WO2013069662A1 - レジンコーテッドサンド用流動性向上剤 - Google Patents

レジンコーテッドサンド用流動性向上剤 Download PDF

Info

Publication number
WO2013069662A1
WO2013069662A1 PCT/JP2012/078791 JP2012078791W WO2013069662A1 WO 2013069662 A1 WO2013069662 A1 WO 2013069662A1 JP 2012078791 W JP2012078791 W JP 2012078791W WO 2013069662 A1 WO2013069662 A1 WO 2013069662A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
metal salt
acid metal
resin
coated sand
Prior art date
Application number
PCT/JP2012/078791
Other languages
English (en)
French (fr)
Inventor
健司 吉村
Original Assignee
日油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日油株式会社 filed Critical 日油株式会社
Priority to JP2013542998A priority Critical patent/JP6119611B2/ja
Priority to CN201280054758.2A priority patent/CN104023872B/zh
Publication of WO2013069662A1 publication Critical patent/WO2013069662A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2246Condensation polymers of aldehydes and ketones
    • B22C1/2253Condensation polymers of aldehydes and ketones with phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/24Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of oily or fatty substances; of distillation residues therefrom

Definitions

  • the present invention relates to a fluidity improver for resin-coated sand. Specifically, the present invention improves the fluidity of the resin-coated sand when pouring the resin-coated sand into the mold at the time of mold production, can suppress blocking of the resin-coated sand, remarkably increase the strength of the mold, The present invention relates to a fluidity improver for resin-coated sand that can improve the casting surface.
  • the mold is made by combining refractory aggregates for molds such as cinnabar with a binder such as phenol resin, and then adding resin-coated sand obtained by adding a fluidity improver to the mold and raising the temperature to cure. Since it has excellent characteristics such as good dimensional accuracy, it has been widely used in the past.
  • fatty acid metal salts are generally used. Mix the refractory aggregate and the binder to cover the surface of the refractory aggregate, and then add a fatty acid metal salt to prepare a resin-coated sand, and then apply this resin-coated sand to a heated mold.
  • the shell mold is formed by pouring and filling and melting and curing the binder.
  • the fluidity improver improves the workability by improving the fluidity when molding the resin-coated sand into the mold, and blocking occurs until the resin-coated sand is used. It is used to prevent.
  • thermosetting resin such as a solid phenol resin as a binder is added to a refractory aggregate heated to about 120 to 180 ° C., mixed with a mixer, and the resin is heated and melted with the heat of the refractory aggregate.
  • the resin is coated on the surface of the refractory aggregate.
  • water for cooling or an aqueous solution in which a curing agent such as hexamethylenetetramine is dissolved as necessary is added.
  • the refractory aggregate in the mixer increases in viscosity and becomes cocoon-like, and then suddenly disintegrates to a smooth state.
  • a fluidity improver such as a fatty acid metal salt is added in a state where the inside of the mixer is about 70 to 90 ° C., and the mixture is mixed in a short time of about 10 to 60 seconds and under mild conditions.
  • Resin coated sand can be obtained by paying off In the production of resin-coated sand, binders such as phenolic resin that has been coated with refractory aggregate and cooled and solidified are peeled off from refractory aggregate by adding and mixing a fluidity improver under mild mixer stirring conditions. Can be prevented.
  • Patent Document 1 uses calcium stearate (paragraphs [0034] and [0046]).
  • the conventional calcium stearate does not sufficiently exhibit the lubricity action by the fluidity improver, and the effect of improving the fluidity becomes insufficient, which may reduce the strength of the mold.
  • the conventional calcium stearate has a problem that the workability of molding is lowered or blocking occurs before the resin-coated sand is used.
  • the present invention has been made in view of the above problems, and can improve the fluidity of the resin-coated sand when casting the resin-coated sand into a mold during mold production, and can suppress blocking of the resin-coated sand.
  • An object of the present invention is to provide a fluidity improver for resin-coated sand that can remarkably increase the strength of the mold and improve the casting surface.
  • the present invention comprises divalent fatty acid metal salt particles having 8 to 24 carbon atoms, the particle size summary value A represented by the following formula (1) satisfies the relationship of A ⁇ 2.0, and is an environment at 80 ° C.
  • Resin-coated sand characterized in that, in the fatty acid metal salt particles left for 10 minutes below, the degree of aggregation B (%) represented by the following formula (2) measured by a powder tester satisfies the relationship B ⁇ 20: Fluidity improver.
  • Particle size summary value A (D90 ⁇ D10) / D50 (where 1.0 ⁇ D50 ⁇ 40.0) (1)
  • Formula D10 10% integrated diameter ( ⁇ m) of fatty acid metal salt particles based on volume D50: Median diameter ( ⁇ m) of fatty acid metal salt particles based on volume D90: 90% integrated diameter ( ⁇ m) of fatty acid metal salt particles based on volume
  • Aggregation degree B [(mass of fatty acid metal salt particles remaining on sieve with 350 ⁇ m sieve) / 2] ⁇ 100 ⁇ (1/1) + [(mass of fatty acid metal salt particles remaining on sieve with 250 ⁇ m sieve) / 2] ⁇ 100 ⁇ (3/5) + [(mass of fatty acid metal salt particles remaining on a sieve having a mesh size of 150 ⁇ m) / 2] ⁇ 100 ⁇ (1/5)] (2) formula
  • the present invention is a resin-coated sand containing a refractory aggregate, a binder, and a fluidity improver for the resin-coated sand of the present invention.
  • the fluidity improver for resin-coated sand of the present invention can impart excellent fluidity to the resin-coated sand and can suppress the occurrence of blocking of the resin-coated sand. Therefore, the bulk density of filling can be increased, and the effect of remarkably improving the strength of a mold such as a complicated and dense mold can be sufficiently obtained.
  • the resin coated sand is poured into the mold at the time of mold production, the resin coated sand is easily poured, and the mold is easily released from the mold, so that the workability of molding is improved. Furthermore, the occurrence of so-called “insertion” or “crack” in the bath water can suppress the roughening of the casting skin (surface condition) or the occurrence of sand removal defects on the casting surface.
  • the flowability improver for resin-coated sand of the present invention (hereinafter also simply referred to as flowability improver), the refractory aggregate, the binder and the resin-coated sand used for the resin-coated sand will be described in order.
  • the numerical value sandwiching the symbol “ ⁇ ” is included in the range defined by “ ⁇ ”. For example, “10 to 30” represents a range of 10 or more and 30 or less.
  • Such fatty acid metal salt particles are produced by a metathesis method in which a fatty acid alkali compound salt obtained by reacting a fatty acid having 8 to 24 carbon atoms with a monovalent alkali compound and a divalent metal salt are reacted in an aqueous solution. Can be prepared.
  • the fatty acid used as a raw material for the fatty acid alkali compound salt is not particularly limited as long as it is a fatty acid having 8 to 24 carbon atoms. That is, any of naturally occurring fatty acids and synthetic fatty acids may be used, either saturated fatty acids or unsaturated fatty acids may be used, and either linear or branched fatty acids may be used. Furthermore, a functional group such as a hydroxyl group, an aldehyde group, or an epoxy group may be included in the structure of the fatty acid. A linear saturated fatty acid having 12 to 22 carbon atoms is preferred. When the number of carbon atoms is less than 8, the effect as a fluidity improver of the obtained fatty acid metal salt particles cannot be obtained. On the other hand, fatty acids having more than 24 carbon atoms are difficult to obtain industrially, and the solubility of the resulting fatty acid alkali compound salt in water is significantly reduced, resulting in low productivity.
  • fatty acids examples include caprylic acid, capric acid, lauric acid, myristic acid, myristoleic acid, palmitic acid, palmitooleic acid, stearic acid, oleic acid, linoleic acid, arachidic acid, behenic acid, erucic acid, Examples thereof include hydroxystearic acid and epoxy stearic acid, among which stearic acid is preferred.
  • a mixed fatty acid having a stearic acid content of preferably 50% or more, more preferably 60% or more, and even more preferably 70% or more is used.
  • Examples of the monovalent alkali compound used as a raw material for the fatty acid alkali compound salt include hydroxides of alkali metals (sodium, potassium, etc.), and amines such as ammonia, monoethanolamine, diethanolamine, and triethanolamine. From the viewpoint of high solubility in water when a fatty acid alkali compound salt is used, an alkali metal hydroxide such as sodium or potassium is preferred.
  • the fatty acid alkali compound salt used in the present invention generally has a monovalent alkali compound and a fatty acid at a temperature not lower than the melting point of the fatty acid and at which the fatty acid does not decompose, preferably 100 ° C. or lower, more preferably 50 to It is obtained by reacting at 100 ° C., more preferably 60 to 95 ° C., particularly preferably 70 to 95 ° C.
  • the divalent fatty acid metal salt particles used in the present invention it is preferable to use fatty acid metal salt particles obtained by reacting the fatty acid alkali compound salt obtained above with a divalent metal salt in an aqueous solution.
  • the divalent metal salt is specifically a salt of a divalent inorganic metal and an inorganic acid or an organic acid.
  • divalent inorganic metals include alkaline earth metals such as magnesium, calcium and barium, transition metals such as titanium, zinc, iron, manganese, cadmium, mercury, zirconium, lead, copper, cobalt, aluminum and nickel. It is done.
  • calcium and magnesium are preferable because they are less burdensome on the environment and are easily available industrially. From the viewpoint of imparting fluidity to the resin-coated sand, calcium is particularly preferable.
  • divalent metal salt examples include calcium chloride, calcium acetate, magnesium chloride, magnesium sulfate, zinc chloride, zinc sulfate, and aluminum sulfate.
  • chlorides such as calcium and magnesium, sulfates, and nitrates are preferable because they have high solubility in water and efficiently react with fatty acid alkali compound salts.
  • the above reaction is performed by separately preparing a divalent metal salt-containing aqueous solution and a fatty acid alkali compound salt-containing aqueous solution, and then mixing them.
  • the divalent metal salt-containing aqueous solution is added to the fatty acid alkali compound salt-containing aqueous solution, or both are added to another reaction tank.
  • the divalent metal salt-containing aqueous solution is gradually dropped at an appropriate rate with respect to the fatty acid alkali compound salt-containing aqueous solution.
  • the concentration of the fatty acid alkali compound salt during the production of the fatty acid metal salt is usually 1% by mass to from the viewpoint of the productivity of the fatty acid metal salt and the handling property of the fatty acid alkali compound salt-containing aqueous solution or the resulting fatty acid metal salt slurry. It is 20% by mass, preferably 5% by mass to 15% by mass.
  • concentration of the fatty acid alkali compound salt is less than 1% by mass, the productivity of the fatty acid metal salt may decrease, which is not practically preferable.
  • the amount exceeds 20% by mass the viscosity of the fatty acid alkali compound salt-containing aqueous solution or the resulting fatty acid metal salt slurry increases, so that it may be difficult to perform a uniform reaction.
  • the concentration of the divalent metal salt in the divalent metal salt-containing liquid is determined from the viewpoint of the productivity of the fatty acid metal salt, and the handling property of the fatty acid alkali compound salt-containing aqueous solution or the obtained fatty acid metal salt slurry. Usually, it is 10% by mass to 50% by mass, preferably 10% by mass to 40% by mass.
  • the reaction between the fatty acid alkali compound salt and the divalent metal salt is performed under temperature conditions that are usually performed by those skilled in the art in consideration of the solubility of the fatty acid alkali compound salt.
  • the temperature is preferably 50 to 100 ° C, more preferably 60 to 95 ° C.
  • reaction temperature is less than 50 degreeC, there exists a possibility that the reaction rate of a fatty-acid alkali compound salt and a bivalent metal salt may fall.
  • Polyalkylene glycol ethers are the oxyethylene blocks for the purpose of stabilizing the fatty acid metal salt slurry during the reaction between the fatty acid alkali compound salt and the divalent metal salt and improving the productivity of the fatty acid metal salt. It is preferable that a triblock ether having a structure sandwiched between (EO-PO-EO) is present in the fatty acid metal salt slurry.
  • the content of the polyalkylene glycol ether in the fatty acid metal salt slurry is usually 0.01 to 5 parts by mass, preferably 0.05 to 2 parts by mass with respect to 100 parts by mass of the fatty acid alkali compound salt. is there.
  • the polyalkylene glycol ether may be present in the reaction system before reacting the monovalent alkali compound with the fatty acid, or the reaction system before the reaction between the fatty acid alkali compound salt and the divalent metal salt. May be present.
  • the fatty acid metal salt slurry is obtained by the above method.
  • This fatty acid metal salt slurry is used as it is or after separating the solvent by a centrifugal dehydrator, filter press, vacuum rotary filter, etc., and if necessary, washing and removing by-product inorganic salts, Drying is performed by an air dryer, an aeration dryer, a spray dryer, a fluidized bed dryer or the like.
  • the drying method may be continuous, batch, normal pressure or vacuum.
  • the dried fatty acid metal salt is pulverized as necessary.
  • the pulverization method is not particularly limited, and for example, a pin mill, a jet mill, an atomizer or the like can be used.
  • the pulverized fatty acid metal salt particles are classified.
  • classification is performed using a multistage sieving apparatus or the like that applies vibrations and performs sieving to adjust the particle size distribution.
  • the fatty acid metal salt particles as the fluidity improver for the resin-coated sand of the present invention can be obtained.
  • the particle size summary value A represented by the following formula (1) of the fatty acid metal salt particles is set to 2.0 or less.
  • the particle size summary value A is calculated from the particle size measured by the microtrack laser diffraction method. If the particle size summary value A exceeds 2.0, the resin coated sand fluidity becomes unstable due to variations in the particle size of the fatty acid metal salt particles present in the resin coated sand.
  • the particle size summary value A satisfies the relationship of 1.0 ⁇ A ⁇ 1.8.
  • the relationship of 1.0 ⁇ A ⁇ 1.8 is satisfied, the effects of the present invention can be obtained more stably.
  • the particle size summary value A is less than 1.0, it may be difficult to produce industrially, for example, the yield may be significantly reduced.
  • the particle size summary value A is adjusted by adjusting the concentration of the fatty acid alkali compound salt, the temperature during the reaction between the fatty acid alkali compound salt and the divalent metal salt, and dropping the divalent metal salt-containing aqueous solution into the fatty acid alkali compound salt-containing aqueous solution. It can carry out by adjusting the dripping speed
  • those having a wide particle size distribution that is, a particle size summary value A having a large value can be obtained by classification using a sieve of 100 mesh, 200 mesh, 330 mesh or the like in post-processing.
  • the microtrack laser diffraction method used here is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light.
  • the measurement is performed by a wet method in which an organic solvent in which fatty acid metal salt particles are not dissolved, for example, an organic solvent such as ethanol or isopropyl alcohol is circulated, and the sample is put as it is.
  • the measurement object in the present invention is a particle diameter in the range of 0.1 ⁇ m to 200 ⁇ m, and the value represented by the following formula (1) is defined as the particle size summary value A.
  • the measurement can be performed using, for example, Microtrack MT-3000 manufactured by Nikkiso Co., Ltd.
  • Particle size summary value A (D90 ⁇ D10) / D50 (where 1.0 ⁇ D50 ⁇ 40.0) (1)
  • Formula D10 10% integrated diameter ( ⁇ m) of fatty acid metal salt particles based on volume D50: Median diameter ( ⁇ m) of fatty acid metal salt particles based on volume D90: 90% integrated diameter ( ⁇ m) of fatty acid metal salt particles based on volume
  • refractory aggregate and binder are added, and water for cooling or an aqueous solution in which a curing agent is dissolved is added to a mixer heated to around 120-170 ° C.
  • the mixture is cooled to around 70 to 90 ° C., and when the fluid is released and fluidity is obtained, a predetermined amount of fluidity improver is added, and the mixture is mixed for 10 to 60 seconds with gentle agitation.
  • the coated sand can be discharged.
  • the aggregation degree B (%) represented by the following formula (2) measured by a powder tester when the fatty acid metal salt particles are left in an environment of 80 ° C. for 10 minutes is B ⁇
  • the fatty acid metal salt particles can be easily released even under mild mixing conditions of the resin-coated sand, and can be quickly and uniformly dispersed in the resin-coated sand. Therefore, the bulk density can be increased with the improvement of the fluidity of the resin-coated sand, and the strength of the mold such as the core can be improved. Moreover, it can suppress that the quality defect of a casting_mold
  • the adjustment of the degree of aggregation B is performed by carrying out the reaction between the fatty acid alkali compound salt and the divalent metal salt under mild conditions and preventing aggregation of the fatty acid metal salt particles in the slurry obtained by the reaction.
  • the reaction can be performed at a mild temperature that does not decrease the reaction rate during the reaction between the fatty acid alkali compound salt and the divalent metal salt, or by shortening the aging time.
  • the degree of aggregation B can be adjusted within the range specified in the present invention.
  • the degree of aggregation B (%) is more preferably 2 ⁇ B ⁇ 18, further preferably 2 ⁇ B ⁇ 15, and particularly preferably 2 ⁇ B ⁇ 13.
  • the aggregation degree B is less than 2%, the handling property of the fatty acid metal salt particles is deteriorated when added to the resin-coated sand, and the workability may be lowered.
  • Aggregation degree B [(mass of fatty acid metal salt particles remaining on sieve with 350 ⁇ m sieve) / 2] ⁇ 100 ⁇ (1/1) + [(mass of fatty acid metal salt particles remaining on sieve with 250 ⁇ m sieve) / 2] ⁇ 100 ⁇ (3/5) + [(mass of fatty acid metal salt particles remaining on a sieve having a mesh size of 150 ⁇ m) / 2] ⁇ 100 ⁇ (1/5)] (2) formula
  • the aggregation degree B of the fatty acid metal salt particles by the powder tester used here is a value obtained by the following measuring method. That is, for example, the following steps (a) to (f) are performed using a powder tester (PT-N type, manufactured by Hosokawa Micron Corporation).
  • A The fatty acid metal salt particles to be measured are left for 10 minutes in a thermostat set to 80 ° C.
  • Sieves of 350 ⁇ m, 250 ⁇ m, and 150 ⁇ m are sequentially set from the upper layer on the vibrating table of the powder tester.
  • C Immediately place 2.0 g of fatty acid metal salt particles after step (a) gently on a sieve having a sieve size of 350 ⁇ m.
  • the fatty acid metal salt particles used in the present invention preferably have a loose bulk density (Da) (g / cc) of 0.110 ⁇ Da ⁇ 0.180, and 0.135 ⁇ Da ⁇ 0.160. More preferably.
  • Da loose bulk density
  • g / cc loose bulk density
  • the loose bulk density (Da) is a value obtained by the following measurement method. First, for example, using a powder tester (made by Hosokawa Micron Corporation, PT-N type), set a sieve with a sieve mesh of 710 ⁇ m on a vibrating table, put a sample of 250 cc into it, vibrate for 30 seconds, and install it under the sieve Collect the dropped sample in the measuring cup. Using the attached blade, scrape excess fatty acid metal salt particles on the cup, and then weigh the cup containing the sample. In the present invention, this operation / measurement is repeated five times, and the average value is taken as the measurement value of the bulk density (Da). In the PT-N type, the measured value is automatically displayed.
  • the fatty acid metal salt particles used in the present invention have an average circularity C of a particle group of 10% particle diameter to 90% particle diameter of 0.810 to 1.000 as measured by a flow particle image analyzer. Is preferable, 0.820 to 0.950 is more preferable, and 0.830 to 0.920 is particularly preferable. If average circularity C is the said range, the coating property to the resin coated sand particle at the time of fatty acid metal salt particle addition in a resin coated sand manufacturing process can further be improved.
  • the average circularity C is adjusted by performing the reaction between the fatty acid alkali compound salt and the divalent metal salt under mild conditions, and the particle shape of the fatty acid metal salt particles in the slurry obtained by the reaction becomes nonuniform. Can be done by preventing. That is, for example, the reaction is performed at a mild temperature that does not reduce the reaction rate during the reaction between the fatty acid alkali compound salt and the divalent metal salt, or the divalent metal salt-containing aqueous solution is changed to the fatty acid alkali compound salt-containing aqueous solution.
  • the dropping can be performed by slowing the dropping speed or adding the above-mentioned polyalkylene glycol ether to stabilize the slurry. By appropriately adjusting these factors during the reaction, the average circularity C can be adjusted within the range specified in the present invention.
  • the average circularity in the present invention is used as a simple method for quantitatively expressing the shape of the fatty acid metal salt particles, and can be defined as follows. First, using, for example, a flow type particle image analyzer “FPIA-3000” manufactured by Sysmex Corporation, particles within a circle equivalent diameter of 0.5 ⁇ m to 200 ⁇ m are measured, and the circularity (ai) of each particle measured there Are obtained by the following equation (4).
  • FPIA-3000 manufactured by Sysmex Corporation
  • Circularity (ai) (perimeter of a circle having the same area as the projected image of the particle) / (perimeter of the projected image of the particle) ... (4) formula
  • the average circularity in the present invention is an index indicating the degree of unevenness of the particle shape of the fatty acid metal salt. As the surface shape of the fatty acid metal salt particle becomes closer to a circle, it approaches 1.000, and the surface shape of the particle becomes complicated. The average circularity becomes a small value.
  • FPIA-3000 which is a measuring apparatus that can be used in the present invention, calculates the circularity of each particle, and classifies the circularity of the particle from 0.4 to 1.0 by 61 according to the obtained circularity. A calculation method is used in which the average circularity is calculated using the center and frequency of the division points.
  • the average circularity C (hereinafter, also simply referred to as “average circularity C”) of a particle group having a particle size of 10% to 90% is the particle size of all particles measured by the measuring device. This is a value obtained by dividing the total circularity of particles in the range of 10% particle diameter to 90% particle diameter from the small particle diameter side of the distribution by the number of particles.
  • Measurement of the average circularity C of a particle group having a particle diameter of 10% to 90% is, for example, as follows. 30 ml of ion-exchanged water from which impure solids and the like have been removed in advance is prepared in a container, and a surfactant, preferably polyoxyethylene nonylphenyl ether (trade name: Nonion NS-, manufactured by NOF Corporation) is used as a dispersant. After adding 210), 20 mg of a measurement sample is further added and dispersed uniformly.
  • a surfactant preferably polyoxyethylene nonylphenyl ether (trade name: Nonion NS-, manufactured by NOF Corporation) is used as a dispersant. After adding 210), 20 mg of a measurement sample is further added and dispersed uniformly.
  • a dispersing means for example, an ultrasonic disperser UH-50 type (manufactured by SMT Co., Ltd., 20 kHz / 50 W) equipped with a titanium alloy chip having a diameter of 5 mm as a vibrator is subjected to a dispersion treatment for 5 minutes to obtain a dispersion liquid.
  • the concentration is set to 3,000 / 20,000 to 20,000 / ml to obtain a dispersion for measurement.
  • the measurement is performed while cooling appropriately so that the temperature of the dispersion liquid for measurement does not exceed 40 ° C. Thereafter, measurement is performed using a flow type particle image analyzer “FPIA-3000”, and the average circularity C is obtained by processing the obtained data.
  • the fatty acid metal salt particles used in the present invention have powder physical properties in which each of the particle size summary value A and the aggregation degree B is in a specific range.
  • the arithmetic average specific surface area is less than 0.70 m 2 / cc, more preferably not more than 0.60 m 2 / cc.
  • Such fatty acid metal salt particles are rapidly and uniformly dispersed under the addition conditions during the production of the resin-coated sand that is gentle mixing at 70 to 90 ° C.
  • the resin-coated sand for a short time of about 10 to 40 seconds. It is preferable in that it can be effectively coated and can impart high fluidity to the resin-coated sand. Along with the provision of high fluidity, the strength of the mold is improved and the occurrence of quality defects can be suppressed. Moreover, it is possible to suppress the occurrence of so-called “insertion” or “crack” of the bath water from causing the casting to have a rough skin (surface state) or causing a sand drop defect to occur on the casting surface. Furthermore, the blocking resistance during storage of the resin-coated sand is also good.
  • the present inventor When using the obtained fatty acid metal salt particles as a fluidity improver for resin-coated sand, the present inventor, among the obtained powder properties, has an average circularity of a particle group having a particle size of 10% to 90%. It has been found that the numerical relationship between C, the particle size summary value A in the formula (1), and the degree of aggregation B in the formula (2) has a great influence on the fluidity imparted to the resin-coated sand. In other words, the present inventor designed the fatty acid metal salt particles having powder properties satisfying the following relational expression, thereby providing excellent dispersibility with respect to the resin-coated sand even under mild mixing conditions. And found that fatty acid metal salt particles can be obtained that more efficiently improve the coating on the resin-coated sand particles.
  • the fluidity improver for resin-coated sand of the present invention may be used by mixing with a nonionic surfactant.
  • a nonionic surfactant an ether type nonionic surfactant is desirable, and polyoxyethylene alkyl ether and / or polyoxyethylene alkylphenyl ether is more desirable. This is because it is better to use the fatty acid metal salt particles and the nonionic surfactant in combination in the stability of the formation of fatty acid metal salt particles in the slurry and the flowability of the resin-coated sand of the obtained fatty acid metal salt particles. This is because.
  • the refractory aggregate used in the present invention is an aggregate for a mold, typically a refractory granular material.
  • refractory granular materials include silica sand, chromite sand, zircon sand, olivine sand, mullite sand, synthetic mullite sand, magnesia, special sand, and recovered sand, reclaim, and the like mainly composed of quartz.
  • various refractory granular materials such as fresh sand, recovered sand, reclaimed sand, or mixed sand thereof can be used without particular limitation.
  • the particle size distribution and the particle shape of the refractory granular material can be selected without any particular limitation as long as the refractory granular material is suitable for casting and forming a mold.
  • Binder The binder used in the present invention includes bentonite, water glass, starch and the like.
  • one or a combination of two or more thermosetting resins such as a phenolic resin such as a resol type, a novolak type, or a benzylic ether type, a furan resin, a urethane resin, an amine polyol resin, or a polyether polyol resin is used.
  • these binders are blended with hexamethylenetetramine, isocyanate, organic esters, phosphate esters, etc. as curing agents as necessary, and tertiary amines, sulfur dioxide, pyridine derivatives, organic as curing accelerators.
  • a sulfonic acid etc. can be mix
  • the resin coated sand of the present invention contains the fluidity improver, fireproof aggregate and binder of the present invention.
  • the resin-coated sand can be produced by putting refractory aggregate heated to a predetermined temperature into, for example, a mixer, melt-coating the above-mentioned binder on the refractory aggregate, and then kneading. More specifically, the fire-resistant granular material which is a fire-resistant aggregate is heated to, for example, 130 to 160 ° C., the heated fire-resistant granular material and the binder are kneaded, and then the curing agent is, for example, hexamethylenetetramine.
  • Aqueous solution containing is added and kneaded until the mass of the refractory granular material collapses. Further, it is cooled to 70 to 90 ° C., the fatty acid metal salt particles according to the present invention are added as a fluidity improver, and dispersed under a mild condition of about 10 to 60 seconds to obtain the resin-coated sand of the present invention.
  • the compounding amount of the binder is 0.1 to 100 g, preferably 0.1 to 50 g, per 1 kg of the refractory aggregate.
  • the blending amount of the fatty acid metal salt particles as the fluidity improver of the present invention is 0.1 to 50 g, preferably 0.1 to 30 g, per 1 kg of the refractory aggregate.
  • the resin-coated sand obtained as described above is distributed or filled into a mold heated to about 300 ° C. according to a known method, and a binder such as a thermosetting resin is melted and cured.
  • template can be manufactured by the bonding action of sand through a binder.
  • a casting can be produced by pouring bath water heated to about 900 to 1900 ° C. into the mold.
  • the fluidity improver of the present invention By using the fluidity improver of the present invention, the fluidity of the resin-coated sand is improved, and accordingly, a strong mold is obtained. Therefore, it is possible to suppress the occurrence of so-called “insertion” or “crack” in the bath water from causing the casting skin (surface state) to become rough or to cause a sand drop defect on the casting surface.
  • Example 1 A 3 L separable flask was mixed with mixed fatty acids (2.1% by weight myristic acid, 30.3% by weight palmitic acid, 66.5% stearic acid, 0.8% by weight arachidic acid, and 0.3% behenic acid.
  • mixed fatty acids (2.1% by weight myristic acid, 30.3% by weight palmitic acid, 66.5% stearic acid, 0.8% by weight arachidic acid, and 0.3% behenic acid.
  • 250 g polyethylene glycol / polypropylene glycol / block ether (manufactured by NOF Corporation, trade name: Pronon # 104) was charged with 0.75 g and water 2500 g, and the temperature was raised to 90.degree.
  • 77.2g of 48 mass% sodium hydroxide aqueous solution was added, and it stirred at the same temperature (90 degreeC) for 1 hour, and obtained fatty-acid alkali compound salt aqueous solution.
  • Example 2 In a 3 L separable flask, mixed fatty acids (2.1% by mass of myristic acid, 30.3% by mass of palmitic acid, 66.5% by mass of stearic acid, 0.8% by mass of arachidic acid, and 0.8% of behenic acid were added. 3% by mass) 250 g and 2500 g of water were charged, and the temperature was raised to 80 ° C. Subsequently, 77.2 g of 48 mass% sodium hydroxide aqueous solution was added, and it stirred at the same temperature (80 degreeC) for 1 hour, and obtained fatty-acid alkali compound salt aqueous solution.
  • Example 3 In a 3 L separable flask, mixed fatty acids (myristic acid 1.6% by mass, palmitic acid 24.0% by mass, stearic acid 73.4%, arachidic acid 0.7% by mass, and behenic acid 0.3% 250 g, polyethylene glycol / polypropylene glycol / block ether (manufactured by NOF Corporation, trade name: Pronon # 104) was charged with 0.75 g and water 2500 g, and the temperature was raised to 70.degree.
  • mixed fatty acids myristic acid 1.6% by mass, palmitic acid 24.0% by mass, stearic acid 73.4%, arachidic acid 0.7% by mass, and behenic acid 0.3% 250 g
  • polyethylene glycol / polypropylene glycol / block ether manufactured by NOF Corporation, trade name: Pronon # 104
  • the particle size summary value A 10% cumulative diameter D10 ( ⁇ m) based on volume, median diameter D50 ( ⁇ m) based on volume, 90% based on volume Value calculated from integrated diameter D90 ( ⁇ m)]
  • loose bulk density Da g / cc
  • cohesion degree B %
  • average circularity C were measured by the methods described above using the following apparatuses. The results are shown in Table 1.
  • Particle size (D10, D50, D90) / specific surface area It was measured with a particle size distribution measuring device (device name “Microtrack MT-3000” manufactured by Nikkiso Co., Ltd.) (principle: laser diffraction / scattering method).
  • a particle size distribution measuring device device name “Microtrack MT-3000” manufactured by Nikkiso Co., Ltd.
  • the cumulative curve was determined with the total volume of the group of powders to be measured as 100%, the particle diameter at the point where the cumulative curve was 10%, 50%, and 90% was 10% diameter (D10) and 50% diameter, respectively.
  • D50), 90% diameter (D90) ( ⁇ m).
  • the specific surface area represents the value of the measurement result when the particles are assumed to be spherical.
  • Examples 1 to 3 and Comparative Examples 1 to 5 Production and evaluation of resin-coated sand
  • resin-coated sands were produced as follows. First, 100 g of phenol resin (2.0 wt% / refractory aggregate) as a binder was kneaded with 5 kg of fresh sand heated to 150 ° C. as a refractory aggregate for 45 seconds using a speed mixer, and then 15 g (15.0 wt.
  • the obtained resin-coated sand was fired to prepare a test piece, and the bending strength was measured.
  • the formulation of the resin-coated sand used and the measurement method of each characteristic of the resin-coated sand are shown below, and the results are shown in Table 2.
  • the unit is g / cc.
  • the bending strength was measured by a three-point bending strength test according to JACT (Japan Foundry Technology Association) test method SM-1.
  • the test piece was measured according to JIS K6910-1995 4.9.2 Test piece preparation method (drop method). That is, the fired resin-coated sand test piece was supported at both ends, and the maximum bending stress when a concentrated load was applied from the top to the center was defined as the bending strength (MPa).
  • the unit is kgf / cm 2 .
  • the No. in Table 1 1, no. 2 and no.
  • the resin-coated sand using the fatty acid calcium salt particles of No. 3 has a large bulk specific gravity, a good fall time, a good repose angle, and a small angle of repose.
  • 1-No. No. 3 fatty acid calcium salt particles are No. 3 obtained by the direct method.
  • the fluidity improver for resin-coated sand of the present invention has a specific particle size distribution and low cohesiveness. Therefore, by adding the resin-coated sand to the resin-coated sand when casting the resin-coated sand into the mold, it is added to the resin-coated sand.
  • the fluidity of the sand can be remarkably improved as compared with conventional fluidity improvers, and the occurrence of blocking of the resin-coated sand can be suppressed. Therefore, the bulk density of filling can be increased, and the effect of remarkably improving the strength of a mold such as a complicated and dense mold can be sufficiently obtained.
  • the resin coated sand When the resin coated sand is poured into the mold at the time of mold production, the resin coated sand is easily poured, and the mold is easily released from the mold, so that the workability of molding is improved. Furthermore, the occurrence of so-called “insertion” or “crack” in the bath water can suppress the roughening of the casting skin (surface condition) or the occurrence of sand removal defects on the casting surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

 本発明のレジンコーテッドサンド用流動性向上剤は、炭素数8~24の二価の脂肪酸金属塩粒子からなり、下記(1)式で表される粒度要約値AがA≦2.0の関係を満たし、80℃の環境下に10分放置した前記脂肪酸金属塩粒子において、パウダーテスターで測定される下記(2)式で表される凝集度B(%)がB≦20の関係を満たすことを特徴とする。 粒度要約値A= (D90-D10) /D50(但し、1. 0≦D50≦40. 0)・・・(1)式 D10:脂肪酸金属塩粒子の体積基準における10%積算径(μm) D50:脂肪酸金属塩粒子の体積基準におけるメジアン径(μm) D90:脂肪酸金属塩粒子の体積基準における90%積算径(μm) 凝集度B=〔(篩目350μmの篩に残存する脂肪酸金属塩粒子の質量)/2〕×100×(1/1)+〔(篩目250μmの篩に残存する脂肪酸金属塩粒子の質量)/2〕×100×(3/5)+〔(篩目150μmの篩に残存する脂肪酸金属塩粒子の質量)/2〕×100×(1/5)〕・・・(2)式

Description

レジンコーテッドサンド用流動性向上剤
 本発明は、レジンコーテッドサンド用流動性向上剤に関する。詳しくは、本発明は、鋳型製造時においてレジンコーテッドサンドを金型に流し込む際にレジンコーテッドサンドの流動性を向上させ、レジンコーテッドサンドのブロッキングを抑えることができ、鋳型の強度を顕著に高め、鋳肌を向上させることができるレジンコーテッドサンド用流動性向上剤に関する。
 鋳型は、硅砂などの鋳型用耐火骨材をフェノール樹脂などの粘結剤によって結合させ、さらに流動性向上剤を添加して得たレジンコーテッドサンドを金型に流し込んで、温度を上げて硬化させて造型することによって得られるものであり、寸法精度が良好である等の優れた特性を有するので、従来から多用されている。
 そして、この流動性向上剤としては、脂肪酸金属塩が一般的に用いられている。耐火骨材と粘結剤を混合して耐火骨材の表面に粘結剤を被覆させ、さらに脂肪酸金属塩を添加してレジンコーテッドサンドを調製し、加熱された金型にこのレジンコーテッドサンドを流し込んで充填し、粘結剤を溶融および硬化させることによって、シェルモールドを造型している。ここで、流動性向上剤は、レジンコーテッドサンドを金型に充填して造型する際に流動性を良くして作業性を高めたり、レジンコーテッドサンドを使用するまでの間にブロッキングが発生することを防止したりするために用いられている。
 このように耐火骨材に粘結剤と流動性向上剤を被覆したレジンコーテッドサンドを製造するにあたっては、例えば次のようにして行われる。まず粘結剤として固形のフェノール樹脂などの熱硬化性樹脂を、120~180℃程度に加熱した耐火骨材に添加してミキサーで混合し、耐火骨材の熱で樹脂を加熱溶融させることによって、耐火骨材の表面に樹脂を被覆させる。次に、この混合を保持したまま熱硬化性樹脂の軟化点以下に温度を下げるために、冷却用の水、または必要に応じてヘキサメチレンテトラミンなどの硬化剤を溶解させた水溶液を加える。このとき、冷却の進行と共にミキサー中の耐火骨材は粘性を増して飴状になった後、急に崩壊してさらさらとした状態になる。この後に、ミキサー内が70~90℃程度になっている状態で脂肪酸金属塩などの流動性向上剤を加えて、10~60秒程度の短時間で、且つ穏和な条件で混合した後、ミキサーから払いだすことによって、レジンコーテッドサンドを得ることができる。レジンコーテッドサンドの製造において、流動性向上剤を穏和なミキサー攪拌条件で添加混合することによって、耐火骨材に被覆させて冷却固化させたフェノール樹脂などの粘結剤が耐火骨材から剥離することを防ぐことができる。
 レジンコーテッドサンド用流動性向上剤(滑剤)としては、例えば、特許文献1ではステアリン酸カルシウムが用いられている(段落〔0034〕および〔0046〕)。
 しかし、従来のステアリン酸カルシウムは、流動性向上剤による滑性の作用が十分に発揮されず、流動性の向上の効果が不十分になって、鋳型の強度が低下するおそれがある。特に、中子などの形状の複雑な鋳型を製造する際に、複雑で緻密な金型にレジンコーテッドサンドを流し込み難いことがあり、強度不足による品質低下が生じるおそれがある。また、従来のステアリン酸カルシウムでは、造型の作業性を低下させたり、レジンコーテッドサンドを使用するまでの間にブロッキングが発生したりするという問題がある。これら問題はいまだ解決できていない。
 さらに、このような鋳型を用いて、鋳物の鋳造を行った場合、鋳型の表面に高温度の溶融金属である浴湯が接触する際に、鋳型と浴湯との界面において浴湯のいわゆる「差込み」や「クラック」が生じ、鋳物の肌(表面状態)を荒らしたり、あるいは鋳物の表面に砂落ち不良が生じたりするおそれがある。
特開2007-275988号公報
 本発明は、上記の課題に鑑みてなされたものであり、鋳型製造時においてレジンコーテッドサンドを金型に流し込む際にレジンコーテッドサンドの流動性を向上させ、レジンコーテッドサンドのブロッキングを抑えることができ、鋳型の強度を顕著に高め、鋳肌を向上させることができるレジンコーテッドサンド用流動性向上剤の提供を目的とするものである。
 本発明者は、上記課題を解決するために鋭意検討を行った結果、特定の粒度要約値および凝集度を有する脂肪酸金属塩粒子を含有するレジンコーテッドサンドが優れた性能を発揮することを見出し、本発明を完成させるに至った。
 すなわち、本発明は、炭素数8~24の二価の脂肪酸金属塩粒子からなり、下記(1)式で表される粒度要約値AがA≦2.0の関係を満たし、80℃の環境下に10分放置した前記脂肪酸金属塩粒子において、パウダーテスターで測定される下記(2)式で表される凝集度B(%)がB≦20の関係を満たすことを特徴とするレジンコーテッドサンド用流動性向上剤である。
 粒度要約値A= (D90-D10) /D50(但し、1. 0≦D50≦40. 0)・・・(1)式
 D10:脂肪酸金属塩粒子の体積基準における10%積算径(μm)
 D50:脂肪酸金属塩粒子の体積基準におけるメジアン径(μm)
 D90:脂肪酸金属塩粒子の体積基準における90%積算径(μm)
 凝集度B=〔(篩目350μmの篩に残存する脂肪酸金属塩粒子の質量)/2〕×100×(1/1)+〔(篩目250μmの篩に残存する脂肪酸金属塩粒子の質量)/2〕×100×(3/5)+〔(篩目150μmの篩に残存する脂肪酸金属塩粒子の質量)/2〕×100×(1/5)〕・・・(2)式
 また本発明は、耐火骨材、粘結剤および本発明のレジンコーテッドサンド用流動性向上剤を含有するレジンコーテッドサンドである。
 本発明のレジンコーテッドサンド用流動性向上剤は、レジンコーテッドサンドに優れた流動性を付与するとともに、レジンコーテッドサンドのブロッキングの発生を抑えることができる。したがって、充填の嵩密度を上げることができ、複雑で緻密な型などの鋳型の強度を顕著に向上させる効果を十分に得ることができる。鋳型製造時においてレジンコーテッドサンドを金型に流し込む際にレジンコーテッドサンドを流し込み易く、また金型から鋳型を離型し易いので、造型の作業性が向上する。さらに、浴湯のいわゆる「差込み」や「クラック」の発生によって、鋳物の肌(表面状態)が荒れたり、あるいは鋳物の表面に砂落ち不良が生じたりするのを抑制することができる。
 以下、本発明の実施形態について説明する。本発明のレジンコーテッドサンド用流動性向上剤(以下、単に流動性向上剤とも言う。)、レジンコーテッドサンドに用いられる耐火骨材、粘結剤およびレジンコーテッドサンドについて順次説明する。
 なお、本発明において「~」の記号を挟む数値は、「~」で規定する範囲に含まれる。例えば、「10~30」は10以上、かつ30以下の範囲を表わす。
 (1)流動性向上剤
 本発明に用いられる流動性向上剤は、炭素数8~24の二価の脂肪酸金属塩粒子からなる。かかる脂肪酸金属塩粒子は、炭素数8~24の脂肪酸に対して一価のアルカリ化合物を反応させて得られた脂肪酸アルカリ化合物塩と、二価の金属塩とを水溶液中で反応させる複分解法で調製することができる。
 脂肪酸アルカリ化合物塩の原料となる脂肪酸は、炭素数が8~24の脂肪酸であれば特に制限はない。すなわち、天然由来の脂肪酸および合成脂肪酸のいずれであってもよく、飽和脂肪酸および不飽和脂肪酸のいずれであってもよく、直鎖状および分岐状のいずれであってもよい。さらに、脂肪酸の構造中に水酸基、アルデヒド基、エポキシ基等の官能基が含まれていてもよい。好ましくは炭素数が12~22の直鎖飽和脂肪酸である。炭素数が8未満の場合は、得られる脂肪酸金属塩粒子の流動性向上剤としての効果が得られない。一方、炭素数が24を超える脂肪酸は工業的に入手が困難であり、得られる脂肪酸アルカリ化合物塩の水に対する溶解度が著しく低下するため生産性が低くなる。
 上記脂肪酸としては、例えば、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、ミリストオレイン酸、パルミチン酸、パルミトオレイン酸、ステアリン酸、オレイン酸、リノール酸、アラキン酸、ベヘン酸、エルカ酸、ヒドロキシステアリン酸およびエポキシステアリン酸などが挙げられ、その中ではステアリン酸が好ましい。混合脂肪酸を用いる場合は、好ましくはステアリン酸含有量が50%以上、より好ましくは60%以上、さらに好ましくは70%以上の混合脂肪酸が用いられる。
 脂肪酸アルカリ化合物塩の原料となる一価のアルカリ化合物としては、アルカリ金属(ナトリウム、カリウムなど)の水酸化物、およびアンモニア、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類などが挙げられる。脂肪酸アルカリ化合物塩としたときに水に対する溶解度が高い点から、好ましくはナトリウム、カリウムなどのアルカリ金属の水酸化物である。
 本発明に用いる脂肪酸アルカリ化合物塩は、一価のアルカリ化合物と脂肪酸とを、一般に、脂肪酸の融点以上であり、かつ該脂肪酸が分解しない程度の温度、好ましくは100℃以下、より好ましくは50~100℃、さらに好ましくは60~95℃、特に好ましくは70~95℃で反応させて得られる。
 本発明に用いられる二価の脂肪酸金属塩粒子としては、上記で得られた脂肪酸アルカリ化合物塩と二価の金属塩とを水溶液中で反応させて得られる脂肪酸金属塩粒子を用いることが好ましい。上記二価の金属塩は、具体的には二価の無機金属と無機酸または有機酸との塩である。二価の無機金属としては、マグネシウム、カルシウム、バリウムなどのアルカリ土類金属、チタン、亜鉛、鉄、マンガン、カドミウム、水銀、ジルコニウム、鉛、銅、コバルト、アルミニウム、ニッケルなどの遷移金属などが挙げられる。これらの中で、好ましくは、環境に対して負荷が少なく、工業的に容易に入手可能な点から、カルシウム、マグネシウムである。レジンコーテッドサンドの流動性付与の点から特に好ましくはカルシウムである。
 二価の金属塩としては、例えば塩化カルシウム、酢酸カルシウム、塩化マグネシウム、硫酸マグネシウム、塩化亜鉛、硫酸亜鉛、硫酸アルミニウムなどが挙げられる。特に、カルシウム、マグネシウムなどの塩化物、硫酸塩、および硝酸塩が水に対する溶解度が高く、効率的に脂肪酸アルカリ化合物塩と反応する点から好ましい。
 上記反応は、具体的には、二価の金属塩含有水溶液および脂肪酸アルカリ化合物塩含有水溶液を別々に調製した後、これらを混合することにより行われる。例えば、脂肪酸アルカリ化合物塩含有水溶液中に二価の金属塩含有水溶液を添加する、あるいは別の反応槽に両者を添加することによって行われる。
 脂肪酸アルカリ化合物塩含有水溶液と二価の金属塩含有水溶液との混合に際しては、例えば脂肪酸アルカリ化合物塩含有水溶液中に対して二価の金属塩含有水溶液を一度に投入すると、得られる脂肪酸金属塩粒子の形状が不均一になり、粒度分布が広くなるおそれがある。したがって、本発明においては、脂肪酸アルカリ化合物塩含有水溶液中に対して二価の金属塩含有水溶液を適度な速度で徐々に滴下することが好ましい。
 脂肪酸金属塩製造時の脂肪酸アルカリ化合物塩の濃度は、脂肪酸金属塩の生産性の点、および脂肪酸アルカリ化合物塩含有水溶液または得られる脂肪酸金属塩スラリーのハンドリング性の点から、通常、1質量%~20質量%、好ましくは5質量%~15質量%である。脂肪酸アルカリ化合物塩の濃度が1質量%未満の場合は、脂肪酸金属塩の生産性が低下するおそれがあり、実用上好ましくない。20質量%を超える場合は、脂肪酸アルカリ化合物塩含有水溶液または得られる脂肪酸金属塩スラリーの粘度が上昇するので、均一な反応を行うことが困難となることがある。なお、二価の金属塩含有液中の二価の金属塩の濃度は、脂肪酸金属塩の生産性の点、および脂肪酸アルカリ化合物塩含有水溶液または得られる脂肪酸金属塩スラリーのハンドリング性の点から、通常、10質量%~50質量%、好ましくは10質量%~40質量%である。
 脂肪酸アルカリ化合物塩と二価の金属塩との反応は、脂肪酸アルカリ化合物塩の溶解度を考慮して、当業者が通常行う温度条件下で行われる。好ましくは50~100℃、より好ましくは60~95℃である。反応温度が50℃未満である場合、脂肪酸アルカリ化合物塩と二価の金属塩との反応率が低下するおそれがある。
 脂肪酸アルカリ化合物塩と二価の金属塩との反応時に脂肪酸金属塩スラリーを安定化させて、脂肪酸金属塩の生産性を向上させる目的で、ポリアルキレングリコール系エーテル、特にオキシプロピレンブロックがオキシエチレンブロックで挟まれた構造(EO-PO-EO)を有するトリブロックエーテルを脂肪酸金属塩スラリー中に存在させることが好ましい。脂肪酸金属塩スラリー中におけるポリアルキレングリコール系エーテルの含有量は、通常、脂肪酸アルカリ化合物塩100質量部に対して0.01質量部~5質量部、好ましくは0.05質量部~2質量部である。なお、ポリアルキレングリコール系エーテルは、一価のアルカリ化合物と脂肪酸とを反応させる前に反応系に存在させても良く、また脂肪酸アルカリ化合物塩と二価の金属塩との反応の前に反応系に存在させても良い。
 上記方法によって、脂肪酸金属塩スラリーが得られる。この脂肪酸金属塩スラリーはそのまま、あるいは遠心脱水機、フィルタープレス、真空回転濾過機などにより溶媒を分離し、必要に応じて、洗浄を行い、副生する無機塩を除去した後に、回転乾燥機、気流乾燥装置、通気式乾燥機、噴霧式乾燥機、流動層型乾燥装置などにより乾燥させる。乾燥方法は、連続式または回分式、あるいは常圧または真空下のいずれでもよい。さらに、乾燥させた脂肪酸金属塩を必要に応じて粉砕する。粉砕方法は、特に限定されず、例えばピンミル、ジェットミル、アトマイザー等によることができる。粉砕された脂肪酸金属塩粒子は分級される。すなわち、振動を与えて篩い分けを行う多段篩装置等を用いて分級を行ない、粒度分布を調整する。このようにして、本発明のレジンコーテッドサンド用流動性向上剤としての脂肪酸金属塩粒子を得ることができる。
 本発明に用いられる脂肪酸金属塩粒子は、粒度分布が狭いものとすることで、レジンコーテッドサンド中に均一に存在させることが可能となり、本発明の作用効果(特に中子の強度向上)をより安定して発現させやすい。具体的には、脂肪酸金属塩粒子の下記(1)式で表される粒度要約値Aを2.0以下にする。本発明において粒度要約値Aはマイクロトラックレーザー回折法により測定した粒子径から算出される。粒度要約値Aが2.0を超えるとレジンコーテッドサンド中に存在する脂肪酸金属塩粒子の粒子径のバラツキにより、レジンコーテッドサンドの流動性が不安定となり生産性が低下するばかりか、レジンコーテッドサンドの嵩密度が低下し、目的とする強度を有する鋳物を製造できなくなる可能性がある。したがって、粒度要約値Aが2.0を超えると、浴湯のいわゆる「差込み」や「クラック」の発生によって、鋳物の肌(表面状態)が荒れたり、あるいは鋳物の表面に砂落ち不良を引き起こす可能性がある。
 粒度要約値Aは1.0≦A≦1.8の関係を満たすことがより好ましい。1.0≦A≦1.8の関係を満たす場合、本発明の作用効果がさらにより安定して得られる。粒度要約値Aが1.0未満の場合、歩留まりが著しく低くなるなど工業的に製造することが困難となるおそれがある。
 なお、粒度要約値Aの調整は、脂肪酸アルカリ化合物塩の濃度、脂肪酸アルカリ化合物塩と二価の金属塩との反応時の温度、二価の金属塩含有水溶液を脂肪酸アルカリ化合物塩含有水溶液に滴下する際の滴下速度をそれぞれ適宜調整することによって行うことができる。また、粒度分布が広い、つまり粒度要約値Aの値が大きいものについては、後処理において、100メッシュ、200メッシュ、330メッシュ等の篩を用いて分級することによって行なうことができる。
 ここで使用するマイクロトラックレーザー回折法は、レーザー光を粒子に照射することによって得られる散乱光を利用して、粒度分布を求める方法である。本発明においては、脂肪酸金属塩粒子が溶解しない有機溶媒、例えばエタノール、イソプロピルアルコールなどの有機溶媒を循環させたところに試料をそのまま投入する湿式による測定とする。また、本発明における測定対象は粒子径0.1μm~200μmの範囲であり、下記の(1)式で表わされる値を粒度要約値Aとした。なお、本発明においては、例えば日機装株式会社製のマイクロトラックMT-3000を用いて測定することができる。
 粒度要約値A= (D90-D10) /D50(但し、1. 0≦D50≦40. 0)・・・(1)式
 D10:脂肪酸金属塩粒子の体積基準における10%積算径(μm)
 D50:脂肪酸金属塩粒子の体積基準におけるメジアン径(μm)
 D90:脂肪酸金属塩粒子の体積基準における90%積算径(μm)
 レジンコーテッドサンドの製造に際しては、耐火骨材と粘結剤を投入して120~170℃あたりまで加熱した混合機に、冷却用の水、または必要に応じて硬化剤を溶解させた水溶液を投入して混合し、70~90℃あたりまで冷却し、材料が解れて流動性が得られた時点で流動性向上剤を所定量投入し、穏和な攪拌で10~60秒間程度混合して、レジンコーテッドサンドを排出することができる。
 本発明者の検討によれば、脂肪酸金属塩粒子を80℃の環境下に10分放置したときのパウダーテスターで測定される下記(2)式で表される凝集度B(%)がB≦20の関係を満たすことにより、レジンコーテッドサンドの穏和な混合条件でも脂肪酸金属塩粒子が解れやすく、レジンコーテッドサンド中に素早く均一に分散することができる。したがって、レジンコーテッドサンドの流動性向上に伴って嵩密度を上げることができ、中子などの鋳型の強度を向上させることができる。また、鋳型の品質不良が生じるのを抑制することができる。さらに、浴湯のいわゆる「差込み」や「クラック」の発生によって、鋳物の肌(表面状態)が荒れたり、あるいは鋳物の表面に砂落ち不良が生じたりするのを抑制することができる。
 なお、凝集度Bの調整は、脂肪酸アルカリ化合物塩と二価の金属塩との反応を穏和な条件下で行ない、反応によって得られるスラリー中の脂肪酸金属塩粒子同士の凝集を防ぐことによって行うことができる。つまり、例えば、脂肪酸アルカリ化合物塩と二価の金属塩との反応時の反応率を低下させない程度の穏和な温度で反応を行ったり、熟成時間を短縮したりすることによって行なうことができる。反応時のこれら因子を適宜調整することによって、凝集度Bを本発明規定の範囲に調整することができる。
 凝集度B(%)は、2≦B≦18がより好ましく、さらに好ましくは2≦B≦15であり、特に好ましくは2≦B≦13である。2≦B≦13を満たせば本発明の作用効果がさらにより安定して得られる。一方、凝集度Bが2%未満であると、レジンコーテッドサンドへ添加時に脂肪酸金属塩粒子のハンドリング性が悪くなり、作業性が低下するおそれがある。
 凝集度B=〔(篩目350μmの篩に残存する脂肪酸金属塩粒子の質量)/2〕×100×(1/1)+〔(篩目250μmの篩に残存する脂肪酸金属塩粒子の質量)/2〕×100×(3/5)+〔(篩目150μmの篩に残存する脂肪酸金属塩粒子の質量)/2〕×100×(1/5)〕・・・(2)式
 ここで使用するパウダーテスターによる脂肪酸金属塩粒子の凝集度Bは、下記の測定方法で得られた値である。すなわち、例えばパウダーテスター(ホソカワミクロン株式会社製、PT-N型)を用いて下記の(a)~(f)の工程を行なう。
 (a)80℃に設定された恒温機内で、測定対象の脂肪酸金属塩粒子を10分間放置する。
 (b)パウダーテスターの振動台に、上層から篩目350μm、250μm、150μmの篩いを順次セットする。
 (c)上記(a)工程後の脂肪酸金属塩粒子2.0gを即座に篩目350μmの篩上に静かにのせる。
 (d)篩を振幅1mmで105秒間振動させる。
 (e)各篩に残存した脂肪酸金属塩粒子の質量を計測する。
 (f)上記(e)工程で得られた各質量にそれぞれ1/1、3/5および1/5の重みを順次に乗じ、これらを加算して上記(2)式により百分率を算出した値を凝集度B(%)とする。
 以上の(a)~(f)の工程を5回繰り返し、その平均値を測定値とする。
 さらに、本発明に用いられる脂肪酸金属塩粒子は、ゆるみ嵩密度(Da)(g/cc)が0.110≦Da≦0.180であることが好ましく、0.135≦Da≦0.160であることがより好ましい。0.110≦Da≦0.180であることにより、レジンコーテッドサンドに添加した際に脂肪酸金属塩粒子に高い滑り性が得られ、レジンコーテッドサンドに流動性をさらに付与することができる。
 ゆるみ嵩密度(Da)は、下記の測定方法で得られた値である。まず、例えばパウダーテスター(ホソカワミクロン株式会社製、PT-N型)を用い、振動台に篩目710μmの篩をセットし、その中に試料250ccを入れ、30秒間振動させて、篩の下方に設置した測定用カップの中に、落下した試料を集める。付属のブレードを用いて、カップ上の余分な脂肪酸金属塩粒子をすりきった後、試料の入ったカップの重量を測定する。なお、本発明においては、この操作・測定を5回繰り返し、その平均値を嵩密度(Da)の測定値とする。PT-N型では、自動で測定値が表示される。
 ゆるみ嵩密度(Da)(g/cc)=試料の入ったカップの重量(g)/カップの容積(cc)・・・(3)式
 本発明に用いられる脂肪酸金属塩粒子は、フロー式粒子像分析装置によって測定したとき、10%粒子径~90%粒子径の粒子群の平均円形度Cが0.810~1.000であることが好ましく、0.820~0.950であることがさらに好ましく、0.830~0.920であることが特に好ましい。平均円形度Cが上記範囲であれば、レジンコーテッドサンド製造工程において脂肪酸金属塩粒子添加時のレジンコーテッドサンド粒子への被覆性をさらに高めることができる。
 なお、平均円形度Cの調整は、脂肪酸アルカリ化合物塩と二価の金属塩との反応を穏和な条件下で行ない、反応によって得られるスラリー中の脂肪酸金属塩粒子の粒子形状が不均一となるのを防ぐことによって行うことができる。つまり、例えば、脂肪酸アルカリ化合物塩と二価の金属塩との反応時の反応率を低下させない程度の穏和な温度で反応を行ったり、二価の金属塩含有水溶液を脂肪酸アルカリ化合物塩含有水溶液に滴下する際の滴下速度を緩やかにしたり、スラリーを安定化させるために上述のポリアルキレングリコール系エーテルを添加したりすることによって行なうことができる。反応時のこれら因子を適宜調整することによって、平均円形度Cを本発明規定の範囲に調整することができる。
 本発明における平均円形度は、脂肪酸金属塩粒子の形状を定量的に表現する簡便な方法として用いたものであり、次のように定義することができる。まず、例えばシスメックス社製フロー式粒子像分析装置「FPIA-3000」を用いて、円相当径0.5μm~200μmの範囲内の粒子を測定し、そこで測定された各粒子の円形度(ai)を下式(4)によりそれぞれ求める。
 円形度(ai)=(粒子の投影像と同じ面積を有する円の周囲長)/(粒子投影像の周囲長)
・・・(4)式
 本発明における平均円形度とは、脂肪酸金属塩の粒子形の凹凸の度合いを示す指標であり、脂肪酸金属塩粒子の表面形状が円形に近くなるほど1.000に近づき、粒子の表面形状が複雑になるほど平均円形度は小さな値となる。本発明で用いることができる測定装置である「FPIA-3000」は、各粒子の円形度を算出し、得られた円形度によって、粒子の円形度0.4~1.0を61分割したクラスに分け、分割点の中心と頻度を用いて平均円形度の算出を行う算出法を用いている。
 本発明において、10%粒子径~90%粒子径の粒子群の平均円形度C(以下、単に「平均円形度C」とも呼ぶ。)は、上記測定装置で測定した全粒子のうち、粒径分布の小粒子径側から数えて10%粒子径~90%粒子径の範囲にある粒子の円形度の総和を粒子数で除した値である。
 10%粒子径~90%粒子径の粒子群の平均円形度Cの測定は、例えば以下のとおりである。予め不純固形物などを除去したイオン交換水30mlを容器中に用意し、その中に分散剤として界面活性剤、好ましくはポリオキシエチレンノニルフェニルエーテル(日油株式会社製、商品名:ノニオンNS-210)を加えた後、さらに測定試料を20mg加え、均一に分散させる。分散手段としては、例えば超音波分散機UH-50型(エスエムテー社製、20kHz・50W)に、振動子として直径5mmのチタン合金チップを装着したものを用い、5分間分散処理を行い、分散液濃度を3, 000個/ml~20, 000個/mlとして、測定用の分散液とする。その際、測定用分散液の温度が40℃以上にならないように適宜冷却しながら行う。その後、フロー式粒子像分析装置「FPIA-3000」を用いて測定を行い、得られたデータを処理することで平均円形度Cが求められる。
 本発明に用いられる脂肪酸金属塩粒子は、上記のように、粒度要約値Aおよび凝集度Bの各値が特定の範囲となる粉体物性を有する。粒度要約値Aの値が小さいほど、つまり脂肪酸金属塩粒子の粒度分布が均一であるほど、一定の外的な力を加えたときに、凝集度Bが低くほぐれやすくなる。また、このとき、算術平均比表面積が0.70m/cc以下であることが好ましく、より好ましくは0.60m/cc以下である。このような脂肪酸金属塩粒子は、70~90℃で10~40秒程度の短時間、かつ穏和な混合というレジンコーテッドサンドの製造時の添加条件でも素早く均一に分散させ、レジンコーテッドサンド粒子に対して効果的に被覆することができ、レジンコーテッドサンドに対して高い流動性を付与できる点で好適である。高い流動性付与に伴い、鋳型の強度が向上し、品質不良が発生するのを抑えることができる。また、浴湯のいわゆる「差込み」や「クラック」の発生によって、鋳物の肌(表面状態)が荒れたり、あるいは鋳物の表面に砂落ち不良が生じたりするのを抑制することができる。さらに、レジンコーテッドサンド保管時の耐ブロッキング性も良好である。
 本発明者は、得られた脂肪酸金属塩粒子をレジンコーテッドサンド用流動性向上剤として用いるに際し、得られた粉体物性の中でも、10%粒子径~90%粒子径の粒子群の平均円形度Cと、(1)式の粒度要約値Aと、(2)式の凝集度Bとの数値的関係が、レジンコーテッドサンドへの流動性付与に大きく影響を与えることを見出した。つまり、本発明者は、以下の関係式を満たすような粉体物性を有する脂肪酸金属塩粒子の設計を行うことによって、短時間で穏和な混合条件でもレジンコーテッドサンドに対して優れた分散性を示し、かつレジンコーテッドサンド粒子に対する被覆性をより効率的に高める脂肪酸金属塩粒子が得られることを見出した。
 すなわち、3.0<{(粒度要約値A×凝集度B)/平均円形度C}≦37.0であることが好ましく、5.0<{(粒度要約値A×凝集度B)/平均円形度C}≦35.0であることがさらに好ましい。
 {(粒度要約値A×凝集度B)/平均円形度C}の値が上記範囲内であり、且つ小さいほど、脂肪酸金属塩粒子の粒度分布が狭く均一な大きさとなり、且つ凝集度が小さく、個々の粒子の形状は円形に近くなる。したがって、添加時にレジンコーテッドサンド中に素早く均一に分散して、さらにレジンコーテッドサンド粒子への被覆性が高くなり、高い流動性が付与されたレジンコーテッドサンドを得ることができる。
 本発明のレジンコーテッドサンド用流動性向上剤は、非イオン性界面活性剤と混合して用いても良い。非イオン性界面活性剤としては、エーテル型の非イオン性界面活性剤が望ましく、ポリオキシエチレンアルキルエーテルおよび/またはポリオキシエチレンアルキルフェニルエーテルが更に望ましい。これは、スラリー中の脂肪酸金属塩粒子形成の安定性、得られた脂肪酸金属塩粒子のレジンコーテッドサンドの流動性付与において、前記脂肪酸金属塩粒子および非イオン性界面活性剤を併用する方が優れているためである。
 (2)耐火骨材
 本発明に用いられる耐火骨材は、鋳型用骨材であり、典型的には耐火性粒状材料である。かかる耐火性粒状材料としては、石英質を主成分とする珪砂、クロマイト砂、ジルコン砂、オリビン砂、ムライト砂、合成ムライト砂、マグネシア、特殊砂およびこれらの回収砂、再生等が挙げられる。本発明においては、新砂、回収砂、再生砂、あるいはこれらの混合砂など、特に制限することなく種々の耐火性粒状材料を使用することができる。また、耐火性粒状材料の粒度分布および粒子形状は、鋳造に耐えうる耐火性と、鋳型形成に好適であれば、特に制限されることなく選択できる。
 (3)粘結剤
 本発明に用いられる粘結剤としては、ベントナイト、水ガラス、澱粉などが挙げられる。一般的には、レゾール型、ノボラック型、ベンジリックエーテル型などのフェノール樹脂、フラン樹脂、ウレタン樹脂、アミンポリオール樹脂、ポリエーテルポリオール樹脂などの熱硬化性樹脂を1種または2種類以上組み合わせて用いることができる。また、これら粘結剤に、必要に応じて硬化剤としてヘキサメチレンテトラミン、イソシアネート、有機エステル類、リン酸エステル類などを配合し、更に硬化促進剤として三級アミン、二酸化硫黄、ピリジン誘導体、有機スルホン酸などを配合して、加熱硬化型の自硬化性にして使用することができる。
 (4)レジンコーテッドサンド
 本発明のレジンコーテッドサンドは、本発明の流動性向上剤、耐火骨材および粘結剤を含有する。レジンコーテッドサンドは、所定の温度に加熱された耐火骨材を例えばミキサーに投入し、上述した粘結剤を耐火骨材に溶融被覆させた後、混練することによって製造することができる。より具体的に例示すると、耐火骨材である耐火性粒状材料を例えば130~160℃に加熱し、加熱された耐火性粒状材料と粘結剤とを混練した後、硬化剤として例えばヘキサメチレンテトラミンを含む水溶液を添加して、耐火性粒状材料の塊が崩れるまで混練する。さらに、70~90℃に冷却して流動性向上剤として本発明による脂肪酸金属塩粒子を投入し、10~60秒程度の穏和な条件で分散させて、本発明のレジンコーテッドサンドを得る。
 粘結剤の配合量は、耐火骨材1kgに対して、0.1~100g、好ましくは0.1~50gである。また、本発明の流動性向上剤である脂肪酸金属塩粒子の配合量は、耐火骨材1kgに対して、0.1~50g、好ましくは0.1~30gである。
 上記のようにして得られたレジンコーテッドサンドを、既知の方法に従って、例えば300℃程度に加熱された金型に振り分けたり充填したりして、熱硬化性樹脂などの粘結剤を溶融・硬化させることによって、粘結剤を介した砂の結合作用で鋳型を製造することができる。そして、この鋳型に、900~1900℃程度に加熱した浴湯を注湯することによって、鋳物を製造することができる。
 本発明の流動性向上剤を用いるとことによって、レジンコーテッドサンドの流動性が向上し、それに伴い強度の高い鋳型が得られる。したがって、浴湯のいわゆる「差込み」や「クラック」の発生によって、鋳物の肌(表面状態)が荒れたり、あるいは鋳物の表面に砂落ち不良が生じたりするのを抑制することができる。
 以下、実施例および比較例を挙げて本発明をさらに具体的に説明する。
 〔流動性向上剤の調製〕
 (実施例1)
 3Lセパラブルフラスコに混合脂肪酸(ミリスチン酸を2.1質量%、パルミチン酸を30.3質量%、ステアリン酸を66.5%、アラキン酸を0.8質量%、およびベヘン酸を0.3質量%含有する。)250g、ポリエチレングリコール・ポリプロピレングリコール・ブロックエーテル(日油株式会社製、商品名:プロノン♯104)を0.75gおよび水2500gを仕込み、90℃まで昇温した。次いで、48質量%水酸化ナトリウム水溶液を77.2g加え、同温度(90℃)にて1時間攪拌し、脂肪酸アルカリ化合物塩水溶液を得た。その後、90℃に保持したまま、35質量%塩化カルシウム水溶液151.2gを10分かけて脂肪酸アルカリ化合物塩水溶液に滴下した。滴下終了後、90℃に保持して10分間攪拌して熟成した。得られた混合脂肪酸カルシウム塩水溶液スラリーに水1500gを加え、65℃以下まで冷却した。その後、吸引濾過機でろ過し、1000gの水で2回水洗し、得られたケーキをミクロンドライヤーで乾燥・粉砕して脂肪酸カルシウム塩粒子を得た。
 (実施例2)
 3Lセパラブルフラスコに混合脂肪酸(ミリスチン酸を2.1質量%、パルミチン酸を30.3質量%、ステアリン酸を66.5質量%、アラキン酸を0.8質量%、およびベヘン酸を0.3質量%含有する。)250gおよび水2500gを仕込み、80℃まで昇温した。次いで、48質量%水酸化ナトリウム水溶液77.2gを加え、同温度(80℃)にて1時間攪拌し、脂肪酸アルカリ化合物塩水溶液を得た。その後、80℃に保持したまま、35質量%塩化カルシウム水溶液151.2gを30分間かけて脂肪酸アルカリ化合物塩水溶液に滴下した。滴下終了後、80℃に保持して30分間攪拌して熟成した。得られた混合脂肪酸カルシウム塩水溶液スラリーに水1500gを加え、65℃以下まで冷却した。その後、吸引濾過機でろ過し、1000gの水で2回水洗し、得られたケーキをミクロンドライヤーで乾燥、粉砕及び分級して脂肪酸カルシウム塩粒子を得た。
 (実施例3)
 3Lセパラブルフラスコに混合脂肪酸(ミリスチン酸を1.6質量%、パルミチン酸を24.0質量%、ステアリン酸を73.4%、アラキン酸を0.7質量%、およびベヘン酸を0.3質量%含有する。)250g、ポリエチレングリコール・ポリプロピレングリコール・ブロックエーテル(日油株式会社製、商品名:プロノン♯104)を0.75gおよび水2500gを仕込み、70℃まで昇温した。次いで、48質量%水酸化ナトリウム水溶液を76.5g加え、同温度(70℃)にて1時間攪拌し、脂肪酸アルカリ化合物塩水溶液を得た。その後、70℃に保持したまま、35質量%塩化カルシウム水溶液150.1gを1時間かけて脂肪酸アルカリ化合物塩水溶液に滴下した。滴下終了後、得られた混合脂肪酸カルシウム塩水溶液スラリーに水1500gを即座に加え、65℃以下まで冷却した。その後、吸引濾過機でろ過し、1000gの水で2回水洗し、得られたケーキをミクロンドライヤーで乾燥・粉砕して脂肪酸カルシウム塩粒子を得た。
 (比較例1)
 ステアリン酸カルシウム(株式会社ADEKA 製、商品名「AFCO CHEM CS-S」)
 (比較例2)
 ステアリン酸カルシウム(日油株式会社製、商品名「カルシウムステアレートC」)
 (比較例3)
 ステアリン酸カルシウム(淡南化学工業株式会社製、商品名「カルシウムステアレート」)
 (比較例4)
 ステアリン酸カルシウム(日油株式会社製、商品名「ニッサンエレクトールMC-2」) 
 (比較例5)
 ステアリン酸カルシウム(天津市郎湖化工有限公司社製、商品名「CALCIUM STEARATE」)
 実施例1~3および比較例1~5の脂肪酸金属塩粒子について、粒度要約値A〔体積基準における10%積算径D10(μm)、体積基準におけるメジアン径D50(μm)、体積基準における90%積算径D90(μm)から算出した値〕、ゆるみ嵩密度Da(g/cc)、凝集度B(%)および平均円形度Cを、それぞれ以下の装置を用い、上述の方法で測定した。その結果を表1に示す。
 (1)粒度(D10、D50、D90)・比表面積
 粒度分布測定装置(機器名「マイクロトラックMT-3000」日機装株式会社製)で測定した(原理:レーザー回折・散乱法)。
 測定する粉体の集団の全体積を100%として累積カーブを求めたとき、その累積カーブが10%、50%、90%となる点の粒子径をそれぞれ10%径(D10)、50%径(D50)、90%径(D90)(μm)として求めた。また、比表面積は、粒子を球状と仮定した場合の測定結果の値を表している。
 (2)ゆるみ嵩密度
 粉体特性評価装置(機器名「パウダーテスターPT-N型」ホソカワミクロン株式会社製)で測定した。
 (3)凝集度
 粉体特性評価装置(機器名「パウダーテスターPT-N型」ホソカワミクロン株式会社製)で測定した。脂肪酸金属塩粒子を80℃の環境下に10分放置したものを測定試料とした。
 (4)平均円形度
 フロー式粒子像分析装置「FPIA-3000」(シスメックス社製)を用いて、水分散系で測定を行った。
Figure JPOXMLDOC01-appb-T000001
 (実施例1~3ならびに比較例1~5;レジンコーテッドサンドの製造と評価)
 実施例1~3および比較例1~5の脂肪酸金属塩粒子を流動性向上剤として、以下のとおりレジンコーテッドサンドをそれぞれ製造した。まず、耐火骨材として150℃に加熱した新砂5kgに、粘結剤としてフェノール樹脂100g(2.0重量%/耐火骨材)をスピードミキサーで45秒間混練した後、あらかじめ15g(15.0重量%/樹脂)のヘキサメチレンテトラミン(試薬)と水100gとを混合溶解させて得られたヘキサメチレンテトラミン水溶液115gを添加し、砂の塊が崩れるまで混練した。80℃付近になったところで各脂肪酸金属塩を2.5g(0.10重量%/耐火骨材)添加し30秒間混合練後、ミキサーから排出してレジンコーテッドサンドをそれぞれ得た。得られたレジンコーテッドサンドを用いて、かさ比重、落下速度、安息角および鋳肌を測定した。また、得られたレジンコーテッドサンドを焼成して試験片を作製し、抗折力を測定した。
 使用したレジンコーテッドサンドの処方およびレジンコーテッドサンドの各特性の測定方法を下記に示し、その結果を表2に示した。
 (かさ比重)
 かさ比重の測定は、協和理化工業株式会社製のかさ比重測定機A型を用いてJIS K6721-1995に準拠して行った。測定数N=5で行い、平均値を値とした。単位はg/ccである。
 (落下速度)
 落下速度の測定は、JIS K5402-1995に規定されるフォードカップを用い、JACT試験法S-5に準拠して行った。測定数N=5で行い、平均値を値とした。単位は秒である。
 (安息角)
 安息角の測定は、筒井理化学器械株式会社製「AOD粉体特性測定器」を用いて測定した。測定数N=5で行い、平均値を値とした。単位は度である。
 (抗折力)
 抗折力の測定は、JACT(日本鋳造技術協会)試験法SM-1に準じて3点曲げ強さ試験により実施した。試験片は、JIS K6910-1995 4.9.2試験片の作成方法(落下法)に準じて測定した。すなわち、焼成したレジンコーテッドサンドの試験片を両端で支持し、その中央部に上部から集中荷重を加えたときの最大曲げ応力を抗折力(MPa)とした。試験片の造型条件は、金型温度250℃、60秒焼成である。測定数N=30で行い、平均値を値とした。単位はkgf/cm2である。
 (鋳肌)
 実施例1~3および比較例1~5で得たレジンコーテッドサンドを、300℃に加熱した金型に流し込み、60秒間焼成することによって、内径100mm、高さ100mm、肉厚20mmのルツボ状の鋳型を造型した。そして、鋳型に1, 400℃のダクタイル鋳鉄の浴湯を流し込んで冷却することによって鋳物を鋳造し、得られた鋳物を鋳型から取り出し、鋳物の表面を目視で観察した。鋳肌の状態が非常に良好なものを「◎」、良好なものを「○」、普通のものを「△」、悪いものを「×」と表記した。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、表1のNo.1、No.2およびNo.3の脂肪酸カルシウム塩粒子を用いたレジンコーテッドサンドは、かさ比重が大きく、落下時間が短く良好であり、安息角も小さいので、No.1~No.3の脂肪酸カルシウム塩粒子は、直接法によって得られるNo.4の脂肪酸カルシウム塩粒子やNo.5~No.8の従来製品の脂肪酸カルシウム塩粒子と比較して、レジンコーテッドサンドに対してより高い流動性を付与できていることが分かる。また、レジンコーテッドサンドの流動性向上に伴って、充填性も向上し、これらのレジンコーテッドサンドを焼成して得た試験片の抗折力を顕著に向上できることが確認された。さらに、抗折力向上に伴って、中子などの形状の複雑な鋳型であっても不良品発生率を低減できる傾向も得られた。また、No.3のレジンコーテッドサンドでは、かさ比重が最も高く、落下時間が最も短く、安息角が最も小さく、極めて高い流動性が得られたことから、それに伴い著しく抗折力が向上し、鋳肌が非常に良好であった。
 これに対して、直接法によって得られた脂肪酸カルシウム塩を用いているNo.4では、粒度要約値Aの値が大きいので、レジンコーテッドサンドに添加した際の分散性が著しく低い。したがって、かさ比重、落下時間および安息角が劣り、それに伴い抗折力も低い値となった。さらに、鋳肌の状態も悪い結果となった。
 No.5では、粒度要約値Aが大きく、粒度が不揃いで凝集度Bが大きいので、かさ比重、落下時間および安息角が劣り、それに伴い抗折力も低い値となった。
 No.6では、粒度要約値Aおよび凝集度Bが著しく高いことから、レジンコーテッドサンドへの分散性が低い。したがって、かさ比重、落下時間および安息角が劣り、それに伴い抗折力も低い値となった。
 No.7では、粒度要約値Aが小さく、平均円形度Cが高いものの、凝集度Bの値が著しく高いので、レジンコーテッドサンドへの分散性が悪い。したがって、かさ比重、落下時間および安息角が劣り、それに伴い抗折力も低い値となった。
 No.8では、凝集度Bが低いものの、粒度要約値Aが大きくブロードな粒度分布であり、平均円形度Cが低くなるので、レジンコーテッドサンドへの分散性が著しく悪い。したがって、かさ比重、落下時間および安息角が劣り、それに伴い抗折力も低い値となった。さらに、鋳肌の状態も悪い結果となった。
 本発明のレジンコーテッドサンド用流動性向上剤は、特定の粒度分布および低い凝集性を有するので、レジンコーテッドサンドに添加することより、鋳型製造時においてレジンコーテッドサンドを金型に流し込む際にレジンコーテッドサンドの流動性を、従来の流動性向上剤と比較して、著しく向上させることができるとともに、レジンコーテッドサンドのブロッキングの発生を抑えることができる。したがって、充填の嵩密度を上げることができ、複雑で緻密な型などの鋳型の強度を顕著に向上させる効果を十分に得ることができる。鋳型製造時においてレジンコーテッドサンドを金型に流し込む際にレジンコーテッドサンドを流し込み易く、また金型から鋳型を離型し易いので、造型の作業性が向上する。さらに、浴湯のいわゆる「差込み」や「クラック」の発生によって、鋳物の肌(表面状態)が荒れたり、あるいは鋳物の表面に砂落ち不良が生じたりするのを抑制することができる。

Claims (4)

  1.  炭素数8~24の二価の脂肪酸金属塩粒子からなり、下記(1)式で表される粒度要約値AがA≦2.0の関係を満たし、80℃の環境下に10分放置した前記脂肪酸金属塩粒子において、パウダーテスターで測定される下記(2)式で表される凝集度B(%)がB≦20の関係を満たすことを特徴とするレジンコーテッドサンド用流動性向上剤。
     
     粒度要約値A= (D90-D10) /D50(但し、1. 0≦D50≦40. 0)・・・(1)式
     D10:脂肪酸金属塩粒子の体積基準における10%積算径(μm)
     D50:脂肪酸金属塩粒子の体積基準におけるメジアン径(μm)
     D90:脂肪酸金属塩粒子の体積基準における90%積算径(μm)
     
     凝集度B=〔(篩目350μmの篩に残存する脂肪酸金属塩粒子の質量)/2〕×100×(1/1)+〔(篩目250μmの篩に残存する脂肪酸金属塩粒子の質量)/2〕×100×(3/5)+〔(篩目150μmの篩に残存する脂肪酸金属塩粒子の質量)/2〕×100×(1/5)〕・・・(2)式
  2.  前記二価の脂肪酸金属塩粒子をフロー式粒子像分析装置によって測定したとき、10%粒子径~90%粒子径の粒子群の平均円形度Cが0.810~1.000である請求項1に記載のレジンコーテッドサンド用流動性向上剤。
  3.  前記二価の脂肪酸金属塩粒子を構成する二価の金属がカルシウムである請求項1に記載のレジンコーテッドサンド用流動性向上剤。
  4.  耐火骨材、粘結剤および請求項1に記載のレジンコーテッドサンド用流動性向上剤を含有するレジンコーテッドサンド。
PCT/JP2012/078791 2011-11-08 2012-11-07 レジンコーテッドサンド用流動性向上剤 WO2013069662A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013542998A JP6119611B2 (ja) 2011-11-08 2012-11-07 レジンコーテッドサンド用流動性向上剤
CN201280054758.2A CN104023872B (zh) 2011-11-08 2012-11-07 用于树脂裹贴砂的流动性改进剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-245000 2011-11-08
JP2011245000 2011-11-08

Publications (1)

Publication Number Publication Date
WO2013069662A1 true WO2013069662A1 (ja) 2013-05-16

Family

ID=48290036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078791 WO2013069662A1 (ja) 2011-11-08 2012-11-07 レジンコーテッドサンド用流動性向上剤

Country Status (4)

Country Link
JP (1) JP6119611B2 (ja)
CN (1) CN104023872B (ja)
TW (1) TWI580685B (ja)
WO (1) WO2013069662A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054430A1 (ja) * 2021-09-29 2023-04-06 花王株式会社 鋳型組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3260440B1 (en) * 2015-02-17 2020-04-22 NOF Corporation Metal soap and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113953A (ja) * 1982-12-21 1984-06-30 Dainippon Ink & Chem Inc シエルモ−ルド用鋳物砂
JPH11342450A (ja) * 1998-05-29 1999-12-14 Toyota Motor Corp 鋳物砂及びその製造方法
JP2002346691A (ja) * 2001-05-22 2002-12-03 Lignyte Co Ltd シェルモールド用レジンコーテッドサンドの製造方法及びシェルモールド用レジンコーテッドサンド

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978746A (ja) * 1982-10-28 1984-05-07 Aisin Chem Co Ltd シエルモ−ルド用樹脂被覆砂粒
CN1218011C (zh) * 2002-04-01 2005-09-07 大庆油田九龙实业公司 原油流动性改进剂及其制备方法
JP2004298957A (ja) * 2003-04-01 2004-10-28 Gun Ei Chem Ind Co Ltd レジンコーテッドサンド
JP5125061B2 (ja) * 2006-03-14 2013-01-23 日立化成工業株式会社 シェルモールド用樹脂組成物及びレジンコーテッドサンド

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113953A (ja) * 1982-12-21 1984-06-30 Dainippon Ink & Chem Inc シエルモ−ルド用鋳物砂
JPH11342450A (ja) * 1998-05-29 1999-12-14 Toyota Motor Corp 鋳物砂及びその製造方法
JP2002346691A (ja) * 2001-05-22 2002-12-03 Lignyte Co Ltd シェルモールド用レジンコーテッドサンドの製造方法及びシェルモールド用レジンコーテッドサンド

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054430A1 (ja) * 2021-09-29 2023-04-06 花王株式会社 鋳型組成物

Also Published As

Publication number Publication date
CN104023872B (zh) 2015-12-02
TWI580685B (zh) 2017-05-01
JP6119611B2 (ja) 2017-04-26
TW201319074A (zh) 2013-05-16
CN104023872A (zh) 2014-09-03
JPWO2013069662A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
JP7109444B2 (ja) 鋳型材料及びその製造方法、鋳型の製造方法、並びに回収耐火性骨材の再生方法
JP5819551B1 (ja) 人工砂及び鋳型用粘結剤含有砂
JP6729546B2 (ja) 金属石鹸及びその製造方法
HUE031653T2 (en) Molding compound with improved flowability
JP5869161B1 (ja) 鋳型用粘結剤含有砂の製造方法
CN107552720A (zh) 一种铸钢件覆膜砂、其制备方法和抗烧结性检测方法
KR20150079679A (ko) 주형용 모래, 모래 주형의 조형 방법, 및 금속 주조용 코어
JP6119611B2 (ja) レジンコーテッドサンド用流動性向上剤
EP3821997A1 (en) Inorganic coated sand
JP6846318B2 (ja) 回収鋳物砂の再生方法
JP6098338B2 (ja) 研磨布紙用目詰まり防止剤および研磨布紙用目詰まり防止剤組成物
EP0059088A1 (en) Silicate solutions, their production and uses as binders
JP6317995B2 (ja) 精密鋳造鋳型製造用スラリーのフィラー材及びそれを用いて得られたスラリー並びに精密鋳造鋳型
JP5933800B1 (ja) 鋳型用粘結剤含有砂及びその製法
JP2019107676A (ja) 鋳型用粘結剤含有砂、その製造用の原料砂、鋳型及び原料砂の製造方法
JP2014218533A (ja) ガス井または油井用樹脂コーテッドサンド分散剤およびプロパント組成物
Dady et al. Sulfonic acid coating of refractory sand for three-dimensional printing applications
JP3523524B2 (ja) 製鋼用ノズル充填材及びその製造方法
JP6098337B2 (ja) 窒素肥料用ブロッキング防止剤および窒素肥料組成物
JP6221271B2 (ja) 粉末冶金用潤滑剤および粉末冶金用粉末混合物
JP2023153624A (ja) 中子の製造方法
JP2005186117A (ja) 鋳型用粘結剤組成物及びそれを用いてなる自硬性鋳型、並びに自硬性鋳型の製造方法
JP2023152693A (ja) 崩壊性に優れた鋳型の製造方法
JPH0628773B2 (ja) 鋳型材料
PL230314B1 (pl) Lejna mieszanina formierska do produkcji warstw ceramicznych form odlewniczych

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013542998

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847587

Country of ref document: EP

Kind code of ref document: A1