WO2013072859A1 - Avental para compensação de deformação para quinadoras - Google Patents

Avental para compensação de deformação para quinadoras Download PDF

Info

Publication number
WO2013072859A1
WO2013072859A1 PCT/IB2012/056418 IB2012056418W WO2013072859A1 WO 2013072859 A1 WO2013072859 A1 WO 2013072859A1 IB 2012056418 W IB2012056418 W IB 2012056418W WO 2013072859 A1 WO2013072859 A1 WO 2013072859A1
Authority
WO
WIPO (PCT)
Prior art keywords
apron
actuators
bridge
deformation
compensation
Prior art date
Application number
PCT/IB2012/056418
Other languages
English (en)
French (fr)
Inventor
Tiago Maria CARVALHO CUNHA DE BRITO E FARO
Rui Manuel DA SILVA CÉSAR
António DA SILVA ALVES
João Paulo GERALDES TOURO PEREIRA
Fernando GOMES DE ALMEIDA
Joaquim António CONDE CORREIA DOS SANTOS
Original Assignee
Adira, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adira, S.A. filed Critical Adira, S.A.
Publication of WO2013072859A1 publication Critical patent/WO2013072859A1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/02Bending sheet metal along straight lines, e.g. to form simple curves on press brakes without making use of clamping means
    • B21D5/0272Deflection compensating means

Definitions

  • the present invention is applicable to bending machines used in sheet forming / bending, namely in modifying the deformation of the apron (s).
  • the present invention describes a bender apron deformation modifying device driven by at least two main actuators operably disposed between the two aprons, with parallel axes distant from each other, having at least one compensating actuator, which contacts the apron. with a bridge supported by the respective apron in two zones, each close to each axis of said main actuators, is intended to modify the deformation of the apron during the bending phase of the plate and is characterized by: the connection between said bridge and its apron are established in each of said zones by means of systems which impart neither significant momentum nor horizontal force.
  • the present invention describes a device wherein said bridge may consist of two interconnected sub-structures placed on either side of the respective apron, characterized in that the bridge can be used on each of the respective apron connections. , only one system that transmits neither significant momentum nor horizontal force.
  • the present invention describes a device in which said bridge may consist of two sub-structures, linked together, placed on either side of the respective apron, characterized in that: in each of the connections to the respective apron, it is possible to use a system that transmits neither significant momentum nor horizontal force across each substructure.
  • the present invention describes a device characterized in that: a beam supported on the respective apron can be used, near the axes of the main actuators and near the points whose position is read by the bender apron distance measuring system, by means of systems other than transmit neither significant momentum nor horizontal force, such as skid axle or skid ball or double-articulated tie rod using shafts or ball joints or flexible body or skid more flexible body. to this beam or just to the apron or both to measure the deformation of the apron.
  • the present invention describes a device characterized in that auxiliary systems for measuring apron deformation such as strain gauges or lasers or fiber optics, the response of which may be used by the control system, can be used directly on the apron directly.
  • auxiliary systems for measuring apron deformation such as strain gauges or lasers or fiber optics, the response of which may be used by the control system, can be used directly on the apron directly.
  • the present invention describes a device characterized in that it may have a control system capable of determine, in real time, the forces to be performed by each of the compensation actuators, by multidimensional interpolation between a set of previously obtained cases, considering the characteristics of the bending plate, bending angle, the position of the bending plate and the characteristics of the bender to obtain the desired deformation on the apron.
  • the present invention describes a device characterized by: having a control system capable of determining, in real time, the forces to be executed by each compensation actuator, by multidimensional interpolation between a previously studied set of cases, considering the characteristics of the bending plate, bending angle, bending plate position and bender characteristics, where the values read by the apron strain measuring auxiliary systems can be used to introduce corrections to the values previously obtained by multidimensional interpolation, to obtain the desired deformation on the apron.
  • the present invention describes a device characterized in that it can have a control system capable of determining, in real time, the forces to be executed by each compensation actuator, such that the values read by the auxiliary strain measuring systems apron are desired, considering the force exerted by the main actuators, and bending conditions, such as thickness, width and material of the bending plate, bending angle and location of the workstation in the bender.
  • the present invention describes a device characterized in that: the device described in the upper apron only, the lower apron only in both aprons can be used.
  • a preferred embodiment of the present invention includes a strain compensation apron (1,2) for biasing machines comprising two main actuators (5,6) comprising:
  • each of said supports (21, 22, 23) of the bridge (13, 14, 15, 16) on the apron (1,2) is a sliding and rotating coupling.
  • a preferred embodiment of the present invention includes an apron (1, 2) in which said sliding and rotating coupling comprises a skid (22, 23) and a kneecap (21, 22).
  • a preferred embodiment of the present invention includes an apron (1, 2) comprising two trim actuators (17, 18; 19, 20), or three trim actuators, or four trim actuators, optionally spaced at substantially equal intervals between them. axes of said main actuators (5, 6).
  • a preferred embodiment of the present invention includes an apron (1, 2) in which said sliding and rotating coupling comprises a flexible body, or a flexible and skid body, or a doubly articulated tie rod.
  • a preferred embodiment of the present invention includes an apron (1,2) comprising a second bridge (14, 16), identical to said bridge (13,15), each being placed on the face of the apron (1,2).
  • a preferred embodiment of the present invention includes an apron (1,2) in which the compensation actuators (17, 18, 19, 20) are hydraulic.
  • a preferred embodiment of the present invention includes an apron (1,2) in which the compensation actuators (17, 18, 19, 20) are electric.
  • a preferred embodiment of the present invention includes an apron (1,2) comprising a trim actuator control module (17, 18, 19, 20) programmed to apply forces through said trim actuators (17, 18, 19). 20) so as to keep the apron (1,2) substantially parallel to the other apron (2,1) of the bender in the segment (42) corresponding to the bending part (12).
  • a preferred embodiment of the present invention includes an apron (1, 2) wherein the control module is programmed to maintain the apron (1, 2) substantially. straight and parallel to the other apron (2, 1) of the bender in the segment (42) corresponding to the part to bend (12).
  • a preferred embodiment of the present invention includes an apron (1, 2) in which said control module comprises a database of previously measured cases, considering the characteristics of the bending plate (12), bending angle (56), the position of the sheet to be bent and the characteristics of the bender in order to obtain the desired deformation on the apron (1, 2).
  • a preferred embodiment of the present invention includes an apron (1,2) comprising a strain measuring system (7,24,25,26,27) of the apron (1,2) comprising displacement transducers (26,27). .
  • a preferred embodiment of the present invention includes an apron (1, 2) in which said control module is programmed to update said database with information from the strain measuring system (7, 24, 25, 26, 27). ) of the apron (1, 2).
  • a preferred embodiment of the present invention includes an apron (1, 2) in which said control module is programmed to adjust the forces of the compensation actuators (17, 18, 19, 20) as a function of information from the system. measuring the deformation (7, 24, 25, 26, 27) of the apron (1, 2).
  • a preferred embodiment of the present invention includes an apron (1,2) wherein the displacement transducers (26,27) are coupled directly to the apron (1,2).
  • a preferred embodiment of the present invention includes an apron (1, 2) according to claims 12 - 14 in which the displacement transducers (26, 27) are coupled to a beam (24) which is coupled to its ends (7, 14). 25) to the apron (1, 2) with sliding and rotating couplings.
  • a preferred embodiment of the present invention includes a biaser comprising one of the aprons (1,2) as described above.
  • a preferred embodiment of the present invention includes a bender in which said apron is the lower (1), or upper (2) apron, or both lower (1) and upper (2) aprons.
  • a preferred embodiment of the present invention includes a binder manufacturing process comprising the step of installing one of the aprons (1,2) as described above.
  • a preferred embodiment of the present invention includes a binder update process comprising the step of installing one of the aprons (1,2) as described above.
  • CH653289 describes a hydraulic press which includes a stationary apron and a movable apron and comprises, within a slot in the stationary apron, cylinders to compensate for the deformations that occur during press operation.
  • An analysis unit receives information from the strain measuring means. These means are located within the stationary and movable aprons and / or between the tool holder and the tools and control the cylinders so that during the working phase the two tools have the same curvature and remain parallel.
  • the same document also describes another variant in which both the stationary apron and the movable apron are equipped with cylinders. However it is only claimed that by using the cylinders it is possible to make the two aprons parallel.
  • the cylinders perform their balancing action on support plates disposed parallel to the stationary apron.
  • the stationary apron there is no reference to how these lateral support plates and the stationary apron are connected, nor the use of mechanisms that can prevent horizontal stresses on the aprons, nor the use of mechanisms that make the aprons not only parallel but parallel and straight. in the work zone.
  • US4580434 relates to a deflection compensation assembly for use with a type bender having a lower table, an upper table, and a pair of master cylinders acting on the upper table, and in particular to the use of a bias compensation cylinder.
  • offset and a pair of auxiliary bars / bridges mountable on the lower table or bender upper table to make the tool-supporting ends on the lower table and upper table substantially parallel in load.
  • a pair of sheet materialized bars / bridges are located on either side of the lower table. At bars / bridges extend horizontally and longitudinally on the lower table for most of its length. The bars / bridges are fixed to the lower table by a pair of pins.
  • Each pin is located near the end of the bars / bridges and crosses the bars / bridges and the lower table.
  • the solution comprises only one centered cylinder and the mechanical element that promotes the connection between the auxiliary bars / bridges and the lower table or upper table is a pin. Still taking into account the pins and especially their positioning, the text merely states that each pin is located near one end of the bars / bridges, not identifying its specific location.
  • EP0544137 relates to a system to be applied to a lower table and / or upper table of a forming press.
  • the object of the invention is to reduce the conventional deflection of the lower table and upper table that occurs during the forming process without increasing the weight or height of the moving parts.
  • the main purpose of the described system is to generate a mainly concentrated reaction in the center of the press table assuming that, typically, in the forming process, the center of the tool force is preferably aligned with the center of the press table.
  • the system is composed of a pair of identical subsystems arranged on each side of the press table. Two short stroke hydraulic cylinders are fed in parallel which allows us to infer that the main reason for using a pair of cylinders is related to the decrease in cylinder diameter.
  • the described system uses a bar which is mounted with its ends in the neutral zone of the press table taking into account the deflection. Connected to this bar are two transducers, one controls the pressure cylinders and the second is provided for safety against failure or delayed discharge. 'No reference to how these bridge plates are connected to the table structure.
  • CH686119 relates to a method of adjusting the stroke of a biaser's movable apron to compensate for errors due to deformation of the machine frame, in particular the deformation of the side frame modules. Compensation is calculated using a predetermined scheme and the information of two pressure sensors connected to each of the hydraulic cylinders. The same information from these sensors is used to calculate the pressure of at least one compensation cylinder that compensates for stationary apron deformation when compared to the movable apron.
  • the document does not provide technical details about the mounting of the trim rollers and the function of the trim roller or rollers is to attempt to match the deformation of the upper apron during the forming process.
  • US7503200 relates to a method of correcting a folding operation performed by a bender equipped with strain compensation rollers associated with one of the two aprons (in the description, the offset rollers are shown in the lower apron).
  • the method uses force sensors associated with the side frames to define the pressures that can be applied to the apron trim rollers to keep said apron substantially straight.
  • the system comprises an electronic control device that maintains calibration data by matching forces measured by the sensors to cylinder pressures. Calibration data is pre-recorded using very small calibration parts, less than 10% of the length between the two cylinders.
  • the system is capable of making corrections to the punch penetration depth in the die by recalculating a lower dead center of the press according to the characteristics of the workpiece to be bent, the values of the force on the side frames and the spring effect.
  • No details are provided on the constructive aspects of the connection between the plates that make up the fixed apron, only the reference that the lateral ends of the central plate and the reaction plates are fixed to the lateral structures.
  • WO99 / 20410 describes a bending press with a device for detecting lower and upper apron deviation to interact with at least one crowning system.
  • the detection devices record during the active phase of compression for folding, the elastic deformation of the aprons along the vertical axis.
  • Three different configurations of the sensing devices are described, one directly aligned with apron movement, one second using a lever arm and the third using diagonally positioned diverging rods, all having a point attached to the top or bottom aprons and a second point. connected to an external bar / bridge fixed to the machine frame.
  • Each detector device is centrally positioned relative to the corresponding bar / bridge length.
  • the described system is only capable of detecting the deformation at the midpoint of the aprons and, having a crowning system Although it can be composed of several cylinders, the lower one promotes the possibility of following the deformation (curvature) of the upper apron but does not achieve the alignment of the two layers.
  • the apron deformation modifying device (1 or 2) is usable in benders which include at least two or more main actuators (5, 6), are normally functionally placed between the aprons (1, 2) with distant parallel axes. each other, and one or more compensation actuators (17, 18, 19, 20) contacting the respective apron (1 or 2) and a bridge (13, 14 or 15, 16) supported by the same apron (1 or 2).
  • the contact between the bridge (13, 14 or 15, 16) and the apron (1 or 2) is preferably established in the areas near each of the axes of the main actuators (5, 6) through systems other than transmit neither significant momentum nor horizontal force.
  • the bender can use force measuring systems performed by the main actuators (5, 6) and apron deformation measuring systems (1 or 2) in order to know, in real time, the position and characteristics of the plate (12) to be bent.
  • the control system can calculate the force to be deployed on each compensation actuator (17, 18, 19, 20) to optimize apron deformation (1 or 2).
  • One of the main uses of the invention is to allow to modify the deformations obtained in the aprons (1 or 2), reducing the angular bending error of the plates (12).
  • the benders are usually made up of at least one lower apron (1); an upper apron (2); two side mullions (3, 4) and two main actuators (5, 6).
  • the most commonly used construction uses a fixed lower apron (1) which is integral with the two lateral mounts (3, 4), the upper movable apron (2) being actuated by the two main actuators (5, 6), which normally have the its body (8, 9) attached to the lateral mullions (3, 4) and movable part (10, 11) integral with the upper apron (2).
  • the tools (28, 29) which contact the plate (12) forming it (figure 6) when lowering the upper apron (2).
  • the main actuators (5, 6) are responsible for moving the upper apron (2) relative to the lower apron (1) and for realizing the force (36, 37, figure 4) required to bend the plate (12).
  • benders such as those in which a number of main actuators other than two are used and those in which the upper apron is fixed and integral with the mullions being the movable lower apron.
  • the benders built in this way will present reliability problems in the connections between bridges (13, 14; 15, 16) and apron (1; 2), at least if this connection is pin type (US4580434) or kneecap or soldered or bolted.
  • bridge (13, 14; 15, 16) and apron (1 or 2) connections may induce stresses on aprons (1, 2) which make it difficult to optimize apron deformation (1, 2).
  • the device allows the deformation (45, 33, 34, 35, figure 4) of the apron (1 or 2) to be imposed, optimizing the results for each specific bending situation, without introducing reliability problems or lack of robustness in the bender, with reduced operator intervention and short job preparation time.
  • the device When the device is implemented to its fullest, with strain measuring sensors (26, 27) on the apron (1 or 2), it also improves the simultaneous bending performance of more than one plate (12) or bending. of a plate (12) with discontinuities in the bending line, as it makes the bender control system less dependent on previously stored information.
  • Figure 1 In this figure, one can see a bridge bender (13, 14 and 15, 16) and compensation actuators (17, 18, 19, 20) in three-dimensional view. In this figure you can also see the tools used to bend the plate (12).
  • FIG. 2 In this figure, one can see a bridge bender (13, 14, 15 and 16) and compensation actuators (17, 18, 19 and 20) in three-dimensional view. In this figure you can also see the tools (28, 29) used to bend the plate (12). In this figure, a beam (24) supported by connections (7, 25) to the apron (2) can also be seen which in turn supports complementary measuring equipment (26). In this figure you can also see complementary measuring devices (27) supported only by the apron (2).
  • Figure 3 In this figure, the connection between the bridge (13) and the apron (1), consisting of the skate (22, 23) and kneecap (21, 22), can be properly observed.
  • the substructure (14, figure 2) that is part of the commonly referred to as bridge (13, 14, figure 2) has been purposely hidden.
  • the figure represents the connection (21, 22, 23) between lower apron (1) and the respective bridge (13, 14, figure 2), it also serves to better understand the constitution of the connection that the device also proposes between the upper apron (2) and its bridge (15, 16), which is functionally identical.
  • Figure 4 In this figure, we can observe the forces applied to the apron (2, figure 2), in the upper case, the bender, during the bending phase of a plate (12, figure 2). In this figure one can see, the forces (32) applied by the plate (12) on the apron (2, figure 2), the forces (30, 31) applied by the compensation actuators (19, 20), the forces (36, 37 ) applied by the main actuators (5, 6, figure 2) through their moving parts (10, 11) over the upper apron (2, figure 2) and the forces (38, 39) applied by the bridge (15, 16, figure 2) on the connections (21, 22, 23) bridge (15, 16, figure 2) upper apron (2, figure 2), which consequently act on the upper apron (2, figure 2).
  • connection (21, 22, 23) between bridge (15, 16, figure 2) and upper apron (2, figure 2) that is, its kneecap (21, 22) and your skate (22, 23).
  • width (42) of the plate (12, figure 2) where the forces (32) exerted by the plate (12, figure 2) exert on the tool (29) and, consequently, on the upper apron (2, figure 2) during the bending phase.
  • the figure represents the forces acting on the upper apron (2, figure 2), it also serves to explain the same with respect to the lower apron (1, figure 2) of the bender. To this end, it is only necessary to understand that what is visible in this figure is approximately a symmetry with respect to a plane normal to the vertical axis (y), except for the apron design (1, 2, figure 2) and vertical distances (y) between points of application of forces.
  • Figure 5 In this figure, one can see the forces applied to the aprons (54, 55) of a bender that do not include compensating actuators (17, 18, 19, 20, figure 2) or bridges (13, 14, 15, 16, Figure 2) and respective deformations (50, 51) and vertical deformation (46, 47) of the aprons (54, 55).
  • compensating actuators 17. 18, 19, 20, figure 2) or bridges (13, 14, 15, 16, Figure 2)
  • respective deformations (50, 51) and vertical deformation (46, 47) of the aprons (54, 55) As the force (or 43 or 44) that the plate (12, figure 2) imposes on the apron (or 54 or 55) to be biased is balanced only by the forces (or 52, 53 or 40, 41) performed by the main actuators, the deformed (or 50 or 51) and deformation (or 46 or 47) are only dependent on the stiffness of the respective apron (or 54 or 55).
  • Figure 6 In this figure one can see, in lateral section, the tools (28, 29) contacting the plate 12, in two different situations with different vertical distance (y) between the tools (28, 29), to exemplify the error generated (49) by a variation (48) in the vertical distance (y) between the tools (28, 29) at the bending angle (56, 57) of the plate (12).
  • Figure 7 Connection between the upper bridge (15, 16), the purposely hidden substructure (16, figure 2), and the upper apron (2) showing the main actuator (6) and its fixed body (9), and its movable part (11), lateral upstream structure (4), connecting foot between bridge (15) and apron (2), namely concave rod member (21) integral with the bridge (15), convex rod member ( 22) which is slidable relative to the fixed surface (23) of the apron (2).
  • the figure further shows the compensating actuator element (19) capable of exerting a downward vertical force on the upper (2) apron and upward on said bridge (15).
  • Figure 8 Alternative construction of the bridge and upper apron assembly.
  • FIG 9 Detail of the connection between bridge (16) and apron (2), consisting of sliding elements, skid (22, 23), and rotatable elements, ball joint (22, 21), with the lower element of the ball joint (21) integral with the upper bridge (16).
  • the device utilizes bridge connections (13, 14 or 15,16 ) and apron (1 or 2) that tolerate difference in horizontal deformations (in the x-direction) between the bridge (13, 14 or 15, 16) and its apron (1 or 2), giving neither horizontal forces nor significant moments to the respective apron (1 or 2) and are located close to the axes of the main actuators (5, 6).
  • Such bonds may be materialized in a number of different ways, some examples being given below.
  • connection (figure 3) a ball joint or shaft (21, 22) centered near the corresponding main actuator shaft (5 or 6), plus a skid (22, 23).
  • a double hinged rod with two shafts or hinges preferably placed close to the corresponding main actuator shaft (5 or 6), wherein one of these shafts or hinge is integral with its apron (1 or 2) and the other solidary with the respective bridge (13, 14 or 15, 16).
  • a low rigidity body for example a synoblock, preferably placed close to the corresponding main actuator shaft (5 or 6).
  • a low rigidity body and a skid preferably placed close to the corresponding main actuator shaft (5 or 6).
  • the vertical forces (32) exerted by the plate (12) on the apron (1 or 2) are balanced not only by the forces (52, 53, figure 5) (36, 37, figure 4) exerted by the main actuators (5, 6 ) but also by the forces (30, 31, figure 4) exerted by the compensation actuators (17, 18, 19, 20) and the contact forces (38, 39, figure 4) between the bridge connections (13, 14; 15, 16) and the apron (1 or 2).
  • the compensation actuators (17, 18; 19, 20) transmit the forces (32) exerted by the plate (12) to the main actuators (5, 6) via the bridges (13, 14; 15, 16). and their connections to the respective apron (1; 2) in the form of forces (38, 39, figure 4), instead of this transfer occurring directly through the aprons (1; 2) in the form of bending moments if the compensation actuators (17, 18, 19, 20) and bridges (13, 14, 15, 16) did not exist ( Figure 5).
  • the operation of the device and its effects can also be explained as follows.
  • the force (32) exerted by the plate (12) plus the force (30, 31, figure 4) exerted by the compensation actuators (19, 20 or 17, 18) is equal to the sum of the force (36, 37, figure 4) exerted by the main actuators (5,6) with the forces (38, 39) exerted by the bridge connections (13,14; 15,16).
  • This sum, force is the force that is transmitted from the apron zone where the bending force (32) acts to the zones (10, 11, figure 4) where the main actuators (5, 6) act for bending moments. residuals.
  • the apron (1; 2) is subjected, during the forming phase of the plate (12), to residual bending moments, to compressive forces (32, 30, 31, figure 4) located between the plate (12) and the compensation actuators (17, 18 or 19, 20) and the compressive forces (36, 38 and 37, 39, figure 4) located between the bridge connections (13, 14 or 15, 16) and apron (1; 2).
  • the apron (1; 2) will have different deformations (45, 33, 34, 35, figure 4) compared to the more traditional solution.
  • control system is capable of imposing, with the aforementioned limitations, the value of the residual bending moments and consequently the deformation (45, 33, 34, 35, figure 5) of the apron (1 or 2) in question. by applying more or less force to each compensation actuator.
  • the variation of the vertical distance (48, figure 6) (y) between the tools (28, 29) in the areas that contact the plate (12) to conform along the horizontal direction (x ) can be imposed by the control system which defines the force (30, 31, figure 4) to be exerted by each of the compensation actuators (17, 18, 19, 20).
  • a variation (49, figure 6) is obtained at the bending angle (56, 57, figure 6) of the plate (12) closest to the desired one.
  • the force (30, 31, Figure 4) to be performed with the compensation actuators (17, 18, 19, 20) must be adjustable by the bender control system in real time during the bending cycle.
  • the control system needs to know approximately the length (42, figure 4) of the bending line, what force value (36, 37, figure 4) each main actuator (5or 6) is running and having a database allowing you to decide on the best force value (30, 31) to implement in each trim actuator (17, 18, 19, 20).
  • the length of the bending line may be pre-indicated to the control system by the bender operator, or alternatively measured by any system the bender includes. For example, artificial vision measurement, material presence detection or other measurement.
  • the force value performed by the main actuators (5 and 6) can easily be obtained by reading the pressure value if the actuators (5 and 6) are hydraulic.
  • the force value performed by the actuators (5,6) can easily be obtained by reading the value of the electric current consumed if the actuators (5,6) are electric.
  • the force value performed by the actuators (5, 6) can easily be obtained by reading the value indicated by a load cell installed between the main actuator (5, 6) and one of the aprons (1 or 2).
  • the database must contain the information considering the bender geometry, the force values (36, 37, figure 4) exerted by the actuators (5, 6) and the bending line length indicated by the operator or acquired by the measuring system itself, allow the system to control the calculation of the force value (30, 31) to be implemented in each compensation actuator (17, 18, 19, 20).
  • the bender may further include a measuring beam (24) supported (7, 25) on the apron (1; 2) near the actuator axes (5, 6) and the points supporting the measuring system. of vertical distance (y) between aprons existing in conventional benders.
  • This measuring beam shall be supported on the apron in question by connections (7, 25) which transmit neither horizontal moments nor stresses (x), such as a more skate shaft or a kneecap or a flexible body or a more skate flexible body. Since this measuring beam (24) is not subject to significant stress, it can be considered to be deformable and support deformation measuring systems (26) of the deformation (45, 33, 34, 35, figure 4) of the apron (1; 2), displacement transducers, such as LVDT ' s, also connected to the apron (1; 2) in order to measure their deformation relative to the support points (7, 25) of the beam (24) in the apron (1; 2) in question.
  • the portion of the measuring systems (26) supported on the apron (1; 2) must be close to the apron area (1 or 2) that contacts the tool (28 or 29) so that the measured values are as close as possible.
  • the bender may further include apron deformation measuring systems (27) (1 or 2) placed directly on the apron (1 or 2), such as strain gauges or laser or fiber optic systems, which send information regarding the deformation status of the apron (1; 2) to the bender control system.
  • apron deformation measuring systems (27) (1 or 2) placed directly on the apron (1 or 2), such as strain gauges or laser or fiber optic systems, which send information regarding the deformation status of the apron (1; 2) to the bender control system.
  • the compensating actuators (17, 18, 19, 20) are low stroke hydraulic cylinders, they may be fed from the same line as the main actuators (5, 6) if they are hydraulic or from a single unit. own hydraulic system if they are not.
  • the control system by means of pressure regulating or limiting valves defines the acting pressure in each compensating cylinder (17, 18, 19, 20), defining the force (30, 31, figure 4) performed by it.
  • the control system through the electric motor driver, will define the force (30, 31, figure 4) that the compensating actuator ( 17, 18, 19, 20) will perform.
  • the bender control system can be implemented with at least four different architectures.
  • first capable of implementing forces (30, 31, figure 4) on the compensation actuators (17, 18, 19, 20) indicated by the operator, in order to obtain the deformation (45, 33, 34, 35, figure 4) on the apron (1, 2) iteratively, bending pieces successively until the desired result is obtained.
  • second capable of calculating, in real time, the forces (30, 31, figure 4) to be performed by each of the compensation actuators (17, 18, 19, 20), in order to obtain the deformation (45, 33 , 34, 35, figure 4) intended for the apron (1, 2), by multidimensional interpolation between a set of previously obtained cases.
  • the values read by the apron deformation measuring systems (26, 27) of the apron deformation (1,2) can be used to introduce corrections to the values previously obtained by multidimensional interpolation to obtain the deformation (45, 33, 34, 35, figure 4) intended for the apron (1, 2).
  • This control architecture may commonly be called open loop and closed loop mixed control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

Avental (1, 2) com dispositivo modificador de deformação para quinadoras de accionamento por actuadores principais (5, 6) e um ou mais actuadores de compensação (17, 18, 19, 20) que contactam com o respectivo avental (1 ou 2) e uma ponte (13, 14, 15, 16) suportada por esse mesmo avental. O contacto entre ponte e avental estabelece-se próximo dos actuadores principais através de sistemas que não transmitam nem momento nem força horizontal significativos. Sistemas de medição das forças dos actuadores principais e da deformação do avental permitem, em tempo real, conhecer a posição e características da chapa (12) a quinar. O sistema de controlo determina a força a implementar em cada actuador de compensação de forma a optimizar a deformação do avental. A invenção permite modificar as deformações obtidas nos aventais, reduzindo o erro angular de quinagem das chapas.

Description

D E S C R I Ç Ã O
"AVENTAL PARA COMPENSAÇÃO DE DEFORMAÇÃO PARA QUINADORAS"
Domínio técnico da invenção
A presente invenção aplica-se em quinadoras utilizadas na conformação/quinagem de chapa, nomeadamente na modificação da deformação do ou dos seus aventais.
Sumário da invenção
A presente invenção descreve um dispositivo modificador da deformação de avental de quinadora, accionada por pelo menos dois actuadores principais, funcionalmente colocados entre os dois aventais, com eixos paralelos distantes um do outro, tendo pelo menos um actuador de compensação, que contacta com o avental respectivo e com uma ponte suportada pelo avental respectivo em duas zonas, cada uma próxima de cada um dos eixos dos referidos actuadores principais, destina-se a modificar a deformação do avental durante a fase de quinagem da chapa e é caracterizado por: a ligação entre a referida ponte e o respectivo avental se estabelecer em cada uma das referidas zonas através de sistemas que não transmitam nem momento nem força horizontal significativos.
A presente invenção descreve um dispositivo em que a ponte referida pode ser constituida por duas sub-estruturas, ligadas entre si, colocadas uma de cada lado do avental respectivo, caracterizando-se por: a ponte poder utilizar em cada uma das ligações ao avental respectivo, apenas um sistema que não transmita nem momento nem força horizontal significativos .
A presente invenção descreve um dispositivo em que a ponte referida pode ser constituída por duas sub-estruturas, ligadas entre si, colocadas uma de cada lado do avental respectivo, caracterizando-se por: poder utilizar em cada uma das ligações ao avental respectivo, um sistema que não transmita nem momento nem força horizontal significativos por cada subestrutura .
A presente invenção descreve um dispositivo caracterizado por: poder utilizar uma viga suportada no avental respectivo, na proximidade dos eixos dos actuadores principais e na proximidade dos pontos cuja posição é lida pelo sistema de medição de distância entre aventais da quinadora, através de sistemas que não transmitam nem momento nem força horizontal significativos, como eixo mais patim ou rótula mais patim ou tirante duplamente articulado utilizando eixos ou rótulas ou corpo flexível ou corpo flexível mais patim, podendo sistemas auxiliares de medição da deformação do avental, transdutores de deslocamento, estar ligados apenas a essa viga ou apenas ao avental ou a ambos de forma a medir a deformação do avental.
A presente invenção descreve um dispositivo caracterizado por: poder utilizar, colocados directamente apenas sobre o avental, sistemas auxiliares de medição da deformação do avental, como extensómetros ou lasers ou fibra óptica, cuja resposta pode ser utilizada pelo sistema de controlo.
A presente invenção descreve um dispositivo caracterizado por: poder dispor de sistema de controlo capaz de determinar, em tempo real, as forças a executar por cada um dos actuadores de compensação, por interpolação multidimensional entre um conjunto de casos previamente obtidos, considerando as características da chapa a quinar, ângulo de quinagem, a posição da chapa a quinar e as características da quinadora, de forma a obter a deformação pretendida no avental .
A presente invenção descreve um dispositivo caracterizado por: poder dispor de sistema de controlo capaz de determinar, em tempo real, as forças a executar por cada um dos actuadores de compensação, por interpolação multidimensional entre um conjunto de casos previamente estudados, considerando as características da chapa a quinar, ângulo de quinagem, a posição da chapa a quinar e as características da quinadora, em que os valores lidos pelos sistemas auxiliares de medição da deformação do avental podem ser usados para introduzir correcções aos valores previamente obtidos pela interpolação multidimensional, de forma a obter a deformação pretendida no avental .
A presente invenção descreve um dispositivo caracterizado por: poder dispor de um sistema de controlo capaz de determinar, em tempo real, as forças a executar por cada um dos actuadores de compensação, de forma a que os valores lidos pelos sistemas auxiliares de medição da deformação do avental sejam os pretendidos, considerando a força exercida pelos actuadores principais, e as condições de quinagem, tais como espessura, largura e material da chapa a quinar, ângulo de quinagem e localização da estação de trabalho na quinadora . A presente invenção descreve um dispositivo caracterizado por: poder usar o dispositivo descrito apenas no avental superior, apenas no avental inferior, em ambos os aventais.
Uma realização preferencial da presente invenção inclui um avental (1, 2) para compensação de deformação para quinadoras que compreendem dois actuadores principais (5, 6), que compreende:
- uma ponte (13, 14, 15, 16), suportada nos seus dois extremos em apoios (21, 22, 23) no avental (1, 2) colocados substancialmente próximos dos eixos dos referidos actuadores principais (5, 6);
- um ou mais actuadores de compensação (17, 18, 19, 20), colocados entre a ponte (13, 14, 15, 16) e o avental (1, 2), de forma a que a sua expansão tenda a aproximar o avental (1, 2) da peça a quinar (12) ;
em que cada um dos referidos apoios (21, 22, 23) da ponte (13, 14, 15, 16) no avental (1, 2) é um acoplamento com deslizamento e rotação.
Uma realização preferencial da presente invenção inclui um avental (1, 2) no qual o referido acoplamento com deslizamento e rotação compreende um patim (22, 23) e uma rótula (21, 22 ) .
Uma realização preferencial da presente invenção inclui um avental (1, 2) que compreende dois actuadores de compensação (17, 18; 19, 20), ou três actuadores de compensação, ou quatro actuadores de compensação, opcionalmente espaçados a intervalos substancialmente iguais entre os eixos dos referidos actuadores principais (5, 6). Uma realização preferencial da presente invenção inclui um avental (1, 2) no qual o referido acoplamento com deslizamento e rotação compreende um corpo flexível, ou um corpo flexível e patim, ou um tirante duplamente articulado .
Uma realização preferencial da presente invenção inclui um avental (1, 2) que compreende uma segunda ponte (14, 16), idêntica à referida ponte (13, 15), sendo cada qual colocada na face do avental (1, 2) .
Uma realização preferencial da presente invenção inclui um avental (1, 2) no qual os actuadores de compensação (17, 18, 19, 20) são hidráulicos.
Uma realização preferencial da presente invenção inclui um avental (1, 2) no qual os actuadores de compensação (17, 18, 19, 20) são eléctricos.
Uma realização preferencial da presente invenção inclui um avental (1, 2) que compreende um módulo de controlo dos actuadores de compensação (17, 18, 19, 20), programado para aplicar forças através dos referidos actuadores de compensação (17, 18, 19, 20) de forma a manter o avental (1, 2) substancialmente paralelo ao outro avental (2, 1) da quinadora no segmento (42) correspondente à peça a quinar (12) .
Uma realização preferencial da presente invenção inclui um avental (1, 2) em que o módulo de controlo está programado de forma a manter o avental (1, 2) substancialmente rectilíneo e paralelo ao outro avental (2, 1) da quinadora no segmento (42) correspondente à peça a quinar (12) .
Uma realização preferencial da presente invenção inclui um avental (1, 2) no qual o referido módulo de controlo compreende uma base de dados com casos previamente medidos, considerando as características da chapa a quinar (12), ângulo de quinagem (56), a posição da chapa a quinar e as características da quinadora, de forma a obter a deformação pretendida no avental (1, 2) .
Uma realização preferencial da presente invenção inclui um avental (1, 2) que compreende um sistema de medição da deformação (7, 24, 25, 26, 27) do avental (1, 2) que compreende transdutores de deslocamento (26, 27) .
Uma realização preferencial da presente invenção inclui um avental (1, 2) no qual o referido módulo de controlo está programado para actualizar a referida base de dados com a informação proveniente do sistema de medição da deformação (7, 24, 25, 26, 27) do avental (1, 2).
Uma realização preferencial da presente invenção inclui um avental (1, 2) no qual o referido módulo de controlo está programado para em tempo real ajustar as forças dos actuadores de compensação (17, 18, 19, 20) em função da informação proveniente do sistema de medição da deformação (7, 24, 25, 26, 27) do avental (1, 2).
Uma realização preferencial da presente invenção inclui um avental (1, 2) em que os transdutores de deslocamento (26, 27) estão acoplados directamente ao avental (1, 2). Uma realização preferencial da presente invenção inclui um avental (1, 2) de acordo com as reivindicações 12 - 14 no qual os transdutores de deslocamento (26, 27) estarem acoplados a uma viga (24) que está acoplada nos seus extremos (7, 25) ao avental (1, 2) com acoplamentos com deslizamento e rotação.
Uma realização preferencial da presente invenção inclui uma quinadora que compreende um dos aventais (1, 2) conforme atrás descritos.
Uma realização preferencial da presente invenção inclui uma quinadora na qual o referido avental é o avental inferior (1), ou superior (2), ou ambos os aventais inferior (1) e superior ( 2 ) .
Uma realização preferencial da presente invenção inclui um processo de fabrico de quinadoras que compreende o passo de instalar um dos aventais (1, 2) conforme atrás descritos.
Uma realização preferencial da presente invenção inclui um processo de actualização de quinadoras que compreende o passo de instalar um dos aventais (1, 2) conforme atrás descritos .
Antecedentes da Invenção
A patente CH653289 descreve uma prensa hidráulica que inclui um avental estacionário e um avental móvel e compreende, dentro de uma ranhura no avental estacionário, cilindros para compensar as deformações que ocorrem durante a operação da prensa. Uma unidade de análise recebe a informação vinda dos meios de medição das deformações. Estes meios estão localizados dentro dos aventais estacionário e móvel e/ou entre o suporte das ferramentas e as ferramentas, e controla os cilindros, de modo a que durante a fase de trabalho, as duas ferramentas tenham a mesma curvatura e permaneçam paralelas. 0 mesmo documento também descreve outra variante, na qual tanto o avental estacionário como o avental móvel são equipados com cilindros. No entanto apenas se reivindica que, usando os cilindros, é possível tornar os dois aventais paralelos. Numa concretização alternativa, os cilindros realizam a sua acção de compensação sobre placas de suporte dispostas paralelamente ao avental estacionário. Contudo, não há referência a como estas placas de suporte lateral e o avental estacionário estão ligados, nem ao uso de mecanismos aptos a evitar esforços horizontais nos aventais, nem ao uso de mecanismos que permitam tornar os aventais não apenas paralelos, mas paralelos e rectos na zona de trabalho.
A patente US4580434 refere-se a uma montagem de compensação de deflexão para usar com uma quinadora do tipo tendo uma mesa inferior, uma mesa superior e um par de cilindros principais actuando a mesa superior, e em particular ao uso de um cilindro de compensação de desvio e um par de barras/pontes auxiliares montáveis na mesa inferior ou na mesa superior da quinadora, para fazer com que as extremidades que dão suporte às ferramentas na mesa inferior e na mesa superior se mantenham substancialmente paralelas em carga. Um par de barras/pontes materializadas em chapas está localizado em cada lado da mesa inferior. As barras/pontes estendem-se horizontalmente e longitudinalmente na mesa inferior na maior parte do seu comprimento. As barras/pontes estão fixas à mesa inferior por um par de pinos. Cada pino está localizado perto da extremidade das barras/pontes e atravessa as barras/pontes e a mesa inferior. A solução contempla apenas um cilindro centrado e o elemento mecânico que promove a ligação entre as barras/pontes auxiliares e a mesa inferior ou a mesa superior é um pino. Ainda tendo em conta os pinos e especialmente o seu posicionamento, o texto apenas refere que cada pino está localizado perto de uma extremidade das barras/pontes, não identificando a sua localização especifica .
A patente EP0544137 refere-se a um sistema a ser aplicado numa mesa inferior e/ou mesa superior de uma prensa de conformação. 0 objectivo da invenção é reduzir a deflexão convencional da mesa inferior e da mesa superior que ocorre durante o processo de formação sem aumentar o peso ou a altura das partes moveis. 0 principal propósito do sistema descrito é gerar uma reacção principalmente concentrada no centro da mesa da prensa assumindo que, tipicamente, no processo de conformação, o centro da força da ferramenta está preferivelmente alinhada com o centro da mesa da prensa. 0 sistema é composto por um par de subsistemas idênticos dispostos em cada lado da mesa da prensa. Dois cilindros hidráulicos de curso curto são alimentados em paralelo o que permite inferir que a principal razão para usar um par de cilindros está relacionada com a diminuição do diâmetro do cilindro. 0 sistema descrito usa uma barra que é montada com as suas extremidades na zona neutra da mesa da prensa tendo em consideração a deflexão. Ligados a esta barra estão dois transdutores, um controla a pressão dos cilindros e o segundo é f rnecido para segurança contra falha ou atraso na descarga. ' ao há referência a como estas placas de ponte estão ligadas à estrutura da mesa .
A patente CH686119 refere-se a um processo de ajustar o curso do avental móvel de uma quinadora de modo a compensar os erros devidos à deformação da estrutura da máquina, em particular a deformação dos módulos da estrutura lateral. A compensação é calculada usando um esquema predeterminado e a informação de dois sensores de pressão ligados a cada um dos cilindros hidráulicos. A mesma informação vinda destes sensores é usada para calcular a pressão de pelo menos um cilindro de compensação que compensa a deformação do avental estacionário quando comparado com o avental móvel. 0 documento não fornece detalhes técnicos sobre a montagem dos cilindros de compensação e a função do cilindro ou cilindros de compensação é tentar corresponder à deformação do avental superior durante o processo de conformação.
A patente US7503200 refere-se a um método de correcção de uma operação de dobragem realizada por uma quinadora equipada com cilindros de compensação de deformação associados a um dos dois aventais (na descrição, os cilindros de compensação são apresentados no avental inferior) . 0 método usa sensores de força associados às estruturas laterais de modo a definir as pressões que podem ser aplicadas aos cilindros de compensação do avental, de modo a manter o referido avental substancialmente recto. 0 sistema compreende um dispositivo de controlo electrónico que mantém os dados da calibração estabelecendo uma correspondência entre as forças medidas pelos sensores e as pressões dos cilindros. Os dados de calibração são pré- gravados usando peças de calibração muito pequenas, inferiores a 10% do comprimento entre os dois referidos cilindros. Também é reivindicado que o sistema é capaz de fazer correcções à profundidade de penetração do punção na matriz recalculando um ponto morto inferior da prensa de acordo com as características da peça a ser dobrada, os valores da força nas estruturas laterais e o efeito de mola. Não são fornecidos detalhes acerca dos aspectos construtivos da ligação entre as placas que constituem o avental fixo, apenas a referência que as extremidades laterais da placa central e das placas de reacção estão fixas nas estruturas laterais. Compensando apenas as deformações de um avental, o referido sistema consegue apenas seguir a curvatura do segundo avental, mantendo o paralelismo, mas não garantindo a rectidão dos dois aventai s .
O documento WO99/20410 descreve uma prensa para dobragem com um dispositivo para detectar o desvio do avental inferior e superior visando interagir, pelo menos, com um crowning system. Os dispositivos de detecção gravam durante a fase activa de compressão para dobragem, a deformação elástica dos aventais ao longo do eixo vertical. São descritas três configurações diferentes dos dispositivos de detecção, um directamente alinhado com o movimento do avental, um segundo usando um braço de alavanca e o terceiro usando tirantes divergentes diagonalmente posicionados, todos eles tendo um ponto ligado aos aventais superior ou inferior e um segundo ponto ligado a uma barra/ponte externa fixa à estrutura da máquina. Cada dispositivo detector está centralmente posicionado relativamente ao comprimento da barra/ponte correspondente. O sistema descrito é apenas capaz de detectar a deformação no ponto médio dos aventais e, tendo um crowning system inferior, embora possa ser composto por vários cilindros, promove a possibilidade de seguir a deformação (curvatura) do avental superior mas não consegue o alinhamento dos dois aventai s .
Descrição geral da invenção
0 dispositivo modificador de deformação de avental (1 ou 2) é utilizável em quinadoras que incluam pelo menos, accionamento por dois ou mais actuadores principais (5, 6), normalmente estão funcionalmente colocados entre os aventais (1, 2) com eixos paralelos distantes um do outro, e um ou mais actuadores de compensação (17, 18, 19, 20) que contactam com o respectivo avental (1 ou 2) e uma ponte (13, 14 ou 15, 16) suportada por esse mesmo avental (1 ou 2) . No dispositivo, o contacto entre a ponte (13, 14 ou 15, 16) e o avental (1 ou 2) estabelece-se preferencialmente nas zonas próximas de cada um dos eixos dos actuadores principais (5, 6) através de sistemas que não transmitam nem momento nem força horizontal significativos. A quinadora pode utilizar sistemas de medição das forças executadas pelos actuadores principais (5, 6) e sistemas de medição da deformação do avental (1 ou 2) visando, em tempo real, conhecer a posição e características da chapa (12) a quinar. 0 sistema de controlo pode calcular a força a implementar em cada actuador de compensação (17, 18, 19, 20) de forma a optimizar a deformação do avental (1 ou 2) . Uma das principais utilidades da invenção é permitir modificar as deformações obtidas nos aventais (1 ou 2), reduzindo o erro angular de quinagem das chapas (12) . As quinadoras são normalmente constituídas por pelo menos: um avental inferior (1); um avental superior (2); dois montantes laterais (3, 4) e dois actuadores principais (5, 6) . Actualmente a construção mais utilizada usa avental inferior (1) fixo e solidário com os dois montantes laterais (3, 4), sendo o avental superior (2) móvel actuado pelos dois actuadores principais (5, 6), os quais, normalmente têm o seu corpo (8, 9) fixo aos montantes laterais (3, 4) e parte móvel (10, 11) solidária com o avental superior (2) . Nos topos dos aventais estão as ferramentas (28, 29) que contactam com a chapa (12) conformando-a (figura 6) aquando da descida do avental superior (2). Os actuadores principais (5, 6) são os responsáveis pela movimentação do avental superior (2) relativamente ao avental inferior (1) e pela realização da força (36, 37, figura 4) necessária para quinar a chapa (12) .
Podemos também encontrar outras variantes construtivas, não representadas, para as quinadoras, como por exemplo aquelas em que se usa um número de actuadores principais diferente de dois e aquelas em que o avental superior é fixo e solidário com os montantes sendo o avental inferior móvel.
Nas quinadoras convencionais a deformação vertical (46, 50, 47, 51 figura 5) dos aventais (54, 55) durante a fase de conformação (figura 6) é fortemente dependente da sua rigidez . De uma forma geral quanto maior é a deformação (46, 50, 47, 51, figura 5) dos aventais (54, 55), durante a fase de conformação (figura 6), maior é a variação da distância (48, figura 6) vertical (y) entre eles, nas zonas de contacto com as ferramentas (28, 29) que conformarão a chapa (12), ao longo da direcção horizontal (x, figura 5) e, consequentemente, maior é a variação (49, figura 6) do ângulo (56, 57, figura 6) obtido na chapa (12), ao longo da linha de quinagem (x, figura 5) . Na generalidade das situações pretende-se que o ângulo (56, 57, figura 6)) obtido na chapa ao longo da linha de quinagem (x, figura 5) seja constante e a linha de quinagem uma recta. Para tal, é necessário que as zonas das ferramentas (28, 29) que contactam com a chapa (12) sejam o mais paralelas entre si e rectas possível. A dificuldade das quinadoras em conseguir obter o paralelismo e a rectilinearidades referidos é um dos problemas que a invenção pretende auxiliar a solucionar. Noutras situações menos habituais poderá pretender-se um ângulo (56, 57, figura6) não uniforme ao longo da linha de quinagem (x, figura 5) ou uma linha de quinagem não recta. 0 dispositivo permite a obtenção de melhores resultados nessas situações.
A aplicação da invenção é mais imediata num tipo de quinadora que, para além de usar os elementos já referidos, usa também pelo menos uma ou mais pontes (13, 14; 15, 16) e actuadores de compensação (17, 18, 19, 20) como descrito na patente US4580434. Nestas quinadoras, os actuadores de compensação (19, 20, figura 4) aplicam no avental (1 ou 2) respectivo forças (30, 31, figura 4) que se irão opor à força de quinagem (32, figura 4) aplicada pela chapa (12) sobre a ferramenta (29) durante a conformação (figura 6) da chapa (12) . Os actuadores de compensação (17, 18; 19, 20) aplicam as referidas forças (30, 31, figura 4) no avental (1; 2) suportados pela ponte (13, 14 ou 15, 16) respectiva. A forma construtiva mais óbvia para cada ponte (13, 14; 15, 16) compreende duas vigas (13, 14; 15, 16), unidas entre si e colocadas uma de cada lado do respectivo avental (1; 2) . As quinadoras assim construídas apresentarão problemas de fiabilidade nas ligações entre ponte (13, 14; 15, 16) e avental (1; 2), pelo menos caso essa ligação seja do tipo pino (US4580434) ou rótula ou soldada ou aparafusada. Para além disso, as ligações ponte (13, 14; 15, 16) e avental (1 ou 2) podem induzir esforços nos aventais (1, 2) que dificultam a optimização da deformação dos aventais (1, 2). Estas dificuldades são outros dos problemas que a invenção pretende auxiliar a solucionar.
0 dispositivo permite impor a deformação (45, 33, 34, 35, figura 4) do avental (1 ou 2), optimizando os resultados para cada situação especifica de quinagem, sem introduzir problemas de fiabilidade ou falta de robustez na quinadora, com reduzida intervenção do operador e baixo tempo de preparação do trabalho. Quando a implementação do dispositivo se faz na sua forma mais completa, com sensores de medição de deformações (26, 27) no avental (1 ou 2), também melhora o desempenho na quinagem simultânea de mais do que uma chapa (12) ou quinagem de uma chapa (12) com descontinuidades na linha de quinagem, por tornar o sistema de controlo da quinadora menos dependente de informação previamente armazenada.
Três dificuldades comuns são quinar fora do centro da máquina (devido à carga assimétrica na máquina) e/ou quinar uma peça descontinua, em que por exemplo, a linha a quinar tem um rasgo e como tal o material a quinar é descontinuo (também provoca assimetrias), e/ou quinar duas peças ao mesmo tempo. Num sistema que monitoriza a deformação dos aventais, e tendo a possibilidade de actuar à esquerda e à direita (devido à existência de actuadores do lado esquerdo e lado direito) , essas dificuldades são eliminadas ou atenuadas, pois o sistema anula a deformação sofrida, independentemente das condições de quinagem e independentemente da zona do avental a onde está(ão) a(s) peça(s) . Por estar a medir deformação do avental em preferencialmente muitos pontos ao longo da direcção horizontal (x) o sistema de controlo tem melhores dados para decidir qual a melhor força para cada um dos actuadores de compensação de forma a reduzir as deformações doa aventais unicamente aonde interessa, aonde as ferramentas contactam com a peça.
Descrição das Figuras
Para uma mais fácil compreensão da invenção juntam-se em anexo as figuras, as quais, representam realizações preferenciais que, portanto, não pretendem, limitar o objecto da presente invenção.
Figura 1: Nesta figura, pode-se observar uma quinadora com pontes (13, 14 e 15, 16) e actuadores de compensação (17, 18, 19, 20) em vista tridimensional. Nesta figura, também se pode visualizar as ferramentas utilizadas para quinar a chapa ( 12 ) .
Figura 2: Nesta figura, pode-se observar uma quinadora com pontes (13, 14, 15 e 16) e actuadores de compensação (17, 18, 19 e 20) em vista tridimensional. Nesta figura, também se pode visualizar as ferramentas (28, 29) utilizadas para quinar a chapa (12) . Nesta figura, também se pode visualizar uma viga (24) suportada em ligações (7, 25) ao avental (2) que por sua vez suporta equipamentos (26) complementares de medição. Nesta figura, também se pode visualizar equipamentos (27) complementares de medição, suportados unicamente pelo avental (2) . Figura 3: Nesta figura, pode-se observar devidamente a ligação entre a ponte (13) e o avental (1), composta pelo patim (22, 23) e rótula (21, 22). Nesta figura, ocultou-se propositadamente a subestrutura (14, figura 2) que faz parte da normalmente designada por ponte (13, 14, figura 2) . Embora a figura represente a ligação (21, 22, 23) entre avental inferior (1) e a respectiva ponte (13, 14, figura 2), serve também para melhor compreender a constituição da ligação que o dispositivo também propõe entre o avental superior (2) e a respectiva ponte (15, 16), que é do ponto de vista funcional idêntica.
Figura 4: Nesta figura, podemos observar as forças aplicadas ao avental (2, figura2), no caso o superior, da quinadora, durante a fase de quinagem de uma chapa (12, figura 2). Nesta figura pode-se observar, as forças (32) aplicadas pela chapa (12) no avental (2, figura2), as forças (30, 31) aplicadas pelos actuadores de compensação (19, 20), as forças (36, 37) aplicadas pelos actuadores principais (5, 6, figura 2) através das suas partes móveis (10, 11) sobre o avental superior (2, figura 2) e as forças (38, 39) aplicadas pela ponte (15, 16, figura 2) sobre as ligações (21, 22, 23) ponte (15, 16, figura 2) avental superior (2, figura 2), que consequentemente actuam no avental superior (2, figura 2) . Nesta figura, também é possível observar com detalhe a ligação (21, 22, 23) entre ponte (15, 16, figura 2) e avental superior (2, figura 2), isto é, a sua rótula (21, 22) e o seu patim (22, 23) . Nesta figura, também é possível observar a largura (42) da chapa (12, figura 2), onde actuam as forças (32) que a chapa (12, figura 2) exerce sobre a ferramenta (29) e, consequentemente, sobre o avental superior (2, figura 2) durante a fase de quinagem. Nesta figura, é também possível observar três representações exemplo de deformadas (33, 34, 35) e de uma representação exemplo de deformação (45) vertical (y) , do avental superior (2, figura 2), numa zona dentro da largura da chapa (42), a zona mais importante. Embora a figura represente as forças que actuam no avental superior (2, figura 2), serve também para explicar o mesmo relativamente ao avental inferior (1, figura 2) da quinadora. Para tal, é apenas necessário entender que o visível nesta figura é aproximadamente uma simetria relativamente a um plano normal ao eixo vertical (y) , com excepção do desenho do avental (1, 2, figura 2) e distâncias verticais (y) entre pontos de aplicação das forças .
Figura 5: Nesta figura, pode-se observar as forças aplicadas aos aventais (54, 55) de uma quinadora que não inclui actuadores de compensação (17, 18, 19, 20, figura 2) nem pontes (13, 14, 15, 16, figura 2) e as respectivas deformadas (50, 51) e deformação (46, 47) vertical (y) dos aventais (54, 55) . Como a força (ou 43 ou 44) que a chapa (12, figura 2) impõe no avental (ou 54 ou 55) para ser quinada é equilibrada apenas pelas forças (ou 52, 53 ou 40, 41) executadas pelos actuadores principais, a deformada (ou 50 ou 51) e deformação (ou 46 ou 47) são apenas dependentes da rigidez do respectivo avental (ou 54 ou 55) .
Figura 6: Nesta figura pode-se observar, em corte lateral, as ferramentas (28, 29) a contactarem com a chapa 12, em duas situações distintas com diferente distância vertical (y) entre as ferramentas (28, 29), para exemplificar o erro gerado (49) por uma variação (48) na distância vertical (y) entre as ferramentas (28, 29) no ângulo (56, 57) de quinagem da chapa (12) .
Figura 7: Ligação entre a ponte superior (15, 16), com a subestrutura (16, figura 2) propositadamente escondida, e o avental superior (2), mostrando o actuador principal (6), e seu corpo fixo (9), e sua parte móvel (11), estrutura montante lateral (4), patim de ligação entre ponte (15) e avental (2), nomeadamente elemento côncavo da rótula (21) solidário com a ponte (15), elemento convexo da rótula (22) que é deslizável relativamente à superfície fixa (23) do avental (2) . A figura mostra ainda o elemento actuador de compensação (19), capaz de exercer um esforço vertical descendente sobre o avental superior (2) e ascendente sobre a referida ponte (15) .
Figura 8: Realização alternativa do conjunto constituído pelas pontes e avental superior.
Figura 9: Pormenor da ligação entre ponte (16) e avental (2), constituída por elementos deslizáveis entre si, patim (22, 23), e elementos rotáveis entre si, rótula (22, 21), sendo o elemento inferior da rótula (21) solidário com a ponte superior (16) .
Descrição detalhada da invenção
Para impor a deformação (45, 33, 34, 35, figura 4) do avental optimizando os resultados para cada situação de quinagem, melhorando simultaneamente a robustez e eficácia das quinadoras, o dispositivo utiliza ligações entre pontes (13, 14 ou 15,16) e avental (1 ou 2) que toleram a diferença de deformações horizontais (na direcção x) entre a ponte (13, 14 ou 15, 16) e o respectivo avental (1 ou 2), não transmitindo ao avental (1 ou 2) respectivo nem forças horizontais nem momentos significativos e estão localizadas próximas dos eixos dos actuadores principais (5, 6). Tais ligações podem ser materializadas de várias formas distintas, apresentando-se seguidamente alguns exemplos. Um, utilizando por cada ligação (figura 3) uma rótula ou eixo (21, 22) com centro próximo do eixo do actuador principal (5 ou 6) correspondente, mais um patim (22, 23) . Outro, utilizando por cada ligação um tirante duplamente articulado, com dois eixos ou rótulas preferencialmente colocados próximos do eixo do actuador principal (5 ou 6) correspondente, em que um desses eixos ou rótula é solidário com o respectivo avental (1 ou 2) e o outro solidário com a respectiva ponte (13, 14 ou 15, 16) . Outro, utilizando por cada ligação um corpo de baixa rigidez, por exemplo um sinobloco, preferencialmente colocado próximo do eixo do actuador principal (5 ou 6) correspondente. Outro, utilizando por cada ligação um corpo de baixa rigidez e um patim, preferencialmente colocados próximos do eixo do actuador principal (5 ou 6) correspondente.
Com a forma construtiva proposta para o dispositivo é possível modificar a deformação vertical (45, 33, 34, 35, figura 4) do avental (1 ou 2) durante a fase de conformação da chapa (12), garantindo a robustez da quinadora. As forças verticais (32) exercidas pela chapa (12) sobre o avental (1 ou 2) são equilibradas não apenas pelas forças (52, 53, figura 5) (36, 37, figura 4) exercidas pelos actuadores principais (5, 6) mas também pelas forças (30, 31, figura 4) exercidas pelos actuadores de compensação (17, 18, 19, 20) e pelas forças (38, 39, figura 4) de contacto entre as ligações da ponte (13, 14; 15, 16) e o avental (1 ou 2) . Por sua vez, os actuadores de compensação (17, 18; 19, 20) transmitem as forças (32) exercidas pela chapa (12) aos actuadores principais (5, 6), através das pontes (13, 14; 15, 16) e suas ligações ao avental (1; 2) respectivo sob a forma de forças (38, 39, figura 4), em vez dessa transferência ocorrer directamente através dos aventais (1; 2) sob a forma de momentos flectores caso os actuadores de compensação (17, 18, 19, 20) e pontes (13, 14, 15, 16) não existissem (figura 5).Pode-se também explicar o funcionamento do dispositivo e seus efeitos da seguinte forma. A força (32) exercida pela chapa (12) mais a força (30, 31, figura 4) exercida pelos actuadores de compensação (19, 20 ou 17, 18) é igual a soma da força (36, 37, figura 4) exercida pelos actuadores principais (5, 6) com as forças (38, 39) exercidas pelas ligações das pontes (13, 14; 15, 16) . Essa soma, força, é a força que é transmitida, da zona do avental onde actua a força (32) de quinagem para as zonas (10, 11, figura 4) aonde actuam os actuadores principais (5, 6), por momentos flectores residuais. Como é o sistema de controlo que decide qual o valor das forças (30, 31, figura 4) a implementar nos actuadores de compensação (17, 18; 19, 20), podemos dizer que o sistema de controlo via força (30, 31, figura 4) imposta pelos actuadores de compensação (17, 18 ou 19, 20) decide qual o momento flector residual a actuar nessas zonas do avental, podendo-se então também dizer que é o sistema de controlo a decidir qual a deformada (45, 33, 34, 35, figura 4) prendida e a obter para o avental (1; 2) considerando as limitações próprias da geometria da quinadora e da chapa (12) a quinar, o desenho do avental (1; 2), o número de actuadores de compensação (17, 18 ou 19, 20), as características da chapa (12) e sua posição ao longo da direcção horizontal (x) . Como a posição da chapa (12) é não simétrica em muitas situações de quinagem, relativamente ao plano central normal à direcção horizontal (x) da quinadora, este problema é não simétrico. Por tal, os referidos momentos flectores residuais, actuantes nos lados à direita e à esquerda da chapa (12) nessas situações são diferentes ou têm evoluções diferentes.
Com a forma construtiva proposta no dispositivo, o avental (1; 2) é sujeito, durante a fase de conformação da chapa (12), a momentos flectores residuais, a esforços de compressão (32, 30, 31, figura 4) localizados entre a chapa (12) e os actuadores de compensação (17, 18 ou 19, 20) e a esforços de compressão (36, 38 e 37, 39, figura 4) localizados entre as ligações ponte (13, 14 ou 15, 16) e avental (1; 2) . Assim, o avental (1; 2) apresentará deformações (45, 33, 34, 35, figura 4) diferentes comparativamente com a solução mais tradicional.
Como já referido, o sistema de controlo tem capacidade para impor, com as limitações já referidas, o valor dos momentos flectores residuais e consequentemente a deformação (45, 33, 34, 35, figura 5) do avental (1 ou 2) em questão, aplicando mais ou menos força em cada actuador de compensação .
Assim, na forma construtiva proposta pela invenção, a variação da distância (48, figura 6) vertical (y) entre as ferramentas (28, 29) nas zonas que contactam com a chapa (12) a conformar ao longo da direcção horizontal (x) , pode ser imposta pelo sistema de controlo que define qual a força (30, 31, figura 4) a exercer por cada um dos actuadores de compensação (17, 18, 19, 20). Desta forma, obtém-se uma variação (49, figura 6) no ângulo (56, 57, figura 6) de quinagem da chapa (12) mais próxima da pretendida .
Para se minimizar/alterar a variação da distância vertical (48, figura 6), ao longo da direcção horizontal (x) entre as ferramentas (28, 29) que contactam com a chapa (12) e reduzir a dependência do operador, a força (30, 31, figura 4) a executar com os actuadores de compensação (17, 18, 19, 20) deve poder ser ajustada pelo sistema de controlo da quinadora, em tempo real, durante o ciclo de quinagem. Para tal, o sistema de controlo necessita de conhecer aproximadamente o comprimento (42, figura 4) da linha de quinagem, qual o valor de força (36, 37, figura 4) que cada actuador principal (5ou 6) está a executar e possuir uma base de dados que lhe permita decidir qual o melhor valor de força (30, 31) a implementar em cada actuador de compensação (17, 18, 19, 20) . O comprimento da linha de quinagem pode ser previamente indicado ao sistema de controlo pelo operador da quinadora, ou, em alternativa, medido por algum sistema que a quinadora inclua. Por exemplo, medição por visão artificial, medição por detecção de presença de material ou outro. O valor de força executada pelos actuadores principais (5 e 6) pode facilmente ser obtido, lendo o valor de pressão, caso os actuadores (5 e 6) sejam hidráulicos. O valor de força executada pelos actuadores (5, 6) pode facilmente ser obtido, lendo o valor da corrente eléctrica consumida, caso os actuadores (5,6) sejam eléctricos. O valor de força executada pelos actuadores (5, 6) pode facilmente ser obtido, lendo o valor indicado por uma célula de carga instalada entre o actuador principal (5, 6) e um dos aventais (1 ou 2) . A base de dados deve conter a informação necessária para, considerando a geometria da quinadora, os valores de força (36, 37, figura 4) exercidos pelos actuadores (5, 6) e o comprimento da linha de quinagem indicado pelo operador ou adquirido pelo sistema de medição próprio, permitir ao sistema de controlo o cálculo do valor de força (30, 31) a implementar em cada actuador de compensação (17, 18, 19, 20). Alternativamente ou como complemento, a quinadora pode ainda incluir uma viga de medição (24) apoiada (7, 25) no avental (1; 2) próximo dos eixos dos actuadores (5, 6) e dos pontos onde se apoia o sistema de medição de distância vertical (y) entre aventais já existente nas quinadoras convencionais. Essa viga de medição deve ser apoiada ao avental em questão por ligações (7, 25) que não transmitam nem momentos nem esforços horizontais (x) , como por exemplo, eixo mais patim ou rótula mais patim ou corpo flexível ou corpo flexível mais patim. Esta viga de medição (24), por não estar sujeita a esforços significativos pode-se considerar indeformável e apoiar sistemas de medição (26) da deformação (45, 33, 34, 35, figura 4) do avental (1; 2), transdutores de deslocamento, como por exemplo LVDT's, também ligados ao avental (1; 2) de forma a medir a sua deformação relativamente aos pontos de apoio (7, 25) da viga (24) no avental (1; 2) em questão. Os sistemas de medição (26) da deformação do avental (1; 2), em conjunto com os sistemas de medição já existentes nas quinadoras convencionais, fornecem o sistema de controlo com a informação, em tempo real, relativa ao estado de deformação (48, figura 6; 45, 33, 34, 35, figura 4) do avental (1 ou 2), permitindo-lhe implementar em cada dos actuadores de compensação (17, 18, 19, 20) a força (30, 31, figura 4) necessária para se obter a deformação (45, 33, 34, 35, figura 4) e a distância (48) entre ferramentas (28, 29, figura 6), do avental (1; 2) mais próxima possível da pretendida. A parte dos sistemas de medição (26) apoiada no avental (1; 2) deve estar próxima da zona do avental (1 ou 2) que contacta com a ferramenta (28 ou 29), de forma aos valores por eles medidos serem o mais significativos e correctos possível. Alternativamente ou como complemento, a quinadora pode ainda incluir sistemas de medição (27) da deformação do avental (1 ou 2), colocados directamente sobre o avental (1 ou 2), como por exemplo extensómetros ou sistemas laser ou fibra óptica, que enviam informação relativa ao estado de deformação do avental (1; 2) ao sistema de controlo da quinadora. Estes sistemas complementares de medição ajudam a solucionar os problemas relacionados com a quinagem simultânea de mais do que uma chapa (12) e quinagem de chapa (12) com descontinuidades na linha de quinagem.
Na generalidade das situações, pretende-se que as zonas das ferramentas (28, 29) que contactam com a chapa (12) sejam o mais paralelas entre si e rectas possível (34, figura 4) . Para melhorar o resultado, pode-se prescindir desses paralelismo e rectilinearidade (34, figura 4), nas zonas das ferramentas (28, 29) e aventais (1, 2) que não contactam com a chapa (12) a conformar. Assim, pode-se dizer que para cada conjunto de condições de funcionamento durante a fase de conformação há uma deformada (33, 34, 35, figura 4) mais adequada para cada um dos aventais (1, 2) que deve ser implementada. O rigor da aproximação a essa deformada (33, 34, 35, figura 4) mais adequada está então fortemente dependente da força (30, 31, figura 4) que cada um dos actuadores de compensação (17, 18, 19, 20) executa durante a fase de conformação (figura 6) . Essa força (30, 31, figura 4) deve então ser calculada pelo sistema de controlo e implementada nos actuadores de compensação (17, 18, 19, 20) com precisão e velocidade de actuação adequada.
Caso os actuadores de compensação (17, 18, 19, 20) sejam cilindros hidráulicos de baixo curso, podem ser alimentados a partir da mesma linha que alimenta os actuadores principais (5, 6), se estes forem hidráulicos ou a partir de uma unidade hidráulica própria, caso não o sejam. O sistema de controlo através de válvulas reguladoras ou limitadoras de pressão ou outras, define a pressão actuante em cada cilindro compensador (17, 18, 19, 20), definindo a força (30, 31, figura 4) por este executada.
Caso os actuadores de compensação (17, 18, 19, 20) sejam materializados por motor eléctrico e fuso, o sistema de controlo, através do driver do motor eléctrico, definirá a força (30, 31, figura 4) que o actuador compensador (17, 18, 19, 20) executará.
O sistema de controlo da quinadora pode ser implementado com pelo menos quatro arquitecturas diferentes. Na primeira, capaz de implementar forças (30, 31, figura 4) nos actuadores de compensação (17, 18, 19, 20) indicadas pelo operador, de forma a obter a deformação (45, 33, 34, 35, figura 4) pretendida no avental (1, 2) de forma iterativa, quinando peças sucessivamente até obter o resultado pretendido. Na segunda, capaz de calcular, em tempo real, as forças (30, 31, figura 4) a executar por cada um dos actuadores de compensação (17, 18, 19, 20), de forma a obter a deformação (45, 33, 34, 35, figura 4) pretendida no avental (1, 2), por interpolação multidimensional entre um conjunto de casos previamente obtidos. Casos esses, obtidos considerando, características da chapa a quinar, como tensão de cedência, espessura da chapa (12) e ângulo (56, 57) de quinagem pretendido, a posição da chapa a quinar e as características estruturais da quinadora como por exemplo a geometria e rigidez . Esta arquitectura de controlo pode normalmente chamar-se de, controlo em malha aberta. Na terceira, capaz de calcular, em tempo real, as forças (30, 31, figura 4) a executar por cada um dos actuadores de compensação (17, 18, 19, 20), por interpolação multidimensional entre um conjunto de casos previamente obtidos. Casos esses, obtidos considerando, características da chapa a quinar, como tensão de cedência, espessura da chapa (12) e ângulo (57, 57) de quinagem pretendido, a posição da chapa a quinar e as características estruturais da quinadora como por exemplo a geometria e rigidez . Nesta arquitectura de controlo, os valores lidos pelos sistemas auxiliares de medição (26, 27) da deformação do avental (1, 2) podem ser usados para introduzir correcções aos valores previamente obtidos pela interpolação multidimensional, de forma a obter a deformação (45, 33, 34, 35, figura 4) pretendida no avental (1, 2). Esta arquitectura de controlo pode normalmente chamar-se de controlo misto de malha aberta e malha fechada. Na quarta, capaz de calcular, em tempo real, as forças (30, 31, figura 4) a executar por cada um dos actuadores de compensação (17, 18, 19, 20), de forma a que os valores lidos pelos sistemas auxiliares de medição (26, 27) da deformação do avental (1, 2) sejam os pretendidos, considerando a força (36, 37, figura 4) exercida pelos actuadores principais (5, 6), largura (42) da chapa a quinar e ângulo (56, 57) de quinagem. Esta arquitectura de controlo pode normalmente chamar-se de controlo em malha fechada . Como será facilmente compreendido por um especialista na área, existem variações óbvias como a conjugação de uma ponte para dois aventais, uma ponte apenas para um avental, ou até uma pluralidade de pontes e aventais.
As seguintes reivindicações definem adicionalmente realizações preferenciais da presente invenção.

Claims

R E I V I N D I C A Ç Õ E S
1. Avental (1, 2) para compensação de deformação para quinadoras, que compreende dois actuadores principais (5, 6), caracterizado por compreender:
a. uma ponte (13, 14, 15, 16), suportada nos seus dois extremos em apoios (21, 22, 23) no avental (1, 2) colocados substancialmente próximos dos eixos dos referidos actuadores principais (5, 6); b. um ou mais actuadores de compensação (17, 18, 19, 20), colocados entre a ponte (13, 14, 15, 16) e o avental (1, 2), de forma a que a sua expansão tenda a aproximar o avental (1, 2) da peça a quinar ( 12 ) ;
em que cada um dos referidos apoios (21, 22, 23) da ponte (13, 14, 15, 16) no avental (1, 2) é um acoplamento com deslizamento e rotação.
2. Avental (1, 2) de acordo com a reivindicação anterior caracterizado por o referido acoplamento com deslizamento e rotação compreender um patim (22, 23) e uma rótula (21, 22) .
3. Avental (1, 2) de acordo com as reivindicações anteriores caracterizado por compreender dois actuadores de compensação (17, 18; 19, 20), ou três actuadores de compensação, ou quatro actuadores de compensação .
4. Avental (1, 2) de acordo com as reivindicações anteriores caracterizado por compreender três ou quatro actuadores de compensação (17, 18, 19, 20), dispostos no avental (1, 2) espaçados a intervalos substancialmente iguaisentre os eixos dos referidos actuadores principais (5, 6).
5. Avental (1, 2) de acordo com as reivindicações anteriores caracterizado por o referido acoplamento com deslizamento e rotação compreender um corpo flexível, ou um corpo flexível e patim, ou um tirante duplamente articulado .
6. Avental (1, 2) de acordo com as reivindicações anteriores caracterizado por compreender uma segunda ponte (14, 16), idêntica à referida ponte (13, 15), sendo cada qual colocada na face do avental (1, 2) .
7. Avental (1, 2) de acordo com as reivindicações anteriores caracterizado por os actuadores de compensação (17, 18, 19, 20) serem hidráulicos.
8. Avental (1, 2) de acordo com as reivindicações anteriores caracterizado por os actuadores de compensação (17, 18, 19, 20) serem eléctricos.
9. Avental (1, 2) de acordo com as reivindicações anteriores caracterizado por compreender um módulo de controlo dos actuadores de compensação (17, 18, 19, 20), programado para aplicar forças através dos referidos actuadores de compensação (17, 18, 19, 20) de forma a manter o avental (1, 2) substancialmente paralelo ao outro avental (2, 1) da quinadora no segmento (42) correspondente à peça a quinar (12) .
10. Avental (1, 2) de acordo com a reivindicação anterior caracterizado por o módulo de controlo estar programado de forma a manter o avental (1, 2) substancialmente rectilíneo e paralelo ao outro avental (2, 1) da quinadora no segmento (42) correspondente à peça a quinar ( 12 ) .
11. Avental (1, 2) de acordo com as reivindicações 9 - 10 caracterizado por o referido módulo de controlo compreender uma base de dados com casos previamente medidos, considerando as características da chapa a quinar (12), ângulo de quinagem (56), a posição da chapa a quinar e as características da quinadora, de forma a obter a deformação pretendida no avental (1, 2) .
12. Avental (1, 2) de acordo com a reivindicação anterior caracterizado por compreender um sistema de medição da deformação (7, 24, 25, 26, 27) do avental (1, 2) que compreende transdutores de deslocamento (26, 27).
13. Avental (1, 2) de acordo com a reivindicação anterior caracterizado por o referido módulo de controlo estar programado para actualizar a referida base de dados com a informação proveniente do sistema de medição da deformação (7, 24, 25, 26, 27) do avental (1, 2) .
14. Avental (1, 2) de acordo com a reivindicação anterior caracterizado por o referido módulo de controlo estar programado para em tempo real ajustar as forças dos actuadores de compensação (17, 18, 19, 20) em função da informação proveniente do sistema de medição da deformação (7, 24, 25, 26, 27) do avental (1, 2) .
15. Avental (1, 2) de acordo com as reivindicações 12 - 14 caracterizado por os transdutores de deslocamento (26, 27) estarem acoplados directamente ao avental (1, 2).
Avental (1, 2) de acordo com as reivindicações 12 - 14 caracterizado por os transdutores de deslocamento (26, 27) estarem acoplados a uma viga (24) que está acoplada nos seus extremos (7, 25) ao avental (1, 2) com acoplamentos com deslizamento e rotação.
17. Quinadora caracterizada por compreender um avental (1, 2) de acordo com as reivindicações anteriores.
Quinadora de acordo com a reivindicação anterior caracterizada por o referido avental ser o avental inferior ( 1 ) , ou superior (2), ou ambos os aventais inferior (1) e superior (2)
19. Processo de fabrico de quinadoras caracterizado por compreender o passo de montar um avental (1, 2) de acordo com as reivindicações 1 - 16.
20. Processo de actualização de quinadoras caracterizado por compreender o passo de substituir um avental pré- existente por um outro avental (1, 2) de acordo com reivindicações 1 - 16.
PCT/IB2012/056418 2011-11-15 2012-11-14 Avental para compensação de deformação para quinadoras WO2013072859A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT106004A PT106004B (pt) 2011-11-15 2011-11-15 Avental para compensação de deformação para quinadoras
PT106004 2011-11-15

Publications (1)

Publication Number Publication Date
WO2013072859A1 true WO2013072859A1 (pt) 2013-05-23

Family

ID=47631469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/056418 WO2013072859A1 (pt) 2011-11-15 2012-11-14 Avental para compensação de deformação para quinadoras

Country Status (2)

Country Link
PT (1) PT106004B (pt)
WO (1) WO2013072859A1 (pt)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104307939A (zh) * 2014-09-25 2015-01-28 北京航星机器制造有限公司 大相对弯曲半径薄壁冲压件回弹补偿方法
WO2015081359A1 (de) * 2013-12-04 2015-06-11 Trumpf Maschinen Austria Gmbh & Co. Kg. Biegemaschine
WO2016059599A1 (pt) 2014-10-17 2016-04-21 Adira - Metal Forming Solutions, S.A. Sistema para a compensação de deformações em quinadoras

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE275139C (pt) *
FR1132633A (fr) * 1955-09-05 1957-03-13 Promecam Soc Perfectionnements aux presses plieuses
DE1703297A1 (de) * 1968-04-29 1972-02-17 Freudenberg Carl Fa Heizplattenpresse mit selbstkompensierenden Zylinderkolbenanordnungen
FR2201973A1 (pt) * 1972-10-06 1974-05-03 Verrina Spa
GB1373919A (en) * 1970-12-25 1974-11-13 Amada Co Ltd Hydraulic presses
US3914975A (en) * 1970-12-25 1975-10-28 Amada Co Ltd Hydraulic press brake
EP1769857A2 (en) * 2005-09-29 2007-04-04 CREA S.r.l. Bending press with tool-holder table with reduced deformation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE275139C (pt) *
FR1132633A (fr) * 1955-09-05 1957-03-13 Promecam Soc Perfectionnements aux presses plieuses
DE1703297A1 (de) * 1968-04-29 1972-02-17 Freudenberg Carl Fa Heizplattenpresse mit selbstkompensierenden Zylinderkolbenanordnungen
GB1373919A (en) * 1970-12-25 1974-11-13 Amada Co Ltd Hydraulic presses
US3914975A (en) * 1970-12-25 1975-10-28 Amada Co Ltd Hydraulic press brake
FR2201973A1 (pt) * 1972-10-06 1974-05-03 Verrina Spa
EP1769857A2 (en) * 2005-09-29 2007-04-04 CREA S.r.l. Bending press with tool-holder table with reduced deformation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081359A1 (de) * 2013-12-04 2015-06-11 Trumpf Maschinen Austria Gmbh & Co. Kg. Biegemaschine
CN104307939A (zh) * 2014-09-25 2015-01-28 北京航星机器制造有限公司 大相对弯曲半径薄壁冲压件回弹补偿方法
WO2016059599A1 (pt) 2014-10-17 2016-04-21 Adira - Metal Forming Solutions, S.A. Sistema para a compensação de deformações em quinadoras

Also Published As

Publication number Publication date
PT106004B (pt) 2020-12-16
PT106004A (pt) 2013-05-15

Similar Documents

Publication Publication Date Title
US12121946B2 (en) Rolling mill and rolling mill adjustment method
WO2013072859A1 (pt) Avental para compensação de deformação para quinadoras
CN107532429B (zh) 可行驶的工作机器以及用于所述可行驶的工作机器的运行的方法
JP4047168B2 (ja) 多ロール・レベラを校正する装置および方法
US6880409B2 (en) Curved panel shear test apparatus
JP2020006423A (ja) 鋼矢板の矯正装置
CN106890871B (zh) 机架变形补偿装置及折弯机
JP4742377B2 (ja) 六脚ポッド補償システム
CN108380804A (zh) 一种锻造液压机的机械变形补偿控制方法
CN108348968B (zh) 用于调整立轧轧机机架的立轧轧辊的装置
JPH02142619A (ja) プレスブレーキ
JPS59166306A (ja) 多重ロ−ル式圧延スタンド
EP0330258B1 (en) Apparatus for cambering a tool of a bending apparatus
JPH01273618A (ja) 金属薄板の曲げ加工装置
JPS6186109A (ja) 主軸頭の重量補償装置
KR101151248B1 (ko) 롤 스탠드
CN215338251U (zh) 一种机械手片叉的标定装置
JP2001300612A (ja) 圧延機スピンドルのレベル調整装置およびレベル調整方法
US3854188A (en) Method of assembling a curved roll-rack
CN218399535U (zh) 一种纯电伺服折弯机用的多驱桥架连接机构
US20240261837A1 (en) Bending machine, in particular a press brake, with a position measuring system
JP2000343127A (ja) 曲げ加工装置
KR100507636B1 (ko) 스킨패스 밀의 백업롤 교체시 스핀들 고정 및 교정장치
CN118123349B (zh) 自适应汽车焊接装备机器人系统
JP6781743B2 (ja) レール継目間隔修正装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12821032

Country of ref document: EP

Kind code of ref document: A1