WO2018166274A1 - 一种卷板机的光感监测和控制系统及应用该系统的风电钢管桩筒体卷制工艺 - Google Patents

一种卷板机的光感监测和控制系统及应用该系统的风电钢管桩筒体卷制工艺 Download PDF

Info

Publication number
WO2018166274A1
WO2018166274A1 PCT/CN2017/119636 CN2017119636W WO2018166274A1 WO 2018166274 A1 WO2018166274 A1 WO 2018166274A1 CN 2017119636 W CN2017119636 W CN 2017119636W WO 2018166274 A1 WO2018166274 A1 WO 2018166274A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
module
steel plate
control system
arc
Prior art date
Application number
PCT/CN2017/119636
Other languages
English (en)
French (fr)
Inventor
朱军
张伦伟
周爱红
Original Assignee
南通蓝岛海洋工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通蓝岛海洋工程有限公司 filed Critical 南通蓝岛海洋工程有限公司
Publication of WO2018166274A1 publication Critical patent/WO2018166274A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/004Bending sheet metal along straight lines, e.g. to form simple curves with program control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F

Definitions

  • the invention belongs to the field of wind power steel pipe pile cylinder rolling, and particularly relates to a light sensing monitoring and control system of a coiling machine and a wind power steel pipe pile cylinder rolling process using the same.
  • Wind power steel pipe piles ie wind turbines
  • Wind power steel pipe piles are embedded in the piles below the sea level, mainly supporting wind turbines and their important
  • the production of wind power steel pipe piles is particularly important.
  • the rolling of wind power steel pipe piles has always been a prominent problem.
  • the domestic testing method for the large deformation plate of the coiling machine is still relatively backward.
  • the quality control problem of the cylinder during the forming process is outstanding, the cylindricality of the cylinder forming cannot be guaranteed, and the on-line detection technology can improve the detection precision and reduce the labor intensity of workers.
  • the instruments used in the monitoring of shape and position error at home and abroad include three coordinate measuring machines, roundness meters and shape measuring instruments. These instruments are expensive, require relatively high detection environment, and the measuring range is limited to small and medium-sized parts, and the testing items are relatively high.
  • the traditional shape and error measurement is mostly contact measurement.
  • the commonly used measurement methods are: axis reference method, coordinate method, two-point method and three-point method. These traditional contact measurement methods have large comprehensive errors in measurement. Limitations such as large workload, easy damage to the surface of the workpiece, and limitations imposed by the measurement environment.
  • the object of the present invention is to provide a light sensing monitoring and control system for a bending machine which improves the accuracy and efficiency of rolling, has less difficulty in rolling, has reasonable process, and ensures the safety of the cylinder, and the application system thereof.
  • Wind power steel pipe pile cylinder rolling process is to provide a light sensing monitoring and control system for a bending machine which improves the accuracy and efficiency of rolling, has less difficulty in rolling, has reasonable process, and ensures the safety of the cylinder, and the application system thereof.
  • the technical solution adopted by the present invention is: a light sensing monitoring and control system of a bending machine, including
  • An online monitoring system comprising a CCD curvature sensor, a laser displacement sensor, a camera monitoring, an upper roller horizontal displacement magnetic scale, an upper roller lifting magnetic scale and a lower roller rotary encoder;
  • the feedback control system includes a PLC, an industrial computer, a display, and a control panel
  • the PLC includes an analog input module, a communication module, a power module, a counter module, and a switch module
  • the power module includes a power source and a CPU
  • the counter module includes a counter module 01, a counter module 02, a counter module 03, and a counter module 04.
  • the switch module includes a switch quantity output module and a switch quantity input and output module;
  • the CCD curvature sensor and the laser displacement sensor are connected to the analog input module, and the upper roller horizontal displacement magnetic scale, the upper roller lifting magnetic scale and the lower roller rotary encoder are connected with the counter module, and the analog input module and the communication module are connected.
  • the power module, the counter module, the switch module and the industrial computer are connected, and the industrial computer is connected with the camera monitoring and the display;
  • the coiling machine starts to work after the power is turned on.
  • the CCD curvature sensor and the laser ranging sensor begin to detect the curvature signal and the displacement signal, and transmit the curvature signal and the displacement signal to the analog input module;
  • the analog input module calculates and processes the curvature signal and the displacement signal through the CPU of the power module, and then uploads it to the industrial computer for processing and display, and the industrial computer starts to process whether the curvature or displacement meets the requirements;
  • the coiling machine continues to work on the coiling.
  • the industrial computer transmits the signal to the lower roller rotary encoder, and the lower roller rotary encoder receives the signal, and the counter module takes the data.
  • the CPU is compared with the built-in control model of the industrial computer to form a new control command, which is transmitted to the industrial computer through the communication module.
  • the industrial computer corrects the data variable and then transmits it to the PLC.
  • the output module sends commands to the servo valve and drives the cylinder and hydraulic equipment of the lower roller to cause the lower roller of the bending machine to rotate under a new control command; when the displacement obtained by the distance sensor is too large, the counter module collects these data signals.
  • the CPU is analyzed and transmitted to the industrial computer through the communication module.
  • the industrial computer corrects the data variables and then transmits them to the PLC.
  • the switch output module of the PLC sends commands to the servo valve and drives the upper roller cylinder and hydraulic equipment. , causing the upper roller to correct the horizontal displacement; when the displacement obtained by the distance sensor is too small, the counter module will After the data signal is collected, the CPU is compared with the data detected by the magnetic scale.
  • the main parameters in the molding control model are corrected, and transmitted to the industrial computer through the communication module.
  • the industrial computer corrects the data variables and then transmits them to the PLC.
  • the switch output module of the PLC sends a command to the servo valve and drives the upper roller cylinder and the hydraulic device, and executes a new control command to cause the upper roller to perform the lifting movement until the coil processing requirements are met;
  • the limit switch of the digital input and output module and the current limiter receive signals and perform limit, and detect whether the curvature and displacement meet the requirements again;
  • step e When the curvature and displacement do not meet the requirements, return to step c above again, and stop the coiling work when the curvature and displacement meet the requirements.
  • Wind power cylinder rolling process using light sensing monitoring and control system including sample making, steel plate inspection, steel plate pre-rolling, automatic monitoring roll forming, longitudinal seam cleaning, longitudinal seam adjustment, welding, cylinder hanging, Secondary calibration and cylinder repair.
  • the steel plate is fed into a three-roll bending machine for pre-rolling, and the three-roll bending machine includes a base, left and right brackets, two lower rollers, one upper roller and a speed reducing mechanism, and a three-roller coiling plate
  • the lower roller of the machine is matched with the steel plate conveying bed for end alignment, the upper roller is kept inclined, the head of one end of the pre-bent steel plate is about 200-300 mm, and the arc of the end of the large and small mouth is inspected by the circular arc template in the step (1);
  • Step (3) After the arc of the end of the large and small mouth is qualified, the arc is monitored and continuously rolled by the light sensing monitoring and control system;
  • Longitudinal joint adjustment adjust the amount of misalignment and clearance of the longitudinal slit, when the left and right opposite sides of the steel plate are less than or equal to 1mm, the offset of the end face of the cylinder that is butted against the flange is less than or equal to 0.5mm, and the thickness misalignment is less than When the value is equal to 1 mm, the pairwise gap is less than or equal to 1 mm;
  • welding firstly, longitudinal seam spot welding is carried out.
  • the spot welding length is not shorter than 20mm, and the pair spacing is less than or equal to 300mm.
  • the arc runner is welded by double-sided welding at both ends of the cylinder, and the thickness of the arc runner and the cylinder Consistently, the welding angle of the arc striking plate is kept horizontal with the steel plate, and the welding length is greater than or equal to two-thirds of the length of the arc striking plate; finally, the bottom sealing welding is carried out by CO2 gas shielded welding, the height of the back sealing weld should be less than or equal to 4 mm, and the height of the back cover weld is Uniform, flat surface;
  • Cylinder hanging off The special U-shaped spreader or chain hook is used to lift the cylinder from the coiling machine to the stacking area of the cylinder;
  • step (9) the steps of controlling the ellipticity of the cylinder connected to the flange are as follows:
  • Rounding smoothing the edge of the rounding tooling, without any sharp angle; in the small arc area, the iron block is placed on the inner side of the cylinder, and the polyurethane material is placed between the iron block and the inner cylinder body, and the thickness is 5-10mm.
  • the upper side of the cylinder is pressed down by a Samsung roll bending machine, which includes an upper roller, two lower rollers, a base, left and right brackets, and a reducer;
  • the four-star roll bending machine comprises a top roll, a lower roll, two side rolls, a base, left and right brackets, and a reducer; in the longitudinal seam area, the inner and outer sides of the longitudinal slit are detected The arc of 1 meter range, after passing the test, it will enter the next process, and if the test fails, the rounding process will continue;
  • the light sensing monitoring and control system of the bending machine uses the combination of visual measurement and laser ranging sensor to detect and control the deformation of the coil.
  • the visual measurement is used as a research result in the field of computer vision and image processing.
  • a kind of non-contact measurement method formed by the field has the outstanding advantages of flexible data processing, fast image reproduction, and strong anti-interference ability on the site. It can meet the needs of modern manufacturing industry well and realize the realization of online monitoring system. Provide an ideal means.
  • the online monitoring system will monitor the bending and deformation of the coil by laser displacement sensor and CCD video monitoring, and transmit the real-time data such as the position and deformation of the board back to the data processing unit.
  • the online monitoring system will continuously The setting model of the working of the bending machine is corrected, and the specific control parameters are continuously corrected.
  • the data processing unit issues instructions to the control system of the bending machine, and by controlling the winding angle of the bending machine or the speed of the winding plate, The coils are rounded at one time to increase production efficiency.
  • wind power cylinder rolling process in the rolling process using the light sensor monitoring and control system to monitor the arc and continuous rolling improve the degree of automation, greatly improve the accuracy and efficiency of the rolling; preparation before the roll directly affects the cylinder
  • the surface quality of the body and the quality of the welding make the whole process step rational and orderly;
  • the middle roller is matched with the steel plate conveying bed for the end alignment during the feeding, in order to prevent the cornering of the rolling process;
  • the winding process is first straightened by the pre-bending On the side, continuous bending and rolling is carried out to improve the winding precision of the cylinder;
  • the steps of the longitudinal seam group ensure that the longitudinal gap, the weld height and the surface level are strictly met; in the second calibration circle, the arc runner is removed.
  • the gouging removes the arc-striking plate to ensure that the welding groove and the lack of meat at the weld of the weld are not damaged; because the flatness of the flange on the top section is high, the second cylinder on the flange side of the top section should control the part of the arc Deformation and ellipticity, so four diameter measurements are made in the secondary calibration circle, which satisfies the ellipticality requirements of the flanged barrel.
  • the steps of controlling the ellipticity of the cylinder connected to the flange include inspection, rounding, unwinding, inspection and recording. During the rounding process, different rounding areas are used to pass different rounding methods to avoid The inside of the cylinder causes creases to ensure the quality of the cylinder and reduce the damage rate.
  • FIG. 1 is a control schematic diagram of a light sensing monitoring and control system of the present invention.
  • FIG. 2 is a logic control diagram of the light sensing monitoring and control system of the present invention.
  • FIG 3 is a schematic view showing the specification requirements of the partial recess length at the longitudinal arc of the cylindrical arc in the step (9) of the wind power cylinder rolling process of the light sensing monitoring and control system of the present invention.
  • FIG. 4 is a schematic view showing the specification requirements of the local convex length at the longitudinal arc of the cylindrical arc in the step (9) of the wind power cylinder rolling process of the light sensing monitoring and control system of the present invention.
  • FIG. 5 is a schematic diagram showing the detection of the ellipticity of the flange connecting cylinder in the winding process step (9) of the wind power cylinder using the light sensing monitoring and control system of the present invention.
  • Light sensing monitoring and control system for a bending machine including
  • An online monitoring system comprising a CCD curvature sensor, a laser displacement sensor, a camera monitoring, an upper roller horizontal displacement magnetic scale, an upper roller lifting magnetic scale and a lower roller rotary encoder;
  • a feedback control system includes a PLC, an industrial computer, a display and a control panel.
  • the PLC includes an analog input module, a communication module, a power module, a counter module, and a switch module, wherein the power module includes a power source and a CPU, and the counter module includes The counter module 01, the counter module 02, the counter module 03, the counter module 04, and the switch module include a switch quantity output module and a switch quantity input and output module;
  • the CCD curvature sensor and the laser displacement sensor are connected with the analog input module, the upper roller horizontal displacement magnetic scale, the upper roller lifting magnetic scale and the lower roller rotary encoder are connected with the counter module, the analog input module, the communication module, the power module, The counter module and the switch module are connected with the industrial computer, and the industrial computer is connected with the camera monitoring and the display;
  • the coiling machine starts to work after the power is turned on.
  • the CCD curvature sensor and the laser ranging sensor begin to detect the curvature signal and the displacement signal, and transmit the curvature signal and the displacement signal to the analog input module;
  • the analog input module calculates and processes the curvature signal and the displacement signal through the CPU of the power module, and then uploads it to the industrial computer for processing and display, and the industrial computer starts to process whether the curvature or displacement meets the requirements;
  • the coiling machine continues to work on the coiling.
  • the industrial computer transmits the signal to the lower roller rotary encoder, and the lower roller rotary encoder receives the signal, and the counter module takes the data.
  • the CPU is compared with the built-in control model of the industrial computer to form a new control command, which is transmitted to the industrial computer through the communication module.
  • the industrial computer corrects the data variable and then transmits it to the PLC.
  • the output module sends commands to the servo valve and drives the cylinder and hydraulic equipment of the lower roller to cause the lower roller of the bending machine to rotate under a new control command; when the displacement obtained by the distance sensor is too large, the counter module collects these data signals.
  • the CPU is analyzed and transmitted to the industrial computer through the communication module.
  • the industrial computer corrects the data variables and then transmits them to the PLC.
  • the switch output module of the PLC sends commands to the servo valve and drives the upper roller cylinder and hydraulic equipment. , causing the upper roller to correct the horizontal displacement; when the displacement obtained by the distance sensor is too small, the counter module will After the data signal is collected, the CPU is compared with the data detected by the magnetic scale.
  • the main parameters in the molding control model are corrected, and transmitted to the industrial computer through the communication module.
  • the industrial computer corrects the data variables and then transmits them to the PLC.
  • the switch output module of the PLC sends a command to the servo valve and drives the upper roller cylinder and the hydraulic device, and executes a new control command to cause the upper roller to perform the lifting movement until the coil processing requirements are met;
  • the limit switch of the digital input and output module and the current limiter receive signals and perform limit, and detect whether the curvature and displacement meet the requirements again;
  • step e When the curvature and displacement do not meet the requirements, return to step c above again, and stop the coiling operation when the curvature and displacement meet the requirements.
  • Wind power cylinder rolling process using light sensing monitoring and control system including sample making, steel plate inspection, steel plate pre-rolling, automatic monitoring roll forming, longitudinal seam cleaning, longitudinal seam adjustment, welding, cylinder hanging, Secondary calibration and cylinder repair.
  • the steel plate is fed into a three-roll bending machine for pre-rolling, and the three-roll bending machine includes a base, left and right brackets, two lower rollers, one upper roller and a speed reducing mechanism, and a three-roller coiling plate
  • the lower roller of the machine is matched with the steel plate conveying bed for end alignment, the upper roller is kept inclined, the head of one end of the pre-bent steel plate is about 200-300 mm, and the arc of the end of the large and small mouth is inspected by the circular arc template in the step (1);
  • Step (3) After the arc of the end of the large and small mouth is qualified, the arc is monitored and continuously rolled by the light sensing monitoring and control system;
  • Longitudinal joint adjustment adjust the amount of misalignment and clearance of the longitudinal slit, when the left and right opposite sides of the steel plate are less than or equal to 1mm, the offset of the end face of the cylinder that is butted against the flange is less than or equal to 0.5mm, and the thickness misalignment is less than When the value is equal to 1 mm, the pairwise gap is less than or equal to 1 mm;
  • welding firstly, longitudinal seam spot welding is carried out.
  • the spot welding length is not shorter than 20mm, and the pair spacing is less than or equal to 300mm.
  • the arc runner is welded by double-sided welding at both ends of the cylinder, and the thickness of the arc runner and the cylinder Consistently, the welding angle of the arc striking plate is kept horizontal with the steel plate, and the welding length is greater than or equal to two-thirds of the length of the arc striking plate; finally, the bottom sealing welding is carried out by CO2 gas shielded welding, the height of the back sealing weld should be less than or equal to 4 mm, and the height of the back cover weld is Uniform, flat surface;
  • Cylinder hanging off The special U-shaped spreader or chain hook is used to lift the cylinder from the coiling machine to the stacking area of the cylinder;
  • step (9) the steps of controlling the ellipticity of the cylinder connected to the flange are as follows:
  • Rounding smoothing the edge of the rounding tooling, without any sharp angle; in the small arc area, the iron block is placed on the inner side of the cylinder, and the polyurethane material is placed between the iron block and the inner cylinder body, and the thickness is 5-10mm.
  • the upper side of the cylinder is pressed down by a Samsung roll bending machine, which includes an upper roller, two lower rollers, a base, left and right brackets, and a reducer;
  • the four-star roll bending machine comprises a top roll, a lower roll, two side rolls, a base, left and right brackets, and a reducer; in the longitudinal seam area, the inner and outer sides of the longitudinal slit are detected The arc of 1 meter range, after passing the test, it will enter the next process, and if the test fails, the rounding process will continue;

Abstract

一种卷板机的光感监测和控制系统及应用该系统的风电钢管桩筒体卷制工艺,卷板机的光感监测和控制系统包括在线监测系统与反馈控制系统;应用该系统的风电筒体卷制工艺包括样板制作、钢板检查、钢板预卷、卷制成型、纵缝清理、纵缝调整、焊接、筒体吊离、二次校圆、筒体修补。该系统以光学检测为基础,组成光、机、电的综合在线测量控制系统,具有非接触、高速度、动态范围大、信息量丰富的优点,风电筒体在卷制过程中采用光感监测和控制系统对弧度进行监测并连续卷制,提高自动化程度,大大提高卷制精度及效率。

Description

一种卷板机的光感监测和控制系统及应用该系统的风电钢管桩筒体卷制工艺 技术领域
本发明属于风电钢管桩筒体卷制领域,具体涉及一种卷板机的光感监测和控制系统及应用该系统的风电钢管桩筒体卷制工艺。
背景技术
近年来,海上风力发电作为可再生的清洁能源受到世界各国政府、能源界和环保界的高度重视,风电钢管桩即风力发电机嵌入海平面下方的立柱桩,主要支撑风力发电机组及其重要组件,因此风电钢管桩的制作显得尤为重要,而在风电钢管桩的制作过程中,风电钢管桩筒体的卷制一直是比较突出的问题。
国内对卷板机大变形板件的检测手段还是比较落后,筒体在成型过程中质量控制问题突出,筒体成型的圆柱度无法保证,在线检测技术能提高检测的精度和降低工人劳动强度,大大提高生产的效率,为了紧跟全球海工机械发展的步伐,对大型机电液一体化卷板机的自动化改造势在必行。现在国内外在形位误差监测方面使用的仪器有三坐标测量机、圆度仪和形状测量仪等,这些仪器价格昂贵,对检测环境要求比较高,测量范围限于中小尺寸的零件,且检测项目较为单一,更不能用于大尺寸零件形位误差的测量,约束性较大。传统的形位误差测量大都是接触式测量,常用的测量方法有:轴心基准法、坐标法、两点法和三点法等,而这些传统的接触式测量法存在测量时综合误差 大、工作量大、易损伤工件表面、受测量环境限制等局限性。
因此需要提出一种工艺合理、卷制难度小、提高卷制精度及效率、保证筒体安全的卷板机的光感监测和控制系统及应用该系统的风电钢管桩筒体卷制工艺势在必行。
发明内容
本发明的目的在于针对现有技术的不足,现提供一种提高卷制精度及效率、卷制难度小、工艺合理、保证筒体安全的卷板机的光感监测和控制系统及应用该系统的风电钢管桩筒体卷制工艺。
为解决上述技术问题,本发明采用的技术方案为:一种卷板机的光感监测和控制系统,包括
一在线监测系统,所述在线监测系统包括CCD曲率传感器、激光位移传感器、摄像监控、上辊水平位移磁栅尺、上辊升降磁栅尺及下辊旋转编码器;
一反馈控制系统,所述反馈控制系统包括PLC、工控机、显示器及控制面板,所述PLC包括模拟量输入模块、通信模块、电源模块、计数器模块、开关量模块,其中电源模块包括电源以及CPU,计数器模块包括计数器模块01、计数器模块02、计数器模块03、计数器模块04,开关量模块包括开关量输出模块、开关量输入输出模块;
所述CCD曲率传感器、激光位移传感器与模拟量输入模块连接,上辊水平位移磁栅尺、上辊升降磁栅尺及下辊旋转编码器与计数器模块连接,所述模拟量输入模块、通信模块、电源模块、计数器模块、开关量模块与工控机连接,同时工控机与摄像监控、显示器连接;
卷板机的光感监测和控制系统的监控方法,其具体步骤如下:
a、卷板机通电启动后开始卷板工作,在卷板过程中CCD曲率传感器以及激光测距传感器开始检测曲率信号以及位移信号,将曲率信号以及位移信号传输给模拟量输入模块;
b、模拟量输入模块将曲率信号以及位移信号通过电源模块的CPU进行计算处理后上传给工控机进行处理和显示,工控机开始处理分析曲率或者位移是否达到要求;
c、当曲率或者位移达到要求时,卷板机继续卷板工作,当曲率没有达到要求时,工控机将信号传输给下辊旋转编码器,下辊旋转编码器接收信号,计数器模块将这些数据信号采集完毕后再给CPU,与工控机内置控制模型进行比较分析,形成新的控制指令,通过通信模块传输至工控机,工控机将数据变量进行修正后下传给PLC,由PLC的开关量输出模块发出指令传输给伺服阀并驱动下辊的油缸及液压设备,促使卷板机的下辊在新的控制指令下旋转;当距离传感器获得的位移过大时,计数器模块将这些数据信号采集完毕后再给CPU进行分析,通过通信模块传输至工控机,工控机将数据变量进行修正后下传给PLC,由PLC的开关量输出模块发出指令传输给伺服阀并驱动上辊油缸及液压设备,促使上辊修正水平位移;当距离传感器获得的位移过小时,计数器模块将这些数据信号采集完毕后再给CPU,与磁栅尺检测的数据进行对比分析,对成型控制模型内主要参数进行修正,通过通信模块传输至工控机,工控机将数据变量进行修正后下传给PLC,由PLC的开关量输出模块发出指令传输给伺服阀并驱动上辊油 缸以及液压设备,执行新的控制指令促使上辊进行升降运动,直到满足卷板加工要求;
d、开关量输入输出模块的限位开关以及限流器接收信号并进行限位,再次检测曲率和位移是否达到要求;
e、当曲率和位移没有达到要求时,再次回到上述步骤c,当曲率和位移达到要求时,停止卷板工作。
一种应用光感监测和控制系统的风电筒体卷制工艺,包括样板制作、钢板检查、钢板预卷、自动监控卷制成型、纵缝清理、纵缝调整、焊接、筒体吊离、二次校圆、筒体修补。
进一步地,其具体步骤如下:
(1)样板制作:制作圆弧样板,采用厚度为10mm的钢板,由剪板机下料再加工周边形成一圆弧样板,加工时两平面需校平直,大小口端圆弧样板弦长大于等于600mm,当筒体直径大于等于4500mm时,圆弧样板的大小口端弦长大于等于800mm;
(2)钢板检查:检查钢板表面质量,若钢板表面有气泡、裂纹、结疤、夹杂、分层、压入氧化皮的异物,对异物进行抛光处理,将切割边缘的割渣通过电磨清理干净;核对筒体号,便于选择圆弧样板;打磨纵缝对接坡口及边缘25mm以上;
(3)钢板预卷:将钢板送入三辊卷板机进行预卷,所述三辊卷板机包括底座、左右支架、两个下辊、一个上辊和减速机构,以三辊卷板机的下辊配合钢板输送床进行端部对齐,将上辊保持倾斜,预弯钢板的一端头部约200-300mm,并用步骤(1)中的圆弧样板检查大 小口端部的圆弧;
(4)自动监控卷制成型:步骤(3)大小口端部的圆弧合格后,通过光感监测和控制系统对弧度进行监控并连续卷制;
(5)纵缝清理:清理纵缝两侧各20-30mm范围内的油污以及铁锈,分别用热碱液、稀盐酸将钢板上的油污以及铁锈清理干净;
(6)纵缝调整:调整纵缝对口的错边量和间隙,钢板左右对口错边量小于等于1mm时,与法兰对接的筒体端面偏移量小于等于0.5㎜,厚度错边量小于等于1㎜时,组对间隙小于等于1㎜;
(7)焊接:首先进行纵缝点焊,点焊长不短于20mm,组对间距小于等于300mm;其次在筒体两端通过双面焊焊接引弧板,引弧板的厚度与筒体保持一致,引弧板焊接角度与钢板保持水平,焊接长度大于等于引弧板长度的三分之二;最后采用CO2气体保护焊进行封底焊,封底焊缝高度应小于等于4mm,封底焊缝高度均匀,表面平整;
(8)筒体吊离:采用专用的U型吊具或链条吊勾将筒体吊离卷板机至筒体堆放区域;
(9)二次校圆:采用气刨切除将引弧板卸下,切除的过程中保证不损伤该部位的焊接坡口及缺肉;采用三辊卷板机进行校圆,校圆后的筒体圆弧自然过渡并均匀平滑,纵缝处的局部凹凸度应符合下列算式要求:E≤(0.1t+1)mm,其中E为纵缝凹凸度的长度,t为钢板的厚度;控制筒体与法兰连接的筒体椭圆度,对筒体进行四次直径的测量,四次测量的直径差最大≤25mm,如果筒节直径≤2800mm时,四次测量的直径差最大应≤20mm;
(10)筒体修补:对筒体表面损伤进行修、补、磨。
进一步地,步骤(9)二次校圆过程中,控制与与法兰连接的筒体椭圆度的步骤如下:
检查:检查辊子上是否清洁,如有氧化皮,需要进行清理,以避免弹坑的产生;检查筒体三个位置的圆度,分别为6点位置、7点半位置、9点半位置,根据这三个位置的板厚,对照对应的圆度要求,进行检查筒体上述三个位置的圆度,合格后进入下一工序,不合格圆度要求的筒体采用三辊卷板机继续进行校圆;
回圆:对回圆工装的边势打磨光滑,不得有任何锐角;在圆弧较小区域,用铁块垫在筒体内侧,铁块与内侧筒体间垫上聚氨酯材料,厚度为5-10mm,用三星辊卷板机对筒体内侧进行上辊下压,所述三星辊卷板机包括一上辊、两下辊、底座、左右支架、一减速机;在圆弧较大区域,用四星辊卷板机进行卷制,所述四星辊卷板机包括一上辊、一下辊、两侧滚、底座、左右支架、一减速机;在纵缝区域,检测纵缝内外两侧1米范围的圆弧,检测合格后进入下一工序,检测不合格的继续进行回圆处理;
出筒:出筒时筒体纵缝处于6点位置,放置堆场后将纵缝转到7-8点位置;
检查与记录:操作人员、检验人员使用样板进行检查时,需要用钢直尺测量样板与筒体间的最大值,通过参考值进行现场判定筒体圆度是否符合要求,对于符合要求的筒体进行下一道工序,对于不符合筒体要求的筒体放置规定的堆放区域;在筒体上记录塔节号码,并做 好标识。
本发明的有益效果如下:
1、卷板机的光感监测和控制系统采用视觉测量和激光测距传感器结合的方式进行卷板的变形监测和控制的信息来源,视觉测量作为计算机视觉与图像处理领域诸多研究成果应用于测量领域而形成的一类非接触测量方法,具有数据处理灵活、快速、图像再现性好、现场抗干扰能力强等突出的优点,能很好的满足现代制造业的需要,为在线监测系统的实现提供了一个理想的手段。在线监测系统将通过激光位移传感器及CCD视频监控监测卷板的弯曲和变形的情况,并将板件的位置和变形情况等实时数据传回数据处理单元,通过对实时反馈数据的分析,不断对卷板机工作的设定模型进行修正,对特定的控制参量进行不断的修正,数据处理单元发出指令给卷板机的控制系统,通过控制卷板机卷制角或卷板速度的方式,让卷板一次成圆,提高生产效率。
以光学检测为基础,将光电子学、计算机技术、激光技术、图像处理技术、自动控制技术等现代科学技术融合为一体,组成光、机、电的综合在线测量控制系统,具有非接触、高速度、动态范围大、信息量丰富等诸多优点,是一种以机器视觉为基础,结合图像处理、模式识别及人工智能等技术的非接触在线测量方法,具有非接触、测量速度快,抗干扰能力强等优点,非常适合卷板机质量在线监测和自动控制,为大口径导管架的生产监测提供重要的技术支撑。
2、风电筒体卷制工艺在卷制过程中采用光感监测和控制系统对 弧度进行监测并连续卷制,提高自动化程度,大大提高卷制精度及效率;卷制前的准备工作直接影响筒体的表面质量以及焊接质量,使整个工艺步骤合理有序进行;上料时以中辊配合钢板输送床进行端部对齐,以防卷制过程发生窜角;卷制过程先通过预弯消除直边,再进行连续弯曲卷制,提高筒体的卷制精度;纵缝组对的步骤保证纵缝间隙、焊缝高度及表面平整严格达到要求;二次校圆中将引弧板卸下,气刨切除引弧板,保证不损伤焊缝焊接处的焊接坡口和缺肉;由于顶段上法兰平面度要求高,顶段上法兰侧的第二筒体应控制圆弧的局部变形和椭圆度,因此二次校圆中进行四次直径测量,满足于法兰连接的筒体椭圆度要求。
3、控制与与法兰连接的筒体椭圆度的步骤包括检查、回圆、出筒、检查与记录,在回圆过程中,对不同圆弧大小的区域通过不同的回圆方法,以免在筒体内侧引起折痕,保证筒体的质量,减少损坏率。
附图说明
图1为本发明的光感监测和控制系统的控制原理图。
图2为本发明的光感监测和控制系统的逻辑控制图。
图3为本发明的应用光感监测和控制系统的风电筒体卷制工艺步骤(9)中筒体圆弧纵缝处的局部凹处长度的规范要求示意图。
图4为本发明的应用光感监测和控制系统的风电筒体卷制工艺步骤(9)中筒体圆弧纵缝处的局部凸处长度的规范要求示意图。
图5为本发明的应用光感监测和控制系统的风电筒体卷制工艺步骤(9)中法兰连接筒体椭圆度的检测示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
一种卷板机的光感监测和控制系统,包括
一在线监测系统,在线监测系统包括CCD曲率传感器、激光位移传感器、摄像监控、上辊水平位移磁栅尺、上辊升降磁栅尺及下辊旋转编码器;
一反馈控制系统,反馈控制系统包括PLC、工控机、显示器及控制面板,PLC包括模拟量输入模块、通信模块、电源模块、计数器模块、开关量模块,其中电源模块包括电源以及CPU,计数器模块包括计数器模块01、计数器模块02、计数器模块03、计数器模块04,开关量模块包括开关量输出模块、开关量输入输出模块;
CCD曲率传感器、激光位移传感器与模拟量输入模块连接,上辊水平位移磁栅尺、上辊升降磁栅尺及下辊旋转编码器与计数器模块连接,模拟量输入模块、通信模块、电源模块、计数器模块、开关量模块与工控机连接,同时工控机与摄像监控、显示器连接;
卷板机的光感监测和控制系统的监控方法,其具体步骤如下:
a、卷板机通电启动后开始卷板工作,在卷板过程中CCD曲率传感器以及激光测距传感器开始检测曲率信号以及位移信号,将曲率信号以及位移信号传输给模拟量输入模块;
b、模拟量输入模块将曲率信号以及位移信号通过电源模块的CPU 进行计算处理后上传给工控机进行处理和显示,工控机开始处理分析曲率或者位移是否达到要求;
c、当曲率或者位移达到要求时,卷板机继续卷板工作,当曲率没有达到要求时,工控机将信号传输给下辊旋转编码器,下辊旋转编码器接收信号,计数器模块将这些数据信号采集完毕后再给CPU,与工控机内置控制模型进行比较分析,形成新的控制指令,通过通信模块传输至工控机,工控机将数据变量进行修正后下传给PLC,由PLC的开关量输出模块发出指令传输给伺服阀并驱动下辊的油缸及液压设备,促使卷板机的下辊在新的控制指令下旋转;当距离传感器获得的位移过大时,计数器模块将这些数据信号采集完毕后再给CPU进行分析,通过通信模块传输至工控机,工控机将数据变量进行修正后下传给PLC,由PLC的开关量输出模块发出指令传输给伺服阀并驱动上辊油缸及液压设备,促使上辊修正水平位移;当距离传感器获得的位移过小时,计数器模块将这些数据信号采集完毕后再给CPU,与磁栅尺检测的数据进行对比分析,对成型控制模型内主要参数进行修正,通过通信模块传输至工控机,工控机将数据变量进行修正后下传给PLC,由PLC的开关量输出模块发出指令传输给伺服阀并驱动上辊油缸以及液压设备,执行新的控制指令促使上辊进行升降运动,直到满足卷板加工要求;
d、开关量输入输出模块的限位开关以及限流器接收信号并进行限位,再次检测曲率和位移是否达到要求;
e、当曲率和位移没有达到要求时,再次回到上述步骤c,当曲 率和位移达到要求时,停止卷板工作。
一种应用光感监测和控制系统的风电筒体卷制工艺,包括样板制作、钢板检查、钢板预卷、自动监控卷制成型、纵缝清理、纵缝调整、焊接、筒体吊离、二次校圆、筒体修补。
其具体步骤如下:
(1)样板制作:制作圆弧样板,采用厚度为10mm的钢板,由剪板机下料再加工周边形成一圆弧样板,加工时两平面需校平直,大小口端圆弧样板弦长大于等于600mm,当筒体直径大于等于4500mm时,圆弧样板的大小口端弦长大于等于800mm;
(2)钢板检查:检查钢板表面质量,若钢板表面有气泡、裂纹、结疤、夹杂、分层、压入氧化皮的异物,对异物进行抛光处理,将切割边缘的割渣通过电磨清理干净;核对筒体号,便于选择圆弧样板;打磨纵缝对接坡口及边缘25mm以上;
(3)钢板预卷:将钢板送入三辊卷板机进行预卷,所述三辊卷板机包括底座、左右支架、两个下辊、一个上辊和减速机构,以三辊卷板机的下辊配合钢板输送床进行端部对齐,将上辊保持倾斜,预弯钢板的一端头部约200-300mm,并用步骤(1)中的圆弧样板检查大小口端部的圆弧;
(4)自动监控卷制成型:步骤(3)大小口端部的圆弧合格后,通过光感监测和控制系统对弧度进行监控并连续卷制;
(5)纵缝清理:清理纵缝两侧各20-30mm范围内的油污以及铁锈,分别用热碱液、稀盐酸将钢板上的油污以及铁锈清理干净;
(6)纵缝调整:调整纵缝对口的错边量和间隙,钢板左右对口错边量小于等于1mm时,与法兰对接的筒体端面偏移量小于等于0.5㎜,厚度错边量小于等于1㎜时,组对间隙小于等于1㎜;
(7)焊接:首先进行纵缝点焊,点焊长不短于20mm,组对间距小于等于300mm;其次在筒体两端通过双面焊焊接引弧板,引弧板的厚度与筒体保持一致,引弧板焊接角度与钢板保持水平,焊接长度大于等于引弧板长度的三分之二;最后采用CO2气体保护焊进行封底焊,封底焊缝高度应小于等于4mm,封底焊缝高度均匀,表面平整;
(8)筒体吊离:采用专用的U型吊具或链条吊勾将筒体吊离卷板机至筒体堆放区域;
(9)二次校圆:采用气刨切除将引弧板卸下,切除的过程中保证不损伤该部位的焊接坡口及缺肉;采用三辊卷板机进行校圆,校圆后的筒体圆弧自然过渡并均匀平滑,纵缝处的局部凹凸度应符合下列算式要求:E≤(0.1t+1)mm,其中E为纵缝凹凸度的长度,t为钢板的厚度;控制筒体与法兰连接的筒体椭圆度,对筒体进行四次直径的测量,四次测量的直径差最大≤25mm,如果筒节直径≤2800mm时,四次测量的直径差最大应≤20mm;
(10)筒体修补:对筒体表面损伤进行修、补、磨。
其中,步骤(9)二次校圆过程中,控制与与法兰连接的筒体椭圆度的步骤如下:
检查:检查辊子上是否清洁,如有氧化皮,需要进行清理,以避免弹坑的产生;检查筒体三个位置的圆度,分别为6点位置、7点半 位置、9点半位置,根据这三个位置的板厚,对照对应的圆度要求,进行检查筒体上述三个位置的圆度,合格后进入下一工序,不合格圆度要求的筒体采用三辊卷板机继续进行校圆;
回圆:对回圆工装的边势打磨光滑,不得有任何锐角;在圆弧较小区域,用铁块垫在筒体内侧,铁块与内侧筒体间垫上聚氨酯材料,厚度为5-10mm,用三星辊卷板机对筒体内侧进行上辊下压,所述三星辊卷板机包括一上辊、两下辊、底座、左右支架、一减速机;在圆弧较大区域,用四星辊卷板机进行卷制,所述四星辊卷板机包括一上辊、一下辊、两侧滚、底座、左右支架、一减速机;在纵缝区域,检测纵缝内外两侧1米范围的圆弧,检测合格后进入下一工序,检测不合格的继续进行回圆处理;
出筒:出筒时筒体纵缝处于6点位置,放置堆场后将纵缝转到7-8点位置;
检查与记录:操作人员、检验人员使用样板进行检查时,需要用钢直尺测量样板与筒体间的最大值,通过参考值进行现场判定筒体圆度是否符合要求,对于符合要求的筒体进行下一道工序,对于不符合筒体要求的筒体放置规定的堆放区域;在筒体上记录塔节号码,并做好标识。
筒体6点位置、7点半位置、9点半位置的圆度要求
Figure PCTCN2017119636-appb-000001
上述实施例只是本发明的较佳实施例,并不是对本发明技术方案的限制,只要是不经过创造性劳动即可在上述实施例的基础上实现的技术方案,均应视为落入本发明专利的权利保护范围内。

Claims (4)

  1. 一种卷板机的光感监测和控制系统,其特征在于:包括
    一在线监测系统,所述在线监测系统包括CCD曲率传感器、激光位移传感器、摄像监控、上辊水平位移磁栅尺、上辊升降磁栅尺及下辊旋转编码器;
    一反馈控制系统,所述反馈控制系统包括PLC、工控机、显示器及控制面板,所述PLC包括模拟量输入模块、通信模块、电源模块、计数器模块、开关量模块,其中电源模块包括电源以及CPU,计数器模块包括计数器模块01、计数器模块02、计数器模块03、计数器模块04,开关量模块包括开关量输出模块、开关量输入输出模块;
    所述CCD曲率传感器、激光位移传感器与模拟量输入模块连接,上辊水平位移磁栅尺、上辊升降磁栅尺及下辊旋转编码器与计数器模块连接,所述模拟量输入模块、通信模块、电源模块、计数器模块、开关量模块与工控机连接,同时工控机与摄像监控、显示器连接;
    卷板机的光感监测和控制系统的监控方法,其具体步骤如下:
    a、卷板机通电启动后开始卷板工作,在卷板过程中CCD曲率传感器以及激光测距传感器开始检测曲率信号以及位移信号,将曲率信号以及位移信号传输给模拟量输入模块;
    b、模拟量输入模块将曲率信号以及位移信号通过电源模块的CPU进行计算处理后上传给工控机进行处理和显示,工控机开始处理分析曲率或者位移是否达到要求;
    c、当曲率或者位移达到要求时,卷板机继续卷板工作,当曲率 没有达到要求时,工控机将信号传输给下辊旋转编码器,下辊旋转编码器接收信号,计数器模块将这些数据信号采集完毕后再给CPU,与工控机内置控制模型进行比较分析,形成新的控制指令,通过通信模块传输至工控机,工控机将数据变量进行修正后下传给PLC,由PLC的开关量输出模块发出指令传输给伺服阀并驱动下辊的油缸及液压设备,促使卷板机的下辊在新的控制指令下旋转;当距离传感器获得的位移过大时,计数器模块将这些数据信号采集完毕后再给CPU进行分析,通过通信模块传输至工控机,工控机将数据变量进行修正后下传给PLC,由PLC的开关量输出模块发出指令传输给伺服阀并驱动上辊油缸及液压设备,促使上辊修正水平位移;当距离传感器获得的位移过小时,计数器模块将这些数据信号采集完毕后再给CPU,与磁栅尺检测的数据进行对比分析,对成型控制模型内主要参数进行修正,通过通信模块传输至工控机,工控机将数据变量进行修正后下传给PLC,由PLC的开关量输出模块发出指令传输给伺服阀并驱动上辊油缸以及液压设备,执行新的控制指令促使上辊进行升降运动,直到满足卷板加工要求;
    d、开关量输入输出模块的限位开关以及限流器接收信号并进行限位,再次检测曲率和位移是否达到要求;
    e、当曲率和位移没有达到要求时,再次回到上述步骤c,当曲率和位移达到要求时,停止卷板工作。
  2. 一种基于权利要求1的一种应用光感监测和控制系统的风电筒体卷制工艺,其特征在于:包括样板制作、钢板检查、钢板预卷、 自动监控卷制成型、纵缝清理、纵缝调整、焊接、筒体吊离、二次校圆、筒体修补。
  3. 根据权利要求2所述一种应用光感监测和控制系统的风电筒体卷制工艺,其特征在于:其具体步骤如下:
    (1)样板制作:制作圆弧样板,采用厚度为10mm的钢板,由剪板机下料再加工周边形成一圆弧样板,加工时两平面需校平直,大小口端圆弧样板弦长大于等于600mm,当筒体直径大于等于4500mm时,圆弧样板的大小口端弦长大于等于800mm;
    (2)钢板检查:检查钢板表面质量,若钢板表面有气泡、裂纹、结疤、夹杂、分层、压入氧化皮的异物,对异物进行抛光处理,将切割边缘的割渣通过电磨清理干净;核对筒体号,便于选择圆弧样板;打磨纵缝对接坡口及边缘25mm以上;
    (3)钢板预卷:将钢板送入三辊卷板机进行预卷,所述三辊卷板机包括底座、左右支架、两个下辊、一个上辊和减速机构,以三辊卷板机的下辊配合钢板输送床进行端部对齐,将上辊保持倾斜,预弯钢板的一端头部约200-300mm,并用步骤(1)中的圆弧样板检查大小口端部的圆弧;
    (4)自动监控卷制成型:步骤(3)大小口端部的圆弧合格后,通过光感监测和控制系统对弧度进行监控并连续卷制;
    (5)纵缝清理:清理纵缝两侧各20-30mm范围内的油污以及铁锈,分别用热碱液、稀盐酸将钢板上的油污以及铁锈清理干净;
    (6)纵缝调整:调整纵缝对口的错边量和间隙,钢板左右对口 错边量小于等于1mm时,与法兰对接的筒体端面偏移量小于等于0.5㎜,厚度错边量小于等于1㎜时,组对间隙小于等于1㎜;
    (7)焊接:首先进行纵缝点焊,点焊长不短于20mm,组对间距小于等于300mm;其次在筒体两端通过双面焊焊接引弧板,引弧板的厚度与筒体保持一致,引弧板焊接角度与钢板保持水平,焊接长度大于等于引弧板长度的三分之二;最后采用CO2气体保护焊进行封底焊,封底焊缝高度应小于等于4mm,封底焊缝高度均匀,表面平整;
    (8)筒体吊离:采用专用的U型吊具或链条吊勾将筒体吊离卷板机至筒体堆放区域;
    (9)二次校圆:采用气刨切除将引弧板卸下,切除的过程中保证不损伤该部位的焊接坡口及缺肉;采用三辊卷板机进行校圆,校圆后的筒体圆弧自然过渡并均匀平滑,纵缝处的局部凹凸度应符合下列算式要求:E≤(0.1t+1)mm,其中E为纵缝凹凸度的长度,t为钢板的厚度;控制筒体与法兰连接的筒体椭圆度,对筒体进行四次直径的测量,四次测量的直径差最大≤25mm,如果筒节直径≤2800mm时,四次测量的直径差最大应≤20mm;
    (10)筒体修补:对筒体表面损伤进行修、补、磨。
  4. 根据权利要求2或3所述一种卷板机的光感监测和控制系统及应用该系统的风电钢管桩筒体卷制工艺,其特征在于:所述步骤(9)二次校圆过程中,控制与与法兰连接的筒体椭圆度的步骤如下:
    检查:检查辊子上是否清洁,如有氧化皮,需要进行清理,以避免弹坑的产生;检查筒体三个位置的圆度,分别为6点位置、7点半 位置、9点半位置,根据这三个位置的板厚,对照对应的圆度要求,进行检查筒体上述三个位置的圆度,合格后进入下一工序,不合格圆度要求的筒体采用三辊卷板机继续进行校圆;
    回圆:对回圆工装的边势打磨光滑,不得有任何锐角;在圆弧较小区域,用铁块垫在筒体内侧,铁块与内侧筒体间垫上聚氨酯材料,厚度为5-10mm,用三星辊卷板机对筒体内侧进行上辊下压,所述三星辊卷板机包括一上辊、两下辊、底座、左右支架、一减速机;在圆弧较大区域,用四星辊卷板机进行卷制,所述四星辊卷板机包括一上辊、一下辊、两侧滚、底座、左右支架、一减速机;在纵缝区域,检测纵缝内外两侧1米范围的圆弧,检测合格后进入下一工序,检测不合格的继续进行回圆处理;
    出筒:出筒时筒体纵缝处于6点位置,放置堆场后将纵缝转到7-8点位置;
    检查与记录:操作人员、检验人员使用样板进行检查时,需要用钢直尺测量样板与筒体间的最大值,通过参考值进行现场判定筒体圆度是否符合要求,对于符合要求的筒体进行下一道工序,对于不符合筒体要求的筒体放置规定的堆放区域;在筒体上记录塔节号码,并做好标识。
PCT/CN2017/119636 2017-03-16 2017-12-29 一种卷板机的光感监测和控制系统及应用该系统的风电钢管桩筒体卷制工艺 WO2018166274A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710156596.8 2017-03-16
CN201710156596.8A CN106975675B (zh) 2017-03-16 2017-03-16 卷板机的光感监测和控制系统及筒体卷制工艺

Publications (1)

Publication Number Publication Date
WO2018166274A1 true WO2018166274A1 (zh) 2018-09-20

Family

ID=59339324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119636 WO2018166274A1 (zh) 2017-03-16 2017-12-29 一种卷板机的光感监测和控制系统及应用该系统的风电钢管桩筒体卷制工艺

Country Status (2)

Country Link
CN (1) CN106975675B (zh)
WO (1) WO2018166274A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106975675B (zh) * 2017-03-16 2019-05-17 南通蓝岛海洋工程有限公司 卷板机的光感监测和控制系统及筒体卷制工艺
CN112247381B (zh) * 2020-08-21 2022-08-16 长春理工大学 薄壁筒体激光焊纵缝接头导正预热及去应力动态校形装置
CN111992601B (zh) * 2020-08-21 2022-03-01 中交三航(南通)海洋工程有限公司 一种测量大直径钢管桩卷制过程中轴线偏心度的方法
CN112676376B (zh) * 2020-12-30 2021-12-14 南通铭泰机床有限公司 一种提高数字控制的卷板机的控制精度的方法及系统
CN116274524A (zh) * 2023-02-17 2023-06-23 泰安华鲁锻压机床有限公司 一种特大型四辊卷板机生产线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007029962A (ja) * 2005-07-22 2007-02-08 Daido Machinery Ltd ロールベンダー
CN202278046U (zh) * 2011-09-09 2012-06-20 西安兰石重工机械有限公司 卷板机中升降辊位移控制装置
CN204247775U (zh) * 2014-11-13 2015-04-08 上海施威重工成套有限公司 智能化卷板机
CN105750826A (zh) * 2014-12-15 2016-07-13 重庆迅升机车配件有限公司 一种卷制筒体工艺方法
CN106041420A (zh) * 2016-06-20 2016-10-26 中国化学工程第三建设有限公司 一种筒体卷制工艺
WO2016188305A1 (zh) * 2015-05-27 2016-12-01 南通超力卷板机制造有限公司 二辊差速变曲率数控卷板机及其使用方法
CN106975675A (zh) * 2017-03-16 2017-07-25 南通蓝岛海洋工程有限公司 一种卷板机的光感监测和控制系统及应用该系统的风电钢管桩筒体卷制工艺

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201100882Y (zh) * 2007-07-05 2008-08-13 湖北鄂重重型机械有限公司 卷板机远程诊断装置
CN201145839Y (zh) * 2008-01-22 2008-11-05 南通恒力重工机械有限公司 一种采用可编程计算机控制器控制的卷板机
CN102375430A (zh) * 2011-10-14 2012-03-14 江苏科技大学 一种视觉型四辊卷板机数控系统
KR101379438B1 (ko) * 2012-04-19 2014-03-28 김경효 벤딩 설비의 실시간 곡률 보정 시스템 및 그 방법
CN202632052U (zh) * 2012-05-07 2012-12-26 南通恒力重工机械有限公司 用可编程计算机控制器控制的卷板机的控制机构
CN103196917B (zh) * 2013-03-13 2015-08-19 同济大学 基于ccd线阵相机的在线卷板材表面瑕疵检测系统及其检测方法
CN103624114B (zh) * 2013-11-15 2015-09-30 新兴铸管股份有限公司 一种金属管自动校圆系统及其处理方法
CN205414012U (zh) * 2016-03-06 2016-08-03 南通科技职业学院 上辊万能式三辊卷板机的控制系统
CN106140905A (zh) * 2016-08-19 2016-11-23 南通超力卷板机制造有限公司 三辊对称式数控卷板机的控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007029962A (ja) * 2005-07-22 2007-02-08 Daido Machinery Ltd ロールベンダー
CN202278046U (zh) * 2011-09-09 2012-06-20 西安兰石重工机械有限公司 卷板机中升降辊位移控制装置
CN204247775U (zh) * 2014-11-13 2015-04-08 上海施威重工成套有限公司 智能化卷板机
CN105750826A (zh) * 2014-12-15 2016-07-13 重庆迅升机车配件有限公司 一种卷制筒体工艺方法
WO2016188305A1 (zh) * 2015-05-27 2016-12-01 南通超力卷板机制造有限公司 二辊差速变曲率数控卷板机及其使用方法
CN106041420A (zh) * 2016-06-20 2016-10-26 中国化学工程第三建设有限公司 一种筒体卷制工艺
CN106975675A (zh) * 2017-03-16 2017-07-25 南通蓝岛海洋工程有限公司 一种卷板机的光感监测和控制系统及应用该系统的风电钢管桩筒体卷制工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, JIA ET AL.: "Research or Numerical Control System for the Four-roller Plate Bending Machine Based on Machine Vision", MACHINE TOOL & HYDRAULICS, vol. 39, no. 21, 30 November 2011 (2011-11-30), ISSN: 1001-3881 *

Also Published As

Publication number Publication date
CN106975675A (zh) 2017-07-25
CN106975675B (zh) 2019-05-17

Similar Documents

Publication Publication Date Title
WO2018166274A1 (zh) 一种卷板机的光感监测和控制系统及应用该系统的风电钢管桩筒体卷制工艺
WO2019104814A1 (zh) 一种风电塔筒的建造工艺
CN107150183B (zh) 全自动管子管板的检测和焊接方法
CN106840033B (zh) 一种基于图像处理的钢轨廓形检测装置及方法
CN204788276U (zh) 一种基于激光扫描的直缝焊管焊缝噘嘴检测系统
CN110093601B (zh) 一种激光熔覆实时测厚及反馈的方法及装置
CN106323192A (zh) 一种基于激光扫描的直缝焊管焊缝噘嘴检测系统
CN101532822A (zh) 盘类零件尺寸质量自动检测机
CN111992601B (zh) 一种测量大直径钢管桩卷制过程中轴线偏心度的方法
CN203156204U (zh) 超微间隙对接焊缝磁光成像自动检测及跟踪装置
CN108480881A (zh) 一种基于关节机器人的冷轧钢卷卷芯焊接方法
CN107825077A (zh) 一种自升自航式平台桩腿建造工艺
CN105783832B (zh) 一种应用在线检测装置测量旋压过程中筒型件外径的方法
CN104148838A (zh) 薄钢板焊缝小特征点视觉跟踪与实时质量检测装置
CN104251885B (zh) 焊管焊缝与超声波探伤小车位置偏差的调整方法
CN113532299A (zh) 一种无接触式钢卷内径的检测装置与方法
CN113587860A (zh) 一种回转窑轴中心线在线动态检测方法
CN102941252B (zh) 一种丝杆自动矫直装置及方法
CN110064680B (zh) 一种棒材大弯曲变形快速测量方法
CN108465935B (zh) 一种钢卷卷芯自动焊接方法
CN206869329U (zh) 一种激光加工辅助测焦仪
CN206638187U (zh) 长材矫直工序中直线度在线检测装置
CN202984880U (zh) 焊后焊缝跟踪及残余应力消除系统
CN212806936U (zh) 焊道检测装置
CN210498405U (zh) 一种测量车床装卡的锻件毛坯缺陷的划针装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900835

Country of ref document: EP

Kind code of ref document: A1