WO2013072951A1 - 電荷検出回路 - Google Patents

電荷検出回路 Download PDF

Info

Publication number
WO2013072951A1
WO2013072951A1 PCT/JP2011/006350 JP2011006350W WO2013072951A1 WO 2013072951 A1 WO2013072951 A1 WO 2013072951A1 JP 2011006350 W JP2011006350 W JP 2011006350W WO 2013072951 A1 WO2013072951 A1 WO 2013072951A1
Authority
WO
WIPO (PCT)
Prior art keywords
input terminal
differential amplifier
capacitance
sensor
charge
Prior art date
Application number
PCT/JP2011/006350
Other languages
English (en)
French (fr)
Inventor
鈴木 健
直之 松尾
木代 雅巳
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to PCT/JP2011/006350 priority Critical patent/WO2013072951A1/ja
Publication of WO2013072951A1 publication Critical patent/WO2013072951A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45278Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using BiFET transistors as the active amplifying circuit
    • H03F3/45282Long tailed pairs
    • H03F3/45286Non-folded cascode stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/70Charge amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0017Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier
    • H03G1/0023Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier in emitter-coupled or cascode amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45521Indexing scheme relating to differential amplifiers the FBC comprising op amp stages, e.g. cascaded stages of the dif amp and being coupled between the LC and the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45526Indexing scheme relating to differential amplifiers the FBC comprising a resistor-capacitor combination and being coupled between the LC and the IC

Definitions

  • the present invention relates to a charge detection circuit used for a detection circuit of a charge generation sensor such as a pressure sensor, a microphone, an acceleration sensor, an angular velocity sensor, a strain gauge, or a capacitance change sensor.
  • a charge generation sensor such as a pressure sensor, a microphone, an acceleration sensor, an angular velocity sensor, a strain gauge, or a capacitance change sensor.
  • Typical examples of the charge generation type sensor include a strain gauge and an acceleration sensor using an insulating piezoelectric element. Further, as a sensor for detecting a change in capacitance, there is an acceleration sensor that holds a weight with a beam, holds a fixed electrode near the side of the weight, and measures a capacitance between the weight and the fixed electrode. Each of these sensors measures a minute charge, and a charge amplifier is used as a charge detection circuit for charge-voltage conversion.
  • Fig. 5 shows a typical charge amplifier configuration.
  • one end of a sensor 100 configured by a variable capacitance sensor or a charge generation sensor is connected to the bias voltage circuit 101, and the other end is connected to the negative input terminal of the differential amplifier 102.
  • the positive input terminal is grounded.
  • a feedback circuit 103 in which a feedback resistor Rf and a feedback capacitor Cf are connected in parallel is connected between the negative input terminal and the output terminal of the differential amplifier 102.
  • the positive charge Q ⁇ generated in the sensor 100 and flowing to the negative input terminal in the fast time in which the feedback resistor Rf can be ignored increases the potential of the negative input terminal of the differential amplifier 102, so that the output The terminal moves to minus.
  • the charge supplied from the sensor 100 and the charge supplied from the feedback capacitor Cf are balanced, so that the potential increase at the negative input terminal is stopped and the output voltage is stabilized.
  • the balanced charge is released through the feedback resistor Rf, so that it gradually returns to the original potential with a time constant of Rf ⁇ Cf. That is, the feedback resistor Rf is for stabilizing the direct current output, and the circuit operates at a frequency f 0 or higher determined by the feedback resistor Rf and the feedback capacitor Cf regardless of the output of the sensor 100.
  • f 0 1 / 2 ⁇ RfCf (2)
  • a technique is generally used in which various sensors are provided with two pairs of variable capacitors or charge generation units to remove in-phase signals and obtain output values.
  • two charge amplifiers 104A and 104B are used by using two variable capacitance sensors 100A and 100B and a pair of charge amplifiers 104A and 104B individually connected thereto. By subtracting the output value of 104B by the differential amplifier 105, an in-phase (common mode) signal is removed.
  • the configuration of FIG. 6 requires at least three differential amplifiers, and the circuit becomes complicated.
  • one differential amplifier can be applied to remove in-phase signals (common mode signals).
  • a bias voltage is applied from the bias voltage circuit 101 to the sensor 100, as shown in FIG.
  • One end of 100B is connected to the bias voltage circuit 101, the other end is connected to the negative input terminal and the positive input terminal of the differential amplifier 102, and the connection point between the variable capacitance sensor 100B and the positive input terminal of the differential amplifier 102 and the ground
  • a cancel circuit 106 in which a cancel capacitor Cc and a cancel resistor Rc are connected in parallel is connected between them and the cancel circuit 106 cancels in-phase signal noise.
  • the semi-fixed variable capacitors Cv1 and Cb2 are connected, and the input capacitance inputted to the negative input terminal and the positive input terminal of the differential amplifier 102 is adjusted, so that the fine adjustment of the gain is theoretically possible. Is possible.
  • the sensor charge amplifier is configured to measure minute charges (for example, about 10 -18 C), it is easily affected by an external electric field and the like. In an actual circuit, a broken line is shown in FIG. As described above, it is necessary to shield the sensors 100A and 100B, the differential amplifier 102, the feedback circuit, the cancel circuit 106, and the semi-fixed variable capacitors Cv1 and Cv2. Since the semi-fixed variable capacitors Cv1 and Cv2 are also included in the shield, if the driver touches them to adjust the capacity of these semi-fixed variable capacitors Cv1 and Cv2, the output becomes unstable and actual adjustment is almost impossible. is there.
  • the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and an object thereof is to provide a charge detection circuit capable of easily performing gain adjustment on the input side of a differential amplifier. Yes.
  • one end of a physical quantity detection sensor constituted by either a charge generation sensor or a capacitance change sensor is connected to a negative input of a differential amplifier.
  • the other end is connected to the positive input terminal of the differential amplifier, a feedback resistor and a feedback capacitor are connected in parallel between the output terminal of the differential amplifier and the negative input terminal, and the difference
  • a cancel resistor and a cancel capacitor are connected in parallel between the positive input terminal of the dynamic amplifier and the reference voltage.
  • a variable capacitance diode to which a reverse bias potential is applied by a reverse bias power source is connected to at least one of the negative input terminal and the positive input terminal of the differential amplifier to enable gain adjustment.
  • the capacitance of the variable capacitance diode is changed, and at least one of the negative input terminal and the positive input terminal of the differential amplifier is changed.
  • the gain can be adjusted easily and accurately.
  • a low-pass filter is interposed between the variable capacitance diode and the reverse bias power source. According to this configuration, the fluctuation of the reverse bias voltage of the reverse bias power source can be suppressed by the low-pass filter, and the capacitance variation of the variable capacitance diode can be prevented.
  • the variation in charge generated by the physical quantity detection sensor is ⁇ Q
  • the average value of the generated charge is Qm
  • the feedback capacitance is Cf
  • the largest value is ⁇ Cmax
  • the capacitance variable width of the variable capacitance diode is ⁇ Cd, ⁇ Cmax ⁇ ⁇ Cd ⁇ 10 ⁇ ⁇ Cmax.
  • a charge detection circuit having a differential amplifier for detecting a charge of a physical quantity detection sensor constituted by a charge generation sensor or a capacitance change sensor, and a reverse bias applied to a variable capacitance diode by a reverse bias power source.
  • FIG. 1 is a block diagram showing an embodiment of a charge detection circuit according to the present invention. It is a characteristic diagram which shows the relationship between a reverse bias voltage and the amplitude of a differential amplifier output. It is a characteristic diagram which shows the relationship between the reverse bias voltage of a variable capacity diode, and element capacity. It is an explanatory circuit diagram for determining the capacitance of the variable capacitance diode. It is a block diagram which shows the conventional general charge detection circuit. It is a block diagram which shows the charge detection circuit which removes the conventional in-phase signal. It is a block diagram which shows the other example of the charge detection circuit which removes the conventional in-phase signal. It is a block diagram which shows the further another example of the charge detection circuit which removes the conventional in-phase signal.
  • FIG. 1 is a block diagram showing an embodiment of a charge detection circuit having a charge amplifier configuration according to the present invention.
  • reference numerals 1A and 1B denote physical quantity detection sensors each composed of two capacitive change sensors. It is.
  • the capacitance change type sensor there is an acceleration sensor that holds a weight with a beam and holds a fixed electrode near the side of the weight, and measures a capacitance between the weight and the fixed electrode
  • each of the physical quantity detection sensors 1A and 1B includes: In both cases, a minute charge (for example, about 10 ⁇ 18 C) is measured.
  • each of the physical quantity detection sensors 1A and 1B is connected to the bias voltage circuit 2 and the other end of the physical quantity detection sensor 1A is connected to a negative input terminal of a differential amplifier 3 composed of an operational amplifier.
  • the other end of the detection sensor 1B is connected to the positive input terminal of the differential amplifier 3.
  • a feedback circuit in which a feedback resistor Rf having a resistance value set to 100 Mega ⁇ and a feedback capacitor Cf having a capacitance set to 1 pF, for example, are connected in parallel between the output terminal and the negative input terminal of the differential amplifier 3. 4 is connected. Further, between the positive input terminal of the differential amplifier 3 and, for example, the ground serving as a reference voltage, a cancel resistor Rc having a resistance value set to, for example, 100 Mega ⁇ , and a cancel capacitor Cc having a capacitance set to, for example, 1 pF are provided. A cancel circuit 5 connected in parallel is connected.
  • the anode of the variable capacitance diode D 1 is connected to the negative input terminal of the differential amplifier 3, and the cathode of the variable capacitance diode D 1 is connected to the DC bias voltage circuit 7 as a reverse bias power source via the low pass filter 6. ing.
  • the anode of a variable capacitance diode D2 as a voltage controlled variable capacitance element is also connected to the positive input terminal of the differential amplifier 3, and the cathode of the variable capacitance diode D2 is connected to a direct current as a reverse bias power source via a low-pass filter 8.
  • the bias voltage circuit 9 is connected.
  • the low-pass filters 6 and 8 suppress fluctuations in the reverse bias voltage of the DC bias voltage circuits 7 and 9, and are connected in series between the DC bias voltage circuits 7 and 9 and the variable capacitance diodes D1 and D2, respectively.
  • resistors R1 and R2 whose resistance value is set to 100 k ⁇ , for example, and capacitances inserted between the connection points of the resistors R1 and R2 and the variable capacitance diodes D1 and D2 and the ground, respectively.
  • it is composed of capacitors C1 and C2 set to 1 uF.
  • the cut-off frequency of the low-pass filters 6 and 8 must be lower than the sensing frequency, and ideally set to 1/100 or less of the sensing frequency. In this embodiment, the cut-off frequency is set to 1.6 Hz. However, if the cut-off frequency is set too low, the responsiveness deteriorates. Therefore, the cut-off frequency may be set appropriately in consideration of the characteristics of the subsequent circuit.
  • the reverse bias voltages Vr1 and Vr2 of the DC bias voltage circuits 7 and 9 is adjustable.
  • the DC bias voltage circuit 9 connected mainly to the negative input terminal side of the differential amplifier 3 is fixed to 1.3 V and the DC bias voltage circuit 9 connected to the positive input terminal side. Will be described in the case where the reverse bias voltage Vr2 is changed.
  • a capacitance change type acceleration sensor is used, the bias voltage by the bias voltage circuit 2 is set to 6 V, and the acceleration sensor is vibrated at an acceleration of 1 kHz and 1 G to generate an in-phase signal. Removal was performed.
  • the relationship between the amplitude output from the acceleration sensor at this time and the reverse bias voltage (Vr2) applied to the variable capacitance diode D2 on the positive input terminal side of the differential amplifier 3 is shown in FIG.
  • the sign of the vertical axis shows how the phase rotates by 180 deg. Just when the reverse bias voltage (Vr2) is 1.05 V, the in-phase acceleration is removed and the amplitude becomes zero.
  • the reverse bias voltage (Vr1) applied to the variable capacitance diode D1 on the negative input terminal side of the differential amplifier 3 is fixed at 1.3V.
  • the acceleration sensor is a sensor that generates an output signal of 1 V when no in-phase signal is removed, and the signal can be adjusted within a range of ⁇ 35%.
  • the variable range may be about ⁇ 10%, so the variable range in FIG. 2 can be further reduced.
  • the relationship between the capacitance Cd (pF) and the reverse bias voltage (V) of the variable capacitance diodes D1 and D2 indicates that the capacitance Cd when the reverse bias voltage is about 0.3V. Is about 6.5 pF, and as the reverse bias voltage increases from this state, the capacitance Cd decreases with a relatively large change amount. When the reverse bias voltage exceeds about 3 V, the capacitance increases relatively as the reverse bias voltage increases. The characteristic decreases with a small amount of change.
  • the variable capacitance diodes D1 and D2 having a capacitance variable range of 6.5 to 1.5 pF are applied.
  • the present invention is not limited to this, and is about 1 ⁇ 4 that of the present embodiment. It can fully cope with the variable range of capacitance.
  • the parasitic capacitance of FIG. 4 includes parasitic capacitances Cp ⁇ and Cp + at the negative input terminal and the positive input terminal of the differential amplifier 3.
  • the variation in capacitance of the sensors 1A and 1B is ⁇ Cs
  • the variation in the feedback capacitance Cf and the ground capacitance Cg is ⁇ Cf
  • the variation in the input capacitance of the differential amplifier 3 is ⁇ Cin
  • the variable width ⁇ Cd of the capacitance of the variable capacitance diodes D1 and D2 is ⁇ Cmax ⁇ ⁇ Cd (6)
  • the upper limit value is desirably about 10 times the maximum value ⁇ Cmax.
  • variable width ⁇ Cd of the capacitance of the variable capacitance diodes D1 and D2 is: ⁇ Cmax ⁇ ⁇ Cd ⁇ 10 ⁇ ⁇ Cmax (7) Set to a value that satisfies.
  • the sensors 1A and 1B, the differential amplifier 3, the feedback circuit 4, the cancel circuit 5, and the variable capacitance diodes D1 and D2 are shown in FIG. 1 so as to suppress the influence of the external electric field.
  • the low-pass filters 6 and 7 are shielded.
  • the differential circuit By matching the circuit constants of the feedback circuit 4 connected between the output terminal and the negative input terminal of the differential amplifier 3 and the cancel circuit 5 connected between the positive input terminal of the differential amplifier 3 and the ground, the differential circuit By bringing the line connected to the negative input terminal of the amplifier 3 and the line connected to the positive input terminal close to each other, the common-mode noise can be canceled to some extent.
  • the feedback capacitor Cf and the cancel capacitor Cc need to have the same capacitance, but an error of about 5 to 10% is generated in consideration of variations in manufacturing capacitance. . Further, since the variation of the capacitance change type sensor on the input side is expected to be approximately the same, a signal removal rate of approximately 20 dB is expected. That is, about 1/10 in-phase (common mode) signal remains.
  • the anodes of the variable capacitance diodes D1 and D2 are respectively connected to the negative input terminal and the positive input terminal of the differential amplifier 3, and the DC bias voltage circuits 7 and 9 are connected to the cathodes of the variable capacitance diodes D1 and D2.
  • the capacitance of the variable capacitance diode D1 is 4.4 pF as shown in FIG. Set to degree. Since the capacitance Cd1 of the variable capacitance diode D1 is inserted, the capacitance on the negative input terminal side of the differential amplifier 3 is increased.
  • the DC bias voltage circuit 7 connected to the cathode of the variable capacitance diode D1 connected to the negative input terminal of the differential amplifier 3 can output an arbitrary reverse bias voltage Vr1.
  • a capacitance difference between the negative electrode input terminal and the positive electrode input terminal of the differential amplifier 3 occurs due to variations in the capacitance between the feedback capacitor Cf and the cancel capacitor Cc and variations in the physical quantity detection sensors 1A and 1B.
  • the reverse bias voltage Vr1 output from the DC bias voltage circuit 7 is adjusted so as to compensate for the capacitance difference between the two. Thereby, in-phase signal noise can be completely removed in a state where the gains of the negative input terminal and the positive input terminal of the differential amplifier 3 are accurately adjusted and the S / N ratio is increased.
  • the capacitance variation of the feedback capacitor Cf and the cancellation capacitor Cc of the negative input terminal and the positive input terminal of the differential amplifier 3 and the capacitance variation of the capacitance change type sensors 1A and 1B are offset.
  • the adjustment of the capacitance for the adjustment is performed by adjusting at least one of the reverse bias voltages Vr1 and Vr2 of the DC bias voltage circuits 7 and 9 to adjust the capacitance of at least one of the variable capacitance diodes D1 and D2.
  • the capacitance variable width ⁇ Cd of the variable capacitance diodes D1 and D2 within the range of ⁇ Cmax ⁇ ⁇ Cd ⁇ 10 ⁇ ⁇ Cmax, a value obtained by regarding the variation in charge generated in the sensors 1A and 1B as capacitance, It is possible to stably absorb the capacitance variation, the feedback capacitance variation, and the maximum input capacitance variation of the differential amplifier by the capacitance variable width ⁇ Cd of the variable capacitance diodes D1 and D2.
  • the DC bias voltage circuit is mainly used.
  • the reverse bias voltage Vr1 is fixed
  • the reverse bias voltage Vr2 of the DC bias voltage circuit 9 is fixed
  • the reverse bias voltage Vr1 of the DC bias voltage circuit 7 is fixed.
  • the reverse bias voltages Vr1 and Vr2 of both the DC bias voltage circuits 7 and 9 may be changed, respectively.
  • any one of the negative input terminal and the positive input terminal of the differential amplifier 3 may be changed.
  • One of the variable capacitance diode and the DC bias voltage circuit may be omitted.
  • the present invention is not limited to this, and a pressure sensor, a microphone, an acceleration sensor, an angular velocity using an insulating piezoelectric element is not limited thereto.
  • the charge amplifier of the present invention may be applied to a charge generation type sensor such as a sensor or a strain gauge.
  • a charge generation type sensor such as a sensor or a strain gauge.
  • the first embodiment described above except that one end of the charge generation type sensor is connected to the negative input terminal of the differential amplifier 3 and the other end is connected to the positive input terminal of the differential amplifier 3.
  • the capacitances of the negative input terminal and the positive input terminal of the differential amplifier 3 may be adjusted to adjust the gains of both.
  • a reverse bias potential applied to a variable capacitance diode by a reverse bias power supply is obtained.
  • the gain of at least one of the negative input terminal and the positive input terminal of the differential amplifier can be easily adjusted by changing the capacitance of the variable capacitance diode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Amplifiers (AREA)

Abstract

 差動アンプの入力側のゲイン調整を容易に行うことができる電荷検出回路を提供する。電荷発生型センサ及び容量変化型センサの何れかで構成される物理量検出センサ1A,1Bの一端が差動アンプ3の負極入力端子に接続され、他端が前記差動アンプ3の正極入力端子に接続され、前記差動アンプ3の出力端子と前記負極入力端子との間にフィードバック抵抗Rf及びフィードバック容量Cfが並列に接続され、且つ前記差動アンプの正極入力端子と基準電圧との間にキャンセル抵抗Rc及びキャンセル容量Ccが並列に接続された差動型の電荷検出回路であって、前記差動アンプの負極入力端子及び正極入力端子の少なくとも一方に逆バイアス電源7,9によって逆バイアス電位が与えられた可変容量ダイオードD1,D2を接続してゲイン調整を可能とした。

Description

電荷検出回路
 本発明は、圧力センサ、マイクロフォン、加速度センサ、角速度センサ、歪ゲージ等の電荷発生型センサ又は容量変化型センサの検出回路に使用する電荷検出回路に関する。
 電荷発生型センサとして代表的なものは、絶縁体の圧電素子を用いた歪ゲージや加速度センサなどがある。また、容量変化を検知するセンサとして錘を梁で保持して、固定電極を錘側面近傍に保持し、錘と固定電極間の容量を測定する加速度センサなどがある。これらのセンサはいずれも微小な電荷を測定しており、電荷-電圧変換のための電荷検出回路としてチャージアンプが用いられている。
 図5に一般的なチャージアンプの構成例を示す。この構成例では、可変容量センサ又は電荷発生センサで構成されるセンサ100の一端がバイアス電圧回路101に接続され、他端が差動アンプ102の負極入力端子に接続され、この差動アンプ102の正極入力端子が接地されている。また、差動アンプ102の負極入力端子及び出力端子間にフィードバック抵抗Rf及びフィードバックコンデンサCfが並列に接続されたフィードバック回路103が接続されている。
 この構成を有するチャージアンプでは、フィードバック抵抗Rfが無視できる速い時間では、センサ100で発生し、負極入力端子へ流れる正電荷Q-は差動アンプ102の負
極入力端子の電位を上昇させるため、出力端子はマイナスへ動いていく。このとき、差動アンプ102の出力電圧Voutが、
 Vout=-Q/Cf   …………(1)
で表される電位まで下がると、センサ100から供給される電荷と、フィードバックコンデンサCfから供給される電荷とが釣り合うので、負極入力端子の電位上昇が停止され、出力電圧が安定する。
 そして、一旦釣り合った電荷はフィードバック抵抗Rfを通して開放されるので、Rf×Cfの時定数で徐々に元の電位に戻っていく。すなわち、フィードバック抵抗Rfは、直流での出力を安定させるためのものであり、センサ100の出力には関係なく、フィードバック抵抗Rf及びフィードバックコンデンサCfで決まる周波数f0以上で回路が動作する。
 f0=1/2πRfCf   …………(2)
 一方、SNを向上させる目的で各種センサは、2つのペアとなる可変容量又は電荷発生部を設置して、同相信号を除去して、出力値を得る手法が一般的に行われている。最も単純な回路例では、図6に示すように、ペアとなる2個の可変容量センサ100A及び100Bとこれらに個別に接続されるチャージアンプ104A及び104Bとを用いて、2つのチャージアンプ104A及び104Bの出力値を差動アンプ105で引き算することにより、同相(コモンモード)信号を除去するようにしている。
 しかしながら、図6の構成では、最低3個の差動アンプが必要になり、回路が複雑になってしまう。
 この未解決の課題を解決するために、特許文献1及び2に記載されているように、1つの差動アンプを適用して、同相信号(コモンモード信号)を除去することができる。この特許文献1及び2に記載された従来例は、センサ100にバイアス電圧回路101からバイアス電圧が印加されているものとすると、図7に示すように、ペアとなる2つの可変容量センサ100A及び100Bの一端がバイアス電圧回路101に接続され、他端が差動アンプ102の負極入力端子及び正極入力端子に接続され、可変容量センサ100Bと差動アンプ102の正極入力端子との接続点と接地との間にキャンセルコンデンサCc及びキャンセル抵抗Rcを並列に接続したキャンセル回路106を接続し、このキャンセル回路106で同相信号ノイズをキャンセルするようにしている。
特開2001-326548号公報 特開2003-258577号公報
 ところで、上記特許文献1及び2に記載された従来例にあっては、1つの差動アンプを適用して同相信号を除去することができるものであるが、実際にどの程度同相信号が除去できるかを考察してみる。
 先ず、フィードバックコンデンサCfとキャンセルコンデンサCcとは同一静電容量である必要があるが、静電容量の製造のバラツキを考慮すると、5~10%程度の誤差が発生してしまう。また、入力側の電荷発生型センサ又は容量変化型センサのバラツキも同程度見込まれるので、およそ、20dBの信号除去率が見込まれる。すなわち、1/10程度の同相信号が残ることになる。
 この程度の除去率で十分な場合もあるが、高感度なセンサの場合、チャージアンプ後のゲインが百倍を超えるものもあり、回路が飽和してしまい、結果としてダイナミックレンジが減少してしまうという未解決の課題がある。
 したがって、差動アンプ102の負極入力端子及び正極入力端子のマイナスゲイン及びプラスゲインの微調整が必要になる。このゲイン調整を行う場合に、図8に示すように、センサ100A及び差動アンプ102の負極入力端子の接続点と接地との間に半固定可変容量Cv1を介挿し、センサ100Bとキャンセル回路106との接続点と接地との間に半固定可変容量Cv2を介挿することが考えられる。
 この図8のように半固定可変容量Cv1及びCb2を接続して、差動アンプ102の負極入力端子及び正極入力端子に入力される入力容量を調整することにより、ゲインの微調整が原理的には可能となる。
 しかしながら、センサ用のチャージアンプは微小な電荷(たとえば10-18C程度)を測定できるように構成されているので、外部の電界等の影響を受けやすく、実際の回路では、図8で破線図示のように、センサ100A及び100B、差動アンプ102、フィードバック回路、キャンセル回路106、半固定可変容量Cv1及びCv2をシールドする必要がある。半固定可変容量Cv1及びCv2もシールド内に含まれるので、これら半固定可変容量Cv1及びCv2の容量調整を行うためにドライバーが触れると、出力が不安定になり、現実の調整は殆ど不可能である。
 また、たとえ調整できたとしても、温度変化などによって、微妙に同相信号の除去率が変化した場合、再度調整する必要があり、この再調整も容易に行うことはできないという未解決の課題がある。
 そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、差動アンプの入力側のゲイン調整を容易に行うことができる電荷検出回路を提供することを目的としている。
 上記目的を達成するために、本発明に係る電荷検出回路の第1の態様は、電荷発生型センサ及び容量変化型センサの何れかで構成される物理量検出センサの一端を差動アンプの負極入力端子に接続し、他端を前記差動アンプの正極入力端子に接続し、前記差動アンプの出力端子と前記負極入力端子との間にフィードバック抵抗及びフィードバック容量を並列に接続し、且つ前記差動アンプの正極入力端子と基準電圧との間にキャンセル抵抗及びキャンセル容量を並列に接続している。そして、前記差動アンプの負極入力端子及び正極入力端子の少なくとも一方に逆バイアス電源によって逆バイアス電位が与えられた可変容量ダイオードを接続してゲイン調整を可能としている。
 この構成によると、逆バイアス電源で可変容量ダイオードに与える逆バイアス電位を変化させることにより、可変容量ダイオードの静電容量を変化させて、差動アンプの負極入力端子及び正極入力端子の少なくとも一方のゲインを容易且つ正確に調整することができる。
 また、本発明に係る電荷検出回路の第2の態様は、前記可変容量ダイオードと前記逆バイアス電源との間にローパスフィルタを介挿した。
 この構成によると、ローパスフィルタで逆バイアス電源の逆バイアス電圧の揺らぎを抑制することができ、可変容量ダイオードの静電容量変動を防止することができる。
 また、本発明に係る電荷検出回路の第3の態様は、前記物理量検出センサで発生する電荷のバラツキをδQ、発生電荷の平均値をQm、フィードバック容量をCfとしたとき、電荷バラツキを容量へ見立てた値δQ・Cf/Qmとし、前記フィードバック容量Cfの製造バラツキをδCfとし、センサ容量の製造バラツキをδCsとし、前記差動アンプの入力容量のバラツキをδCinとして、前記δQ・Cf/Qm、δCf、δCs及びδCinを比較して、最も大きな値をΔCmaxとし、且つ前記可変容量ダイオードの容量可変幅をΔCdとしたとき、
 ΔCmax≦ΔCd≦10×ΔCmax
の条件を満足する前記可変容量ダイオードを用いる。
 この構成によると、可変容量ダイオードの容量可変幅ΔCdをΔCmax≦ΔCd≦10×ΔCmaxの範囲に設定することにより、物理量検出センサで発生する電荷のバラツキを容量に見立てた値、センサ容量のバラツキ、フィードバック容量のバラツキ、差動アンプの入力容量パラツキの最大値を可変容量ダイオードの容量可変幅ΔCdで安定して吸収することが可能となる。
 本発明によれば、電荷発生型センサ又は容量変化型センサで構成される物理量検出センサの電荷を検出する差動アンプを有する電荷検出回路であって、逆バイアス電源で可変容量ダイオードに与える逆バイアス電位を変化させることにより、可変容量ダイオードの静電容量を変化させて、差動アンプの負極入力端子及び正極入力端子の少なくとも一方のゲインを容易に調整することができるという効果が得られる。
本発明に係る電荷検出回路の一実施形態を示すブロック図である。 逆バイアス電圧と差動アンプ出力の振幅との関係を示す特性線図である。 可変容量ダイオードの逆バイアス電圧と素子容量との関係を示す特性線図である。 可変容量ダイオードの容量を決定するための説明用回路図である。 従来の一般的な電荷検出回路を示すブロック図である。 従来の同相信号を除去する電荷検出回路を示すブロック図である。 従来の同相信号を除去する電荷検出回路の他の例を示すブロック図である。 従来の同相信号を除去する電荷検出回路のさらに他の例を示すブロック図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は本発明に係るチャージアンプ構成を有する電荷検出回路の一実施形態を示すブロック図であって、図中、1A及び1Bはペアとなる2つの容量変化型センサで構成される物理量検出センサである。ここで、容量変化型センサとしては錘を梁で保持して固定電極を錘側面近傍に保持し、錘と固定電極間の容量を測定する加速度センサなどがあり、各物理量検出センサ1A及び1Bはいずれも微小な電荷(例えば10-18C程度)を測定している。
 各物理量検出センサ1A及び1Bは、一端は互いに接続されてバイアス電圧回路2に接続され、物理量検出センサ1Aの他端は、オペアンプで構成される差動アンプ3の負極入力端子に接続され、物理量検出センサ1Bの他端は、差動アンプ3の正極入力端子に接続されている。
 この差動アンプ3の出力端子及び負極入力端子間には、抵抗値が例えば100MegaΩに設定されたフィードバック抵抗Rfと静電容量が例えば1pFに設定されたフィードバック容量Cfとを並列に接続したフィードバック回路4が接続されている。また、差動アンプ3の正極入力端子と基準電圧となる例えば接地との間には、抵抗値が例えば100MegaΩに設定されたキャンセル抵抗Rc及び静電容量が例えば1pFに設定されたキャンセル容量Ccを並列に接続したキャンセル回路5が接続されている。
 そして、差動アンプ3の負極入力端子には、可変容量ダイオードD1のアノードが接続され、この可変容量ダイオードD1のカソードがローパスフィルタ6を介して逆バイアス電源としての直流バイアス電圧回路7に接続されている。
 また、差動アンプ3の正極入力端子にも、電圧制御可変容量素子としての可変容量ダイオードD2のアノードが接続され、この可変容量ダイオードD2のカソードがローパスフィルタ8を介して逆バイアス電源としての直流バイアス電圧回路9に接続されている。
 ここで、ローパスフィルタ6及び8は、直流バイアス電圧回路7及び9の逆バイアス電圧の揺らぎを抑制するものであり、直流バイアス電圧回路7及び9と可変容量ダイオードD1及びD2との間にそれぞれ直列に接続された抵抗値が例えば100kΩに設定された抵抗R1及びR2と、この抵抗R1及びR2と可変容量ダイオードD1及びD2との接続点と接地との間にそれぞれ介挿された静電容量が例えば1uFに設定されたコンデンサC1及びC2とで構成されている。このローパスフィルタ6及び8のカットオフ周波数は、センシング周波数より低くなければならず、理想的にはセンシング周波数の1/100以下に設定するのが望ましい。本実施形態では、カットオフ周波数は1.6Hzに設定されているが、カットオフ周波数をあまり低く設定すると、応答性が悪くなるので、後段回路の特性を考慮して、適宜設定すればよい。
 また、直流バイアス電圧回路7及び9の逆バイアス電圧Vr1及びVr2については、少なくとも一方が調整可能であればよい。以下では、主に、差動アンプ3の負極入力端子側に接続された直流バイアス電圧回路7については逆バイアス電圧Vr1を1.3V固定とし、正極入力端子側に接続された直流バイアス電圧回路9については逆バイアス電圧Vr2を変化させるようにした場合について説明する。
 また、前述したセンサ1A及び1Bとしては、容量変化型の加速度センサを使用し、バイアス電圧回路2によるバイアス電圧は6Vとし、この加速度センサを1kHz、1Gの加速度で振動させて、同相信号の除去を行った。このときの加速度センサから出力される振幅と差動アンプ3の正極入力端子側の可変容量ダイオードD2に加えた逆バイアス電圧(Vr2)との関係を図2に示す。この図2において、縦軸の符号は位相が180deg回転する様子を示しており、丁度、逆バイアス電圧(Vr2)が1.05Vで同相の加速度が除去されて、振幅がゼロになっている。なお、図2の関係において、差動アンプ3の負極入力端子側の可変容量ダイオードD1に加えた逆バイアス電圧(Vr1)は1.3V固定としている。また、加速度センサは、同相信号を全く除去しない場合には出力信号が1Vを発生するようなセンサとなっており、±35%の範囲で信号調整することができる。電荷検出回路での容量バラツキとセンサのバラツキを考慮すると、可変範囲は±10%程度であれば良いので、図2の可変範囲はもう少し小さくすることができる。
 また、可変容量ダイオードD1及びD2の逆バイアス電圧(V)に対する静電容量Cd(pF)の関係は、図3に示すように、逆バイアス電圧が約0.3Vであるときに静電容量Cdが約6.5pF程度となり、この状態から逆バイアス電圧が増加するにつれて静電容量Cdが比較的大きな変化量で低下し、逆バイアス電圧が約3Vを超えると逆バイアス電圧が増加するにつれて比較的小さな変化量で低下する特性となっている。本実施形態では、静電容量の可変範囲を6.5~1.5pFとなる可変容量ダイオードD1及びD2を適用したが、これに限定されるものではなく、本実施形態の1/4程度の静電容量の可変範囲で十分に対応することができる。
 ここで、可変容量ダイオードD1,D2にどのような静電容量の可変範囲が必要になるかを、本実施形態の基本となる従来例である図7のチャージアンプ回路に寄生容量を考慮した図4に示す回路に基づいて説明する。
 この図4の寄生容量は、差動アンプ3に実装されているフィードバック容量Cfの他に、差動アンプ3の負極入力端子及び正極入力端子に寄生容量Cp-及びCp+が存在し、さらに正極入力端子に回路に実装されているグランド容量Cgが存在する。
 差動アンプ3の正極入力端子に供給された電荷Q+について考えると、正極入力端子に供給された電荷は、接地した容量Cgに蓄積され、正極入力端子の電位をQ+/(Cg+Cp+)まで上昇させる。正極入力端子の電位が上昇するので、差動アンプ3の出力端子電圧も上昇するが、その値は寄生容量Cp-とフィードバック容量Cfとで分割された負極入力端子の電位が、正極入力端子の電位と等しい値のところで安定化する。すなわち、
 Q+/(Cp++Cg)={Cf/(Cp-+Cf)}Vout  ……(3)
なる関係が成立し、これを変換すると、
 Vout={(Cp-+Cf)/(Cp++Cg)}×Q+/Cf ……(4)
となる。
 ところで、寄生容量Cpは、電荷発生源であるセンサ自身の容量、差動アンプ3の入力容量が考えられるので、それぞれの容量をCs、Cinとおき、なおかつ、正極入力端子側と負極入力端子側の違いを符号により区別すると、
Vout=[(Cs-+Cin-+Cf)/(Cs++Cin++Cg)]×Q+/Cf
                             ……(5)
となる。
 この(5)式を、改めて、負極入力端子へ入力された電荷式である前述した(1)式と比較すると、Cs+=Cs-且つCp+=Cp-且つCf=Cgであるとき、電荷-電圧変換式の係数が一致し、なおかつ物理量検出センサ1A及び1Bからの発生電荷が等しいとき、完全な同相信号除去が可能となる。
 これには当然製造バラツキがあるので、この製造バラツキを可変容量ダイオードD1,D2で吸収することになる。
 また、センサ1A,1Bから発生する電荷のバラツキをδQとし、発生電荷の平均値をQmとして、電荷のバラツキを容量に見立てると、δQCf/Qmとなる。
 さらに、センサ1A,1Bの静電容量のバラツキをδCsとし、フィードバック容量Cf及びグランド容量CgのバラツキをδCfとし、差動アンプ3の入力容量のバラツキをδCinとすれば、これら4つの容量のバラツキの最大値をΔCmaxとし、この最大値ΔCmaxを可変容量ダイオードD1,D2の静電容量の可変幅ΔCdで吸収することになる。したがって、可変容量ダイオードD1,D2の静電容量の可変幅ΔCdは、
 ΔCmax≦ΔCd  …………(6)
を満足する値に設定する必要がある。また、可変容量ダイオードD1,D2の静電容量の可変幅ΔCdが大きすぎると、回路が不安定となるので、上限値は最大値ΔCmaxの10倍程度が望ましい。
 このため、可変容量ダイオードD1,D2の静電容量の可変幅ΔCdは、
 ΔCmax≦ΔCd≦10×ΔCmax  …………(7)
を満足する値に設定する。
 なお、本実施形態でも、外部電界の影響を抑制するように、図1で破線図示のように、センサ1A,1B、差動アンプ3、フィードバック回路4、キャンセル回路5、可変容量ダイオードD1,D2及びローパスフィルタ6及び7を含めてシールドが施されている。
 次に、上記実施形態の動作を説明する。
 差動アンプ3の出力端子及び負極入力端子間に接続されたフィードバック回路4と差動アンプ3の正極入力端子及び接地間に接続されたキャンセル回路5との回路定数を一致させることにより、差動アンプ3の負極入力端子に接続されるラインと正極入力端子に接続されるラインとを近接させることで、同相ノイズをある程度キャンセルことができる。
 しかしながら、前述したように、フィードバックコンデンサCfとキャンセルコンデンサCcとは同一静電容量である必要があるが、静電容量の製造のバラツキを考慮すると、5~10%程度の誤差が発生してしまう。また、入力側の容量変化型センサのバラツキも同程度見込まれるので、およそ、20dBの信号除去率が見込まれる。すなわち、1/10程度の同相(コモンモード)信号が残ることになる。
 このため、差動アンプ3の負極入力端子及び正極入力端子にそれぞれ可変容量ダイオードD1及びD2のアノードが接続され、これら可変容量ダイオードD1及びD2のカソードに直流バイアス電圧回路7及び9が接続されている。このうち、例えば、直流バイアス電圧回路7について出力される逆バイアス電圧Vr1を1.3Vに固定した場合、これによって、可変容量ダイオードD1の静電容量が、図3に示すように、4.4pF程度に設定される。この可変容量ダイオードD1の静電容量Cd1が介挿されるので、差動アンプ3の負極入力端子側の静電容量が大きくなる。
 これに対して、差動アンプ3の正極入力側端子に接続されている可変容量ダイオードD2のカソードに接続された直流バイアス電圧回路9では、任意の逆バイアス電圧Vr2の出力が可能とされる。このため、フィードバック容量Cfとキャンセル容量Ccとの静電容量のバラツキと物理量検出センサ1A及び1Bのバラツキとによる差動アンプ3の負極入力端子及び正極入力端子間の静電容量差が生じている場合に、両者間の静電容量差を補償するように、直流バイアス電圧回路9から出力される逆バイアス電圧Vr2を調整する。これにより、差動アンプ3の負極入力端子及び正極入力端子のゲインを正確に調整して、S/N比を高めた状態で、同相信号ノイズを完全に除去することができる。
 また、上記の例とは逆に、直流バイアス電圧回路9について出力される逆バイアス電圧Vr2を1.3Vに固定した場合、これによって、可変容量ダイオードD2の静電容量が、図3に示すように、4.4pF程度に設定される。この可変容量ダイオードD2の静電容量Cd2が介挿されるので、差動アンプ3の正極入力端子側の静電容量が大きくなる。
 この場合は、差動アンプ3の負極入力側端子に接続されている可変容量ダイオードD1のカソードに接続された直流バイアス電圧回路7では、任意の逆バイアス電圧Vr1の出力が可能とされる。このため、フィードバック容量Cfとキャンセル容量Ccとの静電容量のバラツキと物理量検出センサ1A及び1Bのバラツキとによる差動アンプ3の負極入力端子及び正極入力端子間の静電容量差が生じている場合に、両者間の静電容量差を補償するように、直流バイアス電圧回路7から出力される逆バイアス電圧Vr1を調整する。これにより、差動アンプ3の負極入力端子及び正極入力端子のゲインを正確に調整して、S/N比を高めた状態で、同相信号ノイズを完全に除去することができる。
 しかも、本実施形態では、差動アンプ3の負極入力端子及び正極入力端子のフィードバックコンデンサCf及びキャンセルコンデンサCcの静電容量バラツキと、容量変化型センサ1A及び1Bの静電容量のバラツキとを相殺するための静電容量の調整を直流バイアス電圧回路7及び9の逆バイアス電圧Vr1及びVr2の少なくとも一方を調整して可変容量ダイオードD1及びD2の少なくとも一方の静電容量を調整するので、センサ1A,1B、差動アンプ3、フィードバック回路4、キャンセル回路5、可変容量ダイオードD1,D2及びローパスフィルタ6及び7を含めてシールドが施されている場合でも、静電容量の調整を安価な可変容量ダイオードを使用して正確に行うことができる。
 また、可変容量ダイオードD1及びD2の容量可変幅ΔCdをΔCmax≦ΔCd≦10×ΔCmaxの範囲に設定することにより、センサ1A,1Bで発生する電荷のバラツキを静電容量に見立てた値、センサ静電容量のバラツキ、フィードバック容量のバラツキ、差動アンプの入力静電容量バラツキの最大値を可変容量ダイオードD1及びD2の容量可変幅ΔCdで安定して吸収することが可能となる。
 また、各可変容量ダイオードD1及びD2に直流バイアス電圧回路7及び9の逆バイアス電圧Vr1及びVr2がローパスフィルタ6及び8を介してそれぞれ供給されるので、逆バイアス電圧Vr1及びVr2の揺らぎを抑制することができ、可変容量ダイオードD1及びD2の静電容量変動を防止することができる。
 なお、上記実施形態においては、差動アンプ3の負極入力端子及び正極入力端子のそれぞれに可変容量ダイオードD1及びD2と直流バイアス電圧回路7及び9とを接続した構成において、主として、直流バイアス電圧回路7の逆バイアス電圧Vr1を固定した場合について説明したが、これに限定されるものではなく、直流バイアス電圧回路9の逆バイアス電圧Vr2を固定して、直流バイアス電圧回路7の逆バイアス電圧Vr1を変化させるようにしてもよく、両直流バイアス電圧回路7及び9の逆バイアス電圧Vr1及びVr2をそれぞれ変化させるようにしてもよく、さらには、差動アンプ3の負極入力端子及び正極入力端子の何れか一方の可変容量ダイオード及び直流バイアス電圧回路を省略するようにしてもよい。
 また、上記実施形態においては、容量変化型センサに本発明を適用した場合について説明したが、これに限定されるものではなく、絶縁体の圧電素子を用いた圧力センサ、マイクロフォン、加速度センサ、角速度センサ、歪みゲージ等の電荷発生型センサに本発明のチャージアンプを適用するようにしてもよい。この場合には、電荷発生型センサの一端を差動アンプ3の負極入力端子に、他端を差動アンプ3の正極入力端子に接続する構成とすることを除いては前述した第1の実施形態と同様の構成とすることにより、差動アンプ3の負極入力端子及び正極入力端子の静電容量調整を行って、両者のゲインを調整すればよい。
産業上の利用の可能性
 本発明によれば、電荷発生型センサ又は容量変化型センサで構成される物理量検出センサの電荷を検出する差動アンプを有する電荷検出回路で、逆バイアス電源で可変容量ダイオードに与える逆バイアス電位を変化させることにより、可変容量ダイオードの静電容量を変化させて、差動アンプの負極入力端子及び正極入力端子の少なくとも一方のゲインを容易に調整することができる。
 1A,1B…物理量検出センサ、2…バイアス電圧回路、3…差動アンプ、4…フィードバック回路、Cf…フィードバックコンデンサ、Rf…フィードバック抵抗、5…キャンセル回路、Cc…キャンセルコンデンサ、Rc…キャンセル抵抗、D1,D2…可変容量ダイオード、6,8…ローパスフィルタ、7,9…直流バイアス電圧回路

Claims (3)

  1.  電荷発生型センサ及び容量変化型センサの何れかで構成される物理量検出センサの一端を差動アンプの負極入力端子に接続し、他端を前記差動アンプの正極入力端子に接続し、
     前記差動アンプの出力端子と前記負極入力端子との間にフィードバック抵抗及びフィードバック容量を並列に接続し、且つ前記差動アンプの正極入力端子と基準電圧との間にキャンセル抵抗及びキャンセル容量を並列に接続し、
     前記差動アンプの負極入力端子及び正極入力端子の少なくとも一方に逆バイアス電源によって逆バイアス電位が与えられた可変容量ダイオードを接続してゲイン調整を可能としたことを特徴とする電荷検出回路。
  2.  前記可変容量ダイオードと前記逆バイアス電源との間にローパスフィルタを介挿したことを特徴とする請求項1に記載の電荷検出回路。
  3.  前記物理量検出センサで発生する電荷のバラツキをδQ、発生電荷の平均値をQm、フィードバック容量をCfとしたとき、電荷バラツキを容量へ見立てた値δQ・Cf/Qmとし、前記フィードバック容量Cfの製造バラツキをδCfとし、センサ容量の製造バラツキをδCsとし、前記差動アンプの入力容量のバラツキをδCinとして、前記δQ・Cf/Qm、δCf、δCs及びδCinを比較して、最も大きな値をΔCmaxとし、且つ前記可変容量ダイオードの容量可変幅をΔCdとしたとき、
     ΔCmax≦ΔCd≦10×ΔCmax
    の条件を満足する前記可変容量ダイオードを用いる
     ことを特徴とする請求項1又は2に記載の電荷検出回路。
PCT/JP2011/006350 2011-11-14 2011-11-14 電荷検出回路 WO2013072951A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/006350 WO2013072951A1 (ja) 2011-11-14 2011-11-14 電荷検出回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/006350 WO2013072951A1 (ja) 2011-11-14 2011-11-14 電荷検出回路

Publications (1)

Publication Number Publication Date
WO2013072951A1 true WO2013072951A1 (ja) 2013-05-23

Family

ID=48429074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006350 WO2013072951A1 (ja) 2011-11-14 2011-11-14 電荷検出回路

Country Status (1)

Country Link
WO (1) WO2013072951A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164774A (zh) * 2017-10-02 2020-05-15 阿尔卑斯阿尔派株式会社 输入装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347522A (ja) * 1992-06-16 1993-12-27 Matsushita Electric Ind Co Ltd 自動利得制御回路
JP2001326548A (ja) * 2000-05-17 2001-11-22 Murata Mfg Co Ltd 電荷型センサ用増幅回路
JP2007266758A (ja) * 2006-03-27 2007-10-11 Nec Corp 検波回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347522A (ja) * 1992-06-16 1993-12-27 Matsushita Electric Ind Co Ltd 自動利得制御回路
JP2001326548A (ja) * 2000-05-17 2001-11-22 Murata Mfg Co Ltd 電荷型センサ用増幅回路
JP2007266758A (ja) * 2006-03-27 2007-10-11 Nec Corp 検波回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164774A (zh) * 2017-10-02 2020-05-15 阿尔卑斯阿尔派株式会社 输入装置
CN111164774B (zh) * 2017-10-02 2024-02-09 阿尔卑斯阿尔派株式会社 输入装置

Similar Documents

Publication Publication Date Title
JP6038152B2 (ja) 物理量を検出する容量性変換器システム
US9696338B2 (en) Capacitance detection circuit
CN103872991A (zh) 使用用于传感器接口的专用比较器的输入共模控制
US9182433B2 (en) Detection circuit for capacitive sensor
JP2012044260A (ja) 電荷検出回路
JP5075930B2 (ja) 電荷変化型センサの出力回路
EP2317645B1 (en) Capacitive sensor
US8981834B2 (en) Circuit and method for dynamic offset compensation in a MEMS sensor device
KR20160051711A (ko) 가변 캐패시턴스를 포함하는 가변 캐패시터의 캐패시턴스에 대한 정보를 나타내는 센서 신호를 생성하는 장치 및 방법
KR100453971B1 (ko) 적분형 용량-전압 변환장치
US20070041135A1 (en) Sensor circuit
JP6454819B2 (ja) 容量式センサ
WO2013072951A1 (ja) 電荷検出回路
JP4752417B2 (ja) センサ装置
JP5471960B2 (ja) 電荷検出回路
US20140062507A1 (en) Electric charge detection circuit
EP2688204A1 (en) Electric charge detection circuit
JP2006177895A (ja) 静電容量/電圧変換装置および力学量センサ
JP4282321B2 (ja) インピーダンス検出装置及びインピーダンス検出方法
US10948295B2 (en) Auto phase control drive circuit for gyroscope apparatus
JP6273443B2 (ja) 物理量計測回路を用いた物理量計測方法
CN113167582A (zh) 具有衬底和布置在衬底上的机电结构的微机电惯性传感器
JP2020102774A (ja) チャージアンプ回路
JP2007248326A (ja) 加速度センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP