the temperatures and reaction times shown in Tables 1 and 2.
  • the core-shell particles subjected to hydrothermal treatment were dissolved and removed by acid treatment using a 3N hydrochloric acid aqueous solution.
  • the 3N hydrochloric acid aqueous solution was diluted so that the weight ratio of hydrochloric acid / calcium carbonate was about 1.7.
  • FIGS. 4A, 4B, and 5 show the nano hollow particles produced in Example 2.
  • FIG. The samples obtained by Examples 1 to 14 were nano hollow particles as shown in these figures.
  • the particle diameter of the hollow particles refers to the outer diameter of the hollow particles after the acid treatment, 10 particles are randomly selected from the TEM photograph, the outer diameter is measured, and the average of these values is the average particle diameter. [nm]. Similarly, the average shell thickness was calculated for the shell thickness.
  • the average particle size and shape of the nano hollow particles obtained in Examples 1 to 14 are the core particles. It was confirmed that it depended on the particle size and shape.
  • Comparative Examples 1 and 2 are hollow particles obtained without hydrothermal treatment
  • Comparative Examples 3 to 6 are hollow particles obtained by hydrothermal treatment with a shorter reaction time than Examples 1 to 4. In Comparative Examples 1 to 6, formation of calcium silicate was not confirmed.
  • the present invention can provide hollow particles made of dense calcium silicate shells in various shapes and nano-sizes. Utilizing the biocompatibility and chemical stability of calcium silicate, it can be used as a carrier for drugs, cosmetic ingredients, catalysts, fertilizers, fragrances and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Silicon Compounds (AREA)

Abstract

  【課題】主にケイ酸カルシウムで構成された殻を有し、粒子径がナノサイズであるナノ中空粒子を製造する際に、ナノ中空粒子の粒子径、形状および殻厚を自由に制御可能な製造方法を提供する。 【解決手段】カルシウムを含むコア粒子の表面に、非晶質のシリカからなるコーティング層を有するコア-シェル粒子を形成する第1工程と、コア-シェル粒子のコーティング層を、水熱法により、主にケイ酸カルシウムで構成された殻とする第2工程と、コア-シェル粒子の殻の部分を残しつつ、コア-シェル粒子のコア粒子の部分を除去する第3工程とを行う。

Description

ナノ中空粒子およびその製造方法
 本発明は、生体材料や食品添加物として利用され、より好適には、薬物、化粧品成分、触媒、肥料、香料などの担持体に利用されるものであって、主にケイ酸カルシウムで構成された殻を有し、粒子径がナノサイズであるケイ酸カルシウムナノ中空粒子およびその製造方法に関する。
 中空粒子は中空構造と殻からなり、その構造から、低密度、高比表面積、物質内包能、断熱性などの特性を持つ。中でも、ケイ酸カルシウムは化学的安定性が高く、人体や環境に対して無害であり、安価であることから、殻がケイ酸カルシウムで構成されたケイ酸カルシウム中空粒子は、例えば薬物、化粧品成分、肥料、香料、触媒などの担持体として用いることができる。
 中空粒子径がマイクロサイズであるケイ酸カルシウム中空粒子に関するものとして特許文献1がある。
 特許文献1は、平均粒子径3.5μmの中空多孔質球状ケイ酸カルシウム微粒子を得るものである。それによれば、W/O型エマルジョンを用い、当該エマルジョンを多孔質膜に通すことによって、球状ケイ酸カルシウム微粒子の粒子径分布を狭くすることが可能である。
特開平4-154605号公報
 ところで、中空粒子の粒子径がナノサイズ領域になると、ミクロンサイズ粒子には現れない特異な性質を発現する。
 しかしながら、現在では、上記した特許文献1のように、粒子径がマイクロサイズのケイ酸カルシウム中空粒子については報告されているが、粒子径がナノサイズのケイ酸カルシウムナノ中空粒子についてまでは報告されていない。このため、粒子径がナノサイズであるケイ酸カルシウムナノ中空粒子を製造する際に、中空粒子の粒子径、形状および殻厚を自由に制御可能な製造方法も報告されていない。
 なお、特許文献1に記載の技術では、その特徴から、製造する微粒子の形状は球状のみであり、また微粒子をナノサイズ化することは困難である。さらに、生成機構上、平均細孔径が1nm以下の緻密な殻を形成すること、さらに殻厚を20nm以下にすることが困難である。
 本発明は上記点に鑑みて、主にケイ酸カルシウムで構成された殻を有し、粒子径がナノサイズであるナノ中空粒子を提供することを第1の目的とする。また、本発明は、主にケイ酸カルシウムで構成された殻を有し、粒子径がナノサイズであるナノ中空粒子を製造する際に、ナノ中空粒子の粒子径、形状および殻厚を自由に制御可能な製造方法を提供することを第2の目的とする。
 本発明者らは鋭意検討を重ねた結果、上記課題を解決する、ケイ酸カルシウムで構成された殻からなるナノ中空粒子およびその製造方法を見出した。すなわち、以下のナノ中空粒子およびその製造方法が提供される。
 本発明の第1の特徴は、平均粒子径が30~300nmであり、主にケイ酸カルシウムで構成された殻を有するナノ中空粒子である。
 このナノ中空粒子においては、殻を、結晶質のケイ酸カルシウムと非晶質のシリカとの複合体によって構成されたものとすることができる。また、殻が有する細孔の平均径を1nm以下とすることができる。また、殻の厚みを3~20nmとすることができる。ナノ中空粒子の形態を、球状、回転楕円体状、または立方体状とすることができる。
 本発明の第2の特徴は、第1の特徴のナノ中空粒子の製造方法であって、
 カルシウムを含むコア粒子の表面に、非晶質のシリカからなるコーティング層を有するコア-シェル粒子を形成する第1工程と、
 コア-シェル粒子のコーティング層を、水熱法により、主にケイ酸カルシウムで構成された殻とする第2工程と、
 コア-シェル粒子の殻の部分を残しつつ、コア-シェル粒子のコア粒子の部分を除去する第3工程とを有するナノ中空粒子の製造方法である。
 この製造方法の第1工程では、具体的には、コア粒子を有機溶媒に分散させる工程と、シリコンアルコキシドのゾル-ゲル反応により、分散したコア粒子の表面に、コーティング層を形成する工程とを行うことができる。
 また、この製造方法の第2工程では、水熱法での加熱温度を80℃以上200℃未満とすることが好ましい。
 本発明の第1の特徴により、上記した第1の目的が達成される。
 本発明の第2の特徴により、上記した第2の目的が達成される。すなわち、本発明の第2の特徴によって得られるナノ中空粒子の粒子径および形状は、コア粒子の粒子径および形状に依存する。よって、本発明の第2の特徴によれば、コア粒子の粒子径および形状を変更することで、ナノ中空粒子の粒子径および形状を自由に制御することができる。また、本発明の第2の特徴によって得られるナノ中空粒子の殻厚は、コーティング層の原料とコア粒子の混合割合や水熱反応条件に依存する。よって、本発明の第2の特徴によれば、これらの条件を変更することによって、ナノ中空粒子の殻厚を自由に制御できる。
本発明の実施例1~14のナノ中空粒子の製造手順を示す図である。 本発明の実施例2に係るナノ中空粒子のTEM写真である。 図2AのTEM写真を図示したものである。 本発明の実施例2に係るナノ中空粒子のTEM写真である。 本発明の実施例3に係るナノ中空粒子のTEM写真である。 図4AのTEM写真を図示したものである。 本発明の実施例3に係るナノ中空粒子のTEM写真である。 本発明の実施例3および比較例1に係るナノ中空粒子のXRD測定結果である。
 以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。
 本発明のナノ中空粒子の製造方法は、カルシウムを含むコア粒子の表面に、非晶質のシリカからなるコーティング層を有するコア-シェル粒子を形成する第1工程と、コア-シェル粒子のコーティング層を、水熱法により、主にケイ酸カルシウムで構成された殻とする第2工程と、コア-シェル粒子の殻の部分を残しつつ、コア-シェル粒子のコア粒子の部分を除去する第3工程とを行うことで、ナノ中空粒子を製造するものである。
 第1工程では、具体的には、コア粒子を有機溶媒に分散させる工程と、シリコンアルコキシドのゾル-ゲル反応により、分散したコア粒子の表面に、コーティング層を形成する工程とを行う。
 カルシウムを含むコア粒子は、カルシウムとシリカの相互作用を利用して、コア表面にシリカコーティングを施すことができる。
 シリカコーティングを行う前のカルシウムを含むコア粒子は、カルシウムイオンからなる無機ナノ粒子であればよく、例えば、炭酸カルシウム、リン酸カルシウム等が挙げられる。このコア粒子は、粒子径がナノサイズのものである。
 カルシウムを含むコア粒子を分散させる有機溶媒は、シリコンアルコキシドと水に対して溶解性があり、さらに、シリコンアルコキシドの加水分解を促進可能なものであればよく、例えば、アルコール類、グリコール類、グリコールエステル類、アセトン等のケトン類、脂肪族炭素、芳香族炭化水素等の単体溶媒もしくはこれら2種類以上の混合溶媒が挙げられる。中でも、リン酸カルシウム粒子とシリコンアルコキシドとの相互作用を向上させることができ、ナノ中空粒子の生産効率を向上させることができるという効果がより大きいアルコール類を有機溶媒として用いることが好ましい。
 乾燥粉末状態のカルシウムを含むコア粒子を有機溶媒に分散させる分散機の種類について特に制限はなく、例えば、ホモミキサー、ホモジナイザー、超音波分散機等が挙げられる。市販の撹拌機としては、例えば、ディスパー(PRIMIX社製)、クリアミクス(M-テクニック社製)、キャビトロン(太平洋機工社製)等が使用できる。
 シリカコーティングに用いるシリコンアルコキシドとしては、その加水分解によりシリカを析出させることができるものであればよく、例えば、テトラエトキシシラン、トリメトキシシラン、テトラメトキシシラン、トリエトキシシラン、トリプロポキシシラン、テトラプロポキシシラン、トリブトキシシラン、トリブトキシシラン等を用いることができる。
 ゾル-ゲル反応を行う場合、好適には塩基触媒が用いられ、塩基触媒としては、例えば、アンモニア、アミン類等が挙げられる。
 ゾル-ゲル反応によるコーティング層の形成は、コア粒子を分散させた有機溶媒混合液にシリコンアルコキシド、塩基触媒を加えることにより行う。このとき、形成されるコーティング層は、非晶質のシリカからなるものである。このようにして、コア粒子の表面にシリカコーティング層を有するコア-シェル粒子を作製する。
 次に、第2工程の水熱法は、蒸留水中に分散させたコア-シェル粒子混合液を耐圧容器に入れ、所定温度で、所定時間反応させて行う。これにより、シリカコーティング層が、コア粒子のカルシウムと反応して、主にケイ酸カルシウムで構成された殻となる。
 ここで、水熱法での加熱温度は、80℃以上200℃未満の温度領域内であることが好ましい。この理由は、本発明者らの実験結果によるものである。すなわち、加熱温度が80℃未満のときでは、ケイ酸カルシウムの殻が形成されるまでに長時間を要し、ナノ中空粒子の生産性が悪くなる。一方、加熱温度が200℃以上のとき、シリカコーティング層だけでなく、コア粒子までがケイ酸カルシウムとなり、コア-シェル粒子がケイ酸カルシウムの中実粒子となる。
 第2工程で形成される主にケイ酸カルシウムで構成された殻の厚さは、シリカコーティング層の厚さや水熱反応条件に依存する。シリカコーティング層の厚さは、第1工程におけるシリコンアルコキシドとコア粒子の添加割合により決まる。例えば、後述する実施例1、4を比較してわかるように、反応温度を高く、反応時間を長くすることで、殻厚が大きくなる。また、実施例2、6を比較してわかるように、TEOSの添加割合を大きくすると、殻厚が大きくなる。
 よって、このシリカコーティング層の形成条件や水熱反応条件を変更することによって、殻の厚さを所望の厚さとすることができる。
 また、殻に存在する細孔の細孔径も水熱反応条件に依存する。よって、水熱反応条件を変更することにより、殻に存在する細孔の平均径を制御することが可能である。細孔径を小さくするには、主に反応温度を高く、反応時間を長くすればよい。
 そして、第3工程で、コア-シェル粒子のコア粒子の部分を除去するには、酸性水溶液をコア-シェル粒子分散液に添加する。
 なお、上記した第1工程の説明では、シリコンアルコキシドのゾル-ゲル反応により、非晶質のシリカからなるコーティング層を形成したが、例えば、非晶質のシリカをコア粒子の表面に吸着させる等の他の方法により、コーティング層を形成しても良い。この場合、コア粒子の表面に吸着させるシリカもしくはそのシリカの原料とコア粒子との添加割合によって、シリカコーティング層の厚さが決まる。
 以上のようにして、ナノ中空粒子が得られる。このナノ中空粒子は、粒子径がナノサイズ、すなわち、平均粒子径が30~300nmのものであり、主にケイ酸カルシウムで構成された殻を有するものである。
 この殻は、上述の通り、コーティング層を構成するシリカとコア粒子のカルシウムとの水熱反応によって形成されたものである。この水熱反応によって、殻の大半がケイ酸カルシウム結晶となるが、殻の一部に非晶質のシリカが残存する。この場合、この殻は、結晶質のケイ酸カルシウムと非晶質のシリカとの複合体によって構成されていると言える。なお、中空粒子の殻は、結晶質のケイ酸カルシウムのみから構成されていても良い。また、結晶質のケイ酸カルシウムは、具体的には、結晶質ケイ酸カルシウム水和物であり、例えば、後述する実施例に示すように、トバモライトである。ただし、後述する実施例よりも水熱反応温度を上げることで、トバモライトだけでなくゾノトライトが生成する可能性もある。
 また、この殻は、細孔を有し、細孔の平均径が1nm以下である緻密な殻である。
 また、この殻の厚みについては、3~20nmとすることが可能である。本発明者の実験結果により、殻の厚みを3nmまで薄くできたことを確認している。また、殻を厚くすることについては自由に制御できるが、殻の厚さが20nmを超えるナノ中空粒子を製造しようとすると、ナノ中空粒子が凝集してしまった。このため、分散したナノ中空粒子を製造するという観点より、殻の厚さを20nm以下とすることが好ましい。
 ナノ中空粒子の形状は、第1工程で用いるコア粒子の形状に依存する。このため、例えば、乾燥粉末状態で球状、回転楕円体状、または立方体状の形態を有するナノ粒子をコア粒子として用いることにより、得られるナノ中空粒子は、球状、回転楕円体状、または立方体状の形態を有する。ここで、球状とは、球状に限らず、球状に似た形状を含み、回転楕円体状、立方体状もそれぞれ同様な形状を含む。
 なお、中空粒子の平均粒子径は、回転楕円体状の場合は、長径と短径の平均、立方体状の場合は、一辺の長さを言う。
 上記した本発明のナノ中空粒子は、主にケイ酸カルシウムで構成された殻を有するものであり、ケイ酸カルシウムを含有することによって生体親和性を有している。このため、本発明のナノ中空粒子は、骨、歯の再生材料としての使用が期待される。この場合、本発明のナノ中空粒子は、中空構造を持つことによって、中空内に上述の用途に沿った薬液を封入できる。
 本発明のナノ中空粒子は、殻が、結晶質のケイ酸カルシウムと非晶質のシリカとの複合体によって構成されたものとすることができる。この場合、殻が結晶質のケイ酸カルシウムのみによって構成された場合と比較して、殻に存在する細孔が多くなり、薬液の封入、放出が容易となることが考えられる。
 図1に示す製造手順により、表1、2に示す実施例1~14のナノ中空粒子を製造した。
 立方体形状の炭酸カルシウム(CaCO)からなるコア粒子をエタノールに分散させ(分散処理)、当該分散液中にテトラエトキシシラン(TEOS)を加え、アンモニウム(28%NHOH)触媒中でゾル-ゲル反応により(ゾル-ゲル反応処理)、シリカコーティングされた炭酸カルシウム粒子を得た。すなわち、炭酸カルシウムからなるコア粒子の表面に、シリカからなるコーティング層を有するコア-シェル粒子を得た。
 ここで、用いたコア粒子の平均粒子径は、実施例1~8は60nm、実施例9~14は150nmである。実施例1~14において、添加したTEOSとCaCOの重量比、系中のNHOH濃度は、表1、2に示すとおりである。また、ゾル-ゲル反応の温度および時間は、室温、2時間である。
 その後、コア-シェル粒子を耐圧容器に移し、表1、2に示す温度、反応時間で水熱処理を行った。
 続いて、水熱処理したコア-シェル粒子を3規定の塩酸水溶液を使った酸処理によってコア粒子を溶解除去した。このとき、3N塩酸水溶液を塩酸/炭酸カルシウムが重量比で1.7付近となるよう希釈した。
 その後、酸処理した粒子を蒸留水で洗浄し、洗浄液が中性になったことを確認してからエタノールで溶媒置換し、乾燥後、目的とするサンプルを得た。図2A、2B、3に、実施例1で製造されたナノ中空粒子を示し、図4A、4B、5に実施例2で製造されたナノ中空粒子を示す。実施例1~14によって得られたサンプルは、これらの図に示すようなナノ中空粒子であった。
 得られたサンプルについて各種分析および計測を行った。ケイ酸カルシウム殻生成の有無は、X線回折によるCa(OH)-SiO(トバモライト)由来の回折ピークの発現によりにより調べた。用いた装置は株式会社リガク製のRINT1000であり、測定条件はCuKα線、30 kVおよび20 mA、スキャン速度2 o/minである。また、中空粒子の粒子径および殻厚は透過型電子顕微鏡(TEM)観察写真から計測し、殻に存在する細孔の平均径は、BJH法を用いて窒素ガス吸着等温線より算出した。なお、中空粒子の粒子径とは、酸処理後の中空粒子の外径のことを指し、TEM写真より粒子を10個ランダムに選択して外径を計測し、この値の平均を平均粒子径[nm]とした。同様に、殻厚についても平均殻厚を算出した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 図2A、図4A等のTEM写真や、表1、2のコア除去粒子の平均粒子径からわかるように、実施例1~14で得られたナノ中空粒子の平均粒子径および形状は、コア粒子の粒子径および形状に依存することが確認された。
 図6に示すように、実施例1~14ではケイ酸カルシウム(トバモライト)の生成が確認された。また、図6に示すように、実施例1~14では非晶質のSiO(シリカ)由来の回折パターンが見られ、中空粒子の殻には、非晶質のシリカが存在することが確認された。
 一方、比較例1および2は、水熱処理をせずに得られた中空粒子であり、比較例3~6は、実施例1~4よりも短い反応時間で水熱処理して得られた中空粒子であり、比較例1~6では、いずれも、ケイ酸カルシウムの生成は確認されなかった。
 また、実施例1~14で得られた中空粒子をリン酸緩衝液中に浸漬したところ、中空粒子の表面にアパタイト構造を含むリン酸カルシウム結晶の析出が認められた。このリン酸カルシウム結晶の析出は、ナノ中空粒子の殻からカルシウムイオンが溶出し、リン酸イオンと反応したことによるものである。このリン酸カルシウム結晶の析出より、本発明のナノ中空粒子は生体親和性だけでなく、生体活性を有することが確認された。
 本発明は、緻密なケイ酸カルシウムの殻からなる中空粒子を、様々な形状でかつナノサイズで提供することができる。ケイ酸カルシウムの生体親和性や化学的安定性を利用し、薬物、化粧品成分、触媒、肥料、香料などの担持体として用いることができる。

Claims (8)

  1.  平均粒子径が30~300nmであり、主にケイ酸カルシウムで構成された殻を有するナノ中空粒子。
  2.  前記殻は、結晶質のケイ酸カルシウムと非晶質のシリカとの複合体によって構成された請求項1に記載のナノ中空粒子。
  3.  前記殻は細孔を有し、前記細孔の平均径が1nm以下である請求項1または2に記載のナノ中空粒子。
  4.  前記殻の厚みが3~20nmである請求項1ないし3のいずれか1つに記載のナノ中空粒子。
  5.  前記ナノ中空粒子が、球状、回転楕円体状、または立方体状の形態である請求項1ないし4のいずれか1つに記載のナノ中空粒子。
  6.  請求項1ないし5のいずれか1つに記載のナノ中空粒子の製造方法であって、
     カルシウムを含むコア粒子の表面に、非晶質のシリカからなるコーティング層を有するコア-シェル粒子を形成する第1工程と、
     前記コア-シェル粒子の前記コーティング層を、水熱法により、主にケイ酸カルシウムで構成された殻とする第2工程と、
     前記コア-シェル粒子の前記殻の部分を残しつつ、前記コア-シェル粒子の前記コア粒子の部分を除去する第3工程とを有するナノ中空粒子の製造方法。
  7.  前記第1工程は、前記コア粒子を有機溶媒に分散させる工程と、シリコンアルコキシドのゾル-ゲル反応により、分散した前記コア粒子の表面に、前記コーティング層を形成する工程とを含む請求項6に記載のナノ中空粒子の製造方法。
  8.  前記第2工程における前記水熱法での加熱温度を、80℃以上200℃未満とする請求項7に記載のナノ中空粒子の製造方法。
     
     
PCT/JP2012/079138 2011-11-15 2012-11-09 ナノ中空粒子およびその製造方法 WO2013073475A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/357,949 US9527750B2 (en) 2011-11-15 2012-11-09 Method for producing hollow nanoparticles comprising hydrothermal treatment
EP12850399.2A EP2781485A4 (en) 2011-11-15 2012-11-09 HOLLOW NANOPARTICLES, AND METHOD FOR MANUFACTURING SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011249255 2011-11-15
JP2011-249255 2011-11-15

Publications (1)

Publication Number Publication Date
WO2013073475A1 true WO2013073475A1 (ja) 2013-05-23

Family

ID=48429535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079138 WO2013073475A1 (ja) 2011-11-15 2012-11-09 ナノ中空粒子およびその製造方法

Country Status (4)

Country Link
US (1) US9527750B2 (ja)
EP (1) EP2781485A4 (ja)
JP (1) JPWO2013073475A1 (ja)
WO (1) WO2013073475A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015171745A1 (en) * 2014-05-06 2015-11-12 William Marsh Rice University Shape-controlled cement hydrate synthesis and self-assembly
EP3127865A4 (en) * 2014-03-29 2017-11-29 Tomita Pharmaceutical Co., Ltd. Powdered tobermorite type calcium silicate-based material and method for producing same
WO2018150600A1 (ja) * 2017-02-14 2018-08-23 トピー工業株式会社 ケイ酸塩被覆体及びその製造方法
US10297726B2 (en) 2016-12-26 2019-05-21 Nichia Corporation Filling material, resin composition, package, light-emitting device, and methods of manufacturing same
US10672955B2 (en) 2017-08-31 2020-06-02 Nichia Corporation Filling material, resin composition, package, and light-emitting device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5669152B2 (ja) * 2011-03-30 2015-02-12 国立大学法人 名古屋工業大学 スケルトンナノ粒子及びその製造方法
CN104609433B (zh) * 2015-01-21 2017-01-04 东华大学 一种油水界面法制备纳米β-硅酸钙空心球的方法
CA3000682A1 (en) * 2015-09-29 2017-04-06 C-Crete Technologies, Llc Calcium-silicate-based porous particles, composition, method of making and use thereof
US9859494B1 (en) * 2016-06-29 2018-01-02 International Business Machines Corporation Nanoparticle with plural functionalities, and method of forming the nanoparticle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154605A (ja) 1990-10-16 1992-05-27 Agency Of Ind Science & Technol 無機質微小球体の製造方法
JPH0640715A (ja) * 1982-04-23 1994-02-15 Nippon Insulation Kk 珪酸カルシウム球状二次粒子の製造方法
JP2011153057A (ja) * 2010-01-28 2011-08-11 Taiheiyo Cement Corp 中空粒子の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0166789B1 (en) * 1983-12-28 1988-03-23 Kabushiki Kaisha Osaka Packing Seizosho Formed article of calcium silicate and method of the preparation thereof
CN100335567C (zh) * 2002-03-20 2007-09-05 新加坡纳米材料科技有限公司 CaCO3/SiO2·nH2O纳米复合颗粒和空心SiO2·nH2O纳米材料及其制备方法
WO2006006207A1 (ja) * 2004-07-08 2006-01-19 Catalysts & Chemicals Industries Co.,Ltd. シリカ系微粒子の製造方法、被膜形成用塗料および被膜付基材
US8216961B2 (en) * 2008-08-27 2012-07-10 Korea University Research And Business Foundation Nanoparticles including metal oxide having catalytic activity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640715A (ja) * 1982-04-23 1994-02-15 Nippon Insulation Kk 珪酸カルシウム球状二次粒子の製造方法
JPH04154605A (ja) 1990-10-16 1992-05-27 Agency Of Ind Science & Technol 無機質微小球体の製造方法
JP2011153057A (ja) * 2010-01-28 2011-08-11 Taiheiyo Cement Corp 中空粒子の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHIKA TAKAI ET AL.: "Muki Template-ho o Mochiita Nano Silica Chuku Ryushi no Gosei", SOCIETY OF POWDER TECHNOLOGY, 24 May 2011 (2011-05-24), JAPAN, pages 27, 28, XP008173604 *
See also references of EP2781485A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3127865A4 (en) * 2014-03-29 2017-11-29 Tomita Pharmaceutical Co., Ltd. Powdered tobermorite type calcium silicate-based material and method for producing same
WO2015171745A1 (en) * 2014-05-06 2015-11-12 William Marsh Rice University Shape-controlled cement hydrate synthesis and self-assembly
US10442696B2 (en) * 2014-05-06 2019-10-15 William Marsh Rice University Shape-controlled cement hydrate synthesis and self-assembly
US10297726B2 (en) 2016-12-26 2019-05-21 Nichia Corporation Filling material, resin composition, package, light-emitting device, and methods of manufacturing same
US11024776B2 (en) 2016-12-26 2021-06-01 Nichia Corporation Filling material, resin composition, package, and light-emitting device
WO2018150600A1 (ja) * 2017-02-14 2018-08-23 トピー工業株式会社 ケイ酸塩被覆体及びその製造方法
KR20190117575A (ko) * 2017-02-14 2019-10-16 토피 고교 가부시키가이샤 규산염 피복체 및 그 제조 방법
JPWO2018150600A1 (ja) * 2017-02-14 2019-12-26 トピー工業株式会社 ケイ酸塩被覆体及びその製造方法
JP7016099B2 (ja) 2017-02-14 2022-02-21 トピー工業株式会社 ケイ酸塩被覆体及びその製造方法
KR102447052B1 (ko) 2017-02-14 2022-09-23 토피 고교 가부시키가이샤 규산염 피복체 및 그 제조 방법
US10672955B2 (en) 2017-08-31 2020-06-02 Nichia Corporation Filling material, resin composition, package, and light-emitting device

Also Published As

Publication number Publication date
US9527750B2 (en) 2016-12-27
JPWO2013073475A1 (ja) 2015-04-02
EP2781485A1 (en) 2014-09-24
EP2781485A4 (en) 2015-08-12
US20140287236A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
WO2013073475A1 (ja) ナノ中空粒子およびその製造方法
Sankar et al. Rapid sonochemical synthesis of spherical silica nanoparticles derived from brown rice husk
US11124419B2 (en) Method for producing a micron-size spherical silica aerogel
Fang et al. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres
JP5034264B2 (ja) 酸化物複合体及びその製造方法
JP5284580B2 (ja) メソポーラスシリカ粒子
JP2011126761A (ja) 複合シリカ粒子の製造方法
Ijaz et al. Formation of mesoporous silica particles with hierarchical morphology
de Oliveira et al. Synthesis and characterization of bioactive glass particles using an ultrasound-assisted sol–gel process: Engineering the morphology and size of sonogels via a poly (ethylene glycol) dispersing agent
CN106745007A (zh) 一种多级孔介孔有机硅球及其制备方法
Dong et al. Shape-controlled synthesis of Mn 2 O 3 hollow structures and their catalytic properties
WO2015133606A1 (ja) シリカ殻からなるナノ中空粒子の製造方法
JP2013237601A (ja) 表面改質されたシリカ殻からなる中空粒子およびその製造方法
JP2010265125A (ja) 球状メソポーラスカーボン及びその製造方法
JP2014055083A (ja) 中空シリカ粒子の製造方法
Yoo et al. Self-templated synthesis of hollow silica microspheres using Na2SiO3 precursor
Huang et al. Self-assembly of monodispersed silica nano-spheres with a closed-pore mesostructure
Lee et al. Preparation of colloidal silica using peptization method
JP6394372B2 (ja) シリカ構造体およびその製造方法
JP2014055082A (ja) 中空シリカ粒子の製造方法
KR102666528B1 (ko) 수지상 섬유질 실리카 나노층을 갖는 물유리 기반 합성 나노실리카 입자 및 그 제조 방법
WO2015023716A1 (en) Method of making nanoporous structures
Zhang et al. A facile method for the fabrication of SiO 2 and SiO 2/TiO 2 hollow particles using Na 2 SO 4 particles as templates
JP5145968B2 (ja) メソポーラス材料の製造方法
Yan et al. Silicon dioxide hollow microspheres with porous composite structure: Synthesis and characterization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544248

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14357949

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012850399

Country of ref document: EP