WO2016188305A1 - 二辊差速变曲率数控卷板机及其使用方法 - Google Patents
二辊差速变曲率数控卷板机及其使用方法 Download PDFInfo
- Publication number
- WO2016188305A1 WO2016188305A1 PCT/CN2016/080937 CN2016080937W WO2016188305A1 WO 2016188305 A1 WO2016188305 A1 WO 2016188305A1 CN 2016080937 W CN2016080937 W CN 2016080937W WO 2016188305 A1 WO2016188305 A1 WO 2016188305A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- roller shaft
- numerical control
- lower roller
- driving device
- curvature
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D5/00—Bending sheet metal along straight lines, e.g. to form simple curves
- B21D5/14—Bending sheet metal along straight lines, e.g. to form simple curves by passing between rollers
Definitions
- Conventional two-roller rolling machines are used to roll cylinders of different curvatures, which need to be replaced by steel roll dies of different diameters.
- the three-roller and four-roller-rolling machine adopts the three-point forming principle to obtain cylinders of different diameters or partial cylinders with variable curvature, and it is necessary to gradually adjust the relative positions between the rollers step by step, and the production efficiency is low.
- Conventional coiling machines cannot efficiently achieve any section of variable curvature forming regardless of the two-roller or three-roller or four-roller coiling machine.
- the lower roller shaft 2 is supported by two corresponding cylinders 10.
- the two-roll differential-curvature numerical control bending machine is further provided with a sensor 5 mounted on the lower roller shaft 2 and the frame 8 for measuring the lower roller shaft 2 and the upper roller shaft 1 Absolute distance value.
- the upper driving device 4 and the lower driving device 11 are servo motors.
- Step 1 The metal plate is placed between the upper roller shaft 1 and the lower roller shaft 2, and the numerical control device 7 issues a command to push the cylinder 10 to push the lower roller shaft 2 through the hydraulic device 6, and the upper roller shaft 1 and the lower roller shaft 2 clamp. Tightly acting on the metal sheet 3;
- Step 2 The upper driving device 4 and the lower driving device 11 are activated, and the upper roller shaft 1 and the lower roller shaft 2 are respectively operated at a preset linear velocity, when the linear velocity of the upper roller shaft 1 is smaller than the linear velocity of the lower roller shaft 2 At this time, the lower layer of the sheet is stretched, and the upper layer is compressed to be bent upward; when the linear speed of the upper roller shaft 1 is greater than the linear speed of the lower roller shaft 2, the sheet is bent downward.
- Step 3 During the running process, the linear speeds of the upper roller shaft 1 and the lower roller shaft 2 are adjusted by the numerical control device to form a desired curvature in any section in the longitudinal direction of the metal sheet.
- step 1 the absolute distance value from the upper roller shaft 1 after the lower roller shaft 2 is raised is smaller than the plate thickness.
- both ends of the upper roller shaft 1 and the lower roller shaft 2 are driven by synchronous driving at both ends.
- the upper roller shaft of the invention is fixed on the frame, the frame is fixed on the chassis, the lower roller shaft is supported by two corresponding oil cylinders, and the oil cylinder can push the lower roller shaft to perform the lifting movement.
- a driving device is respectively disposed at both ends of the upper roller shaft and the lower roller shaft, and is connected with the hydraulic device, and the numerical control device is connected with the hydraulic device and sends an operation instruction.
- the absolute distance value between the lower roller shaft and the upper roller shaft can be measured by a sensor mounted on the lower roller shaft and the frame. This distance value is called the pressing amount.
- the amount of pressing determines the upper roller shaft Load applied to the sheet with the lower roller shaft. The friction generated by the appropriate load is beneficial to the plastic deformation of the sheet.
- the present invention is to obtain the desired deformation curvature as long as the linear velocity difference between the upper roller shaft and the lower roller shaft is changed.
- the greater the line speed difference the greater the deformation curvature of the sheet metal after rolling; the smaller the line speed difference, the smaller the deformation curvature of the sheet metal after rolling.
- the upper roller shaft and the lower roller shaft are rigid roller shafts.
- the upper drive unit and the lower drive unit have built-in servo mechanisms, which can feedback and adjust the linear speed of the upper roller shaft and the lower roller shaft in real time, by changing the upper roller shaft and the lower roller shaft. The difference in line speed to achieve any section of the curvature of the roll.
- the invention sets the automatic leveling function of the lower roller shaft rise through the sensor and the numerical control device, thereby ensuring the parallelism between the lower roller shaft and the upper roller shaft during the rolling process, so as to ensure the quality of the workpiece with variable curvature.
- the utility model After adopting the above-mentioned extrusion-tensile and variable curvature numerical control two-axis bending machine, the utility model has the following beneficial effects: the device has simple structure, numerical control operation and stable performance, and the forming method is different from the forming method of the traditional bending machine, and the arbitrary curvature is realized. Forming, this is the traditional coiling machine can not be achieved regardless of the two-roller or three-roller, four-roller-rolling machine, does not require multi-pass reciprocating bending, greatly improving production efficiency.
- the utility model has the advantages of simple structure, reasonable design, simple processing technology, low cost, easy assembly, high running precision of equipment, abrasion resistance and improved process performance of the whole machine.
- Figure 2 is a schematic view of the coiling of the sheet
- a two-roll differential speed curvature numerical control bending machine includes a frame 8, an upper roller shaft 1, a lower roller shaft 2, an upper driving device 4, and a lower driving device 11.
- the numerical control device 7 the upper roller shaft 1 is fixed on the frame 8, the frame 8 is fixed on the chassis 9, the lower roller shaft 2 is supported by two corresponding oil cylinders 10, and the oil cylinder 10 can push the lower roller shaft 2 to perform the lifting movement .
- the upper drive unit 4 and the lower drive unit 11 are disposed at both ends of the upper roller shaft 1 and the lower roller shaft 2, respectively.
- the hydraulic device 6 is connected to the hydraulic cylinder 10 and the drive devices 4 and 11, and the numerical control device 7 is connected to the hydraulic device 6 and transmits an operation command to the hydraulic device 6.
- a servo mechanism is provided in the upper driving device 4 and the lower driving device 11, and the upper roller shaft 1 and the lower roller shaft 2 are both rigid rollers.
- the two-roll differential-curvature numerical control bending machine further includes a sensor 5 mounted on the lower roller shaft 2 and the frame 8 for measuring the lower roller The absolute distance value (pressing amount) c between the shaft 2 and the upper roller shaft 1.
- High-precision speed measurement, feedback and control devices are mounted on both ends of the upper roller shaft 1 and the lower roller shaft 2, respectively.
- Both the upper drive unit 4 and the lower drive unit 11 are servo drive units.
- the invention can realize the automatic leveling function of the lower roller shaft 2 rising by the sensor 5 and the numerical control device 7, thereby ensuring the parallelism between the lower roller shaft 2 and the upper roller shaft 1 during the rolling process to ensure the curvature of curvature.
- the quality of the workpiece can realize the automatic leveling function of the lower roller shaft 2 rising by the sensor 5 and the numerical control device 7, thereby ensuring the parallelism between the lower roller shaft 2 and the upper roller shaft 1 during the rolling process to ensure the curvature of curvature. The quality of the workpiece.
- the invention adopts two synchronous driving devices at both ends of the upper roller shaft 1 and the lower roller shaft 2, which is beneficial to prevent defects such as distortion and wrinkling of the workpiece due to torsional deformation of the roller shaft surface when the one end is driven.
- the above two-roll differential variable curvature numerical control bending machine and the using method thereof include the following steps:
- Step 1 As shown in FIG. 2, the metal plate 3 is placed between the upper roller shaft 1 and the lower roller shaft 2, and the numerical control device 7 issues a command to cause the cylinder 10 to push the lower roller shaft 2 up by the hydraulic device 6, and the upper roller shaft 1 and the lower roller shaft 2 is clamped and acts on the metal sheet 3;
- Step 2 The upper driving device 4 and the lower driving device 11 are activated, and the upper roller shaft 1 and the lower roller shaft 2 are respectively operated at a preset linear velocity, when the linear velocity of the upper roller shaft 1 is smaller than the linear velocity of the lower roller shaft 2 At this time, the lower layer of the sheet is stretched, and the upper layer is compressed to be bent upward; when the linear speed of the upper roller 1 is larger than that of the lower roller 2 The line speed at which the sheet is bent downwards.
- Step 3 During the operation, the linear velocity of the upper roller shaft 1 and the lower roller shaft 2 is adjusted by the numerical control device 7, so that a desired curvature is formed in any section in the longitudinal direction of the metal sheet 3.
- the absolute distance value (pressing amount) c between the upper roller shaft 1 and the upper roller shaft 1 can be measured by the sensor 5 mounted on the lower roller shaft 2 and the frame 8, the upper and lower rollers.
- the amount of pressing c between them should be less than the sheet thickness t.
- the amount of pressing amount c determines the load applied to the sheet by the upper roller shaft 1 and the lower roller shaft 2. Appropriate load acts on the sheet to produce circumferential friction and thick extrusion force, which is beneficial to the plastic deformation and roll forming of the sheet.
- a schematic diagram of the sheet rolling including the upper roller shaft 1, the lower roller shaft 2 and the metal sheet 3, the shape of which is that the linear speed of the upper roller shaft 1 is smaller than that of the lower roller shaft 2 And then larger than the lower roller shaft 2 linear velocity.
- the speed ratio i corresponding to the different bending curvatures is required to realize the digital control of the two-roll differential speed curvature.
- the speed ratio i has a regular correspondence with the curvature formed by it.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
Abstract
一种二辊差速变曲率数控卷板机,包括机架(8)、上辊轴(1)、下辊轴(2)、上驱动装置(4)、下驱动装置(11)和数控装置(7),所述上辊轴(1)和下辊轴(2)平行安装于所述机架(8)上,所述上驱动装置(4)控制所述上辊轴(1)转动,所述下驱动装置(11)控制所述下辊轴(2)的转动。还公开了一种二辊差速变曲率数控卷板机的使用方法,通过调整上辊和下辊的线速度,可以调整二辊轴线速度差,在板材长度方向上任意区段形成所需曲率。该卷板机结构简单,数控操作,实现了任意区段变曲率成形。
Description
本发明涉及一种卷板机技术,具体涉及板材通过并利用上、下两刚性辊之间的表面线速度差,使板材向速度低的一侧弯曲的数控二辊差速变曲率卷板机。
传统的二辊卷板机卷制不同曲率的筒体,需要更换不同直径的钢辊模具才可获得。三辊、四辊卷板机采用三点成形原理获得不同直径筒体、或者变曲率部分筒体,需要分步逐渐调整辊子之间的相对位置,其生产效率低下。传统卷板机无论二辊还是三辊、四辊卷板机都无法高效地实现任意区段变曲率成形。
如何实现金属板材在滚弯卷板过程中改变成形曲率大小及其方向这一需求,本发明提出了一种二辊差速数控变曲率卷板机。让板材通过一对以不同线速度相向旋转的刚性辊轴,使板材向速度低的一侧弯曲,通过调节两辊轴的线速度差,即可改变板材成形曲率大小及其方向,实现数控变曲率卷板。
发明内容
本发明旨在提供二辊差速变曲率数控卷板机及其使用方法,让金属板材通过一对以不同线速度相向旋转的刚性辊轴,使板材向速度低的一侧弯曲,通过调节两辊轴的线速度差,即可改变金属板材成型曲率大小及方向,实现数控变曲率卷板。
为了解决上述问题,本发明的技术解决方案是:二辊差速变曲率数控卷板机及其使用方法,包括机架8、上辊轴1、下辊轴2、上驱动装置4和下驱动装置11,所述上辊轴1和下辊轴2平行安装于所述机架8上,所述上驱动装置4控制所述上辊轴1转动,所述下驱动装置11控制所述下辊轴2的转动,所述上驱动装置4和下驱动装置11均为伺服驱动装置。
优选地,所述的二辊差速变曲率数控卷板机还包括液压装置6和油缸10,所述液压装置6与油缸10、上驱动装置4和下驱动装置11相连,且油缸10推动下辊2做升降运动。
优选地,所述油缸10有二个,下辊轴2由二个对应的油缸10支承。
优选地,所述的二辊差速变曲率数控卷板机,还包括底盘9,所述机架8和所述液压装置6固定安装在所述底盘9上。
优选地,所述的二辊差速变曲率数控卷板机,还包括数控装置7,所述数控装置7安装在所述底盘9上,并与所述数控装置7相连接。
优选地,所述上驱动装置4和所述下驱动装置11内设有伺服机构。
优选地,所述上辊轴1和所述下辊轴2均为刚性辊。
优选地,所述的二辊差速变曲率数控卷板机,还设有传感器5,传感器5安装在下辊轴2与机架8上,用于测量出下辊轴2与上辊轴1之间绝对距离值。
优选地,所述上驱动装置4和所述下驱动装置11为伺服电机。
上述挤压拉伸变曲率数控二轴卷板机的使用方法,包括如下步骤:
步骤一:将金属板材置于上辊轴1与下辊轴2之间,数控装置7发出指令,通过液压装置6使油缸10推动下辊轴2上升,上辊轴1和下辊轴2夹紧并作用于金属板材3;
步骤二:启动上驱动装置4和下驱动装置11,上辊轴1和下辊轴2分别按预先设定好的线速度运转,当上辊轴1的线速度小于下辊轴2的线速度,此时板材下层被拉伸,上层被压缩,从而向上弯曲;当上辊轴1的线速度大于下辊轴2的线速度,此时板材向下弯曲。
步骤三:在运行的过程中,通过数控装置,调整上辊轴1和下辊轴2的线速度,从而在金属板材长度方向上任意区段形成所需曲率。
进一步,在步骤一中下辊轴2上升后与上辊轴1的绝对距离值小于板厚。
进一步,上辊轴1与下辊轴2两端,均采用了两端同步驱动的装置。
本发明要解决的技术问题是提供一种颠覆传统卷板机成形原理,通过数控调整二辊轴线速度差,使板材在径向不同层面分别被挤压和拉伸,改变板材成形曲率,实现数控变曲率卷板的新型卷板机。
本发明的上辊轴固定在机架上,机架固定在底盘上,下辊轴由二个对应的油缸支承,且油缸可推动下辊轴做升降运动。上辊轴和下辊轴两端分别配置有驱动装置,且与液压装置相连接,数控装置与液压装置相连接并发送动作指令。
本发明的下辊轴上升后,可以通过安装在下辊轴与机架上的传感器测量出与上辊轴之间绝对距离值,此距离值我们称之为压入量。压入量大小决定了上辊轴
与下辊轴对板材加载的荷载。适当的荷载产生的摩擦力有利于板材的塑性形变。
本发明为获得所需要的形变曲率,只要改变上辊轴与下辊轴的线速度差。线速度差越大,滚弯后金属板材形变曲率越大;线速度差越小,滚弯后金属板材形变曲率越小。上辊轴、下辊轴均为刚性辊轴,上驱动装置、下驱动装置均内置伺服机构,可以实时反馈与调整上辊轴与下辊轴的线速度,通过改变上辊轴与下辊轴的线速度差来实现任意区段变曲率卷板。
本发明通过传感器和数控装置,设置了下辊轴上升的自动调平功能,从而保证了在滚弯过程中下辊轴与上辊轴之间的平行度,以保证变曲率工件的品质。
本发明在上辊轴与下辊轴两端,均采用了两端同步驱动的装置,有利于防止一端驱动时由于辊轴面扭转变形引起工件发生扭曲、起皱等缺陷。
本发明通过对不同板厚、不同材质的金属板材,利用有限元模拟和数学模型计算,将其结果与试验数据比对,找到了各工艺参数的影响规律,并建立数据库,获得所需不同的成形曲率所对应的参数,从而实现挤压拉伸滚弯变曲率的数字化控制。
采用上述挤压拉伸变曲率数控二轴卷板机后,具有以下有益效果:设备结构简单,数控操作,性能稳定,成形方法区别于传统卷板机的成形方法,实现了任意区段变曲率成形,这是传统卷板机无论二辊还是三辊、四辊卷板机都无法实现的,不需要多道次往复弯曲,大大的提高了生产效率。它结构简洁,设计合理,加工工艺简单,成本低,且易于装配,设备运行精度高,耐磨损,提高了整机的工艺性能。
图1是本发明较佳之结构图;
图2是板材卷制示意图;
图3是向上弯成型区轴向截面图;
图4是向下弯成型区轴向截面图。
下面结合具体实施方式对本发明作进一步详细的说明。
为了本领域的技术人员能够更好地理解本发明所提供的技术方案,下面结合具体实施例进行阐述。
第一具体实施方式:如图1、图2所示,二辊差速变曲率数控卷板机,包括机架8、上辊轴1、下辊轴2、上驱动装置4、下驱动装置11和数控装置7,上辊轴1固定在机架8上,机架8固定在底盘9上,下辊轴2由二个对应的油缸10支承,且油缸10可推动下辊轴2做升降运动。上辊轴1和下辊轴2两端分别配置有上驱动装置4、下驱动装置11。液压装置6与液压油缸10以及驱动装置4与11相连接,数控装置7与液压装置6相连接并向液压装置6发送动作指令。
所述上驱动装置4和所述下驱动装置11内设有伺服机构,所述上辊轴1和所述下辊轴2均为刚性辊。
第二具体实施方式:在第一具体实施方式的基础上,二辊差速变曲率数控卷板机还包括传感器5,传感器5安装在下辊轴2与机架8上,用于测量出下辊轴2与上辊轴1之间绝对距离值(压入量)c。在上辊轴1与下辊轴2两端分别安装了高精度速度测量、反馈与控制装置。上驱动装置4、下驱动装置11均为伺服驱动装置。
为获得所需要的弯曲曲率,只要改变上辊轴1与下辊轴2的线速度差。线速度差越大,滚弯后板材形变曲率越大;线速度差越小,滚弯后板材形变曲率越小。在上辊轴1与下辊轴2两端分别安装了高精度速度测量、反馈与控制装置,可以实时反馈与控制当前上辊轴1与下辊轴2的线速度。
本发明通过传感器5和数控装置7,可以实现下辊轴2上升的自动调平功能,从而保证了在滚弯过程中下辊轴2与上辊轴1之间的平行度,以保证变曲率工件的品质。
本发明在上辊轴1与下辊轴2两端,均采用了两端同步驱动的装置,有利于防止一端驱动时由于辊轴面扭转变形引起工件发生扭曲、起皱等缺陷。
上述二辊差速变曲率数控卷板机及其使用方法的使用方法,包括如下步骤:
步骤一:如图2所示,将金属板材3置于上辊轴1与下辊轴2之间,数控装置7发出指令,通过液压装置6使油缸10推动下辊轴2上升,上辊轴1和下辊轴2夹紧并作用于金属板材3;
步骤二:启动上驱动装置4和下驱动装置11,上辊轴1和下辊轴2分别按预先设定好的线速度运转,当上辊轴1的线速度小于下辊轴2的线速度,此时板材下层被拉伸,上层被压缩,从而向上弯曲;当上辊轴1的线速度大于下辊轴2
的线速度,此时板材向下弯曲。
步骤三:在运行的过程中,通过数控装置7,调整上辊轴1和下辊轴2的线速度,从而在金属板材3长度方向上任意区段形成所需曲率。
在步骤一中,下辊轴2上升后,可以通过安装在下辊轴2与机架8上的传感器5测量出与上辊轴1之间绝对距离值(压入量)c,上、下辊之间的压入量c应小于板厚t。压入量c的大小决定了上辊轴1与下辊轴2对板材加载的荷载。适当的荷载作用于板材,产生周向摩擦力和厚向挤压力,有利于板材的塑性形变和卷制成形。
在步骤一中,如图2所示,为板材卷制示意图,包括上辊轴1、下辊轴2和金属板材3,该形状为上辊轴1的线速度先小于下辊轴2线速度,然后再大于下辊轴2线速度而得到。
如图3所示为向上弯成型区轴向截面图,由于上辊轴1与下辊轴2的线速度不等,产生了线速度差(速度比)。假定上辊轴线速度为V1,下辊轴线速度为V2。将i=V2/V1称为线速比。当i>1时,S1区间受压应力,S2区间受拉应力,此时板材向上弯曲(正弯),如图3所示;当i<1时,S1区间受拉应力,S2区间受压应力,此时金属板材向下弯曲(反弯),如图4所示。
通过对不同板厚、不同材质的金属板材,利用有限元模拟和力学计算,对拉伸和压缩过程进行仿真研究以及实验数据积累,找到了各工艺参数的作用影响规律,并建立数据库,获得了所需不同的弯曲曲率所对应速度比i,从而实现二辊差速变曲率的数字化控制。不同板厚、不同材质特性的金属板材卷制过程中,其速度比i与其形成的曲率有规律性的对应关系。
上述说明示出并描述了本发明的优选实施例,如前所述,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。
Claims (10)
- 二辊差速变曲率数控卷板机,其特征在于,包括机架(8)、上辊轴(1)、下辊轴(2)、上驱动装置(4)和下驱动装置(11),所述上辊轴(1)和下辊轴(2)平行安装于所述机架(8)上,所述上驱动装置(4)控制所述上辊轴(1)转动,所述下驱动装置(11)控制所述下辊轴(2)的转动,所述上驱动装置(4)和下驱动装置(11)均为伺服驱动装置。
- 如权利要求1所述的二辊差速变曲率数控卷板机,其特征在于,还包括液压装置(6)和油缸(10),所述液压装置(6)与油缸(10)、上驱动装置(4)和下驱动装置(11)相连,且油缸(10)推动下辊(2)做升降运动。
- 如权利要求2所述的二辊差速变曲率数控卷板机,其特征在于,所述油缸(10)有二个,下辊轴(2)由二个对应的油缸(10)支承。
- 如权利要求3所述的二辊差速变曲率数控卷板机,其特征在于,还包括底盘(9),所述机架(8)和所述液压装置(6)固定安装在所述底盘(9)上。
- 如权利要求4所述的二辊差速变曲率数控卷板机,其特征在于,还包括数控装置(7),所述数控装置(7)安装在所述底盘(9)上,并与所述数控装置(7)相连接。
- 如权利要求5所述的二辊差速变曲率数控卷板机,其特征在于,所述上驱动装置(4)和所述下驱动装置(11)内设有伺服机构。
- 如权利要求6所述的二辊差速变曲率数控卷板机,其特征在于,所述上辊轴(1)和所述下辊轴(2)均为刚性辊。
- 如权利要求7所述的二辊差速变曲率数控卷板机,其特征在于,还设有传感器(5),传感器(5)安装在下辊轴(2)与机架(8)上,用于测量出下辊轴(2)与上辊轴(1)之间绝对距离值。
- 如权利要求8所述的二辊差速变曲率数控卷板机,其特征在于,所述上驱动装置(4)和所述下驱动装置(11)为伺服电机。
- 如权利要求1-9任一项权利要求所述的二辊差速变曲率数控卷板机的使用方法,其特征在于,包括如下步骤:步骤一,将金属板材置于上辊轴(1)与下辊轴(2)之间,数控装置(7) 发出指令,通过液压装置(6)使油缸(10)推动下辊轴(2)上升,上辊轴(1)和下辊轴(2)夹紧并作用于金属板材(3);步骤二:启动上驱动装置(4)和下驱动装置(11),上辊轴(1)和下辊轴(2)分别按预先设定好的线速度运转,当上辊轴(1)的线速度小于下辊轴(2)的线速度,此时板材下层被拉伸,上层被压缩,从而向上弯曲;当上辊轴(1)的线速度大于下辊轴(2)的线速度,此时板材向下弯曲;步骤三:在运行的过程中,通过数控装置,调整上辊轴(1)和下辊轴(2)的线速度,从而在金属板材长度方向上任意区段形成所需曲率。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE212016000100.0U DE212016000100U1 (de) | 2015-05-27 | 2016-05-04 | NC-Blechbiegemaschine mit zwei mit unterschiedlichen Geschwindigkeiten und variabler Krümmung betriebenen Walzen |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510275281.6 | 2015-05-27 | ||
CN201510275281 | 2015-05-27 | ||
CN201510379951.9A CN105149384B (zh) | 2015-05-27 | 2015-07-01 | 二辊差速变曲率数控卷板机及其使用方法 |
CN201510379951.9 | 2015-07-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016188305A1 true WO2016188305A1 (zh) | 2016-12-01 |
Family
ID=54790587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/080937 WO2016188305A1 (zh) | 2015-05-27 | 2016-05-04 | 二辊差速变曲率数控卷板机及其使用方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN105149384B (zh) |
DE (1) | DE212016000100U1 (zh) |
WO (1) | WO2016188305A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107790522A (zh) * | 2017-09-07 | 2018-03-13 | 南通航力重工机械有限公司 | 上辊数控万能式卷板机 |
WO2018166274A1 (zh) * | 2017-03-16 | 2018-09-20 | 南通蓝岛海洋工程有限公司 | 一种卷板机的光感监测和控制系统及应用该系统的风电钢管桩筒体卷制工艺 |
DE102017122073A1 (de) * | 2017-09-22 | 2019-03-28 | Haeusler Ag Duggingen | Verfahren und Steuerung einer Biegemaschine |
CN114558914A (zh) * | 2022-02-14 | 2022-05-31 | 谭明 | 一种柔性滚弯数控卷板机 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105149384B (zh) * | 2015-05-27 | 2018-11-16 | 南通超力卷板机制造有限公司 | 二辊差速变曲率数控卷板机及其使用方法 |
CN106180324A (zh) * | 2016-07-11 | 2016-12-07 | 天津大学 | 一种利用不对称压缩和差速牵引的板料连续弯曲加工方法 |
CN107297400A (zh) * | 2017-06-27 | 2017-10-27 | 南京航空航天大学 | 一种难成形材料两轴电辅助加热滚弯成形的方法及装置 |
CN115283500A (zh) * | 2022-07-28 | 2022-11-04 | 武汉理工大学 | 一种异形截面筒体辊弯成形方法及装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4777816A (en) * | 1986-09-03 | 1988-10-18 | Inoue Sangyo Co. Ltd. | Roll bending machine |
JPH08332526A (ja) * | 1995-06-08 | 1996-12-17 | Hiroshi Saito | 予め測定した押圧力を出力する2本ロール成形機 |
CN102218459A (zh) * | 2011-07-14 | 2011-10-19 | 南通超力卷板机制造有限公司 | 一种数控可调整卷圆直径的二辊卷板机 |
CN103182408A (zh) * | 2011-12-30 | 2013-07-03 | 南通超力卷板机制造有限公司 | 一种数控卷制椭圆形工件的二辊卷板机 |
CN103223428A (zh) * | 2013-05-25 | 2013-07-31 | 江苏久日数控机床有限公司 | 一种数控二辊卷板机 |
CN103658260A (zh) * | 2012-09-25 | 2014-03-26 | 昆山尚达智机械有限公司 | 新型二辊卷板机 |
CN204247775U (zh) * | 2014-11-13 | 2015-04-08 | 上海施威重工成套有限公司 | 智能化卷板机 |
CN105149384A (zh) * | 2015-05-27 | 2015-12-16 | 南通超力卷板机制造有限公司 | 二辊差速变曲率数控卷板机及其使用方法 |
CN204996875U (zh) * | 2015-07-01 | 2016-01-27 | 南通超力卷板机制造有限公司 | 二辊差速变曲率数控卷板机 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6065319A (en) * | 1996-09-11 | 2000-05-23 | Ishikawajima-Harima Jukogyo Kabushiki Kaisha | Rolling mill with laterally different velocities |
CN1218792C (zh) * | 2003-04-15 | 2005-09-14 | 南京钢铁股份有限公司 | 轧件头部形状控制法 |
CN201105522Y (zh) * | 2007-09-30 | 2008-08-27 | 北京万源多贝克包装印刷机械有限公司 | 一种使砧辊和刀辊线速度一致的装置 |
CN202212441U (zh) * | 2011-07-12 | 2012-05-09 | 南通超力卷板机制造有限公司 | 一种带下辊自动调平功能的二辊卷板机 |
-
2015
- 2015-07-01 CN CN201510379951.9A patent/CN105149384B/zh active Active
-
2016
- 2016-05-04 WO PCT/CN2016/080937 patent/WO2016188305A1/zh active Application Filing
- 2016-05-04 DE DE212016000100.0U patent/DE212016000100U1/de active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4777816A (en) * | 1986-09-03 | 1988-10-18 | Inoue Sangyo Co. Ltd. | Roll bending machine |
JPH08332526A (ja) * | 1995-06-08 | 1996-12-17 | Hiroshi Saito | 予め測定した押圧力を出力する2本ロール成形機 |
CN102218459A (zh) * | 2011-07-14 | 2011-10-19 | 南通超力卷板机制造有限公司 | 一种数控可调整卷圆直径的二辊卷板机 |
CN103182408A (zh) * | 2011-12-30 | 2013-07-03 | 南通超力卷板机制造有限公司 | 一种数控卷制椭圆形工件的二辊卷板机 |
CN103658260A (zh) * | 2012-09-25 | 2014-03-26 | 昆山尚达智机械有限公司 | 新型二辊卷板机 |
CN103223428A (zh) * | 2013-05-25 | 2013-07-31 | 江苏久日数控机床有限公司 | 一种数控二辊卷板机 |
CN204247775U (zh) * | 2014-11-13 | 2015-04-08 | 上海施威重工成套有限公司 | 智能化卷板机 |
CN105149384A (zh) * | 2015-05-27 | 2015-12-16 | 南通超力卷板机制造有限公司 | 二辊差速变曲率数控卷板机及其使用方法 |
CN204996875U (zh) * | 2015-07-01 | 2016-01-27 | 南通超力卷板机制造有限公司 | 二辊差速变曲率数控卷板机 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018166274A1 (zh) * | 2017-03-16 | 2018-09-20 | 南通蓝岛海洋工程有限公司 | 一种卷板机的光感监测和控制系统及应用该系统的风电钢管桩筒体卷制工艺 |
CN107790522A (zh) * | 2017-09-07 | 2018-03-13 | 南通航力重工机械有限公司 | 上辊数控万能式卷板机 |
DE102017122073A1 (de) * | 2017-09-22 | 2019-03-28 | Haeusler Ag Duggingen | Verfahren und Steuerung einer Biegemaschine |
DE102017122073B4 (de) | 2017-09-22 | 2023-05-25 | Häusler Holding Ag | Verfahren und Steuerung einer Biegemaschine |
CN114558914A (zh) * | 2022-02-14 | 2022-05-31 | 谭明 | 一种柔性滚弯数控卷板机 |
Also Published As
Publication number | Publication date |
---|---|
CN105149384A (zh) | 2015-12-16 |
CN105149384B (zh) | 2018-11-16 |
DE212016000100U1 (de) | 2018-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016188305A1 (zh) | 二辊差速变曲率数控卷板机及其使用方法 | |
US8210014B2 (en) | Flexible forming device for forming three-dimensional shaped workpieces | |
CN201008878Y (zh) | 多辊轧机 | |
CN103182408A (zh) | 一种数控卷制椭圆形工件的二辊卷板机 | |
CN109127782B (zh) | 一种矫直机 | |
JP2017105127A (ja) | 多段ロール式のシート成形装置 | |
CN211052236U (zh) | 一种在线弯弧装置 | |
CN204996875U (zh) | 二辊差速变曲率数控卷板机 | |
CN2912857Y (zh) | 三维曲面柔性卷板装置 | |
CN205341548U (zh) | 方形钢管成形机 | |
CN102380532A (zh) | 用于板材三维曲面成形的曲面轧制装置和方法 | |
KR101620936B1 (ko) | 정밀 공차의 챔버 치수를 갖는 금속 섹션의 제조 방법 및 장치 | |
KR101443207B1 (ko) | 마그네슘 파이프 교정기 | |
CN108188217B (zh) | 载货汽车纵梁的对称式双辊夹持柔性弯曲成形装置及工艺 | |
CN204817596U (zh) | 一种新型多功能单辊卷板机 | |
CN204429935U (zh) | 扇形钢瓦辊压成型机 | |
WO2015027361A1 (zh) | 数控矫圆机的矫圆工艺 | |
CN203875157U (zh) | 一种数控三辊式卷圆机 | |
CN207103511U (zh) | 一种卷板机 | |
CN201988603U (zh) | 卷圆机直径调节装置 | |
CN204564840U (zh) | 卷板机 | |
KR101443205B1 (ko) | 마그네슘 파이프 교정방법 | |
US20140331730A1 (en) | Rolling device and the method thereof | |
CN203541203U (zh) | 一种新型的卷板机 | |
CN211489153U (zh) | 一种三辊卷板机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16799194 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 212016000100 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16799194 Country of ref document: EP Kind code of ref document: A1 |