WO2013073217A1 - 真空装置及び真空装置の真空容器内の圧力制御方法 - Google Patents

真空装置及び真空装置の真空容器内の圧力制御方法 Download PDF

Info

Publication number
WO2013073217A1
WO2013073217A1 PCT/JP2012/062258 JP2012062258W WO2013073217A1 WO 2013073217 A1 WO2013073217 A1 WO 2013073217A1 JP 2012062258 W JP2012062258 W JP 2012062258W WO 2013073217 A1 WO2013073217 A1 WO 2013073217A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
pressure
gas
flow rate
vacuum vessel
Prior art date
Application number
PCT/JP2012/062258
Other languages
English (en)
French (fr)
Inventor
政彦 長坂
章五 中島
孝行 野澤
杉野 修
育人 三島
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to CN201280032872.5A priority Critical patent/CN103635688B/zh
Publication of WO2013073217A1 publication Critical patent/WO2013073217A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum

Definitions

  • the present invention relates to a vacuum device that controls and uses a pressure inside a vacuum vessel, and a pressure control method in the vacuum vessel of the vacuum device.
  • a vacuum apparatus used by controlling the pressure inside a vacuum vessel has been used.
  • a vacuum apparatus for example, in Japanese Patent Application Laid-Open No. 9-158833, an intermediate chamber having an exhaust system independent of the exhaust system of the vacuum container, a system for introducing gas into the vacuum container, A variable conductance valve is provided between the vacuum vessels, and the introduced gas from the gas supply means is introduced into the intermediate chamber at a constant flow rate by a generally used mass flow controller, and further flows into the vacuum vessel from the intermediate chamber.
  • a vacuum device that adjusts the pressure in a vacuum vessel without using an expensive mass flow controller to control the extremely small gas introduction amount with high accuracy by adjusting the introduction gas amount with a variable conductance valve. ing.
  • the gas supplied from the gas supply means is supplied to the vacuum vessel via the intermediate chamber, and the gas in the intermediate chamber is constantly exhausted by the second vacuum pump.
  • the present invention provides a vacuum device that can control the pressure in the vacuum vessel without using a mass flow controller that is expensive, without consuming a large amount of introduced gas, and in the vacuum vessel of the vacuum device.
  • An object is to provide a pressure control method.
  • the vacuum apparatus in order to achieve the above object, according to the first aspect of the present invention, includes a vacuum container in which the processing material is disposed, an exhaust means for evacuating the inside of the vacuum container, A flow rate control means for controlling the flow rate, and a pressure reduction means constituted by a vacuum pump connected to the vacuum vessel and an intake port via the flow rate control means. Higher than the pressure in the vacuum vessel evacuated by the means, and configured to allow gas to flow from the exhaust port side toward the intake port side, and the gas flowing through the decompression unit is The technical means of controlling the pressure in the vacuum container by introducing it into the vacuum container through the flow rate control means from the air inlet is used.
  • the pressure on the intake port side of the decompression means is always reduced.
  • the pressure in the vacuum vessel is made to flow from the exhaust port side of the decompression means to the suction port side, and the gas that has circulated in the decompression means is passed through the flow rate control means from the suction port to the vacuum container. Can be introduced inside.
  • the gas can be introduced into the vacuum vessel through the flow rate control means in a state where the pressure is reduced to the ultimate pressure of the decompression means, the gas introduced into the vacuum vessel without using an expensive mass flow controller Therefore, the pressure in the vacuum vessel can be controlled with high accuracy. Further, since the entire amount of the gas introduced into the vacuum vessel through the decompression means can be introduced into the vacuum vessel, the gas is not discharged to the outside of the system and is not wasted, and the running cost is kept low. be able to.
  • the technical means that the vacuum pump of the decompression means is a dry vacuum pump is used.
  • the decompression means is constituted by a dry vacuum pump, the gas introduced into the vacuum vessel is in a clean state, and the inside of the vacuum vessel is not contaminated.
  • a technique in the vacuum device according to the first or second aspect of the present invention, includes a gas supply means connected to the exhaust port of the pressure reducing means and supplying gas to the pressure reducing means. Use appropriate means.
  • the gas supplied from a gas supply means can be introduce
  • arbitrary gas can be introduce
  • the configuration of the apparatus can be improved by adopting a configuration in which the exhaust port of the decompression means is open to the atmosphere as in the fourth aspect of the present invention.
  • the apparatus cost can be simplified and the pressure in the vacuum vessel can be controlled at an inexpensive running cost because it is not necessary to use expensive gas.
  • a vacuum gauge for measuring the pressure in the vacuum vessel, and a control pressure in which the pressure in the vacuum vessel is preset.
  • the technical means of including a control device for controlling the flow rate control means based on the output of the vacuum gauge is used.
  • the number of steps can be reduced, and the pressure control of the vacuum vessel can be performed accurately and reliably.
  • the pressure reducing means is a diaphragm pump.
  • the diaphragm pump When the decompression means is configured as a diaphragm pump as in the sixth aspect of the present invention, the diaphragm pump generally has an ultimate vacuum of about 3 ⁇ 10 4 Pa to 3 ⁇ 10 3 Pa. Can be suitably used when it is desired to control the pressure of 3 ⁇ 10 4 Pa to about 20 Pa. Moreover, since the diaphragm pump is the cheapest type of vacuum pump among the vacuum pumps, the apparatus cost can be reduced.
  • a seventh aspect of the present invention there is used a technical means in the vacuum apparatus according to the first aspect of the present invention, wherein the pressure reducing means is a scroll pump.
  • the scroll pump is a vacuum pump of the lowest ultimate pressure among dry vacuum pumps that can be used alone, and the ultimate vacuum is Since it is generally about 20 Pa to 1 Pa, it can be suitably used when it is desired to control the pressure inside the vacuum vessel from about 20 Pa to about 4.0 ⁇ 10 ⁇ 2 Pa.
  • the pressure reducing means is an exhaust means including a mechanical booster pump.
  • the decompression means is configured to be an exhaust means including a mechanical booster pump as in the eighth aspect of the present invention
  • the exhaust means including the mechanical booster pump generally has an ultimate vacuum of about 4.0 ⁇ 10 ⁇ 2 Pa. Therefore, it can be suitably used when it is desired to control the pressure inside the vacuum vessel to 4.0 ⁇ 10 ⁇ 2 Pa or less.
  • an evacuation means including a mechanical booster pump for example, a means such as a combination of a mechanical booster pump and a scroll pump can be used.
  • the vacuum vessel press-bonds a laminated body in which film materials are laminated by a pressurizing means,
  • the technical means of a laminate fixing jig for fixing the laminate for manufacturing is used.
  • a laminated assembly such as a membrane-electrode assembly for a polymer electrolyte fuel cell obtained by laminating and joining a solid polymer membrane, a fuel electrode membrane, and an air electrode membrane
  • a laminate fixing jig of a type in which the space in which the laminate is disposed is decompressed to fix the laminate it may be necessary to control the pressure in the space in which the laminate is disposed.
  • the vacuum vessel as a laminated body fixing jig, it can be suitably used for manufacturing such a laminated assembly.
  • a vacuum vessel in which the processing material is disposed in which the processing material is disposed, an exhaust means for evacuating the vacuum vessel, and a flow rate control means for controlling the gas flow rate
  • a decompression means comprising a vacuum pump connected to the vacuum vessel and an air inlet through the flow rate control means, and the decompression means inside the vacuum container by the exhaust means
  • An evacuation step for evacuating to a pressure lower than the internal pressure of the gas, and a gas is circulated from the exhaust port side to the intake port side through the interior of the decompression unit, and the gas circulated through the decompression unit is the flow rate control unit
  • a technical means is provided that includes a gas introduction step for introducing the gas into the vacuum vessel via a pressure control step and a pressure control step for controlling the pressure in the vacuum vessel by controlling the flow rate control means.
  • the evacuation unit evacuates the vacuum vessel to a pressure lower than the pressure in the decompression unit
  • the gas introduction step evacuates through the decompression unit.
  • Gas is circulated from the inlet side to the inlet side, and the gas circulated inside the decompression means is introduced into the vacuum container through the flow rate control means, and the flow rate control means is controlled in the pressure control process.
  • the pressure can be controlled.
  • a vacuum container in which a processing material is disposed, a first vacuum pump connected in communication with the vacuum container, and a communication connection connected in the vacuum container to control a gas flow rate.
  • a vacuum device comprising: a flow rate control unit; and a second vacuum pump that is connected to the flow rate control unit and includes an internal path that communicates an exhaust port and an intake port. The pressure in the internal path is higher than the evacuated pressure in the vacuum vessel generated by the first vacuum pump, and the gas can flow inside from the exhaust port side to the intake port side. Further, a technical means is used in which the gas flowing through the second vacuum pump is introduced into the vacuum container through the flow rate control means.
  • the inside of the vacuum vessel is evacuated by the first vacuum pump, and the internal pressure is made lower than the internal path connecting the exhaust port and the intake port of the second vacuum pump.
  • the pressure on the intake port side of the second vacuum pump always be equal to or lower than the pressure on the internal path of the second vacuum pump, gas is circulated from the exhaust port side to the intake port side in the internal path, so that the second vacuum
  • the gas flowing through the pump can be introduced into the vacuum container from the intake port via the flow rate control means. Accordingly, since the gas can be introduced into the vacuum vessel through the flow rate control means in a state where the pressure is reduced to the ultimate pressure of the internal path of the second vacuum pump, the vacuum vessel can be used without using an expensive mass flow controller.
  • the amount of gas introduced into the gas can be precisely controlled, the pressure in the vacuum vessel can be controlled with high accuracy.
  • the entire amount of the gas that is circulated through the second vacuum pump and introduced into the vacuum vessel can be introduced into the vacuum vessel, the gas is not consumed unnecessarily by discharging the gas out of the system. Can be kept low.
  • FIG. 3A is an explanatory plan view of the first fixing member and the seal member
  • FIG. 3B is an explanatory plan view of the second fixing member.
  • plane explanatory drawing which shows the state which has arrange
  • sectional explanatory drawing which shows the state which has arrange
  • 5A is a cross-sectional view taken along the line AA in FIG. 4
  • FIG. 5B is a cross-sectional view taken along the line BB in FIG. 4
  • FIG. 5C is a cross-sectional view taken along the line CC in FIG.
  • FIG. 5D is a cross-sectional view taken along the line DD in FIG.
  • a vacuum apparatus 1 of the present invention includes a vacuum vessel 2 in which a processing material to be processed in a vacuum is disposed, a vacuum gauge 3 for measuring the pressure inside the vacuum vessel 2, and a vacuum vessel 2.
  • a first vacuum pump 4 that evacuates the gas
  • a conductance valve 5 that can control the gas flow rate by controlling the opening of the valve
  • a second vacuum pump that is connected to the vacuum vessel 2 via the conductance valve 5.
  • a gas supply means 7 for supplying a gas to be introduced into the vacuum vessel 2 and the pressure inside the vacuum vessel 2 is preset by controlling the opening of the conductance valve 5 based on the output of the vacuum gauge 3.
  • the first vacuum pump 4 corresponds to the exhaust means of the first aspect of the present invention
  • the second vacuum pump 6 corresponds to the pressure reducing means
  • the conductance valve 5 corresponds to the flow rate control means.
  • the first vacuum pump 4 is selected in consideration of the control pressure of the vacuum vessel 2.
  • an exhaust unit combining a turbo molecular pump with a rotary pump as an auxiliary pump is employed.
  • the first vacuum pump 4 various types of pumps such as a dry vacuum pump and a wet vacuum pump can be employed.
  • the second vacuum pump 6 is a dry vacuum pump that is selected so that the internal pressure becomes higher than the internal pressure (control pressure) of the vacuum vessel 2 decompressed by the first vacuum pump 4.
  • An intake port 6 a of the second vacuum pump 6 is connected to the vacuum vessel 2 via the conductance valve 5, and an exhaust port 6 b is connected to the gas supply means 7.
  • the pressure inside the second vacuum pump 6 means, as will be described later, the degree of vacuum in the internal path that connects the exhaust port 6b through which the gas supplied from the gas supply means 7 and the intake port 6a communicate with each other. Indicates.
  • the second vacuum pump 6 is configured such that the gas supplied by the gas supply means 7 can flow from the exhaust port 6b to the intake port 6a inside the pump, and is used as a diaphragm pump, a scroll pump, or a mechanical booster pump.
  • Exhaust means including a mechanical booster pump such as a combination of scroll pumps can be used.
  • the gas supply means 7 is configured by, for example, a cylinder equipped with a pressure gauge for supplying a gas (for example, an inert gas) for forming an atmosphere required in the vacuum vessel 2. Further, when the vacuum container 2 does not need to be in a specific gas atmosphere, the exhaust port 6b of the second vacuum pump 6 may be opened to the atmosphere without providing the gas supply means 7.
  • a gas for example, an inert gas
  • Valves can be provided as appropriate between the vacuum vessel 2, the first vacuum pump 4, the second vacuum pump 6, and the gas supply means 7.
  • a method for controlling the pressure of the vacuum vessel 2 by the vacuum apparatus 1 having this configuration will be described.
  • the first vacuum pump 4 and the second vacuum pump 6 are activated, and the inside of the vacuum vessel 2 is controlled by a control pressure (for example, 4.0 ⁇ 10 ⁇ 2) set in the control device 8. Pa)
  • a control pressure for example, 4.0 ⁇ 10 ⁇ 2
  • the pressure inside the second vacuum pump 6 (the ultimate vacuum degree) is about 20 to 1 Pa
  • the inside of the vacuum vessel 2 is inside the second vacuum pump 6. It is evacuated to a pressure lower than the pressure.
  • the second vacuum pump 6 and the vacuum vessel 2 are connected, and gas is supplied to the second vacuum pump 6 by the gas supply means 7. Then, since the intake port 6a side has a lower pressure than the exhaust port 6b side, the gas supplied from the gas supply means 7 passes through the inside of the second vacuum pump 6 and flows from the exhaust port 6b toward the intake port 6a. It is introduced into the vacuum vessel 2 through the conductance valve 5.
  • the pressure in the vacuum vessel 2 is controlled by controlling the opening of the conductance valve 5.
  • the control device 8 adjusts the opening of the conductance valve 5 based on the output from the vacuum gauge 3 and controls the pressure in the vacuum vessel 2 to be a preset control pressure. Through the above steps, the pressure in the vacuum vessel 2 can be controlled.
  • the second vacuum pump 6 can be appropriately selected in consideration of the control pressure of the vacuum vessel 2 and the like.
  • the diaphragm pump generally has an ultimate vacuum of about 3 ⁇ 10 4 Pa to 3 ⁇ 10 3 Pa. Therefore, the diaphragm pump is preferably used when it is desired to control the pressure inside the vacuum vessel 2 to about 3 ⁇ 10 4 Pa to 20 Pa. it can. Moreover, since the diaphragm pump is the cheapest type of vacuum pump among the vacuum pumps, the apparatus cost can be reduced.
  • the scroll pump is a vacuum pump having the lowest ultimate pressure among dry vacuum pumps that can be used alone, and since the ultimate vacuum is generally about 20 Pa to 1 Pa, the pressure inside the vacuum vessel 2 is changed from 20 Pa to 4.0.
  • the exhaust means including the mechanical booster pump generally has an ultimate vacuum of about 4.0 ⁇ 10 ⁇ 2 Pa, and is suitable for controlling the internal pressure of the vacuum vessel 2 to 4.0 ⁇ 10 ⁇ 2 Pa or less. Can be used.
  • the configuration in which the vacuum device 1 includes the control device 8 has been described, but a configuration in which the conductance valve 5 is manually adjusted without the control device 8 may be employed.
  • the conductance valve 5 is used as the flow rate control means, the present invention is not limited to this, and for example, an electropneumatic regulator can be employed.
  • the gas is introduced into the vacuum vessel 2 through the conductance valve 5 in a state where the pressure is reduced to the ultimate pressure of the second vacuum pump 6. Since the amount of gas introduced into the vacuum vessel 2 can be precisely controlled without using an expensive mass flow controller, the pressure in the vacuum vessel 2 is controlled with high accuracy. be able to. Further, since the entire amount of the gas introduced into the vacuum vessel 2 through the inside of the second vacuum pump 6 can be introduced into the vacuum vessel 2, it is possible to waste gas by discharging the gas out of the system. The running cost can be kept low. Furthermore, in the aspect which comprises the 2nd vacuum pump 6 with a dry vacuum pump, the gas introduce
  • a laminate fixing jig for fixing a laminate in order to produce a laminate joint by press-joining a laminate in which film materials are laminated by a pressing means such as a roll press As a vacuum vessel 2, a laminate fixing jig for fixing a laminate in order to produce a laminate joint by press-joining a laminate in which film materials are laminated by a pressing means such as a roll press.
  • a pressing means such as a roll press.
  • the laminated assembly there is a membrane-electrode assembly for a polymer electrolyte fuel cell formed by laminating and joining a solid polymer membrane, a fuel electrode membrane, and an air electrode membrane. Can be mentioned.
  • the laminate fixing jig 100 includes a first fixing member 10 connected to the first vacuum pump 4 and the second vacuum pump 6, a second fixing member 20 and a seal member 30 used in combination with the first fixing member 10. ing.
  • the first fixing member 10 is a strip-shaped member having flexibility between the first columnar members 11 and 11 formed in a prismatic shape that is disposed substantially parallel to the conveying direction to the pressing means such as a roll press.
  • a first sheet member 12 made of a member is stretched and formed.
  • the 1st sheet member 12 consists of stainless steel which is a metal material, for example.
  • the first sheet member 12, together with the seal member 30, has an end portion on one of the surfaces extending in the longitudinal direction of the first columnar member 11 (FIG. 5A) by the plate-like first pressing member 13. It is fixed.
  • the first columnar member 11 is formed with an exhaust path 14 connected to a vacuum pump via an exhaust port 16 and communicating with a storage space S described later.
  • one first columnar member 11 is connected to the first vacuum pump 4 via the exhaust port 16, and the other first columnar member 11 is connected to the second vacuum pump 6 via the exhaust port 16. .
  • Exhaust holes 12a are formed through the region of the first sheet member 12 in contact with the first columnar member 11 so as to correspond to the positions where the exhaust passages 14 are opened.
  • the exhaust holes 12 a communicate with the exhaust path 14 via the vacuum pad 15.
  • the first columnar member 11 is provided with a positioning pin 17 for positioning the second columnar member 21 disposed to face the first columnar member 11.
  • the second fixing member 20 has a second sheet member 22 made of a flexible belt-like member stretched between second columnar members 21 and 21 arranged to face the first columnar member 11. Is formed.
  • the outer shape of the second sheet member 22 between the second columnar members 21 and 21 is formed to be substantially the same as the outer shape of the first sheet member 12 between the first columnar members 11 and 11.
  • the second sheet member 22 is bent along the second columnar member 21 and is fixed by a second pressing member 24 via a pressing plate 23 from the side surface.
  • the second pressing member 24 includes a fixing screw 25 inserted through the pressing plate 23 and the second sheet member 22 and fixing the second columnar member 21;
  • An adjustment screw 26 for adjusting the position pressed against the two-columnar member 21 is provided.
  • the second pressing member 24 is formed with a positioning hole 27 through which the positioning pin 17 of the first fixing member 10 is inserted to position the second fixing member 20.
  • the seal member 30 is disposed between the first sheet member 12 and the second sheet member 22 that are positioned so as to be opposed to each other by the first columnar members 11 and 11 and the second columnar members 21 and 21.
  • the seal member 30 is formed in communication with the accommodating portion 30a and an accommodating portion 30a that partitions the space formed by the first sheet member 12 and the second sheet member 22 so as to accommodate the laminated body W.
  • the exhaust part 30b formed in order to exhaust the inside of the accommodation space S which is the sealed space divided by the 1st sheet member 12, the 2nd sheet member 22, and the accommodating part 30a is formed.
  • the seal member 30 serves as a side wall of the accommodation space S by being sandwiched between the first sheet member 12 and the second sheet member 22.
  • the exhaust part 30b communicates with the accommodating part 30a and protrudes toward the first columnar member 11 so that the exhaust hole 12a of the first sheet member 12 faces. Moreover, the exhaust port 30b is formed smaller than the accommodating part 30a so that the laminated body W accommodated in the accommodating part 30a may not move.
  • the laminated body fixing jig 100 has the above-described configuration, the laminated body W is disposed in the accommodation space S, the accommodation space S is exhausted by the first vacuum pump 4, the conductance valve 5, the second vacuum pump 6, and the gas supply means.
  • the first sheet member 12 and the second sheet member 22 are brought into close contact with the laminate W disposed in the accommodation space S to fix the laminate W.
  • the inside of the accommodation space S can be controlled to a predetermined pressure, the force with which the first sheet member 12 and the second sheet member 22 are in close contact with and fixed to the stacked body W can be controlled.
  • the fixed laminated body W can be pressurized and joined by pressurization means, such as a roll-type press apparatus, and a laminated joined body can be manufactured.
  • pressurization means such as a roll-type press apparatus
  • a laminate fixing jig of a type that fixes the laminate by depressurizing the space in which the laminate is arranged can be employed as the vacuum container.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

【課題】高価な質量流量制御器を使用せずに、導入ガスを大量に消費することがなく、真空容器内の圧力を制御することができる真空装置及び真空装置の真空容器内の圧力制御方法を提供する 【解決手段】真空装置1は、真空容器2と、真空容器2の内部の圧力を測定する真空計3と、真空容器2を真空排気する第1真空ポンプ4と、コンダクタンスバルブ5と、コンダクタンスバルブ5を介して真空容器2に接続される第2真空ポンプ6と、真空容器2にガスを供給するガス供給手段7と、真空計3の出力に基づいて真空容器2の内部の圧力を制御圧力に制御する制御装置8と、を備えている。第2真空ポンプ6は、内部の圧力が真空容器2の内部の圧力(制御圧力)よりも高くなるように選定されたドライ真空ポンプであり、ガス供給手段7により供給されるガスが、ポンプ内部で排気口6bから吸気口6aに向かって流通可能に構成されている。

Description

真空装置及び真空装置の真空容器内の圧力制御方法
本発明は、真空容器の内部の圧力を制御して用いる真空装置及び真空装置の真空容器内の圧力制御方法に関する。
従来より、スパッタリング、CVDなどに用いられる産業用真空装置においては、真空容器の内部の圧力を制御して用いる真空装置が用いられている。
このような真空装置として、例えば特開平9-158833号公報には、真空容器にガスを導入する系に、真空容器の排気系とは独立した排気系を有した中間室と、その中間室と真空容器の間に可変コンダクタンスバルブとを設け、ガス供給手段からの導入ガスを一般的に使用される質量流量制御器によって一定流量で中間室に導入し、さらに中間室から真空容器内に流入する導入ガス量を可変コンダクタンスバルブで調整することで極微小のガス導入量を高精度に制御するための高価な質量流量制御器を使用せずに真空容器内の圧力を調整する真空装置が開示されている。
しかし、上述の技術では、ガス供給手段より供給されたガスが中間室を経由して真空容器に供給されながら、中間室内のガスは第2の真空ポンプにより常時排気されているため、ガス供給手段より供給された導入ガスの大部分が真空容器に到達することなく装置系の外部に排気され、大量にガスを消費しランニングコストが高くなるという問題があった。
そこで、本発明は、高価な質量流量制御器を使用せずに、導入ガスを大量に消費することがなく、真空容器内の圧力を制御することができる真空装置及び真空装置の真空容器内の圧力制御方法を提供することを目的とする。
本発明では、上記目的を実現するために、本発明の第1の態様では、真空装置が、処理材を内部に配置する真空容器と、前記真空容器内を真空排気する排気手段と、ガスの流量を制御する流量制御手段と、前記流量制御手段を介して前記真空容器と吸気口が接続される真空ポンプにより構成される減圧手段と、を備え、前記減圧手段は、内部の圧力が前記排気手段により真空排気された前記真空容器内の圧力よりも高く、排気口側から吸気口側へ向かって内部でガスが流通可能に構成されており、前記減圧手段の内部を流通したガスを、前記吸気口から前記流量制御手段を介して前記真空容器へ導入することにより前記真空容器内の圧力を制御する、という技術的手段を用いる。
本発明の第1の態様によれば、真空容器内を排気手段によって排気し、内部の圧力を減圧手段の内部の圧力よりも低くすることにより、減圧手段の吸気口側の圧力が常に減圧手段の内部の圧力以下であるようにすることで、減圧手段の排気口側から吸気口側へガスを流通させ、減圧手段の内部を流通したガスを、吸気口から流量制御手段を介して真空容器内へ導入することができる。
これにより、ガスを減圧手段の到達圧力まで減圧した状態で流量制御手段を介して真空容器に導入することができるため、高価な質量流量制御器を使用しなくても真空容器に導入されるガスの量を精密に制御することができるので、真空容器内の圧力を高精度に制御することができる。
また、減圧手段を流通して真空容器に導入されるガスは、全量を真空容器に導入することができるので、ガスを系外に放出して無駄に消費することがなく、ランニングコストを低く抑えることができる。
本発明の第2の態様では、本発明の第1の態様の真空装置において、前記減圧手段の真空ポンプは、ドライ真空ポンプである、という技術的手段を用いる。
本発明の第2の態様によれば、減圧手段はドライ真空ポンプにより構成されるため、真空容器に導入されるガスが清浄な状態であり、真空容器内が汚染されることがない。
本発明の第3の態様では、本発明の第1または第2の態様の真空装置において、前記減圧手段の排気口に接続され、減圧手段にガスを供給するガス供給手段を備えた、という技術的手段を用いる。
本発明の第3の態様によれば、ガス供給手段から供給されるガスを真空容器に導入することができるので、任意のガスを真空容器内に導入することができる。
本発明の第4の態様では、本発明の第1または第2の態様の真空装置において、前記減圧手段の排気口が大気に開放されている、という技術的手段を用いる。
真空容器内のガス雰囲気が特定ガスでなくてもよい場合は、本発明の第4の態様のように、減圧手段の排気口が大気に開放されている構成を採用することにより、装置構成を簡単にして装置コストを低減することができるとともに、高価なガスを用いる必要がないので安価なランニングコストで真空容器内の圧力を制御することができる。
本発明の第5の態様では、本発明の第1または第2の態様の真空装置において、前記真空容器内の圧力を測定する真空計と、前記真空容器内の圧力があらかじめ設定された制御圧力となるように、前記真空計の出力に基づいて前記流量制御手段を制御する制御装置を備えた、という技術的手段を用いる。
本発明の第5の態様によれば、手動で流量制御手段を制御しなくても良いため、工数を低減することができるとともに、真空容器の圧力制御を精度よく確実に行なうことができる。
本発明の第6の態様では、本発明の第1の態様の真空装置において、前記減圧手段はダイアフラムポンプである、という技術的手段を用いる。
本発明の第6の態様のように減圧手段がダイアフラムポンプであるように構成すると、ダイアフラムポンプは到達真空度が一般に3×10Paから3×10Pa程度であるため、真空容器の内部の圧力を3×10Paから20Pa程度に制御したい場合に好適に用いることができる。
また、ダイアフラムポンプは真空ポンプの中でも最も安価な部類の真空ポンプなので、装置コストを抑えることができる。
本発明の第7の態様では、本発明の第1の態様の真空装置において、前記減圧手段はスクロールポンプである、という技術的手段を用いる。
本発明の第7の態様のように減圧手段がスクロールポンプであるように構成すると、スクロールポンプは単体で使用できるドライ真空ポンプの中でも到達圧力が最も低い部類の真空ポンプであり、到達真空度が一般に20Paから1Pa程度であるため、真空容器の内部の圧力を20Paから4.0×10-2Pa程度に制御したい場合に好適に用いることができる。
本発明の第8の態様では、本発明の第1の態様の真空装置において、前記減圧手段はメカニカルブースターポンプを含む排気手段である、という技術的手段を用いる。
本発明の第8の態様のように減圧手段がメカニカルブースターポンプを含む排気手段であるように構成すると、メカニカルブースターポンプを含む排気手段は到達真空度が一般に4.0×10-2Pa程度であるため、真空容器の内部の圧力を4.0×10-2Pa以下に制御したい場合に好適に用いることができる。メカニカルブースターポンプを含む排気手段としては、たとえば、メカニカルブースターポンプにスクロールポンプを組み合わせるなどの手段を用いることができる。
本発明の第9の態様では、本発明の第1または第2の態様の真空装置において、前記真空容器が、膜材料が積層された積層体を加圧手段により加圧接合し積層接合体を製造するために積層体を固定する積層体固定治具である、という技術的手段を用いる。
固体高分子膜、燃料極膜及び空気極膜を積層、接合してなる固体高分子型燃料電池用の膜-電極接合体(Membrane-Electrode Assembly)などの積層接合体を製造する際に積層体を配置した空間を減圧して積層体を固定する方式の積層体固定治具を用いる場合、積層体を配置した空間内の圧力の制御が必要な場合がある。本発明の第9の態様のように、真空容器を積層体固定治具として構成することにより、このような積層接合体の製造に好適に用いることができる。
本発明の第10の態様では、真空容器内の圧力制御方法において、処理材を内部に配置する真空容器と、前記真空容器内を真空排気する排気手段と、ガスの流量を制御する流量制御手段と、前記流量制御手段を介して前記真空容器と吸気口が接続される真空ポンプにより構成される減圧手段と、を備えた真空装置を用意し、前記排気手段により前記真空容器内を前記減圧手段の内部の圧力より低い圧力に真空排気する排気工程と、前記減圧手段の内部を通って排気口側から吸気口側へガスを流通させ、前記減圧手段の内部を流通したガスを前記流量制御手段を介して前記真空容器内へ導入するガス導入工程と、前記流量制御手段を制御することにより、真空容器内の圧力制御をする圧力制御工程と、を備えた、という技術的手段を用いる。
本発明の第10の態様によれば、排気工程において前記排気手段により前記真空容器内を前記減圧手段の内部の圧力より低い圧力に真空排気し、ガス導入工程において減圧手段の内部を通って排気口側から吸気口側へガスを流通させ、減圧手段の内部を流通したガスを流量制御手段を介して真空容器内へ導入し、圧力制御工程において流量制御手段を制御することにより、真空容器内の圧力制御をすることができる。
これにより、ガスを減圧手段の到達圧力まで減圧した状態で流量制御手段を介して真空容器に導入することができるため、高価な質量流量制御器を使用しなくても真空容器に導入されるガスの量を精密に制御することができるので、真空容器内の圧力を高精度に制御することができる。
また、減圧手段を流通して真空容器に導入されるガスは、全量を真空容器に導入することができるので、ガスを系外に放出して無駄に消費することがなく、ランニングコストを低く抑えることができる。
本発明の第11の態様では、処理材を内部に配置する真空容器と、前記真空容器内に連通接続された第1真空ポンプと、前記真空容器内に連通接続され、ガスの流量を制御する流量制御手段と、前記流量制御手段に連通接続され、排気口と吸気口とを連通する内部経路を備える第2真空ポンプと、を備えた真空装置であって、前記第2真空ポンプは、前記内部経路内の圧力が前記第1真空ポンプによって生じる前記真空容器内の真空排気された圧力よりも高く、かつ、前記排気口側から前記吸気口側へ向かって内部でガスが流通可能に構成されており、前記第2真空ポンプ内を流通したガスは、前記流量制御手段を介して前記真空容器へ導入される、という技術的手段を用いる。
本発明の第11の態様によれば、真空容器内を第1真空ポンプによって真空排気し、内部の圧力を第2真空ポンプの排気口と吸気口とを連通する内部経路よりも低くすることにより、第2真空ポンプの吸気口側の圧力が常に第2真空ポンプの内部経路の圧力以下であるようにすることで、内部経路において排気口側から吸気口側へガスを流通させ、第2真空ポンプ内を流通したガスを、吸気口から流量制御手段を介して真空容器内へ導入することができる。これにより、ガスを第2真空ポンプの内部経路の到達圧力まで減圧した状態で流量制御手段を介して真空容器に導入することができるため、高価な質量流量制御器を使用しなくても真空容器に導入されるガスの量を精密に制御することができるので、真空容器内の圧力を高精度に制御することができる。また、第2真空ポンプ内を流通して真空容器に導入されるガスは、全量を真空容器に導入することができるので、ガスを系外に放出して無駄に消費することがなく、ランニングコストを低く抑えることができる。
この出願は、日本国で2011年11月16日に出願された特願2011-250334号に基づいており、その内容は本出願の内容として、その一部を形成する。
また、本出願は以下の詳細な説明により更に完全に理解できるであろう。しかしながら、詳細な説明及び特定の実施例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、当業者にとって明らかだからである。
出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、開示された改変、代替案のうち、請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
本明細書あるいは請求の範囲の記載において、名詞及び同様な指示語の使用は、特に指示されない限り、または文脈によって明瞭に否定されない限り、単数及び複数の両方を含むものと解釈すべきである。本明細書で提供されたいずれの例示または例示的な用語(例えば、「等」)の使用も、単に本発明を説明し易くするという意図であるに過ぎず、特に請求の範囲に記載しない限り本発明の範囲に制限を加えるものではない。
本発明の真空装置の構成を示す構成図である。 真空装置の真空容器内の圧力制御方法を示す工程図である。 真空容器として用いる積層体固定治具の構造を示す説明図である。図3(A)は第1固定部材及びシール部材の平面説明図、図3(B)は第2固定部材の平面説明図である。 積層体固定治具に積層体を配置した状態を示す平面説明図である。 積層体固定治具に積層体を配置した状態を示す断面説明図である。図5(A)は図4のA-A矢視断面図、図5(B)は図4のB-B矢視断面図、図5(C)は図4のC-C矢視断面図、図5(D)は図4のD-D矢視断面図である。
(第1実施形態)
次に本発明について図面を参照して説明する。図1に示すように、本発明の真空装置1は、真空中で処理する処理材を内部に配置する真空容器2と、真空容器2の内部の圧力を測定する真空計3と、真空容器2を真空排気する第1真空ポンプ4と、弁の開度を制御することによってガス流量を制御することができるコンダクタンスバルブ5と、コンダクタンスバルブ5を介して真空容器2に接続される第2真空ポンプ6と、真空容器2に導入するためのガスを供給するガス供給手段7と、真空計3の出力に基づいてコンダクタンスバルブ5の開度を制御することにより真空容器2の内部の圧力をあらかじめ設定された制御圧力に制御する制御装置8と、を備えている。
ここで、第1真空ポンプ4が本発明の第1の態様の排気手段に、第2真空ポンプ6が減圧手段に、コンダクタンスバルブ5が流量制御手段に、それぞれ相当する。
 第1真空ポンプ4は、真空容器2の制御圧力を考慮して選定される。本実施形態では、真空容器2の内部の圧力を4.0×10-2Pa以下に減圧するために、ターボモレキュラーポンプに補助ポンプとしてロータリーポンプを組み合わせた排気手段を採用した。なお、第1真空ポンプ4としては、ドライ真空ポンプ、ウェット真空ポンプなど各種形式のポンプを採用することができる。
第2真空ポンプ6は、内部の圧力が第1真空ポンプ4で減圧された真空容器2の内部の圧力(制御圧力)よりも高くなるように選定されたドライ真空ポンプである。第2真空ポンプ6の吸気口6aはコンダクタンスバルブ5を介して真空容器2に接続され、排気口6bはガス供給手段7に接続されている。
ここで、「第2真空ポンプ6の内部の圧力」とは、後述するように、ガス供給手段7から供給されるガスが流通する排気口6bと吸気口6aとを連通する内部経路の真空度を示す。
第2真空ポンプ6は、ガス供給手段7により供給されるガスが、ポンプ内部で排気口6bから吸気口6aに向かって流通可能に構成されており、ダイアフラムポンプ、スクロールポンプ、またはメカニカルブースターポンプにスクロールポンプを組み合わせるなどのメカニカルブースターポンプを含む排気手段、などを用いることができる。ここで、図中には示していないが、排気口6b側に連通して排気用に分岐した配管を設けることもできる。
ガス供給手段7は、真空容器2で必要とされる雰囲気を形成するためのガス(例えば不活性ガス)を供給するための、例えば圧力ゲージを備えたボンベなどにより構成される。
また、真空容器2を特定のガス雰囲気にする必要がない場合は、ガス供給手段7を設けずに第2真空ポンプ6の排気口6bを、大気に解放させてもよい。
真空容器2、第1真空ポンプ4、第2真空ポンプ6及びガス供給手段7の間には、適宜バルブを設けることができる。
本構成の真空装置1による真空容器2の圧力制御方法について説明する。まず、図2に示す排気工程では、第1真空ポンプ4及び第2真空ポンプ6を起動させ、真空容器2の内部を、制御装置8において設定された制御圧力(例えば4.0×10-2Pa)以下の10-3Pa程度まで真空排気する。第2真空ポンプ6としてスクロールポンプを用いた場合には、第2真空ポンプ6の内部の圧力(到達真空度)は20~1Pa程度であり、真空容器2内は第2真空ポンプ6の内部の圧力より低い圧力に真空排気される。
続くガス導入工程では、第2真空ポンプ6と真空容器2とを接続し、ガス供給手段7により第2真空ポンプ6にガスを供給する。すると、吸気口6a側が排気口6b側よりも低圧となるため、ガス供給手段7から供給されるガスが第2真空ポンプ6の内部を通って排気口6bから吸気口6aに向かって流通され、コンダクタンスバルブ5を通じて真空容器2内に導入される。
続く圧力制御工程では、コンダクタンスバルブ5の開度を制御することにより、真空容器2内の圧力制御をする。本実施形態では、制御装置8は、真空計3からの出力に基づいてコンダクタンスバルブ5の開度を調整し、真空容器2内の圧力をあらかじめ設定された制御圧力になるように制御する。以上の工程により、真空容器2内の圧力を制御することができる。
第2真空ポンプ6は、真空容器2の制御圧力などを考慮して適宜選択することができる。
ダイアフラムポンプは到達真空度が一般に3×10Paから3×10Pa程度であるため、真空容器2の内部の圧力を3×10Paから20Pa程度に制御したい場合に好適に用いることができる。また、ダイアフラムポンプは真空ポンプの中でも最も安価な部類の真空ポンプなので、装置コストを抑えることができる。スクロールポンプは単体で使用できるドライ真空ポンプの中でも到達圧力が最も低い部類の真空ポンプであり、到達真空度が一般に20Paから1Pa程度であるため、真空容器2の内部の圧力を20Paから4.0×10-2Pa程度に制御したい場合に好適に用いることができる。メカニカルブースターポンプを含む排気手段は到達真空度が一般に4.0×10-2Pa程度であるため、真空容器2の内部の圧力を4.0×10-2Pa以下に制御したい場合に好適に用いることができる。
本実施形態では、真空装置1が制御装置8を備えた構成について示したが、制御装置8を備えずにコンダクタンスバルブ5を手動で調整する構成を採用することもできる。また、流量制御手段としてコンダクタンスバルブ5を用いたが、これに限定されるものではなく、例えば電空レギュレータなどを採用することができる。
[第1実施形態の効果]
本実施形態の真空装置1及び真空装置1の真空容器2内の圧力制御方法によれば、ガスを第2真空ポンプ6の到達圧力まで減圧した状態でコンダクタンスバルブ5を介して真空容器2に導入することができるため、高価な質量流量制御器を使用しなくても真空容器2に導入されるガスの量を精密に制御することができるので、真空容器2内の圧力を高精度に制御することができる。
また、第2真空ポンプ6の内部を流通して真空容器2に導入されるガスは、全量を真空容器2に導入することができるので、ガスを系外に放出して無駄に消費することがなく、ランニングコストを低く抑えることができる。
更に、第2真空ポンプ6をドライ真空ポンプにより構成する態様では、真空容器2に導入されるガスが清浄な状態であり、真空容器2内が汚染されることがない。
(第2実施形態)
本実施形態では、真空容器2として、膜材料が積層された積層体をロール式プレスなどの加圧手段により加圧接合し積層接合体を製造するために積層体を固定する積層体固定治具を採用した場合について以下に説明する。ここで、積層接合体の例としては、固体高分子膜、燃料極膜及び空気極膜を積層、接合してなる固体高分子型燃料電池用の膜-電極接合体(Membrane-Electrode Assembly)が挙げられる。
積層体固定治具の一実施例について、図3ないし5を参照して説明する。積層体固定治具100は、第1真空ポンプ4及び第2真空ポンプ6と接続される第1固定部材10、第1固定部材10に組み合わせて用いられる第2固定部材20及びシール部材30を備えている。
第1固定部材10は、ロール式プレスなどの加圧手段への搬送方向に略平行に配置される角柱状に形成された第1柱状部材11、11の間に、可撓性を有する帯状の部材からなる第1シート部材12が張り渡されて形成されている。第1シート部材12は例えば金属材料であるステンレス鋼からなる。
 第1シート部材12はシール部材30とともに、それぞれの端部が、板状の第1押さえ部材13により、第1柱状部材11の長手方向に延びる面の1つ(図5(A))にそれぞれ固定されている。
第1柱状部材11には、排気ポート16を介して真空ポンプに接続され、後述する収容空間Sと連通する排気路14が形成されている。ここで、一方の第1柱状部材11は排気ポート16を介して第1真空ポンプ4に接続され、他方の第1柱状部材11は排気ポート16を介して第2真空ポンプ6に接続されている。
第1シート部材12の第1柱状部材11と当接する領域には、排気路14が開口する位置に対応して排気孔12aが貫通形成されている。排気孔12aは、真空パッド15を介して排気路14にそれぞれ連通している。
第1柱状部材11には、対向して配置される第2柱状部材21の位置決めを行う位置決めピン17が設けられている。
第2固定部材20は、第1柱状部材11と対向して配置される第2柱状部材21、21の間に、可撓性を有する帯状の部材からなる第2シート部材22が張り渡されて形成されている。第2柱状部材21、21間の第2シート部材22の外形は、第1柱状部材11、11間の第1シート部材12の外形と略同一になるように形成されている。
第2シート部材22は、第2柱状部材21に沿って折り曲げられ、側面より押さえ板23を介して第2押さえ部材24により固定されている。図5(A)及び(C)に示すように、第2押さえ部材24には、押さえ板23及び第2シート部材22に挿通され第2柱状部材21を固定するための固定ねじ25と、第2柱状部材21に押圧する位置を調節するための調節ビス26と、が設けられている。
第2押さえ部材24には、第1固定部材10の位置決めピン17を挿通して第2固定部材20の位置決めを行うための位置決め穴27が貫通形成されている。
シール部材30は、第1柱状部材11、11と第2柱状部材21、21とにより対向するように位置決めされた第1シート部材12と第2シート部材22との間に配置される。シール部材30には、第1シート部材12と第2シート部材22とが対向して形成される空間を積層体Wが収容可能に区画する収容部30aと、収容部30aと連通して形成され、第1シート部材12、第2シート部材22及び収容部30aにより区画された密閉空間である収容空間Sの内部を排気するために形成された排気部30bと、が形成されている。
シール部材30は、第1シート部材12と第2シート部材22との間に挟みこまれることにより、収容空間Sの側壁の役割を果たす。
排気部30bは、収容部30aと連通して第1柱状部材11側に向かって突出して、第1シート部材12の排気孔12aが面するように形成されている。また、排気口30bは、収容部30aに収容された積層体Wが移動しないように収容部30aより小さく形成されている。
積層体固定治具100は、上述の構成により、収容空間Sに積層体Wを配置し、第1真空ポンプ4により収容空間Sを排気し、コンダクタンスバルブ5、第2真空ポンプ6、ガス供給手段7により収容空間Sの内部を所定の圧力に制御することにより、第1シート部材12及び第2シート部材22を収容空間Sに配置された積層体Wに密着させて積層体Wを固定することができる。ここで、収容空間Sの内部を所定の圧力に制御することができるので、第1シート部材12及び第2シート部材22が積層体Wに密着し固定する力を制御することができる。
そして、固定された積層体Wをロール式プレス装置などの加圧手段により加圧して接合し、積層接合体を製造することができる。
なお、本実施例で示した構造の積層体固定治具以外にも、積層体を配置した空間を減圧して積層体を固定する方式の積層体固定治具を真空容器として採用することができる。
[第2実施形態の効果]
固体高分子膜、燃料極膜及び空気極膜を積層、接合してなる固体高分子型燃料電池用の膜-電極接合体(Membrane-Electrode Assembly)などの積層接合体を製造する際に積層体を配置した空間を減圧して積層体を固定する方式の積層体固定治具を用いる場合、積層体を配置した空間内の圧力の制御が必要な場合がある。本実施形態のように、真空容器2を積層体固定治具100として構成することにより、このような積層接合体の製造に好適に用いることができる。
以下、本明細書及び図面で用いた主な符号を、まとめて示す。
1…真空装置
2…真空容器
3…真空計
4…第1真空ポンプ
5…コンダクタンスバルブ
6…第2真空ポンプ
6a…吸気口
6b…排気口
7…ガス供給手段
8…制御装置
100…積層体固定治具
W…積層体

Claims (11)

  1. 処理材を内部に配置する真空容器と、
    前記真空容器内を真空排気する排気手段と、
    ガスの流量を制御する流量制御手段と、
    前記流量制御手段を介して前記真空容器と吸気口が接続される真空ポンプにより構成される減圧手段と、
    を備え、
    前記減圧手段は、内部の圧力が前記排気手段により真空排気された前記真空容器内の圧力よりも高く、排気口側から吸気口側へ向かって内部でガスが流通可能に構成されており、
    前記減圧手段の内部を流通したガスを、前記吸気口から前記流量制御手段を介して前記真空容器へ導入することにより前記真空容器内の圧力を制御することを特徴とする真空装置。
  2. 前記減圧手段の真空ポンプは、ドライ真空ポンプであることを特徴とする請求項1に記載の真空装置。
  3. 前記減圧手段の排気口に接続され、減圧手段にガスを供給するガス供給手段を備えたことを特徴とする請求項1または請求項2に記載の真空装置。
  4. 前記減圧手段の排気口が大気に開放されていることを特徴とする請求項1または請求項2に記載の真空装置。
  5. 前記真空容器内の圧力を測定する真空計と、
    前記真空容器内の圧力があらかじめ設定された制御圧力となるように、前記真空計の出力に基づいて前記流量制御手段を制御する制御装置を備えた請求項1または請求項2に記載の真空装置。
  6. 前記減圧手段はダイアフラムポンプであることを特徴とする請求項1に記載の真空装置。
  7. 前記減圧手段はスクロールポンプであることを特徴とする請求項1に記載の真空装置。
  8. 前記減圧手段はメカニカルブースターポンプを含む排気手段であることを特徴とする請求項1に記載の真空装置。
  9. 前記真空容器が、膜材料が積層された積層体を加圧手段により加圧接合し積層接合体を製造するために積層体を固定する積層体固定治具であることを特徴とする請求項1または請求項2に記載の真空装置。
  10. 処理材を内部に配置する真空容器と、
    前記真空容器内を真空排気する排気手段と、
    ガスの流量を制御する流量制御手段と、
    前記流量制御手段を介して前記真空容器と吸気口が接続される真空ポンプにより構成される減圧手段と、
    を備えた真空装置を用意し、
    前記排気手段により前記真空容器内を前記減圧手段の内部の圧力より低い圧力に真空排気する排気工程と、
    前記減圧手段の内部を通って排気口側から吸気口側へガスを流通させ、前記減圧手段の内部を流通したガスを前記流量制御手段を介して前記真空容器内へ導入するガス導入工程と、
    前記流量制御手段を制御することにより、真空容器内の圧力制御をする圧力制御工程と、
    を備えたことを特徴とする真空容器内の圧力制御方法。
  11. 処理材を内部に配置する真空容器と、
    前記真空容器内に連通接続された第1真空ポンプと、
    前記真空容器内に連通接続され、ガスの流量を制御する流量制御手段と、
    前記流量制御手段に連通接続され、排気口と吸気口とを連通する内部経路を備える第2真空ポンプと、を備えた真空装置であって、
    前記第2真空ポンプは、前記内部経路内の圧力が前記第1真空ポンプによって生じる前記真空容器内の真空排気された圧力よりも高く、かつ、前記排気口側から前記吸気口側へ向かって内部でガスが流通可能に構成されており、
    前記第2真空ポンプ内を流通したガスは、前記流量制御手段を介して前記真空容器へ導入されることを特徴とする真空装置。
PCT/JP2012/062258 2011-11-16 2012-05-14 真空装置及び真空装置の真空容器内の圧力制御方法 WO2013073217A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280032872.5A CN103635688B (zh) 2011-11-16 2012-05-14 真空装置以及真空装置的真空容器内的压力控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011250334A JP5862943B2 (ja) 2011-11-16 2011-11-16 真空装置及び真空装置の真空容器内の圧力制御方法
JP2011-250334 2011-11-16

Publications (1)

Publication Number Publication Date
WO2013073217A1 true WO2013073217A1 (ja) 2013-05-23

Family

ID=48429301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062258 WO2013073217A1 (ja) 2011-11-16 2012-05-14 真空装置及び真空装置の真空容器内の圧力制御方法

Country Status (3)

Country Link
JP (1) JP5862943B2 (ja)
CN (1) CN103635688B (ja)
WO (1) WO2013073217A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109854484A (zh) * 2019-03-26 2019-06-07 核工业理化工程研究院 真空设备放气成分收集装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966569A (zh) * 2014-04-28 2014-08-06 北京七星华创电子股份有限公司 一种半导体设备的真空控制系统及真空控制方法
JP6078941B2 (ja) 2014-10-27 2017-02-15 大日本印刷株式会社 表示物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169416A (ja) * 1986-01-22 1987-07-25 Hitachi Ltd 真空装置の圧力制御方法および装置
JPH09158833A (ja) * 1995-12-08 1997-06-17 Nec Corp 真空排気装置
JPH11153087A (ja) * 1997-08-15 1999-06-08 Boc Group Plc:The 真空ポンプ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3676983B2 (ja) * 2000-03-29 2005-07-27 株式会社日立国際電気 半導体製造方法、基板処理方法、及び半導体製造装置
GB0212757D0 (en) * 2002-05-31 2002-07-10 Boc Group Plc A vacuum pumping system and method of controlling the same
JP4633370B2 (ja) * 2004-02-17 2011-02-16 財団法人国際科学振興財団 真空装置
JP2007127032A (ja) * 2005-11-02 2007-05-24 Sumitomo Heavy Ind Ltd 減圧処理装置
JP2007186757A (ja) * 2006-01-13 2007-07-26 Tokyo Electron Ltd 真空処理装置及び真空処理方法
CN101778711B (zh) * 2007-10-05 2012-10-24 新东工业株式会社 薄板夹紧装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169416A (ja) * 1986-01-22 1987-07-25 Hitachi Ltd 真空装置の圧力制御方法および装置
JPH09158833A (ja) * 1995-12-08 1997-06-17 Nec Corp 真空排気装置
JPH11153087A (ja) * 1997-08-15 1999-06-08 Boc Group Plc:The 真空ポンプ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109854484A (zh) * 2019-03-26 2019-06-07 核工业理化工程研究院 真空设备放气成分收集装置

Also Published As

Publication number Publication date
CN103635688B (zh) 2016-01-20
CN103635688A (zh) 2014-03-12
JP5862943B2 (ja) 2016-02-16
JP2013104397A (ja) 2013-05-30

Similar Documents

Publication Publication Date Title
KR100837904B1 (ko) 자동차용 연료전지스택의 자동조립장치 및 방법
WO2013073217A1 (ja) 真空装置及び真空装置の真空容器内の圧力制御方法
JP5180948B2 (ja) 燃料電池スタック
JP5941791B2 (ja) 燃料電池システム
WO2013080581A1 (ja) 搬送システム、搬送方法及びこの搬送システムを備えた積層接合体製造装置
JP2009129777A (ja) 燃料電池用膜電極接合体の製造方法
WO2007148550A1 (ja) 燃料電池の配管構造
WO2008013065A1 (en) Fuel cell system and its control method
WO2008050811A1 (fr) Dispositif d'aspiration de séparateur pour une pile à combustible
US7314679B2 (en) Air supply apparatus for a fuel cell
JP4673194B2 (ja) 燃料電池システム
JP2015018793A (ja) 燃料電池システム
JP2007042305A (ja) 燃料電池システム
JP2009129584A (ja) 燃料電池スタックの製造方法
CN114068999B (zh) 燃料电池搭载装置
JP2008243404A (ja) 燃料電池用発電検査システム
JP7384098B2 (ja) 加湿器
KR20180066774A (ko) 연료전지 스택용 체결밴드
JP4892873B2 (ja) 燃料電池に用いられる導電性多孔質体および燃料電池
JP6211852B2 (ja) プレス成形用のカバーシート及びキャリアプレート並びにプレス装置
JP2009140858A (ja) 燃料電池スタックの製造方法及び製造設備
JP2015039817A (ja) プレス装置
TWI809459B (zh) 半導體製造裝置以及半導體製造方法
JP6488732B2 (ja) 燃料電池スタック
JP6747479B2 (ja) 酸素濃縮装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850149

Country of ref document: EP

Kind code of ref document: A1