WO2013069919A1 - Display panel and display device having same - Google Patents

Display panel and display device having same Download PDF

Info

Publication number
WO2013069919A1
WO2013069919A1 PCT/KR2012/009030 KR2012009030W WO2013069919A1 WO 2013069919 A1 WO2013069919 A1 WO 2013069919A1 KR 2012009030 W KR2012009030 W KR 2012009030W WO 2013069919 A1 WO2013069919 A1 WO 2013069919A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
substrate
modulus
core material
particulate core
Prior art date
Application number
PCT/KR2012/009030
Other languages
French (fr)
Korean (ko)
Inventor
정경택
고정주
곽병도
기승범
김원중
김정섭
박용완
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2013069919A1 publication Critical patent/WO2013069919A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals

Definitions

  • the present invention relates to a display panel and a display device including the same. More specifically, the present invention relates to a display panel including an anisotropic conductive film and a substrate and a display apparatus including the same, which are capable of preventing separation of the conductive particles when pressing the anisotropic conductive film formed on the substrate and eliminating the problem of lowering the conductivity. It is about.
  • the conductive adhesive includes an isotropic conductive adhesive and an anisotropic conductive film (ACF).
  • ACF anisotropic conductive film
  • monodisperse electroconductive particle is contained in the form disperse
  • the electroconductive particle contains the monodisperse polymer particle (henceforth a core material) comprised from polystyrene, polymethylmethacrylate, and an amino resin polymer.
  • Japanese Patent Application Laid-open No. Hei 16-123842 discloses a process of producing an initial condensate, which is an amino resin precursor, by reacting an amino compound with formaldehyde, dyeing, emulsifying and curing to prepare colored amino resin crosslinked particles. Described.
  • This core material is coated with a conductive material.
  • electroless plating is mainly used as a method of plating metal materials (Ni and Au).
  • a process of pretreating the polymer particles to be plated in a state suitable for plating is important. This pretreatment process consists of etching, conditioning, sensitization, activation, and predeposition processes in that order.
  • anisotropically conductive films containing conductive particles containing core materials such as polystyrene-based resins, poly (meth) acrylate-based resins, amino resins, polyurethane-based resins, etc. are applied to glass substrates, commercial PCBs and the like, there is no particular problem.
  • high strength polymer materials have advantages of being relatively hard or having few deformations, but problems such as high initial resistance or breakage or cracking of particles occur.
  • the polymer composite particles are relatively soft and easily deformable polymer such as acrylic resin or polyurethane resin, the initial conductivity is good but easily deformed and excessively crushed, so that the conductive particles undergo plastic deformation during thermocompression. There is a problem.
  • Another object of the present invention is to provide a display device including the display panel.
  • Display panel is a substrate; And an anisotropic conductive film formed on the substrate, wherein the anisotropic conductive film comprises: a particulate core material; And conductive particles including a conductive layer formed on the surface of the particulate core material, wherein a modulus ratio (B / A) of the modulus (B) of the particulate core material to the modulus (A) of the substrate may be less than about 1 have.
  • the substrate may include one or more of glass, silicone, acrylic resin, epoxy resin, polyester resin, polyethersulfone resin, polyarylate resin, polycarbonate resin, and polyimide resin.
  • the modulus of the particulate core material may be about 0.1 MPa-1.0 GPa.
  • the modulus of the substrate can be about 0.1 MPa-75 GPa.
  • the substrate is a glass substrate, and the modulus ratio may be about 0.15 x 10 -5-0.01 .
  • the substrate may be a silicon-based substrate having a modulus of about 0.1 MPa-15 MPa.
  • the particulate core material may include a silicone-based resin.
  • the silicone resin may include one or more of polyalkylsiloxane, polyarylsiloxane, polyalkylarylsiloxane, silicone rubber.
  • the particulate core material is styrene-butadiene rubber (SBR), butadiene-based rubber, isoprene-based rubber, chloroprene, neoprene rubber, ethylene-propylene-diene terpolymer, styrene-ethylene-butylene-styrene (SEBS) block copolymer, styrene Ethylene-propylene-styrene (SEPS) block copolymers, acrylonitrile-butadiene rubber (NBR), hydrogenated nitrile rubber (HNBR), or fluorinated rubber It may further include the above.
  • SBR styrene-butadiene rubber
  • HNBR hydrogenated nitrile rubber
  • fluorinated rubber It may further include the above.
  • the particulate core material may have a particle diameter of about 2 ⁇ m-20 ⁇ m.
  • the conductive layer may include at least one of a conductive polymer layer and a metal layer.
  • the conductive layer may be one in which the metal layer is sequentially stacked on the conductive polymer layer.
  • the conductive polymer layer may include one or more of polypyrrole, polyaniline, polythiophene, and derivatives thereof.
  • the conductive polymer layer may have a thickness of about 1 nm to 500 nm.
  • the metal layer may include at least one of Ni, Au, Ag, Cu, Zn, Cr, Al, Co, Sn, Pt, and Pd.
  • the metal layer may have a thickness of about 10 nm to 300 nm.
  • the metal layer may be a single layer or a multilayer.
  • a display device may include the display panel.
  • the present invention provides a display panel which prevents conductive particles from being separated from the anisotropic conductive film even when the anisotropic conductive film is pressed onto the substrate.
  • FIG. 1 is a cross-sectional view of a display panel of one embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of a state before pressing the driver IC to the display panel.
  • FIG. 3 is a conceptual diagram of a state in which a driver IC is pressed on the display panel.
  • FIG. 5 is a schematic cross-sectional view of the conductive particles of one embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of conductive particles of another embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of conductive particles of yet another embodiment of the present invention.
  • modulus means storage modulus, and modulus is a value measured under a frequency of about 0.01 Hz to 100 Hz in a bending mode, a constant load up to about 16 N, and a strain amplitude of about 0.1 to 240 ⁇ m. It may mean.
  • Display panel is a substrate; And an anisotropic conductive film formed on the substrate, wherein the anisotropic conductive film comprises: a particulate core material; And a conductive layer formed on the surface of the particulate core material, wherein the modulus ratio (B / A) of the modulus (B) of the particulate core material to the modulus (A) of the substrate may be less than about 1.
  • the conductive particles included in the anisotropic conductive film may be separated from the anisotropic conductive film to the substrate, or the connection between the bump of the driver IC and the substrate electrode may be difficult.
  • the connection between the bump of the driver IC and the substrate electrode may be difficult.
  • the display panel of the present invention may include an anisotropic conductive film containing conductive particles such that the above-described separation problem or connection problem does not occur. This may be due to making the modulus of the particulate core material of the present invention smaller than the modulus of the substrate.
  • the modulus ratio is 1 or more, when the anisotropic conductive film containing the conductive particles is pressed onto the substrate, the conductive particles may be separated from the anisotropic conductive film or the conductivity may not be easily secured.
  • the modulus ratio may be about 0.4 or more and less than one.
  • FIG. 1 is a cross-sectional view of a display panel of one embodiment of the present invention.
  • the display panel 100 may have a structure in which an anisotropic conductive film 5 including conductive particles 4 is stacked on a substrate 10 on which electrodes 9 are formed.
  • 2 and 3 respectively show a state before and after the driver IC 20 in which the bumper 8 is formed on the display panel of one embodiment of the present invention is pressed.
  • 2 and 3 when the driver IC 20 having the bumper 8 is compressed, excessive or insufficient conductivity between the bumper 20 of the driver IC 20 and the conductive particles 4 in the substrate 10 is reduced. You can control the connection. That is, the display may be realized by minimizing a defect such as an electrical short generated when an abnormal connection between the bumper and the bumper of the driver IC and the substrate electrode to be connected to the driver IC or other substrate electrodes occurs. According to FIG. 3, even when compressed, the conductive particles are densely concentrated in the bumps as compared with FIG. 2 without being separated from the anisotropic conductive film, thereby minimizing a poor electrical conduction.
  • the substrate may include both a glass substrate and a flexible substrate.
  • the substrate is one of a polyester resin, a polyether sulfone resin, a polyarylate resin, a polycarbonate resin, a polyimide resin, including a glass, a silicone, an acrylic resin, an epoxy resin, a polyethylene terephthalate, a polyethylene naphthalate, and the like. It may contain the above.
  • the modulus of the substrate can be about 0.1 MPa-75 GPa.
  • the substrate may be a silicon-based substrate having a modulus of about 0.1 MPa-15 MPa.
  • the substrate can be a glass substrate having a modulus of about 65 GPa-75GPa.
  • the modulus ratio may be less than about 1.
  • the substrate can be a glass substrate, wherein the ratio of the modulus can be less than about 1, preferably about 0.15 x 10 -5-0.01 .
  • the substrate may be a flexible substrate including silicon-based or the like, wherein the ratio of the modulus may be less than about 1, preferably about 0.4 or more and less than 1.
  • the substrate may have a thickness of about 30 ⁇ m-200 ⁇ m.
  • An electrode may be formed on the substrate surface to connect the driver IC and the bumper to the substrate.
  • the anisotropic conductive film can contain the said electroconductive particle.
  • the anisotropic conductive film 5 comprises a matrix 6; And conductive particles 4 included in the matrix 6.
  • the conductive particles are fine particle core; And a conductive layer formed on the surface of the particulate core material, wherein the conductive layer may include at least one of a conductive polymer layer and a metal layer.
  • the particulate core material may have a modulus of about 0.1 Mpa-1.0 GPa, preferably about 1 Mpa-10 MPa. Within this range, the conductive particles can be prevented from being separated from the anisotropic conductive film or the conductivity deteriorated in the process of pressing the anisotropic conductive film containing the conductive particles onto the substrate.
  • the particulate core material may be monodisperse. That is, the particle size distribution of the electroconductive particle containing a particulate core material can be uniform. When the particle size distribution is uniform, it is excellent in electrical conductivity.
  • the particulate core material may have an average particle diameter of about 2 ⁇ m to 20 ⁇ m, preferably about 2 ⁇ m to 7 ⁇ m. Within this range, the function as conductive particles may not be lost, and short circuits between adjacent electrodes may not occur.
  • the particulate core material may include particles including a silicone-based resin.
  • the conductive particles can be efficiently compressed onto the substrate, and by controlling the ratio between the conductive particles and the modulus of the substrate through the interconnection between the conductive particles, the conductive layer is appropriately connected during the compression to form the conductive particles. It is possible to solve the problem of the deterioration of conductivity caused by the departure and the potential failure.
  • the silicone resin may include at least one of polyalkylsiloxane, polyarylsiloxane, polyalkylarylsiloxane, and silicone rubber including polydimethylsiloxane.
  • the particulate core material includes styrene-butadiene rubber (SBR), butadiene rubber, isoprene rubber, chloroprene rubber, neoprene rubber, ethylene-propylene-diene terpolymer, styrene-ethylene-butylene-styrene (SEBS ) Block copolymers, styrene-ethylene-propylene-styrene (SEPS) block copolymers, acrylonitrile-butadiene rubber (NBR), hydrogenated nitrile rubber (HNBR) and florinated rubber It may further include one or more of Fluorinated Rubber.
  • SBR styrene-butadiene rubber
  • isoprene rubber chloroprene rubber
  • neoprene rubber ethylene-propylene-diene terpolymer
  • SEBS styrene-ethylene-butylene-styrene
  • SEBS sty
  • the shape of the particulate core material is not limited, but may be spherical.
  • a conductive layer may be stacked on the particulate core material to impart conductivity.
  • the conductive layer may include at least one of a conductive polymer layer and a metal layer.
  • 5 to 7 are schematic cross-sectional views of the conductive particles of the embodiment of the present invention.
  • the electroconductive particle 4 is the fine particle core 1; And it may include a conductive polymer layer (2) formed on the particulate core material (1).
  • the electroconductive particle 4 is the fine particle core 1; And a metal layer 3 formed on the particulate core material 1.
  • the conductive layer may be formed of a conductive polymer layer and a metal layer sequentially. That is, as shown in FIG. 7, the conductive particles 4 include the fine particle core 1; And a conductive polymer layer (2) formed on the particulate core material (1); And a metal layer 3 formed on the conductive polymer layer 2.
  • the conductive polymer layer may include one or more of polypyrrole, polyaniline, polythiophene, and derivatives thereof.
  • the conductive polymer layer may have a thickness of about 1 nm to 500 nm, preferably about 10 nm to 200 nm. Within the above range, conductivity can be imparted and can be used for an anisotropic conductive film.
  • the metal layer may include at least one of Ni, Au, Ag, Cu, Zn, Cr, Al, Co, Sn, Pt, and Pd.
  • the metal layer may have a thickness of about 10 nm to 300 nm, preferably about 80 nm to 200 nm. Within the above range, conductivity can be imparted and can be used for an anisotropic conductive film.
  • the conductive polymer layer or the metal layer may have a single layer structure or a multilayer structure of two or more layers of different kinds of metals.
  • the metal layer is a single layer or continuous multilayer structure of a dissimilar metal material, for example, Ni / Au alloy, the coating property on the surface of the particulate core material, the stability of the metal material and the conductivity thereof may be improved.
  • the shape of the conductive particles is not limited, but may be spherical particles.
  • the said electroconductive particle can be manufactured by a conventional method. For example, (a) forming a particulate core material using a composition comprising a silicone-based resin; And (b) forming a conductive layer including at least one of a conductive polymer layer and a metal layer on the surface of the particulate core material.
  • Step (a) may be to form a monodisperse crosslinked particulate core material by suspension polymerization, precipitation polymerization, dispersion polymerization, seed polymerization, multistage seed polymerization or direct molding.
  • the direct molding method may mean a molding method that is not made in a solution.
  • Step (b) may be to form a conductive polymer layer on the surface of the particulate core material by dispersing the particulate core material in a dispersion solvent together with a dispersion stabilizer, by adding a monomer and an initiator for the conductive polymer to react.
  • the dispersion stabilizer of step (b) serves to stabilize the dispersion of the polymer particles in a dispersion solvent, polyvinylpyrrolidone, polyvinyl alcohol, ionic or nonionic interface having water dispersibility or alcohol dispersibility
  • a dispersion solvent an alcohol solvent or water can be used, and as an initiator, APS ((NH 4 ) 2 S 2 O 8 ), KSP (K 2 S 2 O 8 ), FeCl 3 and the like can be used.
  • a metal catalyst may be deposited on the surface of the conductive polymer layer and then electroless plated to form a metal layer.
  • Pd catalyst is preferably used as the metal catalyst.
  • Pd particles may be deposited on the surface and subjected to metal electroless plating to form a metal layer.
  • the conductive particles may be included in about 1-5% by weight of the anisotropic conductive film. Within this range, it is possible to maintain the insulating properties and to maintain the circuit-to-circuit connection performance, which is the original role of the conductive particles.
  • the matrix of the anisotropic conductive film may include a resin that is commonly used in manufacturing an anisotropic conductive film.
  • the matrix of the anisotropic conductive film may include an epoxy-based, (meth) acrylate-based, and the like.
  • the thickness of the anisotropic conductive film may be about 10 ⁇ m-40 ⁇ m.
  • Another aspect of the invention may include a display panel.
  • the device is not particularly limited as long as the device may include the display panel.
  • the device may include a display device (eg, a flexible display device).
  • a conductive polymer layer made of polythiophene was formed on the particulate core material of Table 1 to prepare particles having a particle diameter of 3-4 ⁇ m.
  • Ni coating was applied to the surface of the particles to form a Ni coating at a thickness of 100 ⁇ 10 nm, and then Au was coated at a thickness of 50 ⁇ 5 nm to prepare conductive particles.
  • Anisotropic conductivity by curing a composition comprising conductive particles, acrylic copolymer, acrylate modified urethane resin, acrylonitrile butadiene copolymer, isocyanuric acid ethylene oxide modified diacrylate, silica particles and lauroyl peroxide A film was prepared.
  • the anisotropic conductive film was crimped
  • a substrate on which an anisotropic conductive film was formed was prepared in the same manner as in Example 1, except that the particulate core material of Table 1 and the substrate of Table 1 were used.
  • the force was measured at 185 ° C. for 5 seconds at 5 MPa to measure conductivity.
  • a substrate on which an anisotropic conductive film was formed was prepared in the same manner as in Example 1, except that the particulate core material of Table 1 and the substrate of Table 1 were used. Conductivity was measured by applying a force at 185 ° C. at 20 MPa for 5 seconds.
  • a substrate on which an anisotropic conductive film was formed was prepared in the same manner as in Example 1, except that the particulate core material of Table 1 and the substrate of Table 1 were used. Conductivity was measured by applying a force at 185 ° C. at 20 MPa for 5 seconds.
  • the modulus (storage modulus) of the particulate core and the substrate was measured using DMA 242C, and the modulus was measured under a frequency of 0.01 to 100 Hz, constant load up to 16 N, and strain amplitude of 0.1 to 240 ⁇ m in bending mode.
  • Example 1 Example 2
  • Example 3 Comparative Example 1 Particulate heartwood Silicone Silicone Silicone Polycarbonate Modulus of particulate core material (B) 2 MPa 2 MPa 10 MPa 50 MPa Board Glass Silicone Silicone Silicone Modulus (A) of the board 70 GPa 5 MPa 12 MPa 10 MPa Modulus Ratio (B / A) 2.86 x 10 -5 0.4 0.83 5 Conductivity 3-5 m 3-5 m 6-12 m ⁇ Not detectable

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

The present invention relates to a display panel and display device having same. More particularly, the prevent invention relates to a display panel including: a substrate; and an anisotropic conductive film disposed on the substrate, wherein the anisotropic conductive film includes a particulate core material, and conductive particles including a conductive layer disposed on a surface of the particulate core material, and a modulus ratio (B/A) of a modulus (B) of the particulate core material to a modulus (A) of the substrate is less than 1, and to a display device having the same.

Description

디스플레이 패널 및 이를 포함하는 디스플레이 장치Display panel and display device including same
본 발명은 디스플레이 패널 및 이를 포함하는 디스플레이 장치에 관한 것이다. 보다 구체적으로 본 발명은 기판 위에 형성된 이방 도전성 필름을 압착 시에 도전성 입자의 이탈이 없고, 도전성 저하의 문제가 없게 할 수 있는, 이방 도전성 필름과 기판을 포함하는 디스플레이 패널 및 이를 포함하는 디스플레이 장치에 관한 것이다.The present invention relates to a display panel and a display device including the same. More specifically, the present invention relates to a display panel including an anisotropic conductive film and a substrate and a display apparatus including the same, which are capable of preventing separation of the conductive particles when pressing the anisotropic conductive film formed on the substrate and eliminating the problem of lowering the conductivity. It is about.
LCD, PDP, OLED 등의 전자 패키징에서 회로의 초미세 간극화 및 접속 밀도의 증가에 따라, 좁은 간격으로 많은 수의 전극을 한번에 접속시킬 필요성이 증가하고 있다. 특히, 액정디스플레이 (LCD)의 패키징에서는 Flexible 회로라인 (FPC: flexible printed circuit)과 유리 디스플레이(glass display)와의 기계적 및 전기적 접속용으로 도전성 접착제 (conductive adhesive)가 이용되고 있다.In the electronic packaging of LCDs, PDPs, OLEDs, etc., the necessity of connecting a large number of electrodes at one time with a narrow gap is increasing as the circuit becomes extremely fine and the connection density increases. In particular, in the packaging of liquid crystal displays (LCDs), conductive adhesives are used for mechanical and electrical connection between a flexible printed circuit (FPC) and a glass display.
도전성 접착제에는 등방성 도전접착제 (isotropic conductive adhesive)와 이방 도전성 필름 (ACF, anisotropic conductive film)이 있다. 대부분 사용하고 있는 이방성 도전성 필름에는 단분산성의 도전성 입자가 열경화성 또는 열가소성 절연성 수지에 분산되어 있는 형태로 포함되어 있다. 도전성 입자는 폴리스티렌, 폴리메틸메타크릴레이트, 아미노 수지 고분자로 구성된 단분산성 고분자 입자(이하, 심재)를 포함하고 있다. 일본특허공개 평16-123842호에는 아미노계 화합물과 포름알데하이드의 반응에 의해 아미노 수지 전구체인 초기 축합물을 생성하고, 이것을 염색한 후, 유화시키고 경화시켜서 착색된 아미노 수지 가교 입자를 제조하는 공정이 기술되어 있다. 이러한 심재 표면에는 도전성 재료가 코팅이 되어 있다. 일반적으로 금속재료 (Ni 및 Au)를 도금하는 방법으로는 무전해 도금 방법이 주로 사용되고 있다. 이러한 무전해 도금 방법을 실시하기 위해서는 도금하기에 적합한 상태로 도금될 고분자 입자를 전처리하는 공정이 중요하다. 이 전처리 공정은 순서대로 에칭, 컨디셔닝, 민감화, 활성화 및 예비침적 공정으로 구성된다.The conductive adhesive includes an isotropic conductive adhesive and an anisotropic conductive film (ACF). In the anisotropic conductive film used mostly, monodisperse electroconductive particle is contained in the form disperse | distributed to thermosetting or thermoplastic insulating resin. The electroconductive particle contains the monodisperse polymer particle (henceforth a core material) comprised from polystyrene, polymethylmethacrylate, and an amino resin polymer. Japanese Patent Application Laid-open No. Hei 16-123842 discloses a process of producing an initial condensate, which is an amino resin precursor, by reacting an amino compound with formaldehyde, dyeing, emulsifying and curing to prepare colored amino resin crosslinked particles. Described. The surface of this core material is coated with a conductive material. In general, electroless plating is mainly used as a method of plating metal materials (Ni and Au). In order to perform such an electroless plating method, a process of pretreating the polymer particles to be plated in a state suitable for plating is important. This pretreatment process consists of etching, conditioning, sensitization, activation, and predeposition processes in that order.
폴리스티렌계 수지, 폴리(메타)아크릴레이트계 수지, 아미노 수지, 폴리우레탄계 수지 등의 심재를 포함하는 도전성 입자를 포함하는 이방 도전성 필름을 유리 기판과 상용 PCB 등에 적용하여 압착할 때는 특별한 문제가 없다. 공정상에서는 강도가 높은 고분자 재료는 비교적 단단하거나 변형이 적은 장점이 있으나 초기 저항치가 높아지거나 입자의 파괴 또는 균열이 생기는 문제가 발생한다. 또한 고분자 복합 입자로 아크릴 수지나 폴리우레탄 수지 등의 비교적 부드럽고 변형되기 쉬운 고분자가 사용되는 경우 초기 도전성은 양호하나 쉽게 변형이 이루어져 과도하게 찌그러짐으로써 도전성 입자가 열압착시 소성 변형을 일으켜 나중에 저항치가 상승하는 문제가 있다. When anisotropically conductive films containing conductive particles containing core materials such as polystyrene-based resins, poly (meth) acrylate-based resins, amino resins, polyurethane-based resins, etc. are applied to glass substrates, commercial PCBs and the like, there is no particular problem. In the process, high strength polymer materials have advantages of being relatively hard or having few deformations, but problems such as high initial resistance or breakage or cracking of particles occur. In addition, when the polymer composite particles are relatively soft and easily deformable polymer such as acrylic resin or polyurethane resin, the initial conductivity is good but easily deformed and excessively crushed, so that the conductive particles undergo plastic deformation during thermocompression. There is a problem.
최근 들어 Flexible 디스플레이에 대한 개발이 진행되면서 유리 기판 이외에도 다양한 소재가 검토되고 있어 심재에 대한 변경이 필요한 상황이다. 열 또는 UV 경화형 재료 이외에도 강도가 상당히 낮은 재료로의 검토가 진행되고 있다. 이러한 경우에 있어 하부 기판으로 모듈러스가 훨씬 더 낮은 기판을 사용하게 되면서 이방 도전성 필름의 도전성 입자가 압착 과정에서 하부 기판으로 이탈 또는 전기적 Short (단선) 되는 등, 새로운 문제가 발생하여 이에 대한 해결책이 요구되고 있다.In recent years, as development of flexible displays has progressed, various materials in addition to glass substrates are being examined, requiring changes to core materials. In addition to thermal or UV curable materials, studies have been made on materials with significantly low strength. In this case, as a substrate having a much lower modulus is used as a lower substrate, new problems arise such that the conductive particles of the anisotropic conductive film are separated or electrically shorted to the lower substrate during the compression process, and thus a solution is required. It is becoming.
본 발명의 목적은 기판에 이방 전도성 필름이 압착되더라도 이방 전도성 필름으로부터 도전성 입자가 이탈되지 않게 하는 디스플레이 패널을 제공하는 것이다.It is an object of the present invention to provide a display panel which prevents conductive particles from being separated from the anisotropic conductive film even if the anisotropic conductive film is pressed onto the substrate.
본 발명의 다른 목적은 상기 디스플레이 패널을 포함하는 디스플레이 장치를 제공하는 것이다.Another object of the present invention is to provide a display device including the display panel.
본 발명의 일 관점인 디스플레이 패널은 기판; 및 상기 기판 위에 형성된 이방 도전성 필름을 포함하고, 상기 이방 도전성 필름은 미립자 심재; 및 상기 미립자 심재 표면에 형성된 도전성층을 포함하는 도전성 입자를 포함하고, 상기 기판의 모듈러스(A)에 대한 상기 미립자 심재의 모듈러스(B)의 모듈러스 비(B/A)는 약 1 미만이 될 수 있다.Display panel according to an aspect of the present invention is a substrate; And an anisotropic conductive film formed on the substrate, wherein the anisotropic conductive film comprises: a particulate core material; And conductive particles including a conductive layer formed on the surface of the particulate core material, wherein a modulus ratio (B / A) of the modulus (B) of the particulate core material to the modulus (A) of the substrate may be less than about 1 have.
상기 기판은 유리, 실리콘계, 아크릴 수지, 에폭시 수지, 폴리에스테르 수지, 폴리에테르설폰 수지, 폴리아릴레이트 수지, 폴리카보네이트 수지, 폴리이미드 수지 중 하나 이상을 포함할 수 있다.The substrate may include one or more of glass, silicone, acrylic resin, epoxy resin, polyester resin, polyethersulfone resin, polyarylate resin, polycarbonate resin, and polyimide resin.
상기 미립자 심재의 모듈러스는 약 0.1Mpa-1.0GPa이 될 수 있다.The modulus of the particulate core material may be about 0.1 MPa-1.0 GPa.
상기 기판의 모듈러스는 약 0.1 MPa-75GPa이 될 수 있다.The modulus of the substrate can be about 0.1 MPa-75 GPa.
상기 기판은 유리 기판이고, 상기 모듈러스 비는 약 0.15 x 10-5- 0.01이 될 수 있다.The substrate is a glass substrate, and the modulus ratio may be about 0.15 x 10 -5-0.01 .
상기 기판은 모듈러스가 약 0.1MPa-15MPa인 실리콘계 기판이 될 수 있다.The substrate may be a silicon-based substrate having a modulus of about 0.1 MPa-15 MPa.
상기 미립자 심재는 실리콘계 수지를 포함할 수 있다.The particulate core material may include a silicone-based resin.
상기 실리콘계 수지는 폴리알킬실록산, 폴리아릴실록산, 폴리알킬아릴실록산, 실리콘 고무 중 하나 이상을 포함할 수 있다.The silicone resin may include one or more of polyalkylsiloxane, polyarylsiloxane, polyalkylarylsiloxane, silicone rubber.
상기 미립자 심재는 스티렌-부타디엔 고무(SBR), 부타디엔계 고무, 이소프렌계 고무, 클로로프렌, 네오프렌고무, 에틸렌-프로필렌-디엔 삼원공중합체, 스티렌-에틸렌-부틸렌-스티렌(SEBS) 블록 공중합체, 스티렌-에틸렌-프로필렌-스티렌(SEPS) 블록 공중합체, 아크릴로니트릴-부타디엔 고무(Acrylonitrile-butadiene Rubber, NBR), 수소화된 니트릴 고무(Hydrogenated Nitrile Rubber, HNBR), 플로리네이티드 고무(Fluorinated Rubber) 중 하나 이상을 더 포함할 수 있다.The particulate core material is styrene-butadiene rubber (SBR), butadiene-based rubber, isoprene-based rubber, chloroprene, neoprene rubber, ethylene-propylene-diene terpolymer, styrene-ethylene-butylene-styrene (SEBS) block copolymer, styrene Ethylene-propylene-styrene (SEPS) block copolymers, acrylonitrile-butadiene rubber (NBR), hydrogenated nitrile rubber (HNBR), or fluorinated rubber It may further include the above.
상기 미립자 심재는 입경이 약 2㎛-20㎛가 될 수 있다.The particulate core material may have a particle diameter of about 2 μm-20 μm.
상기 도전성층은 도전성 고분자층, 금속층 중 하나 이상을 포함할 수 있다.The conductive layer may include at least one of a conductive polymer layer and a metal layer.
상기 도전성 층은 상기 도전성 고분자층 위에 상기 금속층이 순차적으로 적층된 것일 수 있다.The conductive layer may be one in which the metal layer is sequentially stacked on the conductive polymer layer.
상기 도전성 고분자층은 폴리피롤, 폴리아닐린, 폴리티오펜, 이들의 유도체 중 하나 이상을 포함할 수 있다.The conductive polymer layer may include one or more of polypyrrole, polyaniline, polythiophene, and derivatives thereof.
상기 도전성 고분자층의 두께는 약 1㎚-500㎚가 될 수 있다.The conductive polymer layer may have a thickness of about 1 nm to 500 nm.
상기 금속층은 Ni, Au, Ag, Cu, Zn, Cr, Al, Co, Sn, Pt, Pd 중 하나 이상을 포함할 수 있다.The metal layer may include at least one of Ni, Au, Ag, Cu, Zn, Cr, Al, Co, Sn, Pt, and Pd.
상기 금속층의 두께는 약 10㎚-300㎚가 될 수 있다.The metal layer may have a thickness of about 10 nm to 300 nm.
상기 금속층은 단층 또는 다층일 수 있다.The metal layer may be a single layer or a multilayer.
본 발명의 다른 관점인 디스플레이 장치는 상기 디스플레이 패널을 포함할 수 있다.A display device according to another aspect of the present invention may include the display panel.
본 발명은 기판에 이방 전도성 필름이 압착되더라도 이방 전도성 필름으로부터 도전성 입자가 이탈되지 않게 하는 디스플레이 패널을 제공하였다.The present invention provides a display panel which prevents conductive particles from being separated from the anisotropic conductive film even when the anisotropic conductive film is pressed onto the substrate.
도 1은 본 발명의 일 구체예의 디스플레이 패널의 단면도이다.1 is a cross-sectional view of a display panel of one embodiment of the present invention.
도 2는 디스플레이 패널에 드라이버 IC의 압착 전 상태의 개념도이다.2 is a conceptual diagram of a state before pressing the driver IC to the display panel.
도 3은 디스플레이 패널에 드라이버 IC가 압착된 상태의 개념도이다.3 is a conceptual diagram of a state in which a driver IC is pressed on the display panel.
도 4는 본 발명의 도전성 입자를 포함한 이방 도전성 필름의 개략적인 단면도이다.It is a schematic sectional drawing of the anisotropic conductive film containing the electroconductive particle of this invention.
도 5는 본 발명의 일 구체예의 도전성 입자의 개략적인 단면도이다.5 is a schematic cross-sectional view of the conductive particles of one embodiment of the present invention.
도 6은 본 발명의 다른 일 구체예의 도전성 입자의 개략적인 단면도이다.6 is a schematic cross-sectional view of conductive particles of another embodiment of the present invention.
도 7은 본 발명의 또 다른 일 구체예의 도전성 입자의 개략적인 단면도이다.7 is a schematic cross-sectional view of conductive particles of yet another embodiment of the present invention.
본 명세서에서 "모듈러스"는 저장탄성률(storage modulus)를 의미하고, 모듈러스는 Bending 모드에서 약 0.01Hz-100Hz의 진동수, 최대 약 16N까지의 일정한 하중 및 약 0.1 내지 240 ㎛의 변형 진폭 하에서 측정된 값을 의미할 수 있다.As used herein, "modulus" means storage modulus, and modulus is a value measured under a frequency of about 0.01 Hz to 100 Hz in a bending mode, a constant load up to about 16 N, and a strain amplitude of about 0.1 to 240 μm. It may mean.
본 발명의 일 관점인 디스플레이 패널은 기판; 및 상기 기판 위에 형성된 이방 도전성 필름을 포함하고, 상기 이방 도전성 필름은 미립자 심재; 및 상기 미립자 심재 표면에 형성된 도전성층을 포함하고, 상기 기판의 모듈러스(A)에 대한 상기 미립자 심재의 모듈러스(B)의 모듈러스 비(B/A)는 약 1 미만이 될 수 있다.Display panel according to an aspect of the present invention is a substrate; And an anisotropic conductive film formed on the substrate, wherein the anisotropic conductive film comprises: a particulate core material; And a conductive layer formed on the surface of the particulate core material, wherein the modulus ratio (B / A) of the modulus (B) of the particulate core material to the modulus (A) of the substrate may be less than about 1.
종래 디스플레이 패널의 제조 과정에 있어서 이방 도전성 필름을 기판에 압착하는 경우, 이방 도전성 필름에 포함된 도전성 입자는 이방 도전성 필름으로부터 기판으로 이탈될 수 있거나 또는 드라이버 IC의 범프와 기판 Electrode간의 연결이 잘 안될 수도 있었다. 이는 최근 유연성을 확보하기 위한 플렉시블 기판을 적용시 더 심각하게 발생하고 있다.When the anisotropic conductive film is pressed onto the substrate in the manufacturing process of the conventional display panel, the conductive particles included in the anisotropic conductive film may be separated from the anisotropic conductive film to the substrate, or the connection between the bump of the driver IC and the substrate electrode may be difficult. Could have been. This is more serious in recent years when applying a flexible substrate for securing flexibility.
이에 비해, 본 발명의 디스플레이 패널은 상술한 이탈 문제 또는 연결상의 문제가 발생하지 않게 하는 도전성 입자를 포함하는 이방 도전성 필름을 포함할 수 있다. 이는 본 발명의 미립자 심재의 모듈러스를 기판의 모듈러스보다 작게 하는 것에 기인할 수 있다. In contrast, the display panel of the present invention may include an anisotropic conductive film containing conductive particles such that the above-described separation problem or connection problem does not occur. This may be due to making the modulus of the particulate core material of the present invention smaller than the modulus of the substrate.
상기 모듈러스의 비가 1 이상일 때, 도전성 입자를 포함하는 이방 도전성 필름을 기판에 압착시, 도전성 입자가 이방 도전성 필름으로부터 이탈되거나 도전성 확보가 용이하지 않을 수 있다. 바람직하게는, 상기 모듈러스의 비는 약 0.4 이상 1 미만이 될 수 있다.When the modulus ratio is 1 or more, when the anisotropic conductive film containing the conductive particles is pressed onto the substrate, the conductive particles may be separated from the anisotropic conductive film or the conductivity may not be easily secured. Preferably, the modulus ratio may be about 0.4 or more and less than one.
도 1은 본 발명의 일 구체예의 디스플레이 패널의 단면도이다.1 is a cross-sectional view of a display panel of one embodiment of the present invention.
도 1에 의하면, 디스플레이 패널(100)은 전극(9)이 형성된 기판(10) 위에 도전성 입자(4)를 포함하는 이방 도전성 필름(5)이 적층된 구조가 될 수 있다.Referring to FIG. 1, the display panel 100 may have a structure in which an anisotropic conductive film 5 including conductive particles 4 is stacked on a substrate 10 on which electrodes 9 are formed.
도 2와 도 3은 각각 본 발명의 일 구체예의 디스플레이 패널에 범퍼(8)가 형성된 드라이버 IC(20)가 압착되기 전의 상태와 압착된 후의 상태를 나타낸 것이다. 도 2와 도 3에 의하면, 범퍼(8)가 형성된 드라이버 IC(20)를 압착하게 되면, 드라이버 IC(20)의 범퍼(20)와 기판(10)에서 도전성 입자(4) 간의 과도한 또는 미흡한 도전성 연결을 제어할 수 있다. 즉, 드라이버 IC의 범퍼와 범퍼간 또는 드라이버 IC와 연결하고자 하는 기판 전극 이외에 다른 기판 전극과의 비정상 연결 시 발생하는 전기적 통전 (Electrical short) 등의 불량을 최소화하여 디스플레이 구현을 가능하게 할 수 있다. 도 3에 의하면, 압착되더라도 도전성 입자들이 이방 전도성 필름으로부터 이탈되지 않고 도 2 대비 범프에 조밀하게 밀집되어 있어 전기적 통전의 불량을 최소화할 수 있다.2 and 3 respectively show a state before and after the driver IC 20 in which the bumper 8 is formed on the display panel of one embodiment of the present invention is pressed. 2 and 3, when the driver IC 20 having the bumper 8 is compressed, excessive or insufficient conductivity between the bumper 20 of the driver IC 20 and the conductive particles 4 in the substrate 10 is reduced. You can control the connection. That is, the display may be realized by minimizing a defect such as an electrical short generated when an abnormal connection between the bumper and the bumper of the driver IC and the substrate electrode to be connected to the driver IC or other substrate electrodes occurs. According to FIG. 3, even when compressed, the conductive particles are densely concentrated in the bumps as compared with FIG. 2 without being separated from the anisotropic conductive film, thereby minimizing a poor electrical conduction.
기판Board
상기 기판은 유리 기판 또는 플렉시블(flexible) 기판을 모두 포함할 수 있다. 구체적으로, 상기 기판은 유리, 실리콘계, 아크릴 수지, 에폭시 수지, 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트 등을 포함하는 폴리에스테르 수지, 폴리에테르설폰 수지, 폴리아릴레이트 수지, 폴리카보네이트 수지, 폴리이미드 수지 중 하나 이상을 포함할 수 있다. The substrate may include both a glass substrate and a flexible substrate. Specifically, the substrate is one of a polyester resin, a polyether sulfone resin, a polyarylate resin, a polycarbonate resin, a polyimide resin, including a glass, a silicone, an acrylic resin, an epoxy resin, a polyethylene terephthalate, a polyethylene naphthalate, and the like. It may contain the above.
상기 기판의 모듈러스는 약 0.1 MPa-75GPa이 될 수 있다. The modulus of the substrate can be about 0.1 MPa-75 GPa.
일 구체예에서, 상기 기판은 모듈러스가 약 0.1MPa-15MPa인 실리콘계 기판이 될 수 있다.In one embodiment, the substrate may be a silicon-based substrate having a modulus of about 0.1 MPa-15 MPa.
다른 구체예에서, 상기 기판은 모듈러스가 약 65GPa-75GPa인 유리 기판이 될 수 있다.In another embodiment, the substrate can be a glass substrate having a modulus of about 65 GPa-75GPa.
상기 기판의 종류에 관계없이 상기 모듈러스 비는 약 1 미만이 될 수 있다.Regardless of the type of the substrate, the modulus ratio may be less than about 1.
일 구체예에서, 상기 기판은 유리 기판이 될 수 있고, 이때 상기 모듈러스의 비는 약 1 미만, 바람직하게는 약 0.15 x 10-5- 0.01이 될 수 있다. In one embodiment, the substrate can be a glass substrate, wherein the ratio of the modulus can be less than about 1, preferably about 0.15 x 10 -5-0.01 .
다른 구체예에서, 상기 기판은 실리콘계 등을 포함하는 플렉시블 기판이 될 수 있고, 이때 상기 모듈러스의 비는 약 1 미만, 바람직하게는 약 0.4 이상 1 미만이 될 수 있다.In another embodiment, the substrate may be a flexible substrate including silicon-based or the like, wherein the ratio of the modulus may be less than about 1, preferably about 0.4 or more and less than 1.
상기 기판의 두께는 약 30㎛-200㎛가 될 수 있다.The substrate may have a thickness of about 30 μm-200 μm.
상기 기판에는 드라이버 IC와 범퍼 등의 연결을 위하여 기판 표면에 전극이 형성될 수 있다.An electrode may be formed on the substrate surface to connect the driver IC and the bumper to the substrate.
이방 도전성 필름Anisotropic conductive film
이방 도전성 필름은 상기 도전성 입자를 포함할 수 있다.The anisotropic conductive film can contain the said electroconductive particle.
도 4는 본 발명의 일 구체예에 따른 이방 도전성 필름의 개략적인 단면도이다. 도 4에 따르면, 이방 도전성 필름(5)는 매트릭스(6); 및 상기 매트릭스(6)에 포함된 도전성 입자(4)를 포함할 수 있다.4 is a schematic cross-sectional view of an anisotropic conductive film according to an embodiment of the present invention. According to FIG. 4, the anisotropic conductive film 5 comprises a matrix 6; And conductive particles 4 included in the matrix 6.
상기 도전성 입자는 미립자 심재; 및 상기 미립자 심재 표면에 형성된 도전성층을 포함하고, 상기 도전성층은 도전성 고분자층, 금속층 중 하나 이상을 포함할 수 있다.The conductive particles are fine particle core; And a conductive layer formed on the surface of the particulate core material, wherein the conductive layer may include at least one of a conductive polymer layer and a metal layer.
상기 미립자 심재는 모듈러스가 약 0.1Mpa-1.0GPa, 바람직하게는 약 1 Mpa-10MPa일 수 있다. 상기 범위에서, 도전성 입자를 포함하는 이방 도전성 필름을 기판에 압착하는 과정에서 도전성 입자가 이방 도전성 필름으로부터 이탈되거나 도전성이 악화되는 것을 방지할 수 있다. The particulate core material may have a modulus of about 0.1 Mpa-1.0 GPa, preferably about 1 Mpa-10 MPa. Within this range, the conductive particles can be prevented from being separated from the anisotropic conductive film or the conductivity deteriorated in the process of pressing the anisotropic conductive film containing the conductive particles onto the substrate.
상기 미립자 심재는 단분산성일 수 있다. 즉, 미립자 심재를 포함하는 도전성 입자의 입경 분포는 균일할 수 있다. 입경 분포가 균일한 경우 통전성이 우수하다.The particulate core material may be monodisperse. That is, the particle size distribution of the electroconductive particle containing a particulate core material can be uniform. When the particle size distribution is uniform, it is excellent in electrical conductivity.
상기 미립자 심재는 평균 입경이 약 2㎛ ~ 20㎛, 바람직하게는 약 2㎛ ~ 7㎛일 수 있다. 상기 범위 내에서, 도전성 입자로서의 기능이 상실되지 않을 수 있고, 인접 전극 간의 단락이 발생하지 않을 수 있다. The particulate core material may have an average particle diameter of about 2 μm to 20 μm, preferably about 2 μm to 7 μm. Within this range, the function as conductive particles may not be lost, and short circuits between adjacent electrodes may not occur.
상기 미립자 심재는 실리콘계 수지를 포함하는 입자를 포함할 수 있다. The particulate core material may include particles including a silicone-based resin.
실리콘계 수지를 사용함으로써, 도전성 입자를 기판에 효율적으로 압착할 수 있고, 도전성 입자들간의 상호 연결을 통하여 도전성 입자와 기판의 모듈러스의 비를 제어함으로써, 압착 시 도전성층이 적절하게 연결되어 도전성 입자의 이탈 시 발생하는 도전성 저하 및 이에 따른 잠재적 불량 문제를 해결할 수 있다.By using a silicone-based resin, the conductive particles can be efficiently compressed onto the substrate, and by controlling the ratio between the conductive particles and the modulus of the substrate through the interconnection between the conductive particles, the conductive layer is appropriately connected during the compression to form the conductive particles. It is possible to solve the problem of the deterioration of conductivity caused by the departure and the potential failure.
상기 실리콘계 수지는 폴리디메틸실록산 등을 포함하는 폴리알킬실록산, 폴리아릴실록산, 폴리알킬아릴실록산, 실리콘 고무 중 하나 이상을 포함할 수 있다. The silicone resin may include at least one of polyalkylsiloxane, polyarylsiloxane, polyalkylarylsiloxane, and silicone rubber including polydimethylsiloxane.
상기 미립자 심재는 상기 실리콘계 수지 이외에, 스티렌-부타디엔 고무(SBR), 부타디엔계 고무, 이소프렌계 고무, 클로로프렌 고무, 네오프렌고무, 에틸렌-프로필렌-디엔 삼원공중합체, 스티렌-에틸렌-부틸렌-스티렌(SEBS) 블록 공중합체, 스티렌-에틸렌-프로필렌-스티렌(SEPS) 블록 공중합체, 아크릴로니트릴-부타디엔 고무(Acrylonitrile-butadiene Rubber, NBR), 수소화된 니트릴 고무(Hydrogenated Nitrile Rubber, HNBR) 및 플로리네이티드 고무(Fluorinated Rubber)중 하나 이상을 더 포함할 수 있다.In addition to the silicone resin, the particulate core material includes styrene-butadiene rubber (SBR), butadiene rubber, isoprene rubber, chloroprene rubber, neoprene rubber, ethylene-propylene-diene terpolymer, styrene-ethylene-butylene-styrene (SEBS ) Block copolymers, styrene-ethylene-propylene-styrene (SEPS) block copolymers, acrylonitrile-butadiene rubber (NBR), hydrogenated nitrile rubber (HNBR) and florinated rubber It may further include one or more of Fluorinated Rubber.
상기 미립자 심재의 형상은 제한되지 않지만, 구형일 수 있다.The shape of the particulate core material is not limited, but may be spherical.
상기 미립자 심재 위에는 도전성을 부여하기 위하여 도전성층이 적층될 수 있다. 구체적으로, 도전성층은 도전성 고분자층, 금속층 중 하나 이상을 포함할 수 있다.A conductive layer may be stacked on the particulate core material to impart conductivity. Specifically, the conductive layer may include at least one of a conductive polymer layer and a metal layer.
도 5 내지 도 7은 본 발명 구체예의 도전성 입자의 개략적인 단면도이다.5 to 7 are schematic cross-sectional views of the conductive particles of the embodiment of the present invention.
도 5와 같이, 도전성 입자(4)는 미립자 심재(1); 및 상기 미립자 심재(1) 위에 형성된 도전성 고분자층(2)을 포함할 수 있다.As shown in FIG. 5, the electroconductive particle 4 is the fine particle core 1; And it may include a conductive polymer layer (2) formed on the particulate core material (1).
도 6과 같이, 도전성 입자(4)는 미립자 심재(1); 및 상기 미립자 심재(1) 위에 형성된 금속층(3)을 포함할 수 있다.As shown in FIG. 6, the electroconductive particle 4 is the fine particle core 1; And a metal layer 3 formed on the particulate core material 1.
또한, 도전성층은 도전성 고분자층 및 금속층이 순차적으로 형성될 수도 있다. 즉, 도 7과 같이, 도전성 입자(4)는 미립자 심재(1); 및 상기 미립자 심재(1) 위에 형성된 도전성 고분자층(2); 및 상기 도전성 고분자층(2) 위에 형성된 금속층(3)을 포함할 수 있다.In addition, the conductive layer may be formed of a conductive polymer layer and a metal layer sequentially. That is, as shown in FIG. 7, the conductive particles 4 include the fine particle core 1; And a conductive polymer layer (2) formed on the particulate core material (1); And a metal layer 3 formed on the conductive polymer layer 2.
상기 도전성 고분자층은 폴리피롤, 폴리아닐린, 폴리티오펜 및 이들의 유도체 중 하나 이상을 포함할 수 있다. The conductive polymer layer may include one or more of polypyrrole, polyaniline, polythiophene, and derivatives thereof.
상기 도전성 고분자층의 두께는 약 1㎚ ~ 500㎚, 바람직하게는 약 10 ㎚ ~ 200㎚일 수 있다. 상기 범위 내에서, 도전성을 부여할 수 있고, 이방 도전성 필름에 사용될 수 있다.The conductive polymer layer may have a thickness of about 1 nm to 500 nm, preferably about 10 nm to 200 nm. Within the above range, conductivity can be imparted and can be used for an anisotropic conductive film.
상기 금속층은 Ni, Au, Ag, Cu, Zn, Cr, Al, Co, Sn, Pt, Pd 중 하나 이상을 포함할 수 있다.The metal layer may include at least one of Ni, Au, Ag, Cu, Zn, Cr, Al, Co, Sn, Pt, and Pd.
상기 금속층의 두께는 약 10㎚ ~ 300㎚, 바람직하게는 약 80㎚ ~ 200㎚일 수 있다. 상기 범위 내에서, 도전성을 부여할 수 있고, 이방 도전성 필름에 사용될 수 있다.The metal layer may have a thickness of about 10 nm to 300 nm, preferably about 80 nm to 200 nm. Within the above range, conductivity can be imparted and can be used for an anisotropic conductive film.
상기 도전성 고분자층 또는 금속층은 단층 구조일 수도 있고, 이종의 금속의 2층 이상의 다층 구조일 수 있다. 특히, 금속층은 이종 금속 재료, 예를 들어 Ni/Au 합금의 단일층 또는 연속적 다층 구조인 경우 미립자 심재 표면에의 코팅성, 금속 재료의 안정성 및 도전성의 특성이 향상될 수 있다.The conductive polymer layer or the metal layer may have a single layer structure or a multilayer structure of two or more layers of different kinds of metals. In particular, when the metal layer is a single layer or continuous multilayer structure of a dissimilar metal material, for example, Ni / Au alloy, the coating property on the surface of the particulate core material, the stability of the metal material and the conductivity thereof may be improved.
도전성 입자의 형상은 제한되지 않지만, 구형의 입자일 수 있다.The shape of the conductive particles is not limited, but may be spherical particles.
상기 도전성 입자는 통상의 방법으로 제조할 수 있다. 예를 들면, (a) 실리콘계 수지를 포함하는 조성물을 이용하여 미립자 심재를 형성하는 단계; 및 (b) 상기 미립자 심재 표면에 도전성 고분자층, 금속층 중 하나 이상을 포함하는 도전성층을 형성하는 단계를 포함할 수 있다. The said electroconductive particle can be manufactured by a conventional method. For example, (a) forming a particulate core material using a composition comprising a silicone-based resin; And (b) forming a conductive layer including at least one of a conductive polymer layer and a metal layer on the surface of the particulate core material.
단계 (a)는 현탁중합법, 침전중합법, 분산중합법, 씨드중합법, 다단계 씨드중합법 또는 직접 성형법으로 단분산성의 가교된 미립자 심재를 형성하는 것일 수 있다. 다만 이는 미립자의 일반적인 제조방법일 뿐, 본 발명이 이에 한정되는 것은 아니다. 상기 직접 성형법이란 용액 중에서 만드는 것이 아닌 성형법을 의미할 수 있다.Step (a) may be to form a monodisperse crosslinked particulate core material by suspension polymerization, precipitation polymerization, dispersion polymerization, seed polymerization, multistage seed polymerization or direct molding. However, this is only a general manufacturing method of the fine particles, and the present invention is not limited thereto. The direct molding method may mean a molding method that is not made in a solution.
단계 (b)는 상기 미립자 심재를 분산 안정화제와 함께 분산 용매에 분산시키고, 도전성 고분자를 위한 단량체와 개시제를 첨가하여 반응시킴으로써 상기 미립자 심재 표면에 도전성 고분자층을 형성하는 것일 수 있다. Step (b) may be to form a conductive polymer layer on the surface of the particulate core material by dispersing the particulate core material in a dispersion solvent together with a dispersion stabilizer, by adding a monomer and an initiator for the conductive polymer to react.
단계 (b)의 상기 분산 안정화제로는 분산 용매 하에서 고분자 입자의 분산을 안정화시켜 주는 역할을 하는 것으로서, 수분산성 또는 알코올 분산성을 갖는 폴리비닐피롤리돈, 폴리비닐알콜, 이온성 또는 비이온성 계면활성제 등을 단독으로 또는 함께 사용할 수 있고, 상기 분산 용매로는 알코올 용매나 물 등을 사용할 수 있고, 개시제로는 APS((NH4)2S2O8), KSP(K2S2O8), FeCl3 등을 사용할 수 있다.The dispersion stabilizer of step (b) serves to stabilize the dispersion of the polymer particles in a dispersion solvent, polyvinylpyrrolidone, polyvinyl alcohol, ionic or nonionic interface having water dispersibility or alcohol dispersibility An activator or the like can be used alone or in combination. As the dispersion solvent, an alcohol solvent or water can be used, and as an initiator, APS ((NH 4 ) 2 S 2 O 8 ), KSP (K 2 S 2 O 8 ), FeCl 3 and the like can be used.
단계 (b)에서, 상기 도전성 고분자층 표면에 금속 촉매를 침적시킨 후 무전해 도금하여 금속층을 형성하는 단계를 포함할 수 있다. 금속 촉매로는 Pd 촉매를 사용하는 것이 바람직하다. Pd 입자를 표면에 침적시키고 금속 무전해 도금 처리하여 금속층을 형성할 수 있다.In step (b), a metal catalyst may be deposited on the surface of the conductive polymer layer and then electroless plated to form a metal layer. Pd catalyst is preferably used as the metal catalyst. Pd particles may be deposited on the surface and subjected to metal electroless plating to form a metal layer.
상기 도전성 입자는 이방 도전성 필름 중 약 1-5중량%로 포함될 수 있다. 상기 범위 내에서, 절연 특성을 유지하며 도전성 입자의 본래 역할인 회로간 접속 성능을 유지할 수 있다.The conductive particles may be included in about 1-5% by weight of the anisotropic conductive film. Within this range, it is possible to maintain the insulating properties and to maintain the circuit-to-circuit connection performance, which is the original role of the conductive particles.
상기 이방 도전성 필름의 매트릭스는 이방 도전성 필름 제조시 통상의 사용되는 수지를 포함할 수 있다. 예를 들면, 상기 이방 도전성 필름의 매트릭스는 에폭시계, (메타)아크릴레이트계 등을 포함할 수 있다.The matrix of the anisotropic conductive film may include a resin that is commonly used in manufacturing an anisotropic conductive film. For example, the matrix of the anisotropic conductive film may include an epoxy-based, (meth) acrylate-based, and the like.
상기 이방 도전성 필름의 두께는 약 10㎛-40㎛가 될 수 있다.The thickness of the anisotropic conductive film may be about 10㎛-40㎛.
본 발명의 다른 관점인 장치는 상기 디스플레이 패널을 포함할 수 있다. 상기 장치는 상기 디스플레이 패널을 포함할 수 있는 장치라면 특별히 제한되지 않고, 예를 들면 디스플레이 장치(예:플렉시블 디스플레이 장치)를 포함할 수 있다.Another aspect of the invention may include a display panel. The device is not particularly limited as long as the device may include the display panel. For example, the device may include a display device (eg, a flexible display device).
이하 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 다만, 이는 본 발명의 가능한 일 실시예로서 상세한 설명을 위한 것일 뿐, 본 발명이 이에 한정되는 것은 아니다.The present invention will be described in more detail with reference to the following examples. However, this is only for the detailed description as one possible embodiment of the present invention, the present invention is not limited thereto.
실시예 1Example 1
하기 표 1의 미립자 심재에 폴리티오펜 재질의 도전성 고분자층을 형성하여 입경 3-4㎛인 입자를 제조하였다. 상기 입자 표면에 Ni 도금 방식을 적용하여 두께 100 ± 10 ㎚ 수준으로 Ni 코팅한 후 다시 Au를 두께 50 ± 5 ㎚ 수준으로 코팅하여, 도전성 입자를 제조하였다. 도전성 입자, 아크릴계 공중합체, 아크릴레이트 변성 우레탄 수지, 아크릴로니트릴 부타디엔 공중합체, 이소시아누릭 액시드 에틸렌옥사이드 변성 디아크릴레이트, 실리카 입자 및 라우로일 퍼옥시드를 포함하는 조성물을 경화시켜 이방 도전성 필름을 제조하였다. 이방 도전성 필름을 하기 표 1의 기판에 압착하여, 이방 도전성 필름이 형성된 기판을 제조하였다. A conductive polymer layer made of polythiophene was formed on the particulate core material of Table 1 to prepare particles having a particle diameter of 3-4 μm. Ni coating was applied to the surface of the particles to form a Ni coating at a thickness of 100 ± 10 nm, and then Au was coated at a thickness of 50 ± 5 nm to prepare conductive particles. Anisotropic conductivity by curing a composition comprising conductive particles, acrylic copolymer, acrylate modified urethane resin, acrylonitrile butadiene copolymer, isocyanuric acid ethylene oxide modified diacrylate, silica particles and lauroyl peroxide A film was prepared. The anisotropic conductive film was crimped | bonded to the board | substrate of following Table 1, and the board | substrate with an anisotropic conductive film was formed.
185℃에서 5MPa로 5초 동안 힘을 인가하였다. 도전성(전도도)을 측정하여 도전성 입자의 이탈 여부를 평가하였다. 도전성 입자의 이탈이 발생한 경우 도전성은 낮아지게 된다. Force was applied at 185 ° C. for 5 seconds at 5 MPa. The conductivity (conductivity) was measured to evaluate whether the conductive particles were separated. When detachment of electroconductive particle generate | occur | produces, electroconductivity becomes low.
실시예 2Example 2
하기 표 1의 미립자 심재와 하기 표 1의 기판을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 이방 도전성 필름이 형성된 기판을 제조하였다. 185℃에서 5MPa로 5초 동안 힘을 인가하여, 도전성을 측정하였다.A substrate on which an anisotropic conductive film was formed was prepared in the same manner as in Example 1, except that the particulate core material of Table 1 and the substrate of Table 1 were used. The force was measured at 185 ° C. for 5 seconds at 5 MPa to measure conductivity.
실시예 3Example 3
하기 표 1의 미립자 심재와 하기 표 1의 기판을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 이방 도전성 필름이 형성된 기판을 제조하였다. 185℃에서 20MPa로 5초 동안 힘을 인가하여, 도전성을 측정하였다.A substrate on which an anisotropic conductive film was formed was prepared in the same manner as in Example 1, except that the particulate core material of Table 1 and the substrate of Table 1 were used. Conductivity was measured by applying a force at 185 ° C. at 20 MPa for 5 seconds.
비교예 1Comparative Example 1
하기 표 1의 미립자 심재와 하기 표 1의 기판을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 이방 도전성 필름이 형성된 기판을 제조하였다. 185℃에서 20MPa로 5초 동안 힘을 인가하여, 도전성을 측정하였다.A substrate on which an anisotropic conductive film was formed was prepared in the same manner as in Example 1, except that the particulate core material of Table 1 and the substrate of Table 1 were used. Conductivity was measured by applying a force at 185 ° C. at 20 MPa for 5 seconds.
미립자 심재와 기판의 모듈러스(저장 탄성율)는 DMA 242C를 이용하여 측정하였고, Bending 모드에서 0.01 에서 100 Hz의 진동수, 최대 16 N까지의 일정한 하중 및 0.1 내지 240 ㎛의 변형 진폭 하에서 모듈러스를 측정하였다.The modulus (storage modulus) of the particulate core and the substrate was measured using DMA 242C, and the modulus was measured under a frequency of 0.01 to 100 Hz, constant load up to 16 N, and strain amplitude of 0.1 to 240 μm in bending mode.
상기 도전성 측정 결과는 하기 표 1과 같다.  The conductivity measurement results are shown in Table 1 below.
표 1
실시예 1 실시예 2 실시예 3 비교예 1
미립자 심재 실리콘계 실리콘계 실리콘계 폴리카보네이트
미립자 심재의 모듈러스(B) 2MPa 2MPa 10MPa 50MPa
기판 유리 실리콘계 실리콘계 실리콘계
기판의 모듈러스(A) 70GPa 5MPa 12MPa 10MPa
모듈러스의 비(B/A) 2.86 x 10-5 0.4 0.83 5
도전성 3-5 mΩ 3-5 mΩ 6-12 mΩ 검출 불가
Table 1
Example 1 Example 2 Example 3 Comparative Example 1
Particulate heartwood Silicone Silicone Silicone Polycarbonate
Modulus of particulate core material (B) 2 MPa 2 MPa 10 MPa 50 MPa
Board Glass Silicone Silicone Silicone
Modulus (A) of the board 70 GPa 5 MPa 12 MPa 10 MPa
Modulus Ratio (B / A) 2.86 x 10 -5 0.4 0.83 5
Conductivity 3-5 m 3-5 m 6-12 mΩ Not detectable
상기 표 1에서 나타난 바와 같이, 실시예 1 내지 3의 가압 압력 조건에서 도전성 입자가 이탈하는 등의 문제가 발생하지 않았고, 일정한 저항 값을 갖는 도전성이 확보되어 DRIVE IC와 기판 사이의 하부 전극과 효과적으로 연결되어 신호의 전달이 양호하게 된다. 이에 반하여 비교예 1의 경우에는 도전성 입자가 거의 다 이탈하여 저항값이 무한대가 되어 도전성이 확보되지 않았다.As shown in Table 1, the problems such as the separation of the conductive particles in the pressurized pressure conditions of Examples 1 to 3 did not occur, the conductivity having a constant resistance value is secured to effectively secure the lower electrode between the DRIVE IC and the substrate The signal transmission is good. On the contrary, in the case of Comparative Example 1, almost all of the conductive particles were separated, the resistance value became infinite, and conductivity was not secured.
이상 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다. Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and can be manufactured in various forms, and a person of ordinary skill in the art to which the present invention pertains has the technical idea of the present invention. However, it will be understood that other specific forms may be practiced without changing the essential features. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (18)

  1. 기판; 및 상기 기판 위에 형성된 이방 도전성 필름을 포함하고,Board; And an anisotropic conductive film formed on the substrate,
    상기 이방 도전성 필름은 미립자 심재; 및 상기 미립자 심재 표면에 형성된 도전성층을 포함하는 도전성 입자를 포함하고,The anisotropic conductive film is a particulate core material; And conductive particles including a conductive layer formed on a surface of the particulate core material,
    상기 기판의 모듈러스(A)에 대한 상기 미립자 심재의 모듈러스(B)의 모듈러스 비(B/A)는 약 1 미만인 디스플레이 패널.And a modulus ratio (B / A) of modulus (B) of the particulate core material to modulus (A) of the substrate.
  2. 제1항에 있어서, 상기 기판은 유리, 실리콘계, 아크릴 수지, 에폭시 수지, 폴리에스테르 수지, 폴리에테르설폰 수지, 폴리아릴레이트 수지, 폴리카보네이트 수지, 폴리이미드 수지 중 하나 이상을 포함하는 디스플레이 패널.The display panel of claim 1, wherein the substrate comprises at least one of glass, silicone, acrylic resin, epoxy resin, polyester resin, polyethersulfone resin, polyarylate resin, polycarbonate resin, and polyimide resin.
  3. 제1항에 있어서, 상기 미립자 심재의 모듈러스는 약 0.1Mpa-1.0GPa인 디스플레이 패널.The display panel of claim 1, wherein the particulate core has a modulus of about 0.1 MPa-1.0 GPa.
  4. 제1항에 있어서, 상기 기판의 모듈러스는 약 0.1MPa-75GPa인 디스플레이 패널.The display panel of claim 1, wherein the substrate has a modulus of about 0.1 MPa-75 GPa.
  5. 제1항에 있어서, 상기 기판은 유리 기판이고, 상기 모듈러스 비는 약 0.15 x 10-5- 0.01인 디스플레이 패널.The display panel of claim 1, wherein the substrate is a glass substrate and the modulus ratio is about 0.15 × 10 −5 −0.01.
  6. 제1항에 있어서, 상기 기판은 모듈러스가 약 0.1MPa-15MPa인 실리콘계 기판인 디스플레이 패널.The display panel of claim 1, wherein the substrate is a silicon-based substrate having a modulus of about 0.1 MPa-15 MPa.
  7. 제1항에 있어서, 상기 미립자 심재는 실리콘계 수지를 포함하는 디스플레이 패널.The display panel of claim 1, wherein the particulate core material comprises a silicone resin.
  8. 제7항에 있어서, 상기 실리콘계 수지는 폴리알킬실록산, 폴리아릴실록산, 폴리알킬아릴실록산, 실리콘 고무 중 하나 이상을 포함하는 디스플레이 패널.The display panel of claim 7, wherein the silicone resin comprises at least one of polyalkylsiloxane, polyarylsiloxane, polyalkylarylsiloxane, and silicone rubber.
  9. 제7항에 있어서, 상기 미립자 심재는 스티렌-부타디엔 고무(SBR), 부타디엔계 고무, 이소프렌계 고무, 클로로프렌, 네오프렌고무, 에틸렌-프로필렌-디엔 삼원공중합체, 스티렌-에틸렌-부틸렌-스티렌(SEBS) 블록 공중합체, 스티렌-에틸렌-프로필렌-스티렌(SEPS) 블록 공중합체, 아크릴로니트릴-부타디엔 고무(Acrylonitrile-butadiene Rubber, NBR), 수소화된 니트릴 고무(Hydrogenated Nitrile Rubber, HNBR), 플로리네이티드 고무(Fluorinated Rubber) 중 하나 이상을 더 포함하는 디스플레이 패널.According to claim 7, wherein the particulate core material is styrene-butadiene rubber (SBR), butadiene-based rubber, isoprene-based rubber, chloroprene, neoprene rubber, ethylene-propylene-diene terpolymer, styrene-ethylene-butylene-styrene (SEBS ) Block copolymers, styrene-ethylene-propylene-styrene (SEPS) block copolymers, acrylonitrile-butadiene rubber (NBR), hydrogenated nitrile rubber (HNBR), florinated rubber Display panel further comprising at least one of (Fluorinated Rubber).
  10. 제1항에 있어서, 상기 미립자 심재는 입경이 약 2㎛-20㎛인 디스플레이 패널.The display panel of claim 1, wherein the particulate core material has a particle diameter of about 2 μm-20 μm.
  11. 제1항에 있어서, 상기 도전성층은 도전성 고분자층, 금속층 중 하나 이상을 포함하는 디스플레이 패널.The display panel of claim 1, wherein the conductive layer comprises at least one of a conductive polymer layer and a metal layer.
  12. 제11항에 있어서, 상기 도전성 층은 상기 도전성 고분자층 위에 상기 금속층이 순차적으로 적층된 디스플레이 패널.The display panel of claim 11, wherein the conductive layer is formed by sequentially stacking the metal layer on the conductive polymer layer.
  13. 제11항에 있어서, 상기 도전성 고분자층은 폴리피롤, 폴리아닐린, 폴리티오펜, 이들의 유도체 중 하나 이상을 포함하는 디스플레이 패널.The display panel of claim 11, wherein the conductive polymer layer comprises at least one of polypyrrole, polyaniline, polythiophene, and derivatives thereof.
  14. 제11항에 있어서, 상기 도전성 고분자층의 두께는 약 1㎚-500㎚인 디스플레이 패널.The display panel of claim 11, wherein the conductive polymer layer has a thickness of about 1 nm to 500 nm.
  15. 제11항에 있어서, 상기 금속층은 Ni, Au, Ag, Cu, Zn, Cr, Al, Co, Sn, Pt, Pd 중 하나 이상을 포함하는 디스플레이 패널.The display panel of claim 11, wherein the metal layer comprises at least one of Ni, Au, Ag, Cu, Zn, Cr, Al, Co, Sn, Pt, and Pd.
  16. 제11항에 있어서, 상기 금속층의 두께는 약 10㎚-300㎚인 디스플레이 패널.The display panel of claim 11, wherein the metal layer has a thickness of about 10 nm to 300 nm.
  17. 제11항에 있어서, 상기 금속층은 단층 또는 다층인 디스플레이 패널.The display panel of claim 11, wherein the metal layer is a single layer or a multilayer.
  18. 제1항 내지 제17항 중 어느 한 항의 디스플레이 패널을 포함하는 디스플레이 장치.18. A display device comprising the display panel of claim 1.
PCT/KR2012/009030 2011-11-09 2012-10-31 Display panel and display device having same WO2013069919A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0116621 2011-11-09
KR20110116621 2011-11-09

Publications (1)

Publication Number Publication Date
WO2013069919A1 true WO2013069919A1 (en) 2013-05-16

Family

ID=48290237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009030 WO2013069919A1 (en) 2011-11-09 2012-10-31 Display panel and display device having same

Country Status (3)

Country Link
KR (1) KR20130051426A (en)
TW (1) TW201324536A (en)
WO (1) WO2013069919A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11652052B2 (en) 2021-03-29 2023-05-16 Tpk Advanced Solutions Inc. Contact structure and electronic device having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317500A (en) * 2004-04-26 2005-11-10 Joinset Co Ltd Conductive silicon powder, its manufacturing method, anisotropic conduction film applied with this, and conductive paste
KR20060058856A (en) * 2004-11-26 2006-06-01 제일모직주식회사 Polymer bead-conductive metal particle complex system and anisotropic conductive film using the same
KR100882313B1 (en) * 2006-03-09 2009-02-10 주식회사 엘지화학 Conductive polymer particle ball and process for preparing the same
KR100913686B1 (en) * 2001-11-28 2009-08-24 다우 코닝 도레이 캄파니 리미티드 Anisotropically electroconductive adhesive film, method for the production thereof, and semiconductor devices comprising the same
KR20110034606A (en) * 2008-07-24 2011-04-05 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 Conductive particle, anisotropic conductive film, joined body, and connecting method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100913686B1 (en) * 2001-11-28 2009-08-24 다우 코닝 도레이 캄파니 리미티드 Anisotropically electroconductive adhesive film, method for the production thereof, and semiconductor devices comprising the same
JP2005317500A (en) * 2004-04-26 2005-11-10 Joinset Co Ltd Conductive silicon powder, its manufacturing method, anisotropic conduction film applied with this, and conductive paste
KR20060058856A (en) * 2004-11-26 2006-06-01 제일모직주식회사 Polymer bead-conductive metal particle complex system and anisotropic conductive film using the same
KR100882313B1 (en) * 2006-03-09 2009-02-10 주식회사 엘지화학 Conductive polymer particle ball and process for preparing the same
KR20110034606A (en) * 2008-07-24 2011-04-05 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 Conductive particle, anisotropic conductive film, joined body, and connecting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11652052B2 (en) 2021-03-29 2023-05-16 Tpk Advanced Solutions Inc. Contact structure and electronic device having the same

Also Published As

Publication number Publication date
KR20130051426A (en) 2013-05-20
TW201324536A (en) 2013-06-16

Similar Documents

Publication Publication Date Title
TWI618094B (en) Anisotropic conductive adhesive composite and film, and circuit connecting structure including the same
KR100559937B1 (en) Method of microelectrode connection and connected srtucture thereby
KR101375298B1 (en) Conductive microspheres and an anisotropic conductive film comprising the same
US20020014615A1 (en) Anisotropic conductive adhesive film
EP1076082A1 (en) Low-temperature setting adhesive and anisotropically electroconductive adhesive film using the same
JP7420883B2 (en) Conductive film, connection body manufacturing method, and connection body
JP2012209097A (en) Anisotropic conductive material and connection structure
KR20040111441A (en) Conductive particle and adhesive agent
WO2014092343A1 (en) Functional film, and flexible printed circuit board including same
WO2019132414A1 (en) Anisotropic conductive film, display device including same and/or semiconductor device including same
JP2013195331A (en) Anisotropic conductive sheet and its application
WO2013069919A1 (en) Display panel and display device having same
JP3581618B2 (en) Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JPH11209714A (en) Anisotropically electroconductive adhesive
JP2012174417A (en) Anisotropic conductive sheet, method for connecting electronic member, and electronic part
JP2016062879A (en) Anisotropic conductive material
JP4107769B2 (en) Conductivity imparting particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same
KR100735211B1 (en) Anisotropic conductive film with conductive ball of highly reliable electric connection
CN111518495B (en) High-performance anisotropic conductive adhesive special for electronic packaging
JP2001155540A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
JPH11339558A (en) Anisotropic conductive adhesive and conductive connection structural body
JPH11204178A (en) Anisotropic conductive sheet
JP2001214149A (en) Anisotropic electrically conductive adhesive
KR100979723B1 (en) Anisotropic conductive film having a optimum elastic restitution property and circuit board using the same
KR20090115520A (en) Anisotropic Conductive Film Having A Optimum Elastic Restitution Property And Circuit Board Using The Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848180

Country of ref document: EP

Kind code of ref document: A1