WO2013071867A1 - 轧制装置和方法 - Google Patents
轧制装置和方法 Download PDFInfo
- Publication number
- WO2013071867A1 WO2013071867A1 PCT/CN2012/084643 CN2012084643W WO2013071867A1 WO 2013071867 A1 WO2013071867 A1 WO 2013071867A1 CN 2012084643 W CN2012084643 W CN 2012084643W WO 2013071867 A1 WO2013071867 A1 WO 2013071867A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- roll
- forming
- rolling
- forming roll
- sheet
- Prior art date
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 161
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000007246 mechanism Effects 0.000 claims abstract description 184
- 230000008093 supporting effect Effects 0.000 claims abstract description 45
- 238000007493 shaping process Methods 0.000 claims description 31
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 238000007667 floating Methods 0.000 claims description 4
- 238000005452 bending Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 description 35
- 230000008569 process Effects 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000009828 non-uniform distribution Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B27/00—Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
- B21B27/02—Shape or construction of rolls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B13/00—Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
- B21B13/14—Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories having counter-pressure devices acting on rolls to inhibit deflection of same under load; Back-up rolls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B29/00—Counter-pressure devices acting on rolls to inhibit deflection of same under load, e.g. backing rolls ; Roll bending devices, e.g. hydraulic actuators acting on roll shaft ends
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B31/00—Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
- B21B31/16—Adjusting or positioning rolls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B99/00—Subject matter not provided for in other groups of this subclass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D5/00—Bending sheet metal along straight lines, e.g. to form simple curves
- B21D5/06—Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles
- B21D5/08—Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles making use of forming-rollers
Definitions
- the present invention relates to a rolling apparatus, and in particular to a rolling apparatus for three-dimensional curved surface forming or thin-plate rolling of a sheet material, belonging to the field of mechanical engineering.
- the present invention also relates to a curved surface forming and sheet rolling method corresponding thereto. Background technique
- the three-dimensional curved surface forming of the plate mainly adopts a mold forming method, which has high molding and mold adjustment cost and long cycle, and the use of a mold for forming a large-sized three-dimensional curved surface requires a large mold and a large press.
- the mold forming method is adopted, the cycle of the processing die is long, and a large amount of manpower and material resources are required to be input, which cannot meet the needs of small batches or individualized production; in particular, the use of a mold for a large-sized three-dimensional curved surface part is not practical at all, if The manual forming method results in poor processing quality, high labor intensity, and low production efficiency.
- the conventional coiling device can realize the forming of a simple curved surface such as a cylinder or a cone, but it is difficult to form a true three-dimensional curved surface.
- the three-dimensional flexible coil processing method can form a three-dimensional curved surface, the use of discrete work rolls causes the surface quality of the sheet to be not high, so its application and development are limited.
- sheet rolling is carried out by using a two-roll or multi-roll mill having a large diameter.
- the elastic flattening of the rolls is proportional to the diameter of the rolls, if a large-diameter two-roll mill is used to roll the sheets, the elastic flattening value of the rolls itself tends to be more than the amount of sheet rolling to be rolled. Big. Therefore, when the material of the roll is constant, to reduce the elastic flattening value of the roll, it is necessary to reduce the roll diameter. On the other hand, when the roll diameter is large, the contact area between the roll and the sheet material is large, and the rolling force required for rolling the sheet material is also large; therefore, to reduce the rolling force, it is also necessary to reduce the roll diameter.
- An object of the present invention is to provide a rolling apparatus capable of realizing a three-dimensional curved surface forming or sheet rolling of a sheet material simply, quickly and at low cost, and a method corresponding thereto.
- the present invention provides a rolling apparatus for three-dimensional curved surface forming or sheet rolling of a sheet material, comprising a forming roll, a supporting mechanism, an adjusting mechanism and a driving mechanism, wherein: the forming roll comprises an upper forming roll and a lower forming roll
- the roller has a small diameter and is easily bent and deformed;
- the support mechanism is a multi-point support mechanism or an integral support mechanism for supporting the forming roller;
- the adjustment mechanism is a multi-point adjustment mechanism and/or an overall displacement mechanism.
- the roll shape and/or relative height of the forming roll may be adjusted; the drive mechanism may apply a torque to one or both ends of the upper forming roll and/or the lower forming roll to cause the upper forming roll and / or the lower forming roll is rotated, whereby the sheet passes through the roll gap between the upper forming roll and the lower forming roll and is roll formed.
- the upper forming roll and/or the lower forming roll can be made to have a certain deflection, and the roll gap between the upper forming roll and the lower forming roll can be made non-aligned Evenly distributed, so that different ratios of the sheets in different portions in the same cross section in the width direction are generated, so that the longitudinal extension of the sheets in the width direction is uneven, and finally the sheet is uneven during the rolling process.
- Deformation to achieve 3D surface shaping It should be noted that the device is suitable for forming long-sized three-dimensional curved parts.
- the adjustment mechanism adjusts the roll shape of the upper forming roll and/or the lower forming roll or the relative height of the forming roll so that the roll gap between the forming rolls is evenly distributed, a thin plate or an ultra-thin plate can be realized.
- the device requires a small forming force to enable continuous forming of large sheets on small equipment. Compared with the traditional mold forming device, the device can save the design, manufacture and debugging process of the mold, shorten the production cycle, improve the work efficiency and reduce the processing cost. Compared with the manual forming method, the surface quality of the plate can be improved. , saving material, manpower and processing time. Therefore, the rolling apparatus according to the present invention can realize the three-dimensional curved surface forming or sheet rolling of the sheet material simply, quickly and at low cost.
- the forming rolls are rotating bodies in which the bus bars are straight or curved, and each of the upper forming rolls and the lower forming rolls is one or more.
- the forming roller is not required to be shaped by the adjusting mechanism, and the roll gap unevenness is achieved by the bus bar variation of the forming roll, so that the forming roll has no deflection or small deflection.
- the lower rotation thereby reducing the fatigue load of the forming roll, increases the working life of the forming roll.
- the upper forming roll and/or the lower forming roll may be composed of two sections of rollers, wherein the two sections of the rolls are used with anisotropic, opposite constant speed, isotropic or homogenous Speed mode rotation.
- the adjusting mechanism can separately adjust the two rollers.
- the driving mechanism may respectively apply a torque to the two sections of rollers, so that the forces on the two sides of the sheet are opposite to the frictional force, the opposite values are opposite, the same value is in the same direction or the same direction, Thereby, the two sides of the sheet are rotated at the same speed or at the same speed, or fed at the same speed or at the same speed to realize the rotary forming or the curve feeding forming.
- a centering mechanism can be provided between the two-stage forming rolls, the centering mechanism for fixing a point on the sheet so that the sheet cannot be moved as a whole, but only around the Point rotation.
- the centering mechanism is mainly composed of a clamping mechanism and a rotating mechanism.
- a point of the sheet can be fixed by the clamping mechanism and the rotating mechanism to rotate the sheet around the fixed point to avoid the whole sheet during the rotation process. mobile.
- the adjustment mechanism changes the degree of deflection or relative height of the forming roll as needed before the sheet passes through the roll gap and is roll formed; or in the sheet from the The degree of deflection or relative height of the forming rolls is changed in real time as needed during the rolling and rolling process.
- the degree of deflection of the forming roll can be adjusted to a desired degree by the multi-point shaping mechanism before rolling, so that the roll between the upper forming roll and the lower forming roll
- the non-uniform distribution of the slits causes different compression ratios of the sheets in different portions of the same cross-section in the width direction, thereby causing the longitudinal extension of the sheets in the width direction to be uneven, and finally the sheets are produced during the rolling process. Deformation to achieve 3D surface shaping.
- Different curved surfaces can be formed by controlling the distribution of the roll gap values: if the roll gap in the middle portion of the forming roll is smaller than the roll gap on both sides, the roll gap is gradually changed, and a spherical surface or a spherical surface can be formed; If the roll gap in the middle portion of the forming roll is larger than the roll gap on both sides, the roll gap is gradually changed, and a saddle curved surface or a saddle-like curved surface can be formed; if the roll gap in the middle portion of the forming roll is larger than the two sides a roll gap of a portion, wherein the roll gap is gradually changed, and the sheet material is fed in a diagonal direction, or the roll gap on one side of the forming roll is larger than the roll gap on the other side, and the roll gap is gradually changed, and During the forming process, the roll gap on the side of the original roll gap gradually becomes smaller, and the roll gap on the side of the original roll gap gradually becomes larger, and the forming of the twisted surface or the like-like
- the integral support mechanism is a flexible support mechanism for performing full-length support on the forming roll, the flexible support mechanism having a cross-sectional dimension larger than a cross-sectional dimension of the forming roll, but capable of producing a flexural deformation;
- the adjusting mechanism is a multi-point shaping mechanism, and the forming roller is multi-point shaped by the flexible supporting mechanism, or further comprises an integral shifting mechanism for adjusting the relative height of the forming roller.
- the rigidity of the supporting mechanism is greater than the rigidity of the forming roller, but the flexural deformation can be generated under the action of the multi-point shaping mechanism, so that the shape change of the forming roller after the shaping is more uniform.
- the number of adjustment points can be reduced, the rigidity of the forming rolls can be increased, and the forming quality can be improved.
- the adjustment mechanism may further include an integral shifting mechanism for adjusting the relative height of the forming rolls; either adjusting before forming or real-time adjusting during forming to form different curved surfaces.
- the integral support mechanism is a rigid support mechanism for performing full-length support on the forming roll, the cross-sectional dimension of the rigid support mechanism is much larger than the cross-sectional dimension of the forming roll, and the rigid support mechanism is rolling No flexural deformation occurs during the manufacturing process, or a small deflection deformation occurs; the adjustment mechanism is an integral displacement mechanism that adjusts the relative height of the forming roller.
- the integral supporting mechanism has high rigidity characteristics, does not generate flexural deformation during forming, or produces small flexural deformation, instead of supporting rolls in the multi-roll rolling device, can simplify the structure of the device while ensuring forming
- the rigidity of the roll prevents the forming roll from bending deformation during rolling.
- the integral shifting mechanism can adjust the relative height of the forming rolls; it can be adjusted either before forming or during forming to achieve different types of rolling.
- the integral support mechanism is in surface contact with the forming roll and is slidably fitted, and an oil groove is provided on a contact surface of the integral support mechanism and the forming roll, and a one is disposed in the integral support mechanism. Or a plurality of oil passages leading from the outside to the contact surface.
- the drive mechanism further comprises at least one drive roller, and the forming roller is driven by the drive roller, the drive roller being located between the support mechanism and the forming roller, the support mechanism In contact with the driving roller surface and slidingly engaging, the driving roller is in line contact with the forming roller and is in rolling fit.
- the driving roller can apply a torque to the forming portion of the forming roller, reduce the moment generated by the forming roller due to the action of the sheet, and increase the overall turning torque of the forming roller.
- the central portion of the forming roll is prevented from causing a rotational hysteresis due to the action of the sheet, thereby increasing the working life of the forming roll and improving the forming precision of the sheet.
- the rolling apparatus further has a flexible carrier mechanism for supporting the sheets before and after forming, the flexible tray mechanism being disposed before the forming rolls in the direction of travel of the sheets and/or After the forming roll.
- the sheet material before and/or after forming can be palletized by the flexible material feeding mechanism, and the sheet material can be inhibited from being fed and/or Or additional deformation due to gravity or the like during discharge, improving the forming quality.
- the flexible pallet mechanism is any one of a multi-point palletizing mechanism having a height adjustment function, a flexible shaft-based palletizing mechanism, or a plurality of floating palletizing units.
- the flexible material feeding mechanism can carry out the feeding of the sheet before and/or after forming, and the flexible material feeding mechanism can adjust the height of the feeding material according to the shape of the sheet to adapt to The shape of the sheet inhibits additional deformation of the sheet due to gravity or the like during feeding and discharging.
- the present invention provides a rolling apparatus for three-dimensional curved surface forming or sheet rolling of a sheet material, which can realize three-dimensional curved surface forming or sheet rolling of a sheet material simply, quickly and at low cost.
- the present invention also provides a rolling method for three-dimensional curved surface forming or thin plate rolling of a sheet material by using the above rolling apparatus, comprising an adjusting step and a rolling step, in which the adjusting mechanism is adjusted
- the upper forming roll and/or the lower forming roll are roll-shaped or relatively high in height, and the roll gap formed between the upper forming roll and the lower forming roll is non-uniformly distributed or evenly distributed; in the rolling step, The sheet passes through the roll gap, and the upper forming roll and/or the lower forming roll roll the sheet.
- the adjusting step may be performed before the rolling step, or the adjusting step may be performed simultaneously with the rolling step. According to this method, three-dimensional curved surface forming or sheet rolling of the sheet material can be realized simply, quickly and at low cost.
- FIG. 1 is a view showing a rolling apparatus 100 according to an embodiment of the present invention.
- Fig. 2 is a view showing a rolling apparatus 200 according to another embodiment of the present invention.
- Fig. 3 is a view showing a rolling apparatus 300 according to another embodiment of the present invention.
- Fig. 4 is a view showing a rolling apparatus 400 according to another embodiment of the present invention.
- Fig. 5 is a view showing a rolling apparatus 500 according to another embodiment of the present invention.
- Fig. 6 is a view showing a rolling apparatus 600 according to another embodiment of the present invention.
- Fig. 7 is a view showing a rolling apparatus 700 according to another embodiment of the present invention.
- Fig. 8 is a view showing a rolling apparatus 800 according to another embodiment of the present invention.
- Fig. 9 is a view showing a rolling apparatus 900 according to another embodiment of the present invention.
- Figure 10 is another embodiment of the present invention.
- Figure 11 is another embodiment of the present invention.
- FIG 13 is another configuration example of the multi-point adjustment mechanism and the multi-point support mechanism according to the present invention.
- FIG. 1 is a schematic view of a rolling apparatus 100 according to an embodiment of the present invention, which is a schematic cross-sectional view in a direction perpendicular to a direction in which a sheet passes during a process in which a sheet passes through a roll gap and is rolled. .
- the rolling apparatus 100 includes a forming roll 1 for rolling a sheet 4 (also commonly referred to as a work roll in the art), a multi-point supporting mechanism 2a having a supporting action on the forming roll 1, and having a tune on the forming roll 1.
- a multi-point shaping mechanism 3 for acting, and a driving mechanism (not shown) for rotating the forming roller;
- the forming roller 1 includes an upper forming roller 1a and a lower forming roller 1b, upper forming roller la and lower
- the forming rolls 1b are respectively supported by a plurality of multi-point supporting mechanisms 2a, and the multi-point shaping mechanism 3 can respectively flexure and deform the upper forming roll 1a and the lower forming roll 1b, and can be between the upper forming roll 1a and the lower forming roll 1b
- the roll gap ie, the area through which the sheet 4 passes during rolling
- the drive mechanism rotates the upper forming roll 1a and the lower forming roll 1b so that the sheet passes through the roll gap and Be Roll
- the upper forming roll 1a and the lower forming roll 1b each use a cylindrical roll having a smaller diameter, which has a small roll diameter and is easily bent and deformed, and can be used to form the upper forming roll la under the action of the multi-point shaping mechanism 3.
- the lower forming roll lb respectively produce different deflections, and the roll gap between the upper forming roll 1a and the lower forming roll 1b is non-uniformly distributed, and the central part roll gap is smaller than the side part roll gap, and the driving mechanism is forming
- a torque is applied to one end or both ends of the roller 1 to cause different compression ratios of the sheet 4 at different portions in the same cross section in the width direction, thereby causing the sheet 4 to extend unevenly in the longitudinal direction at each point in the width direction, and finally the plate is finally made.
- Material 4 is deformed during the rolling process to achieve three-dimensional surface forming.
- the roll gap of the forming roll 1 in the rolling device 100 is non-uniformly distributed, and the forming of different curved surfaces is realized by controlling the non-uniform distribution of the roll gap: if the roll gap in the middle portion of the forming roll 1 is smaller than the roll gap on both sides, the roll therebetween
- the gradual change of the slit can realize the formation of a spherical surface or a spherical surface like a spherical surface; if the roll gap in the middle portion of the forming roll 1 is larger than the roll gap at both sides, the roll gap gradually changes, and a saddle surface or a saddle-like surface can be realized.
- FIG. 2 is a schematic view of a rolling apparatus 200 according to another embodiment of the present invention, which is a schematic cross-sectional view in a direction perpendicular to a direction in which a sheet passes during a process in which a sheet passes through a roll gap and is rolled. .
- the upper forming roll 1a and the lower forming roll 1b of the rolling device 200 also use a cylindrical roller having a smaller diameter, but only one of the forming rolls 1 is deflected by the multi-point shaping mechanism 3, thereby causing two
- the roll gap value at the center of the forming rolls 1 is smaller than the roll gap value at both sides.
- the drive mechanism applies a torque to one or both ends of the forming roll 1 to cause the sheet 4 to be plastically deformed at different portions in the continuous rolling process to have a curved shape.
- the roll gap value of the two side portions of the two forming rolls 1 is smaller than the roll gap value of the central portion, or the roll gap value of one side portion is smaller than the roll gap value of the other side portion, or the roll gap shape is waved. shape. It is also possible to adjust the degree of deflection of the forming roll in real time by the multi-point shaping mechanism 3 during the forming process to realize freeform surface forming; further, in the case where the forming roll 1 is not deflected, it is passed through the multi-point supporting mechanism 2a.
- each forming roll 1 increases the rigidity of each forming roll 1, and applies a torque to one or both ends of the forming roll 1 by the drive mechanism, thereby realizing the use of two small-diameter forming rolls 1 for performing thin plate rolling. system.
- FIG. 3 is a schematic view of a rolling apparatus 300 according to another embodiment of the present invention, which is a schematic cross-sectional view in a direction perpendicular to a direction in which a sheet passes during a process in which a sheet passes through a roll gap and is rolled. .
- the bus bars of the upper forming roll 1a and the lower forming roll 1b are arcs, and the roll gap between the two forming rolls 1 can be unevenly distributed without deflection, and the roll at the center portion
- the seam value is smaller than the roll gap value on both sides.
- the multi-point support mechanism 2a supports the forming roll 1, and the multi-point adjusting mechanism 3 can also cause the forming roll 1 to be deflected.
- FIG. 4 is a schematic view of a rolling apparatus 400 according to another embodiment of the present invention, which is a schematic cross-sectional view in a direction perpendicular to a direction in which a sheet passes during a process in which a sheet passes through a roll gap and is rolled. .
- the rolling apparatus 400 employs an upper forming roll 1a and a lower forming roll 1b.
- the bus bar of the lower forming roll 1b is an arc
- the bus bar of the upper forming roll 1a is a straight line
- the middle of the two forming rolls 1 is formed without deflection.
- the roll gap value is smaller than the roll gap value at both ends.
- the multi-point support mechanism 2a supports the forming roll 1, and the multi-point adjustment mechanism 3 can also cause the forming roll 1 to be deflected.
- the device may also be an arc of only the bus bar of the upper forming roller la, and a bus bar of the lower forming roller lb It is a straight line.
- Fig. 5 is a schematic view showing a rolling apparatus 500 according to another embodiment of the present invention, which is a schematic cross-sectional view in a direction perpendicular to a direction in which a sheet passes in a process in which a sheet passes through a roll gap and is rolled. .
- the rolling apparatus 500 employs an upper forming roll 1a and a lower forming roll 1b which are divided into two stages, respectively, and the rotating forming or curve feeding of the sheet 4 is realized by applying torques of different directions and different sizes to the divided forming rolls 1. And forming.
- the upper forming roll 1a and the lower forming roll 1b can be respectively deflected by the multi-point shaping mechanism 3, and the overall roll gap is unevenly distributed, and the roll gap value of the central portion of the integral roll gap is smaller than the roll gap value of the both sides.
- the sheet 4 is rotationally shaped or curvedly fed and formed, so that the plastic deformation of the sheet 4 at the central portion is greater than the plastic deformation of the both sides.
- the central portion of the overall roll gap can be made larger than the roll gap value at both ends, so that the plastic deformation of the sheet 4 at the central portion is less than the plastic deformation of the two sides;
- the seam value is smaller than the roll gap value of the other side portion, and the plastic deformation of one side portion of the sheet material 4 is greater than the plastic deformation of the other side portion.
- Fig. 6 is a schematic view showing a rolling apparatus 600 according to another embodiment of the present invention, which is a schematic cross-sectional view in a direction perpendicular to a direction in which a sheet passes in a process in which a sheet passes through a roll gap and is rolled. .
- the rolling device 600 is provided with a centering mechanism 5 between the segments and the segments of the upper forming roll la and the lower forming roll lb which are divided into two stages.
- the centering mechanism 5 rotates the sheet 4 around the centering shaft during the forming process to prevent the sheet 4 from being displaced as a whole during the rotational forming.
- Fig. 7 is a schematic view showing a rolling apparatus 700 according to another embodiment of the present invention, which is a schematic cross-sectional view in a direction perpendicular to a direction in which a sheet passes during a process in which a sheet passes through a roll gap and is rolled. .
- the rolling device 700 is provided with a flexible integral support mechanism 2b between the forming roll 1 and the multi-point shaping mechanism 3, which is stiffer than the forming roll 1, but can be bent together with the forming roll 1, and the integral supporting mechanism 2b is opposed to the forming roll 1
- the plurality of directions can be restrained, and the multi-point shaping mechanism 3 can deform the forming roll 1 by the shaping of the integral supporting mechanism 2b to cause a non-linear distribution of the roll gap.
- FIG. 8 is a schematic view of a rolling apparatus 800 according to another embodiment of the present invention.
- a rigid integral supporting mechanism 2b having a section much larger than that of the upper forming roll 1a or the lower forming roll 1b is provided, and therefore, the rigidity is much larger than that of the upper forming roll la and lower.
- the integral support mechanism 2b having high rigidity supports the upper forming roll 1a and the lower forming roll 1b in a plurality of directions, and the contact length is larger than the rolling width, so that the upper forming roll 1a and the lower forming roll 1b are in the rolling process The stiffness and strength are significantly increased.
- the integral shifting mechanism adjusts the relative height of the forming rolls 1 before rolling, or adjusts the relative height of the forming rolls 1 in real time during the forming process.
- the rolling apparatus 800 has a simple structure, a small volume, and a low manufacturing cost, and can be used for rolling a thin plate, a thin strip, a thin film or a wide plate with a small-diameter forming roll. Further, in the rolling apparatus 800, the following may be present, but it is not limited thereto:
- the forming roll 1 may be a rotating body in which the bus bar is curved to realize different roll gap distributions and to form different curved surfaces.
- An oil groove may be provided on the contact surface for supporting the forming roll 1 in the integral supporting mechanism 2b, and one or more oil paths leading from the outside to the contact surface may be provided on the integral supporting mechanism 2b, through the sliding bearing or the dynamic pressure bearing
- the principle reduces the friction between the upper forming roll 1a and the lower forming roll 1b and the integral support mechanism 2b.
- the roll joint of the variable section plate or the formation of the free curved surface can be realized by adjusting the roll gap in real time by the integral supporting mechanism 2b.
- the overall shifting mechanism can be set to adjust the roll gap in real time to realize the change. Rolling of panels or forming of free-form surfaces.
- Fig. 9 is a schematic view of a rolling apparatus 900 according to another embodiment of the present invention.
- the rolling device 900 the upper forming roll 1a and the lower forming roll 1b are respectively supported by two driving rolls 6 (of course, more driving rolls 6 may be provided separately), which are respectively in contact with the two forming rolls 1,
- the driving rolls 6 By applying a torque to the roll body of the forming roll 1 by the driving roller 6, the turning torque of the forming roll 1 can be remarkably increased.
- Fig. 10 is a schematic view showing a rolling apparatus 1000 according to another embodiment of the present invention, which is a schematic cross-sectional view in a direction perpendicular to a direction in which a sheet passes in a process in which a sheet passes through a roll gap and is rolled. .
- the rolling device 1000 is provided with a row of flexible material feeding mechanisms 7 having a height adjustment function at the inlet and the outlet of the rolled sheet 4, which can adopt a multi-point feeding mechanism, a flexible shaft-based feeding mechanism or A plurality of floating tray units perform flexible trays at the inlet and outlet of the sheet 4.
- Figure 11 is a schematic view of a rolling apparatus 2000 according to another embodiment of the present invention. It is a schematic cross-sectional view in a direction parallel to the direction in which the sheet passes during the passage of the sheet from the roll gap and being rolled.
- the rolling apparatus 2000 employs a plurality of rows of flexible material handling mechanisms 7 having height adjustment functions in the inlet direction and the outlet direction, respectively.
- a flexible material can be applied to the sheets 4 at the inlet and outlet by means of a multi-point material handling mechanism, a flexible shaft-based material handling mechanism or a plurality of floating material handling units.
- Fig. 12 is a view showing an example of the configuration of a multi-point adjustment mechanism and a multi-point support mechanism according to the present invention.
- the configuration of the multi-point shaping mechanism and the multi-point support mechanism involved in the present invention is not limited thereto.
- the forming roll 1 is restrained by the open sleeve 8 and the sleeve 8 is embedded in the swing block 10; the swing block 10 is connected to the bracket 11 by means of a pin 9, and the swinging of the swing block 10 ensures that the forming roll 1 is in profile
- the bracket 11 and the adjusting body 13 are connected by the screw 12, and the adjusting body 13 and the bracket 11 are moved up and down by the rotation of the adjusting screw 14 to realize the supporting and shaping function.
- the sleeve 8 may be made of a material such as a sliding bearing such as copper.
- a lubricant can be added to the sleeve 8 in order to reduce friction.
- the multi-point shaping mechanism 3 controls the deflection of the forming roll 1 at the portion supported by the multi-point supporting mechanism 2a by the rotation of the shaping screw 14.
- the plurality of multi-point adjustment mechanisms 3 are used to perform multi-point control of the forming roll 1 in the axial direction, and the degree of deflection of the forming roll 1 can be adjusted as needed, and the roll gap between the upper forming roll 1a and the lower forming roll 1b can be achieved.
- Axial non-uniform distribution It is of course also possible to arrange the oil groove and the oil path at the contact faces of the sleeve 8 and the forming roll 1.
- Fig. 13 is a view showing another configuration of a multi-point adjustment mechanism and a multi-point support mechanism according to the present invention.
- the configuration of the multi-point shaping mechanism and the multi-point support mechanism involved in the present invention is not limited thereto.
- the forming roll 1 and the two driving rolls 6 are constrained by the split sleeve 8, and the sleeve 8 is embedded in the swing block 10; the swivel block 10 is connected to the bracket 11 by the pin 9, and the swinging of the swing block 10 ensures formation
- the roller 1 has continuous smooth deflection during the shaping; the bracket 11 and the adjusting body 13 are connected by the screw 12, and the adjusting body 13 and the bracket 11 are moved up and down by the rotation of the adjusting screw 14, thereby realizing the supporting and shaping function.
- Torque is applied to the forming roll 1 at the roll body portion by the driving roller 6 to increase the turning torque of the forming roll 1.
- the sleeve 8 may be made of a material such as a sliding bearing such as copper.
- a lubricant can be added to the sleeve 8 in order to reduce friction.
- the multi-point adjustment mechanism 3 controls the deflection of the forming roll 1 at the portion supported by the multi-point support mechanism 2a by the rotation of the adjustment screw 14.
- the plurality of multi-point adjustment mechanisms 3 are used to perform multi-point control of the forming roll 1 in the axial direction, the deflection of the forming roll 1 can be adjusted as needed, and the roll gap between the upper forming roll 1a and the lower forming roll 1b can be achieved in the axial direction. Non-uniform distribution. It is of course also possible to arrange oil grooves and oil paths at the contact faces of the sleeve 8 with the drive roller 6 and/or the forming roll 1. In addition, the number of driving rollers is not limited to two. Further, the present invention provides a curved surface rolling method for forming a three-dimensional curved surface of the sheet material 4 by the above rolling apparatus, which comprises a shaping step and a rolling step.
- the upper forming roll 1a and/or the lower forming roll 1b are supported by the multi-point support mechanism 2a or the integral support mechanism 2b, and the upper forming roll la and/or lower may be formed by the multi-point shaping mechanism 3.
- the roll 1b is flexed and deformed, and the roll gap formed between the upper forming roll 1a and the lower forming roll 1b is non-uniformly distributed; in the rolling step, the sheet 4 passes through the roll gap, and the upper forming roll The sheet 4 is subjected to roll forming by la and/or lower forming rolls 1b.
- the shaping step may be performed before the rolling step, or the shaping step may be performed simultaneously with the rolling step, that is, the upper forming roll 1a and the lower forming roll 1b are changed while the sheet 4 is being rolled.
- the three-dimensional curved surface forming or sheet rolling of the sheet material 4 can be realized simply, quickly and at low cost.
- the integral shifting mechanism adjusts the roll gap value without changing the deflection of the forming roll 1 before forming; or the integral shifting mechanism adjusts the roll gap value during the forming process without changing the deflection of the forming roll 1.
- thin plate rolling or variable section plate rolling can be realized simply, quickly and at low cost.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
- Metal Rolling (AREA)
Abstract
一种对板料进行三维曲面成形或薄板轧制的轧制装置,包括成形辊(1)、支撑机构、调整机构和驱动机构。成形辊(1)包括上成形辊(1a)和下成形辊(1b);支撑机构为多点支撑机构(2a)或整体支撑机构(2b),对所述成形辊进行支撑;调整机构为多点调形机构(3)和/或整体移位机构,对成形辊(1)的辊形和/或相对高度进行调整;驱动机构对上成形辊(1a)和/或下成形辊(1b)的一端或两端施加转矩。还提供一种利用所述轧制装置进行板料轧制的方法。本轧制装置和轧制方法能够简单、快速、低成本地实现板料的三维曲面轧制或薄板轧制。
Description
轧制装置和方法 技术领域
本发明涉及一种轧制装置, 具体而言, 涉及一种用于对板料进行三维 曲面成形或薄板轧制的轧制装置, 属于机械工程领域。 本发明还涉及与此 相对应的曲面成形和薄板轧制方法。 背景技术
目前的板类三维曲面成形主要采用模具成形方法, 其制模、 调模成本 高、 周期长, 而利用模具成形大尺寸三维曲面就需要大型模具与大型压力 机。 采用模具成形方法时, 加工模具的周期长, 需要投入大量的人力、 物 力, 无法满足小批量或个性化生产的需要; 尤其对于大尺寸的三维曲面零 件采用模具的方式根本不切合实际, 若采用手工成形方式, 则加工质量差、 劳动强度大、 生产效率低。 在现有技术中, 传统的卷板装置可以实现圆柱、 圆锥等简单曲面的成形, 却难于实现真三维曲面的成形。 三维柔性卷板加 工方法虽然能够成形三维曲面, 但是其采用离散的工作辊, 导致板料表面 质量不高, 因此其应用和发展受到限制。 另外, 一般板料轧制多采用大直 径的两辊或多辊轧机。 而对于薄板轧制, 因为轧辊的弹性压扁与轧辊直径 成正比, 若采用大直径两辊轧机轧制薄板, 轧辊本身出现的弹性压扁值往 往比所要轧制的板料压下量还要大。 因此, 当轧辊材质一定时, 要减小轧 辊的弹性压扁值, 就必须缩小辊径。 另一方面, 当辊径较大时, 轧辊与板 料的接触面积大, 轧制板料所需的轧制力也大; 因此要降低轧制力, 也需 要减小轧辊直径。 而轧辊辊径的减小, 相应会出现轧辊刚度不足的问题, 同时传递轧制力矩的辊颈也变小; 因此需要多个支撑辊分别在多个方向对 小直径工作辊进行支撑, 并通过支撑辊对小直径工作辊进行驱动。 这种多 辊轧机虽然可以满足工作辊小直径和高刚度的要求, 但却增加了其结构的 复杂度, 制造成本高。 发明内容
本发明的目的在于: 提供一种能够简单、 快速并且低成本地实现板料 三维曲面成形或薄板轧制的轧制装置, 以及与此相对应的方法。
本发明提供一种用于板料三维曲面成形或薄板轧制的轧制装置, 包括 成形辊、 支撑机构、 调整机构和驱动机构, 其特征在于: 所述成形辊包括 上成形辊和下成形辊, 其辊径小, 易于弯曲变形; 所述支撑机构为多点支 撑机构或整体支撑机构, 对所述成形辊进行支撑; 所述调整机构为多点调 形机构和 /或整体移位机构, 可对所述成形辊的辊形和 /或相对高度进行调 整;所述驱动机构可对所述上成形辊和 /或下成形辊的一端或两端施加转矩, 使所述上成形辊和 /或下成形辊旋转, 进而使板料从所述上成形辊和所述下 成形辊之间的辊缝中经过并被轧制成形。
根据本发明的上述轧制装置, 通过采用所述构成方式, 可使所述上成 形辊和 /或下成形辊具有一定的挠度, 并且可使上成形辊和下成形辊之间的 辊缝非均匀分布, 从而使板料在宽度方向的同一横截面内的不同部位产生 不同压缩比, 进而使板料在宽度方向上各点纵向延伸不均匀, 最终使板料 在轧制过程中产生不均匀变形, 以实现三维曲面成形。 需要指出的是, 该 装置适合实现长尺寸的三维曲面零件的成形。 如果所述调整机构调整所述 上成形辊和 /或下成形辊的辊形或所述成形辊的相对高度, 使所述成形辊之 间的辊缝均匀分布, 可实现薄板或超薄板的轧制或变截面轧制。 该装置所 需成形力小, 可以在小设备上实现大型板料的连续成形。 该装置与传统的 模具成形装置相比, 可省去模具的设计、 制造和调试工序, 缩短生产周期, 提高工作效率, 降低加工成本; 与手工成形的方式相比, 可提高板件的表 面质量, 节省物力、 人力和加工时间。 因此, 本发明所涉及的轧制装置能 够简单、 快速并且低成本地实现板料的三维曲面成形或薄板轧制。
有利的是, 所述成形辊是母线为直线或曲线的旋转体, 并且所述上成 形辊和下成形辊各为一个或多个。
通过采用所述构成方式, 无需所述调整机构对所述成形辊进行调形, 所述辊缝不均匀度通过所述成形辊的母线变化来实现, 使所述成形辊在无 挠度或小挠度下旋转, 由此可减小所述成形辊所受疲劳载荷, 增加所述成 形辊的工作寿命。 所述成形辊上下各为一个时, 可实现单道次轧制; 所述 成形辊上下各为多个时, 可实现连续多道次轧制。
有利的是, 所述上成形辊和 /或所述下成形辊可以由两段辊构成, 所述 两段辊之间采用异向异速、 异向同速、 同向异速或同向同速方式旋转。
通过采用所述构成方式, 所述调整机构可对所述两段辊分别进行调形,
所述驱动机构可对所述两段辊分别施加转矩, 使所述板料两侧所受作用力 与摩擦力异值反向、 等值反向、 异值同向或等值同向, 从而使所述板料两 侧异速或同速旋转, 或者异速或同速进给, 以实现旋转成形或曲线送料成 形。
有利的是, 可以在所述两段成形辊之间设置定心机构, 所述定心机构 用于固定所述板料上的一个点, 使所述板料不能整体移动, 而只能围绕该 点旋转。 所述定心机构主要由夹紧机构与旋转机构组成。
通过采用所述构成方式, 可在夹紧机构与旋转机构的作用下对所述板 料的一个点进行固定, 使所述板料围绕该固定点旋转, 避免所述板料在旋 转过程中整体移动。
有利的是, 所述调整机构在所述板料从所述辊缝中经过并被轧制成形 前根据需要改变所述成形辊的挠曲程度或相对高度; 或者在所述板料从所 述辊缝中经过并被轧制过程中根据需要实时改变所述成形辊的挠曲程度或 相对高度。
通过采用所述构成方式, 所述成形辊的挠曲程度可在轧制前被所述多 点调形机构调节为需要的程度, 使所述上成形辊和下成形辊之间的所述辊 缝非均匀分布, 从而使板料在宽度方向的同一横截面内的不同部位产生不 同压缩比, 进而使板料在宽度方向上各点纵向延伸不均匀, 最终使板料在 轧制过程中产生变形, 以实现三维曲面成形。 可以通过控制辊缝值的分布 成形不同的曲面: 如果所述成形辊中间部位的辊缝小于两侧部位的辊缝, 其间辊缝逐渐变化, 可以实现球面状曲面或类似球面状曲面的成形; 如果 所述成形辊中间部位的辊缝大于两侧部位的辊缝, 其间辊缝逐渐变化, 可 以实现鞍形曲面或类似鞍形曲面的成形; 如果所述成形辊中间部位的辊缝 大于两侧部位的辊缝, 其间辊缝逐渐变化, 且所述板料沿对角线方向进料, 或者所述成形辊一侧的辊缝大于另一侧的辊缝, 其间辊缝逐渐变化, 且在 成形过程中原先辊缝大的一侧的辊缝逐渐变小, 原先辊缝小的一侧的辊缝 逐渐变大, 可以实现扭曲面或类似扭曲面的成形; 如果所述成形辊之间的 辊缝呈波浪形分布, 可以实现波浪形曲面的成形; 如果所述多点调形机构 在所述板料被轧制过程中实时调节所述上成形辊和 /或下成形辊的挠曲程 度, 使所述上成形辊和下成形辊之间的所述辊缝形状实时变化, 进而使板 料在不同时间、 不同部位产生不同的应变, 可以实现自由曲面的轧制成形;
当所述成形辊各处辊缝值相同时, 可以实现薄平板的轧制; 另外, 在轧制 前, 所述整体移位机构还可以对所述成形辊的相对高度进行调整, 或者在 成形过程中, 所述整体移位机构对所述成形辊的相对高度进行实时调整, 则可以实现薄板轧制或变截面板的轧制。
有利的是, 所述整体支撑机构为柔性支撑机构, 对所述成形辊进行全 长式支撑, 所述柔性支撑机构的截面尺寸大于所述成形辊的截面尺寸, 但 能够产生挠曲变形; 所述调整机构为多点调形机构, 通过所述柔性支撑机 构对所述成形辊进行多点式调形, 或者进一步包括整体移位机构, 对所述 成形辊的相对高度进行调整。
通过所述构成方式, 所述支撑机构的刚度大于成形辊的刚度, 但能够 在所述多点调形机构的作用下产生挠曲变形, 使调形后的成形辊辊形的变 化更均匀, 同时还可以减少调形点数量, 增加成形辊的刚度, 提高成形质 量。 另外, 所述调整机构还可以进一步包括整体移位机构, 对所述成形辊 的相对高度进行调整; 既可以在成形前调整, 也可以在成形过程中实时调 整, 以成形不同的曲面。
有利的是, 所述整体支撑机构为刚性支撑机构, 对所述成形辊进行全 长式支撑, 所述刚性支撑机构的截面尺寸远大于所述成形辊的截面尺寸, 所述刚性支撑机构在轧制过程中不产生挠曲变形, 或产生很小的挠曲变形; 所述调整机构为整体移位机构, 对所述成形辊的相对高度进行调整。
通过所述构成方式, 可以实现薄板轧制、 超薄板轧制或变截面板轧制。 所述整体支撑机构具有高刚度特性, 在成形过程中不产生挠曲变形, 或产 生很小的挠曲变形, 以代替多辊轧制装置中的支承辊, 可在简化装置结构 的同时保证成形辊的刚度, 防止成形辊在轧制过程中产生弯曲变形。 另外, 所述整体移位机构可对所述成形辊的相对高度进行调整; 既可以在成形前 调整, 也可以在成形过程中调整, 以实现不同类型的轧制。
有利的是, 所述整体支撑机构与所述成形辊面接触并滑动配合, 并在 所述整体支撑机构与所述成形辊的接触面上设置油槽, 另外, 在所述整体 支撑机构内设置一个或多个从外部通向接触面的油路。
通过采用所述构成方式, 在所述整体支撑机构内部布置油槽和油路, 通过滑动轴承或动压轴承的原理使润滑剂能够不断进入所述整体支撑机构 与所述成形辊之间的接触面, 并在接触面上产生油膜以隔开所述整体支撑
机构与所述成形辊, 从而减小所述整体支撑机构与所述成形辊之间的摩擦。 有利的是, 所述驱动机构还包括至少一个驱动辊, 并通过所述驱动辊 对所述成形辊进行驱动, 所述驱动辊位于所述支撑机构与所述成形辊之间, 所述支撑机构与所述驱动辊面接触并滑动配合, 所述驱动辊与所述成形辊 为线接触并滚动配合。
通过采用所述构成方式, 所述驱动辊可对所述成形辊被支撑部位施加 扭矩, 减小所述成形辊因与所述板料作用而产生的力矩, 增加所述成形辊 整体转动扭矩, 避免所述成形辊中央部位因与所述板料作用而产生转动滞 后现象, 从而增加所述成形辊的工作寿命, 同时提高所述板料的成形精度。
有利的是, 所述轧制装置还具有用于对成形前后的所述板料进行支撑 的柔性托料机构, 所述柔性托料机构设置于沿板料行进方向所述成形辊之 前和 /或所述成形辊之后。
通过采用所述构成方式, 所述板料在大而薄的情况下, 可通过所述柔 性托料机构对成形前和 /或成形后的板料进行托料, 抑制板料在进料和 /或出 料时由于重力等作用而产生的额外变形, 提高成形质量。
有利的是, 所述柔性托料机构为具有高度调整功能的多点式托料机构、 基于软轴的托料机构或多个浮动托料单元中的任意一种。
通过采用所述构成方式, 所述柔性托料机构能够对成形前和 /或成形后 的板料进行托料, 所述柔性托料机构能够根据所述的板料形状调整托料高 度, 以适应所述板料的形状, 抑制板料在进料和出料时由于重力等作用而 产生的额外变形。
如上所述, 本发明提供一种用于板料三维曲面成形或薄板轧制的轧制 装置, 能够简单、 快速并且低成本地实现板料的三维曲面成形或薄板轧制。
此外, 本发明还提供一种利用上述轧制装置对板料进行三维曲面成形 或薄板轧制的轧制方法, 其包括调整步骤和轧制步骤, 在所述调整步骤中, 所述调整机构调整所述上成形辊和 /或下成形辊辊形或相对高度, 并且使形 成于所述上成形辊和下成形辊之间的辊缝非均匀分布或均匀分布; 在所述 轧制步骤中, 板料从所述辊缝中经过, 所述上成形辊和 /或下成形辊对板料 进行轧制。 另外, 可以在所述轧制步骤之前进行所述调整步骤, 或所述调 整步骤与所述轧制步骤同时进行。 根据该方法, 能够简单、 快速并且低成 本地实现板料的三维曲面成形或薄板轧制。
附图说明
图 1是本发明的一个 施方式所涉及 ίΤ )轧制装置 100的 :图。
图 2是本发明的另一 施方式所涉及 ίΤ )轧制装置 200的 :图。
图 3是本发明的另一 施方式所涉及 ίΤ )轧制装置 300的 :图。
图 4是本发明的另一 施方式所涉及 ίΤ )轧制装置 400的 :图。
图 5是本发明的另一 施方式所涉及 ίΤ )轧制装置 500的 :图。
图 6是本发明的另一 施方式所涉及 ίΤ )轧制装置 600的 :图。
图 7是本发明的另一 施方式所涉及 ίΤ )轧制装置 700的 :图。
图 8是本发明的另一 施方式所涉及 ίΤ )轧制装置 800的 :图。
图 9是本发明的另一 施方式所涉及 ίΤ )轧制装置 900的 :图。
图 10是本发明的另一; ^施方式所涉及 Ϊ勺轧制装置 1000
图 11是本发明的另一; ^施方式所涉及 Ϊ勺轧制装置 2000
12 是本发明中所涉及的多点调形机构与多点支撑机构的结构例:
13是本发明中所涉及的多点调形机构与多点支撑机构的另一结构例
具体实施方式
下面结合附图以举例方式进一步说明本发明所涉及的轧制装置。
图 1是本发明的一个实施方式所涉及的轧制装置 100的示意图, 其是 在板料从辊缝中经过并被轧制的过程中与板料经过的方向相垂直的方向上 的截面示意图。
轧制装置 100包括用于对板料 4进行轧制的成形辊 1 (在本领域通常也 称为工作辊)、对成形辊 1具有支撑作用的多点支撑机构 2a、对成形辊 1具 有调形作用的多点调形机构 3、 以及用于使所述成形辊旋转的驱动机构(未 示出); 所述成形辊 1包括上成形辊 la和下成形辊 lb, 上成形辊 la和下成 形辊 lb分别被多个多点支撑机构 2a支撑, 多点调形机构 3可使上成形辊 la和下成形辊 lb分别挠曲变形,并且可使上成形辊 la和下成形辊 lb之间 的辊缝 (即在轧制过程中板料 4所经过的区域) 非均匀分布, 所述驱动机 构使上成形辊 la和下成形辊 lb旋转, 从而使板料从所述辊缝中经过并被
轧制成形。
在轧制装置 100中, 上成形辊 la和下成形辊 lb分别采用直径较小的 圆柱辊, 其辊径小, 易于弯曲变形, 可在多点调形机构 3 的作用下使上成 形辊 la和下成形辊 lb分别产生不同的挠曲, 并使上成形辊 la和下成形辊 lb之间的辊缝非均匀分布, 且中央部位辊缝小于两侧部位辊缝, 所述驱动 机构在成形辊 1 的一端或两端施加转矩, 使板料 4在宽度方向的同一横截 面内的不同部位产生不同压缩比, 进而使板料 4在宽度方向上各点纵向延 伸不均匀, 最终使板料 4在轧制过程中产生变形, 以实现三维曲面成形。
此外, 在轧制装置 100 中, 也可以存在如下情形, 但不局限于此。 轧 制装置 100中的成形辊 1 的辊缝非均匀分布, 通过控制辊缝的非均匀分布 来实现不同曲面的成形: 若成形辊 1中间部位的辊缝小于两侧部位的辊缝, 其间辊缝逐渐变化, 可以实现球面状曲面或类似球面状曲面的成形; 若成 形辊 1 中间部位的辊缝大于两侧部位的辊缝, 其间辊缝逐渐变化, 可以实 现鞍形曲面或类似鞍形曲面的成形; 若成形辊 1 中间部位的辊缝大于两侧 部位的辊缝, 其间辊缝逐渐变化, 且板料 4沿对角线方向进料, 或者成形 辊 1 一侧的辊缝大于另一侧的辊缝, 其间辊缝逐渐变化, 且在成形过程中 原先辊缝大的一侧的辊缝逐渐变小, 原先辊缝小的一侧的辊缝逐渐变大, 可以实现扭曲面或类似扭曲面的成形; 若成形辊 1 之间的辊缝呈波浪形分 布, 可以实现波浪形曲面的成形; 若多个多点调形机构 3在板料 4被轧制 过程中实时调节上成形辊 la和 /或下成形辊 lb的挠曲程度, 使所述上成形 辊 la和下成形辊 lb之间的所述辊缝形状实时变化, 进而使板料 4在不同 时间、 不同部位产生不同的应变, 可以实现自由曲面的轧制成形; 若成形 辊 1 各处辊缝值相同时, 可以实现薄平板轧制; 另外, 在轧制前, 可以通 过整体移位机构对成形辊 1 的相对高度进行调整, 或者在成形过程中, 通 过整体移位机构对成形辊 1 的相对高度进行实时调整, 以实现薄板轧制或 变截面板的轧制。 此外, 通过所述驱动机构对成形辊 1 的一端或两端施加 转矩, 能够采用两个小直径成形辊 1来实现薄板轧制。
图 2是本发明的另一个实施方式所涉及的轧制装置 200的示意图, 是 在板料从辊缝中经过并被轧制的过程中与板料经过的方向相垂直的方向上 的截面示意图。
为了简洁说明, 以下仅对轧制装置 200与轧制装置 100的不同之处进
行说明。 轧制装置 200的上成形辊 la和下成形辊 lb也都采用直径较小的 圆柱形辊, 但在多点调形机构 3的作用下仅使其中一个成形辊 1产生挠曲, 从而使两个成形辊 1 中央部位的辊缝值小于两侧部位的辊缝值。 所述驱动 机构在成形辊 1 的一端或两端施加转矩, 使板料 4在连续轧制过程中的不 同部位产生不同的塑性变形而成为曲面形状。 当然也可以使两个成形辊 1 的两侧部位的辊缝值小于中央部位的辊缝值, 或者是一侧部位的辊缝值小 于另一侧部位辊缝值, 或使辊缝形状为波浪形。 还可以在成形过程中通过 多点调形机构 3对成形辊的挠曲程度进行实时调节, 以实现自由曲面成形; 此外, 在成形辊 1无挠曲的情况下, 通过多点支撑机构 2a对各成形辊 1的 多点支撑作用增加各成形辊 1的刚度, 并通过所述驱动机构对成形辊 1 的 一端或两端施加转矩, 实现采用两个小直径成形辊 1来实施薄平板轧制。
图 3是本发明的另一个实施方式所涉及的轧制装置 300的示意图, 是 在板料从辊缝中经过并被轧制的过程中与板料经过的方向相垂直的方向上 的截面示意图。
在轧制装置 300中, 上成形辊 la和下成形辊 lb的母线为弧线, 可以 在不具有挠度的情况下使两个成形辊 1 之间的辊缝非均匀分布, 并且中央 部位的辊缝值小于两侧部位的辊缝值。 多点支撑机构 2a对成形辊 1进行支 撑, 多点调形机构 3还可以使成形辊 1产生挠曲。 当然也可以使两个成形 辊 1 中央部位的辊缝值大于两侧部位的辊缝值, 或者一侧部位的辊缝值小 于另一侧部位的辊缝值, 从而使板料 4的不同部位产生不均匀的塑性应变。
图 4是本发明的另一个实施方式所涉及的轧制装置 400的示意图, 是 在板料从辊缝中经过并被轧制的过程中与板料经过的方向相垂直的方向上 的截面示意图。
为了使说明简洁, 以下仅对轧制装置 400与轧制装置 300的不同之处 进行说明。 轧制装置 400采用上成形辊 la和下成形辊 lb, 下成形辊 lb的 母线为弧线, 上成形辊 la的母线为直线, 在不产生挠曲的情况下使两个成 形辊 1中间的辊缝值小于两端的辊缝值。 多点支撑机构 2a对成形辊 1进行 支撑, 多点调形机构 3还可以使成形辊 1产生挠曲。 当然也可以使两个成 形辊 1 中央部位的辊缝值大于两侧部位的辊缝值, 或一侧部位的辊缝值小 于另一侧部位的辊缝值, 从而使板料 4的不同部位产生不均匀的塑性应变。 此外, 该装置也可以是仅上成形辊 la的母线为弧线, 下成形辊 lb的母线
为直线。
图 5是本发明的另一个实施方式所涉及的轧制装置 500的示意图, 是 在板料从辊缝中经过并被轧制的过程中与板料经过的方向相垂直的方向上 的截面示意图。
轧制装置 500分别采用了分成为两段的上成形辊 la和下成形辊 lb,通 过对分段的成形辊 1施加不同方向、 不同大小的转矩来实现板料 4的旋转 成形或曲线送料与成形。 可通过多点调形机构 3使上成形辊 la和下成形辊 lb分别产生挠曲, 并且使整体辊缝呈现非均匀分布, 且整体辊缝的中央部 位辊缝值小于两侧部位辊缝值; 通过驱动机构对分段的成形辊施加不同方 向、 不同大小的转矩, 使板料 4旋转成形或曲线送料与成形, 从而使板料 4 在中央部位的塑性变形大于两侧部位的塑性变形。 当然也可以使整体辊缝 的中央部位辊缝值大于两端辊缝值, 而使板料 4在中央部位的塑性变形小 于两侧部位的塑性变形; 也可以使整体辊缝的一侧部位辊缝值小于另一侧 部位辊缝值, 而使板料 4一侧部位的塑性变形大于另一侧部位的塑性变形。
图 6是本发明的另一个实施方式所涉及的轧制装置 600的示意图, 是 在板料从辊缝中经过并被轧制的过程中与板料经过的方向相垂直的方向上 的截面示意图。
为了使说明简洁, 以下仅对轧制装置 600与轧制装置 500的不同之处 进行说明。
轧制装置 600在分成为两段的上成形辊 la和下成形辊 lb的段与段之 间设置定心机构 5。定心机构 5使板料 4在成形过程中围绕定心轴转动, 防 止板料 4在旋转成形时整体产生移位。
图 7是本发明的另一个实施方式所涉及的轧制装置 700的示意图, 是 在板料从辊缝中经过并被轧制的过程中与板料经过的方向相垂直的方向上 的截面示意图。
为了使说明简洁, 以下仅对轧制装置 700与轧制装置 100的不同之处 进行说明。
轧制装置 700在成形辊 1和多点调形机构 3之间设置柔性的整体支撑 机构 2b, 其刚度大于成形辊 1, 但能够随成形辊 1一起弯曲, 并且整体支 撑机构 2b对成形辊 1能够在多个方向进行约束, 多点调形机构 3可通过对 整体支撑机构 2b调形, 使成形辊 1变形而出现辊缝的非线性分布。
图 8是本发明的另一实施方式所涉及的轧制装置 800的示意图。
与轧制装置 700不同, 在轧制装置 800中, 设置刚性的整体支撑机构 2b, 其截面远大于上成形辊 la或下成形辊 lb的截面, 因此, 其刚度远大 于上成形辊 la和下成形辊 lb的刚度。 具有高刚度的整体支撑机构 2b对上 成形辊 la和下成形辊 lb在多个方向进行支撑, 且接触长度大于轧制宽度, 从而使得上成形辊 la和下成形辊 lb在轧制过程中的刚度和强度得到显著 增加。 所述整体移位机构在轧制前对成形辊 1 的相对高度进行调整, 或者 在成形过程中对成形辊 1 的相对高度进行实时调整。 轧制装置 800结构简 单、 体积小、 制造成本低, 可以实现用小直径成形辊对于薄板、 薄带、 薄 膜或宽板进行轧制。 此外, 在轧制装置 800 中, 也可以存在如下情形, 但 不局限于此: 成形辊 1 可以是母线为曲线的旋转体, 以实现不同的辊缝分 布, 成形不同的曲面。 在整体支撑机构 2b中用于支撑成形辊 1的接触面上 可以设置油槽, 并且可以在整体支撑机构 2b上设置一个或多个从外部通向 接触面的油路, 通过滑动轴承或动压轴承原理减小上成形辊 la和下成形辊 lb与整体支撑机构 2b之间的摩擦。在轧制过程中, 可以通过整体支撑机构 2b实时调整辊缝来实现变截面板的轧制或自由曲面的成形, 当然也可以设 置整体移位机构实时对辊缝进行整体式调整, 实现变截面板的轧制或自由 曲面的成形。
图 9是本发明的另一实施方式所涉及的轧制装置 900的示意图。
为了简洁说明, 以下仅对轧制装置 900与轧制装置 700或 800的不同 之处进行说明。 在轧制装置 900中, 上成形辊 la和下成形辊 lb分别由两 个驱动辊 6 (当然, 也可以分别设置更多个驱动辊 6 ) 支撑, 其分别与两个 成形辊 1相接触, 通过驱动辊 6对成形辊 1的辊身施加转矩, 能够显著增 大成形辊 1的转动扭矩。
图 10是本发明的另一个实施方式所涉及的轧制装置 1000的示意图, 是在板料从辊缝中经过并被轧制的过程中与板料经过的方向相垂直的方向 上的截面示意图。
轧制装置 1000在被轧制的板料 4的进口和出口处各设置一排具有高度 调整功能的柔性托料机构 7, 其可以采用多点式托料机构、基于软轴的托料 机构或多个浮动式托料单元对板料 4的进口和出口处进行柔性托料。
图 11是本发明的另一个实施方式所涉及的轧制装置 2000的示意图,
是在板料从辊缝经过并被轧制的过程中与板料经过的方向相平行的方向上 的截面示意图。
轧制装置 2000在进口方向和出口方向上分别采用了多排具有高度调整 功能的柔性托料机构 7。 同样, 可以采用多点式托料机构、 基于软轴的托料 机构或多个浮动式托料单元对进口和出口处的板料 4进行柔性托料。
图 12 是本发明中所涉及的多点调形机构与多点支撑机构的结构例示 图。 当然, 本发明中所涉及的多点调形机构与多点支撑机构的结构并不局 限于此。成形辊 1被开口轴套 8约束, 轴套 8嵌在摆角块 10中; 摆角块 10 与支架 11利用销轴 9连接, 通过摆角块 10的摆动可以保证成形辊 1在调 形时具有连续圆滑的挠曲; 支架 11与调整体 13利用螺钉 12连接, 通过调 形丝杆 14的转动带动调整体 13及支架 11上下移动, 从而实现支撑与调形 功能。 为了增加轴套 8的耐磨性, 轴套 8可选用铜等滑动轴承用材料。 为 了减小摩擦可以在轴套 8内添加润滑剂。 多点调形机构 3通过调形丝杆 14 的转动来控制成形辊 1在被多点支撑机构 2a支撑部位的挠度。 使用多个多 点调形机构 3对成形辊 1在轴向上进行多点控制, 可以根据需要调整成形 辊 1的挠曲程度, 并实现上成形辊 la和下成形辊 lb之间辊缝在轴向非均 匀分布。 当然也可以在轴套 8与成形辊 1的接触面处布置油槽和油路。
图 13是本发明中所涉及的多点调形机构与多点支撑机构的另一结构例 示图。 当然, 本发明中所涉及的多点调形机构与多点支撑机构的结构并不 局限于此。 成形辊 1和两个驱动辊 6被开口轴套 8约束, 轴套 8嵌在摆角 块 10中; 摆角块 10与支架 11利用销轴 9连接, 通过摆角块 10的摆动可 以保证成形辊 1在调形时具有连续圆滑的挠曲; 支架 11与调整体 13利用 螺钉 12连接, 通过调形丝杆 14的转动带动调整体 13及支架 11上下移动, 从而实现支撑与调形功能。通过驱动辊 6对成形辊 1在辊身部位施加转矩, 以增加成形辊 1的转动扭矩。 为了增加轴套 8的耐磨性, 轴套 8可选用铜 等滑动轴承用材料。 为了减小摩擦可以在轴套 8 内添加润滑剂。 多点调形 机构 3通过调形丝杆 14的转动来控制成形辊 1在被多点支撑机构 2a支撑 部位的挠度。 使用多个多点调形机构 3对成形辊 1在轴向上进行多点控制, 可以根据需要调整成形辊 1的挠度, 并实现上成形辊 la和下成形辊 lb之 间辊缝在轴向上非均匀分布。 当然也可以在轴套 8与驱动辊 6和 /或成形辊 1的接触面处布置油槽和油路。 另外, 驱动辊的数量并不限于两个。
此外, 本发明还提供一种利用以上轧制装置对板料 4进行三维曲面成 形的曲面轧制方法, 其包括调形步骤和轧制步骤。 在所述调形步骤中, 上 成形辊 la和 /或下成形辊 lb被多点支撑机构 2a或整体支撑机构 2b支撑, 可通过多点调形机构 3使上成形辊 la和 /或下成形辊 lb挠曲变形, 并且使 形成于上成形辊 la和下成形辊 lb之间的辊缝非均匀分布; 在所述轧制步 骤中, 板料 4从所述辊缝中经过, 上成形辊 la和 /或下成形辊 lb对板料 4 进行轧制成形。 在该方法中, 调形步骤可以在轧制步骤之前进行, 也可以 是调形步骤与轧制步骤同时进行, 即在对板料 4进行轧制的同时改变上成 形辊 la和下成形辊 lb的挠曲程度, 并改变成形辊 1之间的辊缝形状。 根 据该方法, 能够简单、 快速并且低成本地实现对板料 4进行三维曲面成形 或薄板轧制。 此外, 整体移位机构在成形前在不改变成形辊 1 挠曲的情况 下调节辊缝值; 或者整体移位机构在成形过程中且不改变成形辊 1 挠曲的 情况下调节辊缝值。 根据该方法, 能够简单、 快速并且低成本地实现薄板 轧制或变截面板轧制。
以上结合附图和具体实施方式对本发明进行了详细描述。 很明显, 以 上描述和附图中所示的内容均应被理解为是示例性的, 而非对本发明的限 制。 对于本领域的技术人员来讲, 显然可以在本发明的基础上对其进行各 种变型或修改, 这些变型或修改均应包含在本发明的范围内。 附图标记说明
1 成形辊
la 上成形辊
lb 下成形辊
2a 多点支撑机构
2b 整体支撑机构
3 多点调形机构
4 板料
5 定心机构
6 驱动辊
7 柔性托料机构
IT
^ m ΟΪ
6
C1-9^80/ri0ZN3/X3d .98ΙΖ.0/ΓΪ0Ζ OAV
Claims
1. 一种轧制装置, 包括成形辊、 支撑机构、 调整机构和驱动机构, 其 特征在于:
所述成形辊包括上成形辊和下成形辊, 其辊径小, 易于弯曲变形; 所述支撑机构为多点支撑机构或整体支撑机构, 对所述成形辊进行支 撑;
所述调整机构为多点调形机构和 /或整体移位机构, 可对所述成形辊的 辊形和 /或相对高度进行调整;
所述驱动机构可对所述上成形辊和 /或下成形辊的一端或两端施加转 矩, 使所述上成形辊和 /或下成形辊旋转, 进而使板料从所述上成形辊和所 述下成形辊之间的辊缝中经过并被轧制成形。
2. 根据权利要求 1所述的轧制装置, 其特征在于:
所述成形辊是母线为直线或曲线的旋转体;
所述上成形辊和下成形辊各为一个或多个。
3. 根据权利要求 1所述的轧制装置, 其特征在于:
所述上成形辊和 /或所述下成形辊由两段辊构成, 所述两段辊之间采用 异向异速、 异向同速、 同向异速或同向同速方式旋转。
4. 根据权利要求 3所述的轧制装置, 其特征在于:
在所述两段辊之间设置定心机构, 所述定心机构用于固定所述板料上 的一个点, 使所述板料不能整体移动, 而只能围绕该点旋转。
5. 根据权利要求 1所述的轧制装置, 其特征在于:
所述调整机构在所述板料从所述辊缝中经过并被轧制成形前根据需要 改变所述成形辊的挠曲程度或相对高度; 或者在所述板料从所述辊缝中经 过并被轧制的过程中根据需要实时改变所述成形辊的挠曲程度或相对高 度。
6. 根据权利要求 1所述的轧制装置, 其特征在于:
所述整体支撑机构为柔性支撑机构, 对所述成形辊进行全长式支撑, 所述柔性支撑机构的截面尺寸大于所述成形辊的截面尺寸, 但能够产生挠 曲变形; 所述调整机构为多点调形机构, 通过所述柔性支撑机构对所述成形辊 进行多点式调形, 或者进一步包括整体移位机构, 对所述成形辊的相对高 度进行调整。
7. 根据权利要求 1所述的轧制装置, 其特征在于:
所述整体支撑机构为刚性支撑机构, 对所述成形辊进行全长式支撑, 所述刚性支撑机构的截面尺寸远大于所述成形辊的截面尺寸, 所述刚性支 撑机构在轧制过程中不产生挠曲变形, 或产生很小的挠曲变形;
所述调整机构为整体移位机构, 对所述成形辊的相对高度进行调整。
8. 根据权利要求 1所述的轧制装置, 其特征在于:
所述整体支撑机构与所述成形辊面接触并滑动配合, 并在所述整体支 撑机构与所述成形辊的接触面上设置油槽, 另外, 在所述整体支撑机构内 设置一个或多个从外部通向接触面的油路。
9. 根据权利要求 1所述的轧制装置, 其特征在于:
所述驱动机构还包括至少一个驱动辊, 并通过所述驱动辊对所述成形 辊进行驱动, 所述驱动辊位于所述支撑机构与所述成形辊之间, 所述支撑 机构与所述驱动辊面接触并滑动配合, 所述驱动辊与所述成形辊为线接触 并滚动配合。
10. 根据权利要求 1所述的轧制装置, 其特征在于:
还具有用于对成形前后的所述板料进行支撑的柔性托料机构, 所述柔 性托料机构设置于沿板料行进方向所述成形辊之前和 /或所述成形辊之后。
11. 根据权利要求 10所述的轧制装置, 其特征在于:
所述柔性托料机构为具有高度调整功能的多点式托料机构、 基于软轴 的托料机构或多个浮动托料单元中的任意一种。
12. 一种利用根据权利要求 1至 11之一所述的轧制装置进行板料轧制 的轧制方法, 其特征在于:
包括调整步骤和轧制步骤,
在所述调整步骤中, 所述调整机构调整所述上成形辊和 /或下成形辊的 辊形或相对高度, 使形成于所述上成形辊和下成形辊之间的辊缝非均匀分 布或均匀分布;
在所述轧制步骤中, 板料从所述辊缝中经过, 所述上成形辊和 /或下成 形辊对板料进行轧制。
13. 根据权利要求 12所述的轧制方法, 其特征在于:
在所述轧制步骤之前进行所述调整步骤, 或所述调整歩骤与所述轧制 步骤同时进行。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/359,191 US20140331730A1 (en) | 2011-11-19 | 2012-11-15 | Rolling device and the method thereof |
EP12848821.0A EP2781273A4 (en) | 2011-11-19 | 2012-11-15 | ROLLING DEVICE AND CORRESPONDING METHOD |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110368823.6A CN102423777B (zh) | 2011-11-19 | 2011-11-19 | 一种曲面轧制方法 |
CN201110368823.6 | 2011-11-19 | ||
CN2011103688715A CN102380532A (zh) | 2011-11-19 | 2011-11-19 | 用于板材三维曲面成形的曲面轧制装置和方法 |
CN201110368871.5 | 2011-11-19 | ||
CN201210238437XA CN102744253A (zh) | 2012-02-05 | 2012-07-11 | 板材轧制装置 |
CN201210238437.X | 2012-07-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013071867A1 true WO2013071867A1 (zh) | 2013-05-23 |
Family
ID=48428980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/084643 WO2013071867A1 (zh) | 2011-11-19 | 2012-11-15 | 轧制装置和方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20140331730A1 (zh) |
EP (1) | EP2781273A4 (zh) |
WO (1) | WO2013071867A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE540299C2 (sv) * | 2017-02-07 | 2018-05-29 | Ingvest Ab | Sätt och anordning för rullformning av plan produkt med varierade bredd |
CN114472594B (zh) * | 2021-12-29 | 2024-03-08 | 泰安华鲁锻压机床有限公司 | 一种一体式金属板材矫平机 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3429166A (en) * | 1965-03-09 | 1969-02-25 | Aluminium Lab Ltd | Rolling mill |
JPS57195519A (en) * | 1981-05-27 | 1982-12-01 | Mitsubishi Heavy Ind Ltd | Rolling mill |
CN1163315A (zh) * | 1996-01-29 | 1997-10-29 | 伯恩德·高丝 | 从散布的混合物中提取液态轻金属的方法和装置 |
EP1074315A2 (de) * | 1999-08-03 | 2001-02-07 | ACHENBACH BUSCHHÜTTEN GmbH | Mehrwalzengerüst |
CN2518613Y (zh) * | 2001-07-18 | 2002-10-30 | 史习 | 一种可调整辊缝变化速度的液压仿形轧制装置 |
CN1915550A (zh) * | 2006-07-21 | 2007-02-21 | 吉林大学 | 三维曲面柔性卷板装置 |
CN100999000A (zh) * | 2007-01-08 | 2007-07-18 | 吉林大学 | 使用可弯曲辊的三维曲面柔性成形装置 |
CN102744253A (zh) * | 2012-02-05 | 2012-10-24 | 吉林大学 | 板材轧制装置 |
CN102773269A (zh) * | 2012-08-16 | 2012-11-14 | 广西柳州银海铝业股份有限公司 | 板材轧制输送装置及其控制方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE637694A (zh) * | 1962-09-21 | |||
GB1279247A (en) * | 1968-09-30 | 1972-06-28 | United Eng Foundry Co | Crown control in a rolling mill or calender |
US3762202A (en) * | 1971-10-18 | 1973-10-02 | W Sherwood | Rolling mill for flat-rolled products |
JPS5024902B2 (zh) * | 1972-01-28 | 1975-08-19 | ||
JPS6057402B2 (ja) * | 1981-05-21 | 1985-12-14 | 三菱重工業株式会社 | 圧延機 |
US4770017A (en) * | 1986-04-02 | 1988-09-13 | Agency Of Industrial Science And Technology | Apparatus for forming plate with a double-curved surface |
FR2613641B1 (fr) * | 1987-04-09 | 1990-12-14 | Clecim Sa | Procede et installation de laminage d'un produit sous forme de bande, plus specialement une tole metallique ou un feuillard |
JP2001353529A (ja) * | 2000-06-14 | 2001-12-25 | National Institute Of Advanced Industrial & Technology | フレキシブルロール成形装置 |
WO2007095843A1 (en) * | 2006-02-21 | 2007-08-30 | Jilin University | Flexible three-dimensional work-piece forming equipment |
-
2012
- 2012-11-15 EP EP12848821.0A patent/EP2781273A4/en not_active Withdrawn
- 2012-11-15 WO PCT/CN2012/084643 patent/WO2013071867A1/zh active Application Filing
- 2012-11-15 US US14/359,191 patent/US20140331730A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3429166A (en) * | 1965-03-09 | 1969-02-25 | Aluminium Lab Ltd | Rolling mill |
JPS57195519A (en) * | 1981-05-27 | 1982-12-01 | Mitsubishi Heavy Ind Ltd | Rolling mill |
CN1163315A (zh) * | 1996-01-29 | 1997-10-29 | 伯恩德·高丝 | 从散布的混合物中提取液态轻金属的方法和装置 |
EP1074315A2 (de) * | 1999-08-03 | 2001-02-07 | ACHENBACH BUSCHHÜTTEN GmbH | Mehrwalzengerüst |
CN2518613Y (zh) * | 2001-07-18 | 2002-10-30 | 史习 | 一种可调整辊缝变化速度的液压仿形轧制装置 |
CN1915550A (zh) * | 2006-07-21 | 2007-02-21 | 吉林大学 | 三维曲面柔性卷板装置 |
CN100999000A (zh) * | 2007-01-08 | 2007-07-18 | 吉林大学 | 使用可弯曲辊的三维曲面柔性成形装置 |
CN102744253A (zh) * | 2012-02-05 | 2012-10-24 | 吉林大学 | 板材轧制装置 |
CN102773269A (zh) * | 2012-08-16 | 2012-11-14 | 广西柳州银海铝业股份有限公司 | 板材轧制输送装置及其控制方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2781273A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP2781273A1 (en) | 2014-09-24 |
EP2781273A4 (en) | 2015-09-09 |
US20140331730A1 (en) | 2014-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102471120B (zh) | 玻璃板的制造方法及制造装置 | |
US8210014B2 (en) | Flexible forming device for forming three-dimensional shaped workpieces | |
WO2016188305A1 (zh) | 二辊差速变曲率数控卷板机及其使用方法 | |
CN111477834B (zh) | 一种电池极片辊压装置及辊压方法 | |
CN102176987B (zh) | 成型给定长度的管子的方法 | |
US10173256B2 (en) | Radial rolling process for ring product that can control strain distribution of ring product | |
CN109807208B (zh) | 一种多辊包络成形的变弯径薄壁管材弯曲成形装置 | |
JP6207579B2 (ja) | 多段ロール式のシート成形装置 | |
CN104349678A (zh) | 用于生产平轧的、被连续输送的面片的装置 | |
CN112845607A (zh) | 一种超大直径比异步轧机以及板材轧制方法 | |
WO2013071867A1 (zh) | 轧制装置和方法 | |
CN205869140U (zh) | 滚圆加工设备 | |
CN102380532A (zh) | 用于板材三维曲面成形的曲面轧制装置和方法 | |
US20210170465A1 (en) | Square tube forming method and square tube forming device | |
CN106734193A (zh) | 一种变断面轧板冷轧机 | |
CN202343672U (zh) | 用于板材三维曲面成形的曲面轧制装置 | |
RU2653520C1 (ru) | Устройство для термосиловой правки валов | |
KR101415868B1 (ko) | 밴딩 장치 | |
TW201206583A (en) | Method of controlling operation of tandem mill and manufacturing method of hot-rolled steel sheet using the controlling method | |
US8459081B2 (en) | Continuously smoothly adjustable and self-aligning variable width roll forming apparatus | |
CN207103511U (zh) | 一种卷板机 | |
JP6659337B2 (ja) | 成形ロール組合体およびこれを備えたロール成形装置 | |
KR102721763B1 (ko) | 비대칭 압연 장치 | |
WO2013134795A1 (en) | Cylinder-making apparatus | |
KR102721765B1 (ko) | 비대칭 압연 장치 및 카세트 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12848821 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14359191 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2012848821 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012848821 Country of ref document: EP |