WO2013073161A1 - 静電容量検出回路 - Google Patents
静電容量検出回路 Download PDFInfo
- Publication number
- WO2013073161A1 WO2013073161A1 PCT/JP2012/007256 JP2012007256W WO2013073161A1 WO 2013073161 A1 WO2013073161 A1 WO 2013073161A1 JP 2012007256 W JP2012007256 W JP 2012007256W WO 2013073161 A1 WO2013073161 A1 WO 2013073161A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- carrier signal
- capacitance
- detection circuit
- capacitance detection
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/125—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/12—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/18—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0822—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
- G01P2015/084—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/26—Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
- G01R27/2605—Measuring capacitance
Definitions
- the present invention relates to a capacitance detection circuit that detects a change in capacitance between the pair of electrodes of a physical quantity sensor having a pair of electrodes that cause a change in capacitance according to a change in physical quantity.
- MEMS Micro Electro Mechanical System
- this capacitance detection circuit for example, a drive voltage is applied to a capacitance type sensor element by a sensor drive circuit, and a change in the capacitance of the sensor element is converted to a voltage signal by a continuous time type CV conversion circuit.
- a capacitance detection circuit that performs conversion, detects a signal component from a voltage signal obtained by the conversion by a synchronous detection circuit, and smoothes an output signal of the synchronous detection circuit by a smoothing circuit (for example, , See Patent Document 1).
- the present invention has been made paying attention to the unsolved problems of the above conventional example, and provides a capacitance detection circuit capable of accurately detecting a minute capacitance by reducing noise. The purpose is that.
- a first aspect of the capacitance detection circuit provides the pair of electrode portions of a physical quantity sensor including a pair of electrode portions that cause a change in capacitance according to a change in physical quantity. It is the electrostatic capacitance detection circuit which detects the electrostatic capacitance change between.
- the capacitance detection circuit includes a carrier signal generation circuit that supplies a carrier signal to one of the pair of electrode portions, and an operational amplifier in which the other of the pair of electrode portions is input to an inverting input terminal.
- the capacitance detection circuit inverts the phase and adjusts the gain for the dummy capacitance connected in parallel with the pair of electrode portions and the carrier signal from the carrier signal generation circuit for the dummy capacitance.
- a carrier signal adjustment circuit that suppresses the dummy capacitance is provided.
- the capacitance detection circuit includes a demodulation circuit to which the carrier signal of the carrier signal generation circuit connected to the output side of the operational amplifier is input, and a low pass for smoothing the demodulation output of the demodulation circuit.
- a filter, and an A / D conversion circuit for converting the filter output of the low-pass filter into a digital signal.
- the carrier signal adjustment circuit includes an offset adjustment unit that adjusts a zero point offset of the A / D conversion circuit.
- the dummy capacitor is formed on a printed wiring board on which the operational amplifier is mounted.
- the operational amplifier has an inverting input terminal connected in parallel with one terminal of the pair of electrode portions and a series circuit of the dummy capacitor and the carrier signal adjustment circuit. The non-inverting input side is grounded and imaginary shorted.
- the carrier signal from the carrier signal generation circuit for the dummy capacitor is provided with the carrier signal adjustment circuit that inverts the phase and suppresses the dummy capacitor by adjusting the gain. It is possible to increase the amplification factor and reduce the capacity of the dummy capacitor, and it is possible to suppress noise by reducing the noise gain. Further, in the case where the output of the operational amplifier is demodulated by the demodulating circuit, and the demodulated output is subjected to A / D conversion after removing noise by a low-pass filter, the zero offset of the A / D converting circuit is adjusted by the carrier signal adjusting circuit. And the S / N ratio of the A / D conversion circuit can be improved.
- FIG. 1A and 1B are schematic views showing an acceleration sensor to which the present invention can be applied, in which FIG. It is a circuit diagram which shows the electrostatic capacitance detection circuit of XY direction. It is a circuit diagram which shows the electrostatic capacitance detection circuit of a Z direction. It is a circuit diagram which shows the comparative example of the electrostatic capacitance detection circuit of a Z direction.
- FIG. 4 is a circuit diagram showing a modification of the inverting amplifier circuit of FIG. 3. It is a circuit diagram which shows the adjustment circuit of a dummy capacity
- FIG. 1 is a schematic view showing an example of an acceleration sensor to which the capacitance detection circuit according to the present invention can be applied.
- FIG. 1 (a) is a plan view with an upper substrate removed, and FIG. It is sectional drawing on the AA line of Fig.1 (a).
- 1 is an acceleration sensor, and this acceleration sensor 1 is formed of an SOI (Silicon On Insulator) substrate 2.
- the SOI substrate 2 includes a lower silicon support layer 2a, a silicon oxide layer 2b formed on the silicon support layer 2a, and an active silicon layer 2c formed on the silicon oxide layer 2b. .
- each of the silicon support layer 2a and the silicon oxide layer 2b is formed in a rectangular frame shape on the outer peripheral portion, and a weight 7 described later is formed by dry etching the central portion in a square groove shape.
- the active silicon layer 2c includes a rectangular movable electrode 4 supported on the silicon oxide layer 2b by spring material 3 at its four corners in the center, and a silicon oxide layer facing the two sides in the X direction of the movable electrode 4
- a weight 7 is formed on the lower surface of the movable electrode 4.
- the vertical direction of the SOI substrate 2 is covered with the glass substrates 8a and 8b.
- a Z-axis fixed electrode 9 is formed at a position facing the movable electrode 4 of the glass substrate 8a.
- These glass substrates 8a and 8b are formed with through-holes 10 for taking out signals of the X-axis fixed electrodes 5Xa and 5Xb, the Y-axis fixed electrodes 6Ya and 6Yb, the movable electrode 4 and the Z-axis fixed electrode 9 to the outside. Yes.
- the capacitances Cxa and Cxb between the movable electrode 4 and the pair of left and right fixed electrodes 5Xa and 5Xb are symmetrical differentials in which one increases and the other decreases. It is structured.
- the electrostatic capacitances Cya and Cyb between the movable electrode 4 and the pair of front and rear fixed electrodes 6Ya and 6Yb have a longitudinally symmetrical differential structure in which when one increases, the other decreases. Has been.
- the electrostatic force between the movable electrode 4 and the Z-axis fixed electrode 9 facing this from above is fixed.
- the asymmetric structure has only the capacitance Cz.
- the movable electrode 4 that supports the weight 7 moves in the XYZ direction according to the direction of the acceleration, and the electrostatic capacitances Cxa and Cxb, Y in the X direction according to this move.
- the electrostatic capacitances Cya and Cyb in the axial direction and the electrostatic capacitance Cz in the Z-axis direction change, and acceleration can be measured by the change in these electrostatic capacitances.
- an electrostatic capacitance can be detected by the electrostatic capacitance detection circuit 20 as shown in FIG. That is, the electrostatic capacitance Cxa or Cya is expressed as an electrostatic variable capacitance Cs1, and the electrostatic capacitance Cxb or Cyb is expressed as an electrostatic variable capacitance Cs2.
- One of the electrostatic variable capacitors Cs1 and Cs2 is connected to the carrier signal generation circuit 21 to supply a carrier signal.
- the carrier signal has an AC waveform such as a sine wave or a rectangular wave at a higher frequency than the acceleration to be measured. This carrier signal is necessary to detect the capacitance from a low frequency such as 0 Hz or near 0 Hz.
- capacitors C2 and C3 having the same capacity are connected between the other electrode of each of the electrostatic variable capacitors Cs1 and Cs2 and the ground, and a resistor R2 is connected in parallel to the capacitor C2.
- the capacitor C2 is provided to quickly charge the electrostatic variable capacitor Cs1, and the capacitor C3 is connected in order to keep the circuit symmetrical.
- the capacity of the capacitor C2 and the capacity of the capacitor C3 are set to be equal.
- connection point between the electrostatic variable capacitor Cs1 and the capacitor C2 is connected to the non-inverting input terminal of the differential amplifier Q21, and the connection point between the electrostatic variable capacitor Cs2 and the capacitor C3 is connected to the inverting input terminal of the differential amplifier Q21. ing.
- the output terminal of the differential amplifier Q21 is fed back to the non-inverting input terminal via a parallel circuit of a resistor R1 and a capacitor C4.
- the output of the differential amplifier Q21 is supplied to the demodulation circuit 22 to which the carrier signal of the carrier signal generation circuit 21 is input, and the output signal amplitude-modulated by the carrier signal obtained from the differential amplifier Q21 by the demodulation circuit 22 is output.
- Demodulate The demodulated signal output from the demodulating circuit 22 is subjected to noise removal by the low-pass filter 23, converted into a digital signal by the A / D conversion circuit 24, and output as an acceleration signal.
- the electrostatic capacity detection circuit 20 of FIG. 2 can be applied when the electrostatic variable capacitances Cs1 and Cs2 having a differential structure are obtained as in the X and Y axis directions. In this case, since it has an asymmetric structure, the capacitance detection circuit 30 shown in FIG. 3 is applied instead of the capacitance detection circuit 20 shown in FIG.
- the non-inverting input terminal of the operational amplifier Q31 corresponding to the differential amplifier Q21 in FIG. 2 is grounded, and the movable electrode 4 of the acceleration sensor 1 and the Z-axis fixed terminal are connected to the inverting input terminal.
- An electrostatic variable capacitor Cs between the electrodes 9 is connected.
- a series circuit of a carrier signal adjustment circuit 31 and a dummy capacitor Cd is connected in parallel with the electrostatic variable capacitor Cs as the inverting input terminal side of the operational amplifier Q31.
- the dummy capacitor Cd does not need to be formed in the acceleration sensor 1 and can be arranged on a printed wiring board on which the capacitance detection circuit 30 is mounted.
- the other end of the electrostatic variable capacitance Cs between the movable electrode 4 and the Z-axis fixed electrode 9 of the acceleration sensor 1 and the input side of the carrier signal adjustment circuit 31 are the same as those of the electrostatic capacitance detection circuit 20 of FIG.
- a carrier signal generation circuit 21 is connected.
- the carrier signal adjustment circuit 31 has an operational amplifier Q32, the inverting input terminal of the operational amplifier Q32 is connected to the carrier signal generation circuit 21 via the resistor R4, the non-inverting input terminal is grounded, and further output
- the negative feedback circuit is formed by connecting the side to the inverting input terminal via the resistor R3.
- the acceleration in the Z direction on the weight 7 of the acceleration sensor 1 is zero, the carrier signal output from the electrostatic variable capacitor Cs and the carrier signal output from the dummy capacitor Cd cancel each other to zero.
- the gain A2 of the operational amplifier Q32 of the carrier signal adjustment circuit 31 is adjusted. Therefore, when the acceleration in the Z direction applied to the weight 7 of the acceleration sensor 1 is zero, the input signal level input to the inverting input side of the operational amplifier Q31 is zero and is output from the A / D conversion circuit 34.
- the acceleration signal is also zero.
- the electrostatic variable capacitance Cs increases from a state in which the Z-direction acceleration is zero. For this reason, the input signal level input to the inverting input terminal of the operational amplifier Q31 increases in the positive direction, and the output of the operational amplifier Q31 also decreases in the negative direction.
- the output of the operational amplifier Q31 is demodulated by the demodulation circuit 32, noise is removed by the low-pass filter 33, converted to a digital value by the A / D conversion circuit 34, and output as a Z direction acceleration signal.
- the electrostatic variable capacitance Cs decreases from a state in which the Z-direction acceleration is zero. For this reason, the input signal level input to the inverting input terminal of the operational amplifier Q31 decreases in the negative direction, and the output of the operational amplifier Q31 increases in the positive direction.
- the output of the operational amplifier Q31 is demodulated by the demodulation circuit 32, noise is removed by the low-pass filter 33, converted to a digital value by the A / D conversion circuit 34, and output as a Z direction acceleration signal.
- FIG. 4 shows a comparative example in which the electrostatic variable capacitance Cs2 of the capacitance detection circuit 20 shown in FIG. 2 is replaced with a dummy capacitor C41 having the same capacitance.
- the acceleration sensor 1 generally has a spring constant in the Z direction of the beam larger than that in the X and Y directions due to the difficulty in designing the sensor beam structure. This is because the width seen from the upper surface of the beam can be narrowed, but the thickness seen from the cross section cannot be made as thin as the width in order to maintain the strength of the entire weight.
- the width of a beam perpendicular to the vibration direction is related to the spring constant by the first power, but the thickness of the beam in the same direction to the vibration direction is related to the third power. Therefore, the spring constant with respect to the vibration in the thickness direction as viewed from the cross section (that is, the Z axis) is larger than that of the X and Y axes.
- the rate of change in the Z-axis capacitance is smaller than that of the X and Y axes.
- the capacitance change due to the Z-axis acceleration is ⁇ Cs and the capacitance change of the X and Y axes is ⁇ Cs1
- ⁇ Cs / Cs ⁇ Cs1 / Cs1 It becomes.
- the Z-axis noise gain Gn1 according to the present embodiment is smaller than the noise gain Gn3 represented by the above-described equation (9) in FIG. Further, if the gain A2 of the operational amplifier Q32 is further increased, the Z-axis noise gain represented by the above equation (12) according to the present embodiment is changed to the noise gain Gn2 of the X and Y axes represented by the above equation (8). Can be set equal.
- the present invention can also be applied when the linear input range of the operational amplifier Q31 is narrow.
- the capacitance detection circuit 40 of FIG. 4 described above if the linear input range of the differential amplifier Q21 is Vi and the output amplitude of the carrier signal generation circuit 21 is Vo, Vo ⁇ Cs / (Cs + C2) ⁇ Vi (13) For this purpose, it is necessary to increase the capacitance C2.
- the capacitance C2 needs to be increased. Then, there is a problem that the noise gain Gn3 expressed by the equation (9) becomes large, and consequently the acceleration Z-axis output noise becomes large.
- the non-inverting input terminal is grounded also in the operational amplifier Q31, the inverting input terminal is also imaginarily shorted to ground. For this reason, the input signal level of the operational amplifier Q31 is maintained within the linear operation range Vi. Even if the linear operation range of the operational amplifier Q31 is small, it is reliably maintained within the range. Therefore, it is not necessary to increase the dummy capacitance Cd (C2 in FIG. 4 corresponds to the dummy capacitance Cd in FIG. 3) due to the constraint as in the expression (13), and the noise gain does not increase.
- the dummy capacitor Cd can be mounted on the printed wiring board on which the capacitance detection circuit 30 is mounted and does not need to be formed in the acceleration sensor 1. It can be downsized.
- the dummy capacitor Cd can be set to a small value by adjusting the gain A2. For this reason, the noise gain Gn1 in the Z-axis direction can be reduced and highly accurate capacitance detection can be performed.
- the operational amplifier Q31 is grounded at the non-inverting input terminal and forms a negative feedback circuit, the inverting input terminal of the operational amplifier Q31 is grounded. Even when the linear input range Vi is narrow, the input signal level of the operational amplifier Q1 can be kept within the linear operation range. For this reason, it is not necessary to increase the dummy capacitance Cd in order to maintain the input signal level in the linear input range Vi, and it is possible to reliably suppress an increase in noise gain and an increase in acceleration Z output noise.
- the gain A2 of the operational amplifier Q32 in the carrier signal adjustment circuit 31 is determined by the resistors R3 and R4 .
- the present invention is not limited to this. That is, as shown in FIG. 5, the variable resistor VR is inserted between the output side of the operational amplifier Q32 and the ground, and the resistor R3 is connected to the sliding terminal of the variable resistor VR.
- the gain A2 can be arbitrarily adjusted by adjusting the resistance value R5 of the variable resistor VR. Therefore, the capacitance difference between the dummy capacitance Cd and the capacitance Cs can be finely adjusted from the relationship of the above-described equation (10).
- the output of the operational amplifier Q31 when the acceleration is “0” can be easily adjusted to zero.
- the input range of the A / D conversion circuit 34 connected to the output side of the low-pass filter 23 can be used effectively, and the SN ratio of the A / D conversion circuit 34 can be improved. That is, when the input voltage range of the A / D conversion circuit 34 is Vrange, the noise of the A / D conversion circuit 34 is Nadc, and the zero offset of the A / D conversion circuit 34 is Zof, the A / D conversion circuit 34 The SN ratio of (Vrange-Zof) / Nadc.
- FIG. 5 illustrates the case where the gain A2 of the carrier signal adjustment circuit 31 is adjusted to finely adjust the capacitance difference between the dummy capacitor Cd and the capacitance Cs.
- the present invention is not limited to this. As shown in FIG. 6, even if the variable capacitor Cvr is connected in parallel with the dummy capacitor Cd to adjust the combined capacity of the dummy capacitor Cd and the variable capacitor Cvr, the same effect as that of FIG. 5 can be obtained. .
- Electrostatic Capacitance detection circuit 21 ... carrier signal generation circuit, Cs1, Cs2 ... electrostatic variable capacitance, C2 to C4 ... capacitor, R1, R2 ... resistance, Q21 ... differential amplifier, 22 ... demodulation circuit, 23 ... low pass filter, 24 ... A / D conversion circuit, 30 ... electrostatic capacity detection circuit, 31 ... carrier signal adjustment circuit, 32 ... demodulation circuit, 33 ...
- low pass filter 34 ... A / D conversion circuit, Q31, Q32 ... operational amplifier, Cs ... electrostatic Variable capacitance, Cd ... dummy capacitance, R3, R4 ... resistance, VR ... variable resistance, Cvr ... variable capacitance
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Gyroscopes (AREA)
- Pressure Sensors (AREA)
Abstract
Description
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、ノイズを低減して微小な静電容量を正確に検出することができる静電容量検出回路を提供することを目的としている。
また、本発明に係る静電容量検出回路は、前記演算増幅器が、反転入力端子に前記一対の電極部の一方の端子と前記ダミー容量及びキャリア信号調整回路の直列回路とが並列に接続され、非反転入力側が接地されてイマジナルショートされている。
さらに、演算増幅器の出力を復調回路で復調し、復調出力をローパスフィルタによってノイズ除去してからA/D変換する場合に、前記キャリア信号調整回路で、A/D変換回路の零点オフセットを調整することができ、A/D変換回路のSN比を向上させることができる。
図1は本発明に係る静電容量検出回路を適用し得る加速度センサの一例を示す模式図であって、図1(a)は上部基板を取り外した状態の平面図、図1(b)は図1(a)のA-A線上の断面図である。
図中、1は加速度センサであって、この加速度センサ1は、SOI(Silicon On Insulator)基板2で形成されている。このSOI基板2は、下層のシリコン支持層2aと、このシリコン支持層2a上に形成された酸化シリコン層2bと、この酸化シリコン層2b上に形成された活性シリコン層2cとで構成されている。
活性シリコン層2cには、中央部に4隅をバネ材3で酸化シリコン層2b上に支持された方形の可動電極4と、この可動電極4のX方向の2辺と対向して酸化シリコン層2bに固定された一対のX軸用固定電極5Xa,5Xbと、可動電極4のY方向の2辺と対向して酸化シリコン層2bに固定された一対のY軸用固定電極6Ya,6Ybとが形成されている。可動電極4には下面に重錘7が形成されている。
そして、加速度センサ1に加速度が加えられると、その加速度の方向に応じて重錘7を支持する可動電極4がXYZ方向へ移動し、これに応じてX方向の静電容量Cxa及びCxb、Y軸方向の静電容量Cya,Cyb、Z軸方向の静電容量Czが変化し、これらの静電容量変化により、加速度を測定することができる。
すなわち、静電容量Cxa又はCyaを静電可変容量Cs1として表し、静電容量Cxb又はCybを静電可変容量Cs2として表す。
これら静電可変容量Cs1及びCs2の一方の電極をキャリア信号生成回路21に接続してキャリア信号を供給する。ここで、キャリア信号は、測定する加速度より高周波数で、正弦波や矩形波といった交流波形とされている。このキャリア信号は、0Hz或いは0Hz近傍といった低い周波数から静電容量を検出するために必要となる。
A1=(Cs1-Cs2)/C4 ……(1)
で表される。抵抗R1及びR2は、差動増幅器Q21の直流電位を安定させるために使用される。
加速度が“0”でないときには、重錘7が変位することにより、静電可変容量Cs1≠Cs2となり、その差分が差動増幅器Q21から出力される。加速度センサ1に加えられる加速度が大きいほどその差が大きくなり、差動増幅器Q21の出力も大きくなる。
この復調回路22から出力される復調信号がローパスフィルタ23でノイズ除去され、A/D変換回路24でデジタル信号に変換されて加速度信号として出力される。
ここで、キャリア信号調整回路31は、演算増幅器Q32を有し、この演算増幅器Q32の反転入力端子が抵抗R4を介してキャリア信号生成回路21に接続され、非反転入力端子が接地され、さらに出力側が抵抗R3を介して反転入力端子に接続されて負帰還回路が形成されている。
すなわち、抵抗R4に加えられる電圧をVinとし、演算増幅器Q32の出力電圧をVoutとし、抵抗R4を通じて入力される入力電流をIr1とすると、この入力電流Ir1は
Ir1≒Vin/R4 ……(2)
となる。
Ir2=Ir1≒Vin/R4 ……(3)
となる。
このため、帰還抵抗R3の端子間電圧Vr3は、
Vr3=Ir2・R3≒(Vin/R4)R3 ……(4)
となる。
Vout≒-Vr3≒-(R3/R4)Vin ……(5)
となる。
したがって、演算増幅器Q32のゲインA2は
A2=Vout/Vin=-R3/R4 ……(6)
となり、演算増幅器Q32はゲインA2の反転増幅器となる。
このため、ダミー容量Cdから出力されるキャリア信号と静電可変容量Csから出力されるキャリア信号とを加算することにより、差分容量(=Cs-Cd)が得られ、これが演算増幅器Q31の反転入力端子に入力される。
したがって、加速度センサ1の重錘7に加えられるZ方向の加速度が零であるときには、演算増幅器Q31の反転入力側に入力される入力信号レベルは零となり、A/D変換回路34から出力される加速度信号も零となる。
この場合、加速度センサ1は、センサ梁構造の設計の難しさにより、一般に梁のZ方向のバネ定数はX,Y方向に比べて大きくなる。これは梁の上面から見た幅は細くできるが、断面から見た厚さは、重錘全体の強度を保つために前記幅ほどは薄くできないからである。一般に振動方向に対し垂直方向の梁の幅はバネ定数に対して1乗で関連するが、振動方向に対し同一方向の梁の厚みは3乗で関連する。したがって、断面から見た厚さ方向の振動(すなわちZ軸)に対するバネ定数はX,Y軸と比べて大きくなる。
ΔCs/Cs<ΔCs1/Cs1 …………(7)
となる。
(Cs1+C2)/C4 ∝ Cs1/ΔCs1 ……(8)
(Cs+C2)/C4 ∝ Cs/ΔCs ……(9)
となる。したがって、(7)式より、(8)<(9)となり、X,Y軸に比べてZ軸のノイズゲインが大きくなり、ひいては加速度のZ軸出力ノイズが大きくなってしまうという課題がある。
すなわち、ダミー容量Cdは、
Cd=Cs/A2 ……(10)
と設定することができ、A2>Cs/C2と設計すれば、
Cd=Cs/A2<Cs/(Cs/C2)=C2 ……(11)
となる。これにより、本実施形態によるZ軸ノイズゲインGn1は、
Gn1=(Cs+Cd)/C4 ……(12)
となる。この結果、本実施形態によるZ軸ノイズゲインGn1は、図4による前述した(9)式で表されるノイズゲインGn3より小さくなる。また、演算増幅器Q32のゲインA2をさらに大きくすれば、本実施形態による上記(12)式で表されるZ軸ノイズゲインを前述した(8)式で表されるX,Y軸のノイズゲインGn2と等しく設定することができる。
Vo×Cs/(Cs+C2)<Vi ……(13)
を満たす必要があり、このためには容量C2を大きくする必要がある。
しかしながら、本実施形態によると、演算増幅器Q31でも非反転入力端子が接地されているので、反転入力端子も接地にイマジナリ・ショートされる。このため、演算増幅器Q31の入力信号レベルは、線形動作範囲Vi内に保持される。演算増幅器Q31の線形動作範囲が小さくても、確実に範囲内に保持される。したがって、前記(13)式のような縛りによりダミー容量Cd(図4のC2は図3のダミー容量Cdに相当する)を大きくする必要はなく、ノイズゲインが大きくなることはない。
また、キャリア信号調整回路31で、演算増幅器Q32を、非反転入力端子を接地するとともに、負帰還回路を形成することにより、イマジナリ・ショート構成としたので、演算増幅器Q32をゲインA2=R3/R4の反転増幅器とすることができ、このゲインA2を調整することにより、ダミー容量Cdを小さい値に設定することができる。このため、Z軸方向のノイズゲインGn1を小さくして、高精度の静電容量検出を行うことができる。
すなわち、A/D変換回路34の入力電圧範囲をVrangeとし、A/D変換回路34のノイズをNadcとし、A/D変換回路34の零点オフセットをZofとしたときに、A/D変換回路34のSN比は(Vrange-Zof)/Nadcで表される。
また、図5では、キャリア信号調整回路31のゲインA2を調整してダミー容量Cdと静電容量Csとの容量差を微調整する場合について説明したが、これに限定されるものではなく、図6に示すように、ダミー容量Cdと並列に可変容量Cvrを接続してダミー容量Cdと可変容量Cvrとの合成容量を調整するようにしても上記図5と同様の作用効果を得ることができる。
Claims (5)
- 物理量変化に応じた静電容量変化を生じる一対の電極部を備えた物理量センサの前記一対の電極部間の静電容量変化を検出する静電容量検出回路であって、
前記一対の電極部の一方にキャリア信号を供給するキャリア信号生成回路と、前記一対の電極部の他方が反転入力端子に入力された演算増幅器と、
前記一対の電極部と並列に接続されたダミー容量と、
前記ダミー容量に対するキャリア信号生成回路からのキャリア信号に対して、位相を反転するとともに、ゲインを調整してダミー容量を抑制するキャリア信号調整回路を備えたことを特徴とする静電容量検出回路。 - 前記キャリア信号調整回路は、反転入力端子が第1の抵抗を介して前記キャリア信号生成回路に接続され、非反転入力端子が接地され、出力側が第2の抵抗を介して前記反転入力端子にフィードバックされる反転増幅器で構成されていることを特徴とする請求項1に記載の静電容量検出回路。
- 前記演算増幅器の出力側に接続された前記キャリア信号生成回路のキャリア信号が入力された復調回路と、該復調回路の復調出力を平滑化するローパスフィルタと、該ローパスフィルタのフィルタ出力をデジタル信号に変換するA/D変換回路とを備え、
前記キャリア信号調整回路は、前記A/D変換回路の零点オフセットを調整するオフセット調整部を有することを特徴とする請求項1に記載の静電容量検出回路。 - 前記ダミー容量は、前記演算増幅器を実装したプリント配線基板上に形成されていることを特徴とする請求項1乃至3の何れか1項に記載の静電容量検出回路。
- 前記演算増幅器は、反転入力端子に前記一対の電極部の一方の端子と前記ダミー容量及びキャリア信号調整回路の直列回路とが並列に接続され、非反転入力側が接地されてイマジナルショートされていることを特徴とする請求項1乃至4の何れか1項に記載の静電容量検出回路。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12850040.2A EP2781924B1 (en) | 2011-11-15 | 2012-11-12 | Capacitance detection circuit |
JP2013544124A JP5751341B2 (ja) | 2011-11-15 | 2012-11-12 | 静電容量検出回路 |
US14/350,807 US9696338B2 (en) | 2011-11-15 | 2012-11-12 | Capacitance detection circuit |
CN201280049176.5A CN103842831B (zh) | 2011-11-15 | 2012-11-12 | 静电电容检测电路 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011249980 | 2011-11-15 | ||
JP2011-249980 | 2011-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013073161A1 true WO2013073161A1 (ja) | 2013-05-23 |
Family
ID=48429257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/007256 WO2013073161A1 (ja) | 2011-11-15 | 2012-11-12 | 静電容量検出回路 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9696338B2 (ja) |
EP (1) | EP2781924B1 (ja) |
JP (1) | JP5751341B2 (ja) |
CN (1) | CN103842831B (ja) |
WO (1) | WO2013073161A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7550699B2 (ja) | 2021-03-31 | 2024-09-13 | 本田技研工業株式会社 | 触覚センサ、感度切替回路、および感度切替方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016165094A1 (zh) * | 2015-04-16 | 2016-10-20 | 东莞市乐升电子有限公司 | 电容触摸按键信号测量装置及其测量方法 |
DE102015219458A1 (de) * | 2015-10-08 | 2017-04-13 | Albert-Ludwigs-Universität Freiburg | Schaltungsanordnung und verfahren zur digitalen korrektur von modulationseffekten bei elektromechanischen delta-sigma-modulatoren |
US10088963B2 (en) | 2015-10-26 | 2018-10-02 | Semiconductor Components Industries, Llc | Methods and apparatus for a capacitive sensor |
JP6589613B2 (ja) | 2015-12-10 | 2019-10-16 | いすゞ自動車株式会社 | リアクタンス測定装置 |
US10277180B2 (en) | 2016-01-15 | 2019-04-30 | Honeywell International Inc. | Dual port transimpedance amplifier with separate feedback |
EP4089425B1 (en) * | 2016-12-21 | 2023-07-12 | Alps Alpine Co., Ltd. | Capacitance detection device and input device |
DE112017007185B4 (de) * | 2017-03-09 | 2023-01-12 | Mitsubishi Electric Corporation | Elektronisches Modul und Leistungsmodul |
JP6998741B2 (ja) * | 2017-11-20 | 2022-01-18 | エイブリック株式会社 | センサ装置 |
CN110906918A (zh) * | 2019-12-03 | 2020-03-24 | 西安建筑科技大学 | 一种适用于工业机器人姿态测量的硅微陀螺接口电路 |
JP7456284B2 (ja) * | 2020-05-25 | 2024-03-27 | セイコーエプソン株式会社 | 物理量検出回路、物理量検出装置、電子機器及び移動体 |
CN114280330A (zh) * | 2021-10-25 | 2022-04-05 | 慧石(上海)测控科技有限公司 | Mems闭环加速度计及其控制方法 |
CN117490733A (zh) * | 2022-07-25 | 2024-02-02 | 准懋(杭州)科技有限公司 | 一种mems器件 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05231973A (ja) * | 1992-02-21 | 1993-09-07 | Nec Corp | スイッチトキャパシタ読出回路 |
JPH0862266A (ja) * | 1994-08-25 | 1996-03-08 | Yamatake Honeywell Co Ltd | 静電容量変化量検出装置 |
JP2003156524A (ja) * | 2001-09-06 | 2003-05-30 | Sumitomo Metal Ind Ltd | 電位固定装置および電位固定方法 |
JP2007078648A (ja) * | 2005-09-16 | 2007-03-29 | Matsushita Electric Works Ltd | センサ装置 |
JP2011107086A (ja) | 2009-11-20 | 2011-06-02 | Asahi Kasei Electronics Co Ltd | 静電容量検出回路、圧力検出装置、加速度検出装置、および、マイクロフォン用トランスデューサ |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5707077A (en) * | 1991-11-18 | 1998-01-13 | Hitachi, Ltd. | Airbag system using three-dimensional acceleration sensor |
US5576976A (en) * | 1993-09-07 | 1996-11-19 | Rockwell International Corporation | Amplitude detection and automatic gain control of a sparsely sampled sinusoid by adjustment of a notch filter |
US5481914A (en) * | 1994-03-28 | 1996-01-09 | The Charles Stark Draper Laboratory, Inc. | Electronics for coriolis force and other sensors |
US5703292A (en) * | 1994-03-28 | 1997-12-30 | The Charles Stark Draper Laboratory, Inc. | Sensor having an off-frequency drive scheme and a sense bias generator utilizing tuned circuits |
JP2561040B2 (ja) * | 1994-11-28 | 1996-12-04 | 日本電気株式会社 | 容量型センサの容量変化検出回路およびその検出方法 |
JP3603501B2 (ja) * | 1996-09-25 | 2004-12-22 | 株式会社村田製作所 | 角速度検出装置 |
JP2002188924A (ja) * | 2000-12-20 | 2002-07-05 | Denso Corp | 半導体装置 |
EP1788351B1 (en) * | 2004-09-09 | 2017-05-03 | Murata Manufacturing Co., Ltd. | Oscillation type inertial force sensor |
US7454967B2 (en) * | 2006-07-10 | 2008-11-25 | Lv Sensors, Inc. | Signal conditioning methods and circuits for a capacitive sensing integrated tire pressure sensor |
JP4931713B2 (ja) | 2006-08-08 | 2012-05-16 | セイコーインスツル株式会社 | 力学量センサ |
EP2187241B1 (en) * | 2007-10-04 | 2018-09-19 | Fujikura Ltd. | Capacitive proximity sensor and proximity detection method |
JP2009115635A (ja) | 2007-11-07 | 2009-05-28 | Denso Corp | センサ装置 |
EP2060871A3 (en) * | 2007-11-19 | 2012-12-26 | Hitachi Ltd. | Inertial sensor |
JP4797075B2 (ja) * | 2009-02-12 | 2011-10-19 | 株式会社豊田中央研究所 | 静電容量式センサ装置 |
-
2012
- 2012-11-12 EP EP12850040.2A patent/EP2781924B1/en active Active
- 2012-11-12 JP JP2013544124A patent/JP5751341B2/ja active Active
- 2012-11-12 US US14/350,807 patent/US9696338B2/en active Active
- 2012-11-12 CN CN201280049176.5A patent/CN103842831B/zh active Active
- 2012-11-12 WO PCT/JP2012/007256 patent/WO2013073161A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05231973A (ja) * | 1992-02-21 | 1993-09-07 | Nec Corp | スイッチトキャパシタ読出回路 |
JPH0862266A (ja) * | 1994-08-25 | 1996-03-08 | Yamatake Honeywell Co Ltd | 静電容量変化量検出装置 |
JP2003156524A (ja) * | 2001-09-06 | 2003-05-30 | Sumitomo Metal Ind Ltd | 電位固定装置および電位固定方法 |
JP2007078648A (ja) * | 2005-09-16 | 2007-03-29 | Matsushita Electric Works Ltd | センサ装置 |
JP2011107086A (ja) | 2009-11-20 | 2011-06-02 | Asahi Kasei Electronics Co Ltd | 静電容量検出回路、圧力検出装置、加速度検出装置、および、マイクロフォン用トランスデューサ |
Non-Patent Citations (1)
Title |
---|
See also references of EP2781924A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7550699B2 (ja) | 2021-03-31 | 2024-09-13 | 本田技研工業株式会社 | 触覚センサ、感度切替回路、および感度切替方法 |
Also Published As
Publication number | Publication date |
---|---|
US20140238133A1 (en) | 2014-08-28 |
JP5751341B2 (ja) | 2015-07-22 |
CN103842831A (zh) | 2014-06-04 |
CN103842831B (zh) | 2015-07-08 |
EP2781924A4 (en) | 2015-04-29 |
EP2781924A1 (en) | 2014-09-24 |
EP2781924B1 (en) | 2016-06-01 |
US9696338B2 (en) | 2017-07-04 |
JPWO2013073161A1 (ja) | 2015-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5751341B2 (ja) | 静電容量検出回路 | |
JP6038152B2 (ja) | 物理量を検出する容量性変換器システム | |
JP4931713B2 (ja) | 力学量センサ | |
US8836348B2 (en) | Electrostatic capacitance type physical quantity sensor and angular velocity sensor | |
WO2010150736A1 (ja) | 角速度センサと、それに用いられる同期検波回路 | |
JP6089035B2 (ja) | 慣性センサの電磁干渉に対するロバスト性を得るためのスキーム | |
CN109579810B (zh) | 物理量测量装置、电子设备和移动体 | |
US9575089B1 (en) | Adaptive phase delay adjustment for MEMS sensors | |
JP2012044260A (ja) | 電荷検出回路 | |
US20140251012A1 (en) | Pseudo-differential accelerometer with high electromagnetic interference rejection | |
JP2006177895A (ja) | 静電容量/電圧変換装置および力学量センサ | |
CN103858016B (zh) | 静电电容检测电路 | |
JP5783201B2 (ja) | 容量式物理量センサ | |
Srinivasan et al. | Differential and common mode offset correction in read out circuits for open loop half bridge capacitive MEMS accelerometers: Theoretical survey | |
KR20210076087A (ko) | 기판 및 기판상에 배치된 전자 기계 구조를 가진 미세 전자 기계 관성 센서 | |
Ye et al. | Electromechanical closed-loop with high-Q capacitive micro-accelerometers and pulse width modulation force feedback | |
WO2013072951A1 (ja) | 電荷検出回路 | |
Tao et al. | Designing of a micromachined gyroscope system with a closed-loop DC biased interface ASIC | |
JP2008026177A (ja) | 容量型検出回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12850040 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012850040 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013544124 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14350807 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |