WO2013069250A1 - 光取り込みシート、ならびに、それを用いた受光装置および発光装置 - Google Patents

光取り込みシート、ならびに、それを用いた受光装置および発光装置 Download PDF

Info

Publication number
WO2013069250A1
WO2013069250A1 PCT/JP2012/007082 JP2012007082W WO2013069250A1 WO 2013069250 A1 WO2013069250 A1 WO 2013069250A1 JP 2012007082 W JP2012007082 W JP 2012007082W WO 2013069250 A1 WO2013069250 A1 WO 2013069250A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sheet
main surface
transmitting
optical coupling
Prior art date
Application number
PCT/JP2012/007082
Other languages
English (en)
French (fr)
Inventor
青児 西脇
若林 信一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013513480A priority Critical patent/JP5649725B2/ja
Priority to CN201280004228.7A priority patent/CN103261933B/zh
Publication of WO2013069250A1 publication Critical patent/WO2013069250A1/ja
Priority to US13/947,541 priority patent/US9103978B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0252Diffusing elements; Afocal elements characterised by the diffusing properties using holographic or diffractive means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present disclosure relates to a light capturing sheet that captures light using diffraction, and a light receiving device and a light emitting device using the same.
  • FIGS. 27A and 27B are explanatory views showing the principle of the grating coupling method, and show a cross-sectional view and a plan view of the light-transmitting layer 20 having a linear grating with a pitch ⁇ on the surface.
  • FIG. 27A when light 23a having a wavelength ⁇ is incident on the grating at a specific incident angle ⁇ , it can be coupled to the waveguide light 23B propagating in the light transmitting layer 20.
  • Non-Patent Document 1 only the light satisfying the predetermined condition can be taken into the translucent layer 20, and the light deviating from the condition is not taken in.
  • An embodiment of the present disclosure is to provide a light capturing sheet capable of capturing light.
  • a light receiving device and a light emitting device using them are provided.
  • the light capturing sheet of the present disclosure includes a plurality of translucent sheets each having first and second main surfaces, and each of the first and second main surfaces inside each of the plurality of translucent sheets. And a plurality of optical coupling structures disposed in the interior separated from each other by the first and second distances or more.
  • Each of the plurality of light coupling structures includes a first light transmissive layer, a second light transmissive layer, and a third light transmissive layer sandwiched between the first light transmissive layer, the first light transmissive layer, and the second light transmissive layer.
  • the refractive index of the layer is smaller than the refractive index of the translucent sheet, the refractive index of the third translucent layer is larger than the refractive index of the first and second translucent layers, and the third translucent layer
  • the layer has a diffraction grating parallel to the first and second main surfaces of the translucent sheet.
  • the light receiving device of the present disclosure includes the light capturing sheet defined above, and the photoelectric conversion provided on the first main surface or the second main surface of the light capturing sheet, or a side surface adjacent to the main surface. A part.
  • the light receiving device of the present disclosure includes the light capturing sheet defined above, a concavo-convex structure or a prism sheet provided on the first main surface or the second main surface of the light capturing sheet, and the concavo-convex structure.
  • a photoelectric conversion unit that receives light emitted from the prism sheet is provided.
  • (A) is a typical sectional view showing a 1st embodiment of a light acquisition sheet by this indication
  • (b) is a top view showing a position of the 4th field in a 1st embodiment.
  • (A) And (b) is typical sectional drawing and top view which show the optical coupling structure of 1st Embodiment
  • (c) is a cross section which shows the mode of the light which injects into the end surface of an optical coupling structure
  • (D) is sectional drawing which shows the mode of the light which injects into the optical coupling structure which extracted the translucent layer 3c
  • (e) is sectional drawing which shows the other structural example of an optical coupling structure. is there.
  • FIGS. 3A and 3B show the results of analysis performed using the structure shown in FIG. 3, wherein FIGS. 3A to 3C show the relationship between the incident angle of light and the transmittance to the outside of the sheet, and FIG. The relationship between groove depth and the light extraction efficiency out of a sheet
  • FIGS. 4A to 4E show light intensity distribution diagrams of a sheet cross section under the conditions indicated by the arrows in FIGS. In the structure shown in FIG.
  • the refractive index of the first light-transmitting layer 3a and the second light-transmitting layer 3b is matched with the refractive index of the light-transmitting sheet, and the refractive index of the third light-transmitting layer 3c is 2.0.
  • (A) to (c) show the relationship between the incident angle and the transmittance to the outside of the sheet, and (d) shows the groove depth of the diffraction grating and the light to the outside of the sheet. The relationship with extraction efficiency is shown.
  • (A) to (e) is a schematic cross-sectional view showing a manufacturing procedure of the light capturing sheet of the first embodiment.
  • FIGS. 10A and 10B show analysis results performed using the structure shown in FIG. 10, where FIGS. 10A to 10C show the relationship between the incident angle and the transmittance to the outside of the sheet, and FIG. 10D shows the groove depth of the diffraction grating. And the light extraction efficiency out of the sheet.
  • FIGS. 10A to 10C show the relationship between the incident angle and the transmittance to the outside of the sheet
  • FIG. 10D shows the groove depth of the diffraction grating. And the light extraction efficiency out of the sheet.
  • 3 and 10 are analysis results obtained by shifting the position of the light source by 5 ⁇ m in the negative x-axis direction, and (a) to (c) are end faces of a single optical coupling structure. The relationship between the incident angle of the light to and the transmittance to the outside of the sheet is shown.
  • (A) to (e) is a schematic cross-sectional view showing a manufacturing procedure of the light capturing sheet of the second embodiment.
  • (A) And (b) is a typical sectional view and a top view showing an optical coupling structure used in a 3rd embodiment of a light acquisition sheet by this indication. It is sectional drawing which shows the structure used for the analysis of the light capturing sheet of 3rd Embodiment.
  • FIGS. 3 and 15 show analysis results obtained by shifting the position of the light source by 5 ⁇ m in the negative x-axis direction, and (a) to (c) are end faces of a single optical coupling structure. The relationship between the incident angle of the light to and the transmittance to the outside of the sheet is shown.
  • (A) to (f) is a schematic cross-sectional view showing the manufacturing procedure of the light capturing sheet of the third embodiment.
  • (A) And (b) is a typical top view which shows the surface pattern of the metal mold
  • FIG. 1 It is a typical sectional view showing an embodiment of a light emitting device by this indication.
  • (A) And (b) is sectional drawing and a top view of the linear grating for taking in light with a grating coupling
  • (c) And (d) is a figure which shows the principle of a grating coupling
  • (A) And (b) is typical sectional drawing which shows other embodiment of the light capturing sheet by this indication.
  • FIG. 27C shows a vector diagram of light incident on the grating provided in the light transmitting layer 20.
  • circles 21 and 22 are centered on the point O, the radius of the circle 21 is equal to the refractive index n 0 of the environmental medium 1 surrounding the translucent layer 20, and the radius of the circle 22 is equivalent to the waveguide light 23B. It is equal to the refractive index n eff .
  • the equivalent refractive index n eff is dependent on the thickness of the transparent layer 20, it takes a specific value between the refractive index n 0 of the environmental medium 1 to the refractive index n 1 of the light transmitting layer 20 according to the guided mode .
  • FIG. 27C shows a vector diagram of light incident on the grating provided in the light transmitting layer 20.
  • circles 21 and 22 are centered on the point O, the radius of the circle 21 is equal to the refractive index n 0 of the environmental medium 1 surrounding the translucent layer 20, and the radius of the circle 22 is equivalent to the waveguide light 23B. It is equal
  • 27D shows the relationship between the effective thickness t eff and the equivalent refractive index n eff when light propagates through the light-transmitting layer 20 in the TE mode.
  • the effective thickness is the thickness of the translucent layer 20 itself when there is no grating, and when the grating is present, it is the thickness of the translucent layer 20 plus the average height of the grating.
  • the guided light to be excited has modes such as 0th order, 1st order, and 2nd order, and the characteristic curves are different as shown in FIG. In FIG.
  • a point P is a point drawn from the point O along the incident angle ⁇ and intersects with the circle 21, and a point P ′ is a perpendicular foot of the point P to the x-axis, points Q and Q. 'Is the intersection of the circle 22 and the x-axis.
  • the light coupling condition in the x-axis positive direction is that the length of P′Q is equal to an integral multiple of ⁇ / ⁇ , and the light coupling condition in the negative direction is an integer in which the length of P′Q ′ is ⁇ / ⁇ . Expressed by being equal to double. Where ⁇ is the wavelength of light and ⁇ is the pitch of the grating. That is, the light coupling condition is expressed by the equation (1).
  • q is a diffraction order represented by an integer.
  • is a diffraction order represented by an integer.
  • the substantial pitch of the grating of the light transmitting layer 20 with respect to the light 23aa incident on the light transmitting layer 20 at the azimuth angle ⁇ shifted from the incident direction of the light 23a by the angle ⁇ is ⁇ / cos ⁇ .
  • the light 23a incident in a different direction can satisfy the light coupling condition even at an incident angle ⁇ and a wavelength different from the condition defined by the expression (1). That is, in the case where the change in the direction of light incident on the light transmitting layer 20 is allowed, the light coupling condition expressed by the equation (1) becomes wide to some extent.
  • the incident light cannot be coupled to the guided light 23B in a wide wavelength range and all incident angles.
  • the guided light 23B radiates light 23b 'in the same direction as the reflected light with respect to the incident light 23a while propagating through the grating region. For this reason, even if it is incident at a position far from the end 20a of the grating and can propagate through the light transmitting layer 20 as the guided light 23B, it is attenuated when it reaches the end 20a of the grating. Therefore, only the light 23a incident at a position close to the end portion 20a of the grating can propagate through the light transmitting layer 20 as the guided light 23B without being attenuated by radiation. In other words, since much light is coupled, even if the area of the grating is increased, it is not possible to propagate all of the light incident on the grating as the guided light 23B.
  • the light incident on the light transmissive sheet enters the light coupling structure disposed inside, and the diffraction grating of the third light transmissive layer in the light coupling structure causes 3 is converted into light propagating in a direction along the light-transmitting layer 3 and emitted from the end face of the optical coupling structure.
  • the light coupling structure is parallel to the surface of the light transmissive sheet, and the light emitted from the light coupling structure repeatedly undergoes total reflection between the surface of the light transmissive sheet and the surface of the other light coupling structure. Trapped inside.
  • a light capturing sheet is formed by stacking a plurality of such translucent sheets. The captured light can be efficiently photoelectrically converted.
  • FIG. 1A is a schematic cross-sectional view of the light capturing sheet 51.
  • the light capturing sheet 51 includes a plurality of light transmitting sheets 2 each having a first main surface 2p and a second main surface 2q, and a plurality of light coupling structures 3 disposed in each light transmitting sheet 2.
  • the plurality of translucent sheets 2 are laminated. That is, the plurality of translucent sheets are arranged side by side in a direction perpendicular to the first main surface 2p and the second main surface 2q.
  • “vertical” does not have to be mathematically strictly vertical.
  • the term “vertical” includes a case where the surface is inclined within a range of 10 degrees or less with respect to a strictly vertical direction.
  • the translucent sheet 2 is shown to be thicker than the other translucent sheets 2 in order to illustrate the configuration of the top translucent sheet 2 in detail.
  • the thickness and structure of the laminated light-transmitting sheets 2 are typically all equal. However, the thickness and the structure of the plurality of translucent sheets 2 constituting one light capturing sheet need not be the same.
  • the translucent sheet 2 is made of a transparent material that transmits light having a desired wavelength or a desired wavelength range according to the application. For example, it is made of a material that transmits visible light (wavelength: 0.4 ⁇ m or more and 0.7 ⁇ m or less).
  • the thickness of the translucent sheet 2 is, for example, about 0.03 mm to 1 mm.
  • a cover sheet 2e is bonded to the translucent sheet 2 that is positioned on the outermost surface with a spacer 2d interposed therebetween.
  • the spacer 2d is made of a material having a lower refractive index than the translucent sheet 2 such as airgel.
  • the thickness of the cover sheet 2e is, for example, about 0.1 mm to 1.0 mm.
  • the optical coupling structure 3 has a first distance d1 and a second distance from the first main surface 2p and the second main surface 2q, respectively. It is arranged inside d2 or more apart. Therefore, in the translucent sheet 2, the first main surface 2 p is in contact with the first region 2 a and the second main surface 2 q having the first distance d 1 in thickness, and the second distance d 2 is thick.
  • the optical coupling structure 3 is not disposed in the second region 2b, and the optical coupling structure 3 is disposed in the third region 2c sandwiched between the first region 2a and the second region 2b. Has been.
  • the light coupling structure 3 is arranged in a three-dimensional manner in the third region 2c of the translucent sheet 2.
  • the optical coupling structure 3 is two-dimensionally arranged on a plane parallel to the first main surface 2p and the second main surface 2q, and a plurality of optical coupling structures 3 arranged in two dimensions are transparent.
  • a plurality of light sheets 2 are stacked in the thickness direction.
  • parallel does not need to be mathematically strictly parallel.
  • parallel in this specification includes a case where the surface is inclined within a range of 10 degrees or less with respect to a strictly parallel direction.
  • the optical coupling structure 3 is arranged at a predetermined density in the x and y axis directions (in-plane direction) and the z axis direction (thickness direction). For example, a density of 10 6 to 10 3 per 1mm in x-axis direction 10 to 103 per 1mm on the y-axis direction is 10 to 10 3 about per 1mm in the z-axis direction.
  • the arrangement density of the bonding structures 3 may be independently uniform. However, the arrangement of the light coupling structures 3 in the translucent sheet 2 may not be uniform depending on the use and the distribution of light irradiated on the first main surface 2p and the second main surface 2q of the translucent sheet 2. It may have a predetermined distribution.
  • the optical coupling structure 3 includes a first light-transmitting layer 3a, a second light-transmitting layer 3b, and a third light-transmitting layer 3c sandwiched between them.
  • the first light transmissive layer 3a, the second light transmissive layer 3b, and the third light transmissive layer 3c sandwiched therebetween are stacked in a direction perpendicular to the first and second main surfaces.
  • the third light transmissive layer 3c includes a diffraction grating 3d having a linear grating with a pitch ⁇ disposed on a reference plane.
  • the linear grating of the diffraction grating 3d may be constituted by unevenness provided at the interface between the third light transmitting layer 3c and the first light transmitting layer 3a or the second light transmitting layer 3b. As shown to (e), you may provide in the 3rd translucent layer 3c inside. In addition, a grating based on a difference in refractive index may be used instead of the grating based on unevenness.
  • the optical coupling structure 3 is disposed in the light transmitting sheet 2 so that the diffraction grating 3d of the third light transmitting layer 3c is parallel to the first main surface 2p and the second main surface 2q of the light capturing sheet 51.
  • the diffraction grating is parallel to the first main surface 2p and the second main surface 2q means that the reference plane on which the grating is disposed is the first main surface 2p and the second main surface 2q. Means parallel.
  • the plurality of coupling structures 3 include the first optical coupling structure and the second optical coupling structure in which the plurality of coupling structures 3 are arranged two-dimensionally in a plane parallel to the first and second main surfaces (2p, 2q).
  • the first and / or second light-transmitting layers (3a, 3b) included in the first light-coupling structure and the first and / or second light-transmitting layers (3a, 3b) included in the second light-coupling structure are included. 3b) are separated from each other.
  • the 1st and / or 2nd light transmission layer (3a, 3b) which a 1st optical coupling structure has, and the 1st and / or 2nd light transmission layer (3a) which a 2nd optical coupling structure has. 3b) being separated from each other includes any of the following cases.
  • the first light coupling structure is The second light-transmitting layer 3b and the second light-transmitting layer 3b of the second optical coupling structure are separated from each other, and the first and second of the first optical coupling structure
  • the third light transmissive layers 3c may be arranged so as to be separated from each other or may be arranged so as to be continuous with each other.
  • the third light transmissive layers 3c can be arranged so as to be continuous with each other. That is, the third light-transmitting layer included in the first optical coupling structure and the third light-transmitting layer included in the second optical coupling structure can be continuous with each other.
  • the optical coupling structures 3 When arranging a plurality of the optical coupling structures 3 in the thickness direction of the translucent sheet 2, they are arranged so as to be separated from each other. For example, when there is a second light-transmitting layer that the second optical coupling structure has above the first light-transmitting layer that the first optical coupling structure has, the first light-transmitting structure that the first optical coupling structure has.
  • the optical layer and the second light transmitting layer included in the second optical coupling structure are arranged so as to be separated from each other.
  • the thicknesses of the first light transmissive layer 3a, the second light transmissive layer 3b, and the third light transmissive layer 3c are a, b, and t, respectively, and the steps of the linear diffraction grating of the third light transmissive layer 3c ( Depth) is d.
  • the surface of the third translucent layer 3c is parallel to the first main surface 2p and the second main surface 2q of the translucent sheet 2, and the first translucent layer 3a and the second translucent layer 3b are Surfaces 3p and 3q located on the side opposite to the third light transmitting layer 3c are also parallel to the first main surface 2p and the second main surface 2q of the light transmitting sheet 2.
  • the light capturing sheet 51 includes a plurality of light coupling structures 3 so that light of different wavelengths incident on the light capturing sheet can be captured, and in at least two of the plurality of light coupling structures.
  • the extending directions of the diffraction grating 3d may be different from each other.
  • the pitches ⁇ of the diffraction gratings 3d may be different from each other.
  • a combination thereof may be used.
  • the refractive index of the 1st translucent layer 3a and the 2nd translucent layer 3b is smaller than the refractive index of the translucent sheet 2, and the refractive index of the 3rd translucent layer 3c is the 1st translucent layer 3a and the 1st translucent layer. It is larger than the refractive index of the light transmissive layer 3b.
  • the first light-transmitting layer 3a and the second light-transmitting layer 3b are air and the refractive index is 1.
  • the third light transmissive layer 3c is made of the same medium as the light transmissive sheet 2 and has the same refractive index.
  • the surfaces 3p and 3q of the first light transmitting layer 3a and the second light transmitting layer 3b of the optical coupling structure 3 are, for example, rectangles having lengths W and L as two sides, and W and L are 3 ⁇ m or more and 100 ⁇ m. It is as follows. That is, the surfaces of the first light transmitting layer 3a and the second light transmitting layer 3b of the optical coupling structure 3 have a size that circumscribes a circle having a diameter of 3 ⁇ m or more and 100 ⁇ m or less. Moreover, the thickness (a + t + d + b) of the optical coupling structure 3 is 3 ⁇ m or less. As shown in FIG. 2B, in this embodiment, the surface (plane) of the optical coupling structure 3 has a rectangular shape, but has another shape, for example, a polygon, a circle, or an ellipse. Also good.
  • the light capturing sheet 51 is used surrounded by an environmental medium.
  • the light capturing sheet 51 is used in the air.
  • the refractive index of the environmental medium is 1.
  • the refractive index of the translucent sheet 2 is assumed to be ns .
  • the light 4 from the environmental medium passes through the cover sheet 2e and the buffer layer 2f, and enters the inside of the translucent sheet 2 from the first main surface 2p and the second main surface 2q of the translucent sheet 2 on the outermost surface.
  • the buffer layer 2f is made of the same medium as the environmental medium, and its refractive index is 1.
  • the refractive index of the spacer 2d is almost equal to 1.
  • an AR coat or a non-reflective nanostructure may be formed.
  • the non-reflective nanostructure includes a fine concavo-convex structure whose pitch and height are 1/3 or less of the design wavelength, such as a moth-eye structure.
  • the design wavelength is a wavelength of light used when designing each element so that the light capturing sheet 51 exhibits a predetermined function.
  • Fresnel reflection is reduced, but total reflection exists.
  • seat 2 there exists a part which contacts partially, each surface being almost parallel. Through this contact surface, light outside the critical angle is exchanged. Accordingly, the superposition of the light transmitting sheets 2 has an effect equivalent to increasing the number and density of the light coupling structures 3 and the light confinement effect is increased.
  • the angle ⁇ formed by the propagation direction and the normal line of the translucent sheet 2 (lines perpendicular to the first main surface 2p and the second main surface 2q).
  • the propagation angle is called a sin ⁇ ⁇ 1 / n s light critical angle within the light satisfying, sin ⁇ ⁇ 1 / n s optical light outside the critical angle satisfying.
  • FIG. 1A when there is light 5a within the critical angle inside the translucent sheet 2, a part thereof is converted into light 5b outside the critical angle by the optical coupling structure 3, and this light is the first main light.
  • the light 5c outside the critical angle stays inside the sheet after totally reflecting the surface 2p.
  • the optical coupling structure 3 is disposed in the third region 2c in the translucent sheet 2 as shown in FIG.
  • One or more fourth regions 2h that are not present may be provided. That is, the optical coupling structure 3 is disposed only in the third region 2c excluding the fourth region 2h.
  • the fourth region 2h connects the first region 2a and the second region 2b.
  • the fourth region 2h extends from the first region 2a to the second region 2b or along the opposite direction, and the direction of an arbitrary straight line passing through the fourth region 2h is the refractive index of the translucent sheet. And an angle larger than the critical angle defined by the refractive index of the environmental medium around the translucent sheet. That is, the refractive index of the environment medium 1, if the refractive index of the translucent sheet 2 and n e, any straight lines extending direction 2hx penetrating the fourth region 2h makes with the normal line of the light-transmitting sheet 2 angle ⁇ 'is, sin ⁇ ' meets ⁇ 1 / n s.
  • the straight line penetrating through the fourth region 2h means that the straight line passes through the surface of the fourth region 2h in contact with the first region 2a and the second region 2b of the fourth region 2h. .
  • FIG. 1B is a plan view of the light capturing sheet 51 and shows the arrangement of the fourth region 2h.
  • the fourth region 2 h is preferably provided in the translucent sheet 2. Since the fourth region 2h extends from the first region 2a to the second region 2b or in the opposite direction at an angle larger than the critical angle, the first region 2a and the second region of the translucent sheet 2 Of the light propagating through the region 2b, only light outside the critical angle can pass through the fourth region 2h and pass from the first region 2a to the second region 2b or vice versa. For this reason, the bias of the light distribution in the light capturing sheet 51 can be prevented.
  • the light 5a within the critical angle is transmitted through the surface 3q of the second light transmitting layer 3b, and a part of the light 5a is within the third light transmitting layer 3c by the action of the diffraction grating 3d. Is converted into guided light 5B propagating through.
  • the remaining light is transmitted light or diffracted light mainly as light 5a ′ within the critical angle and transmitted through the optical coupling structure 3, or as reflected light, light 5r within the critical angle is transmitted through the optical coupling structure 3.
  • the coupling to the guided light 5B is the same as the principle of the conventional grating coupling method.
  • a part of the guided light 5B is emitted in the same direction as the light 5r within the critical angle until reaching the end face 3S of the third light transmitting layer 3c to become the light 5r 'within the critical angle, and the rest is guided.
  • the light 5c is emitted from the end face 3S of the third light-transmitting layer 3c and is outside the critical angle.
  • the light 6a outside the critical angle is totally reflected on the surface 3q of the second light transmitting layer 3b, and all of the light 6a becomes the light 6b outside the critical angle.
  • the light outside the critical angle incident on the surface of the optical coupling structure 3 (the surface 3p of the first light-transmitting layer 3a and the surface 3q of the second light-transmitting layer 3b) is directly reflected as light outside the critical angle. A part of the light within the critical angle is converted to light outside the critical angle.
  • the guided light 5B is all emitted before reaching the end face 3S. If it is too short, the coupling efficiency to the guided light 5B is not sufficient.
  • the ease with which the guided light 5B is radiated is represented by a radiation loss coefficient ⁇ , and the intensity of the guided light 5B becomes exp ( ⁇ 2 ⁇ L) times at the propagation distance L. Assuming that the value of ⁇ is 10 (1 / mm), the light intensity is 0.8 times with 10 ⁇ m propagation.
  • the radiation loss coefficient ⁇ is proportional to the square of d. Accordingly, the length of the diffraction grating 3d, that is, the length (dimensions W and L) of the third light transmitting layer 3c is determined by the radiation loss coefficient ⁇ and depends on the depth d of the diffraction grating 3d. If the depth d is adjusted to set the value of ⁇ in the range of 2 to 100 (1 / mm) and the attenuation ratio is 0.5, W and L are about 3 ⁇ m to 170 ⁇ m. For this reason, as described above, if W and L are 3 ⁇ m or more and 100 ⁇ m or less, radiation loss can be suppressed by adjusting the depth d, and high coupling efficiency can be obtained.
  • Table 1 shows whether light is coupled.
  • the polarity of the incident angle ⁇ is related to the light coupling direction. Therefore, when ignoring the coupling direction of light and focusing only on the presence or absence of coupling, if the incident angle range can cover either 0 to 90 degrees or -90 to 0 degrees, coupling is performed for all incident angles. That's right. Therefore, it can be seen from Table 1 that 0.18 ⁇ m to 0.56 ⁇ m (0 degree to 90 degree) or 0.30 ⁇ m to 2.0 in order for light to be coupled for all visible light wavelengths and all incident angles. It can be seen that an optical coupling structure 3 having a diffraction grating 3d with a pitch ⁇ of up to 80 ⁇ m ( ⁇ 90 degrees to 0 degrees) can be used.
  • the pitch of the diffraction grating 3d may be approximately 0.1 ⁇ m to 3 ⁇ m.
  • the pitch of the diffraction grating 3d with respect to the light 5a within the critical angle incident in a direction perpendicular to the direction in which the diffraction grating 3d extends is ⁇ , but incident at an azimuth angle ⁇ .
  • the effective pitch of the diffraction grating 3d with respect to the light 5aa is ⁇ / cos ⁇ . For example, when the incident azimuth angle ⁇ of the light 5aa is 0 to 87 degrees, the effective pitch is ⁇ to 19 ⁇ .
  • the light incident on the end face 3r of the optical coupling structure 3 is reflected by the end face 3r, diffracted by the end face 3r, or transmitted through the end face 3r and refracted by the end face 3r.
  • a case where the light is guided through the third light-transmitting layer 3c is considered.
  • light 6a outside the critical angle incident on the end faces of the first light transmitting layer 3a and the second light transmitting layer 3b and transmitted therethrough is refracted to become light 6a 'within the critical angle.
  • a part of the light 6A incident on the end face of the third light transmitting layer 3c and transmitted therethrough is converted into the guided light 6B propagating in the third light transmitting layer 3c.
  • FIG. 2D shows the third light-transmitting layer 3c extracted from the optical coupling structure 3, and the space after the extraction is filled with the same air as the first light-transmitting layer 3a and the second light-transmitting layer 3b.
  • the optical path is shown.
  • the behavior is complicated, and even if light outside the critical angle is incident on the end face, it is not always emitted as light outside the critical angle.
  • the surface size (W, L) is sufficiently larger (for example, four times or more) than the end surface size (a + t + d + b), the influence on the end surface is sufficiently reduced, and light on the surfaces 3p, 3q is reduced.
  • the transmission or reflection of light can be regarded as the light transmission or reflection behavior in the entire optical coupling structure 3.
  • the optical coupling structure 3 holds the light outside the critical angle as the light outside the critical angle, while exhibiting the function of irreversibly converting the light within the critical angle to the light outside the critical angle. Is sufficiently set, all the light incident on the light capturing sheet 51 can be converted into light outside the critical angle (that is, light confined in the sheet).
  • FIG. 3 shows a cross-sectional structure of the light capturing sheet used in the analysis for confirming the effect of light confinement in the light capturing sheet 51.
  • a light capturing sheet including one light coupling structure was used.
  • a light source S (indicated by a broken line) having a width of 5 ⁇ m is set in parallel to a position of 1.7 ⁇ m from the second main surface 2q of the translucent sheet 2, and a distance of 0.5 ⁇ m is set above it.
  • the second light-transmitting layer 3b having a width of 6 ⁇ m was arranged in parallel, and the third light-transmitting layer 3c and the first light-transmitting layer 3a having the same width were arranged thereon.
  • seat 2 exists in the position of 2.5 micrometers from the surface of the 1st translucent layer 3a.
  • a polarized plane wave having an angle of 45 degrees with respect to the paper surface is emitted from the light source S in an orientation that forms an angle ⁇ with respect to the normal line of the second main surface 2q, and the center of the incident light is the second light transmitting layer.
  • the positions of the first light-transmitting layer 3a, the second light-transmitting layer 3b, and the third light-transmitting layer 3c were shifted laterally according to the angle ⁇ so as to transmit the center of the surface of 3b.
  • the thickness a of the first light transmitting layer 3a is 0.3 ⁇ m
  • the thickness c of the second light transmitting layer 3b is 0.3 ⁇ m
  • the thickness t of the third light transmitting layer 3c is 0.4 ⁇ m
  • the depth d of the diffraction grating was 0.18 ⁇ m
  • the pitch ⁇ of the diffraction grating was 0.36 ⁇ m.
  • the refractive index of the translucent sheet 2 and the third translucent layer 3c was 1.5
  • the refractive index of the environmental medium, the first translucent layer 3a and the second translucent layer 3b was 1.0.
  • FIG. 4A shows the calculation result when the wavelength ⁇ of the light source is 0.45 ⁇ m
  • FIG. 4B shows the calculation result when the wavelength ⁇ is 0.55 ⁇ m
  • FIG. 4C shows the calculation result when the wavelength ⁇ is 0.65 ⁇ m. Show.
  • the results are also plotted under conditions where the optical coupling structure 3 is not present (configuration consisting of only the translucent sheet 2 and the light source S).
  • the former is within a critical angle (41.8 degrees) than the latter.
  • the transmittance decreases in the range, and both become almost zero at higher angles.
  • the transmittance in the former is reduced within the critical angle because the light incident on the surface 3q of the second light transmissive layer 3b is refracted, and a part of the light is refracted. This is because the light is emitted from the end face 3s as light outside the critical angle.
  • the former case as described with reference to FIGS.
  • the structure in the case of d 0 has conversion to light outside the critical angle, while conversion to light within the critical angle also has a small effect of confining light as a whole.
  • FIG. 4D shows a standard value (value divided by 90) obtained by integrating the curves of FIGS. 4A, 4B, and 4C with respect to the incident angle ⁇ , and the diffraction grating depth d as a parameter. Is shown. Since the analytical model is two-dimensional, this integrated value is equal to the efficiency with which the light in the light confining sheet is extracted out of the sheet.
  • FIG. 5 shows a light intensity distribution diagram in the light capturing sheet under the conditions indicated by arrows a, b, c, d, and e in FIG.
  • the third light transmissive layer 3c functions as a waveguide layer, and the incident light is coupled to the guided light propagating through the third light transmissive layer 3c by the action of the diffraction grating.
  • the light transmitting layer 3c is radiated into the light transmitting sheet 2 from the end faces 3r and 3s. This emitted light is light outside the critical angle, and is totally reflected by the first main surface 2p and the second main surface 2q of the translucent sheet 2 and confined in the translucent sheet 2.
  • the incident light is coupled to the guided light propagating through the third light-transmitting layer 3c by the action of the diffraction grating.
  • This emitted light is light outside the critical angle, and is totally reflected by the first main surface 2p and the second main surface 2q of the translucent sheet 2 and confined in the translucent sheet 2.
  • the emitted light is divided into two parts, and the combined light is first-order mode guided light whose phase is inverted above and below the cross section of the waveguide layer.
  • the radiated light is in a collective state, and the combined light is 0th-order mode guided light.
  • FIG. 6 shows that the refractive index of the first light transmitting layer 3a and the second light transmitting layer 3b in the structure shown in FIG. 3 is the same as the refractive index of the light transmitting sheet 2, and the refractive index of the third light transmitting layer 3c.
  • the analysis result when changing to 2.0 is shown. Other conditions are the same as the conditions when the analysis result shown in FIG. 4 is obtained.
  • the optical coupling structure 3 in order for the third light transmissive layer 3c to be a light guide layer, the refractive index thereof is higher than the refractive indexes of the first light transmissive layer 3a and the second light transmissive layer 3b. In order to prevent light outside the critical angle from entering the third light transmitting layer 3c, the refractive index of the first light transmitting layer 3a and the second light transmitting layer 3b is smaller than the refractive index of the light transmitting sheet 2.
  • the refractive index of the first light transmitting layer 3a and the second light transmitting layer 3b and the refraction of the light transmitting sheet are preferable.
  • the difference in rate is large.
  • the refractive index of the first light-transmitting layer 3a and the second light-transmitting layer 3b can be 1.
  • the light capturing sheet of the present embodiment As described above, according to the light capturing sheet of the present embodiment, light incident on the first main surface and the second main surface of the light transmitting sheet at various angles becomes light within a critical angle. Is incident on the optical coupling structure disposed therein, and part of the light is converted into guided light propagating in the third light-transmitting layer by the diffraction grating in the optical coupling structure, and is emitted from the end face of the optical coupling structure. It becomes light outside the critical angle. Since the pitch of the diffraction grating is different depending on the optical coupling structure or the orientation of the diffraction grating is different, this conversion is performed over all orientations, a wide wavelength range, for example, the entire visible light range.
  • the length of the diffraction grating is short, the radiation loss of guided light can be reduced. Therefore, all the light within the critical angle existing in the translucent sheet is converted into light outside the critical angle by the plurality of optical coupling structures. Since the refractive index of the first and second transmission layers of the optical coupling structure is smaller than the refractive index of the transparent sheet, light outside the critical angle is totally reflected on the surface of the optical coupling structure, and this light is reflected by other optical coupling structures. The total reflection is repeated between the surface and the surface of the translucent sheet and is confined in the translucent sheet. In this way, the optical coupling structure irreversibly converts light within the critical angle to light outside the critical angle, while maintaining the light outside the critical angle in a state outside the critical angle.
  • the density of the optical coupling structure is sufficiently set, all light incident on the light capturing sheet can be converted into light outside the critical angle, that is, light confined in the sheet. If the confinement effect of a single translucent sheet is small, a predetermined effect can be easily achieved by overlapping a plurality of translucent sheets.
  • the first main surface 2p of the translucent sheet 2 on the outermost surface is covered with a cover sheet 2e through a buffer layer 2f. Accordingly, the foreign matter 2g such as a water droplet adheres to the surface of the cover sheet 2e and prevents it from coming into contact with the first main surface 2p. If the foreign matter 2g comes into contact with the first main surface 2p, the relationship of total reflection is lost at the contact surface, and light outside the critical angle confined in the translucent sheet 2 leaks outside through the foreign matter 2g. Will come out.
  • the spacer 2d is also in contact with the first main surface 2p, but its refractive index is almost the same as the refractive index of the environmental medium, so that the relationship of total reflection is maintained at the contact surface, and light outside the critical angle passes through the spacer 2d. Will not leak outside. Moreover, when the surface area of a translucent sheet
  • both the first main surface 2p of the translucent sheet 2 positioned on the uppermost surface and the second main surface 2q of the translucent sheet 2 positioned on the lowermost surface are provided with “gap”.
  • the cover sheet 2e is configured to face each other.
  • the entirety of both the first main surface 2p of the translucent sheet 2 located on the uppermost surface and the second main surface 2q of the translucent sheet 2 located on the lowermost surface is covered with the cover sheet 2e.
  • a part of the first main surface 2p of the translucent sheet 2 located on the uppermost surface does not face the cover sheet 2e.
  • the spacer 2d is provided at a position other than the end of the second main surface 2q of the translucent sheet 2 located on the lowermost surface.
  • the “gap” may be filled with a fluid or solid having a sufficiently low refractive index.
  • the light capturing sheet 51 can be manufactured, for example, by the following method.
  • FIGS. 7A to 7E are schematic cross-sectional configuration diagrams showing a procedure for manufacturing the light capturing sheet 51
  • FIGS. 8A and 8B are patterns on the mold surface for creating the sheet. It is a typical top view which shows.
  • microstructures 25A and 25B for example, rectangular microstructures 25A and 25B having the same dimensions are two-dimensionally arranged on the surfaces of the molds 25a and 25b.
  • the arrangement of the microstructure 25A in the mold 25a is equal to the arrangement of the microstructure 25B in the mold 25b.
  • the microstructures 25A and 25B are protrusions.
  • the height of the microstructure 25A is the dimension b in FIG. 2A, and the height of the microstructure 25B corresponds to the dimension a.
  • a linear diffraction grating having a height d and a pitch ⁇ is formed on the surface of the microstructure 25A, and the orientation of the diffraction grating (the direction in which the concave portion or convex portion extends) is the microstructure. Every 25A is different.
  • the gratings in the 45 degree increments of 0 degrees, 45 degrees, 90 degrees, and 135 degrees are regularly arranged, but in reality, the azimuths with smaller increments such as 30 degrees and 15 degree increments.
  • the gratings can be arranged with equal frequency.
  • a transparent resin sheet 24 is laid on the surface of the mold 25b in a state where a spacer is thinly applied, and the mold 25a is arranged on this sheet, and the microstructure 25B and the micro structure 25 The resin sheet 24 sandwiched between the mold 25b and the mold 25b is pressed with the position of the structure 25A being aligned.
  • the mold 25a is lifted and the resin sheet 24 is peeled off from the mold 25b, and as shown in FIG. 7 (c), a resin sheet 24a having a thin adhesive applied to the surface.
  • the resin sheet 24 and the resin sheet 24a are bonded to each other.
  • the adhesive is thinly applied to the bottom surface of the resin sheet 24a, and this is pressed on the resin sheets 24 ′ and 24′a formed by the same method while ignoring the alignment. Glue these together.
  • the resin sheets 24, 24a, 24 ′, and 24′a are replaced with the resin sheets 24 ′ and 24′a of FIG. 7D, and these procedures are repeated, whereby the translucent sheet shown in FIG. 2 3rd area
  • region 2c is produced.
  • the light capturing shown in FIG. 1A is performed by adhering the resin sheets to be the first region 2a and the second region 2b of the light transmitting sheet 2 to the front and back surfaces of the third region 2c of the light transmitting sheet 2.
  • the sheet 51 is completed.
  • an adhesive is used for bonding the resin sheets, but the resin sheets may be fused together by heating the surface of the resin sheets without using the adhesive.
  • a non-reflective nanostructure may be formed in advance on the surface of the resin sheet that becomes the resin sheet 24a or the first region 2a and the second region 2b.
  • the plurality of laminated light-transmitting sheets 2 are not distinguished and described, and will be described as if they were one light-transmitting sheet 2 as a whole.
  • the light capturing sheet 52 of this embodiment is different from the light coupling structure of the first embodiment in the structure on the end face of the light coupling structure. For this reason, the optical coupling structure in this embodiment will be mainly described below.
  • FIGS. 9A and 9B schematically show a cross-sectional structure and a planar structure of the optical coupling structure 3 ′ along the thickness direction of the light capturing sheet 52.
  • the end faces 3r and 3s are provided with recesses 3t having a depth e.
  • the width of the cross section of the recess 3t becomes narrower toward the inside.
  • the thicknesses of the first light transmission layer 3 a and the second light transmission layer 3 b are reduced from the center of the optical coupling structure 3 ′ toward the outer edge side.
  • the surfaces 3p and 3q are flat as in the first embodiment.
  • FIG. 10 shows a cross-sectional structure of the light capturing sheet used for the analysis for confirming the light confinement effect in the light capturing sheet 52 provided with the light coupling structure 3 ′.
  • the optical coupling structure and the light source are installed at exactly the same positions as the corresponding elements in the structure (FIG. 3) used in the analysis of the first embodiment.
  • FIGS. 11A to 11C show the incident angle ⁇ of the light incident on the optical coupling structure 3 ′ from the light source S and the transmittance of the light emitted to the outside of the light capturing sheet in the light capturing sheet having the structure shown in FIG. It is the analysis result which shows the relationship.
  • the depth d of the diffraction grating is used as a parameter, and the results are also plotted under conditions where there is no optical coupling structure (configuration with only the light-transmitting sheet 2 and the light source S).
  • FIG. 11D shows a standard value (value divided by 90) obtained by integrating the curves of FIGS. 11A, 11B and 11C with respect to the incident angle ⁇ , and the groove depth d as a parameter. Show. This integral value is equal to the efficiency with which the light in the sheet is taken out of the sheet because the analysis model is two-dimensional.
  • the effect of light confinement by the structure is greater.
  • the drop at the positions of arrows b, c, d, and e is smaller than the analysis result of the first embodiment because the grating length (coupling length) is smaller in the analysis model of this embodiment. It is because it is doing.
  • FIG. 12 is an analysis result showing the relationship between the incident angle ⁇ and the transmittance to the outside of the light capturing sheet due to the incidence of light on the end face of the single optical coupling structure in the second embodiment.
  • the analysis conditions those obtained by shifting only the position of the light source S to the minus side of the x axis by 5 ⁇ m in FIGS. 10 and 3 are used.
  • the second embodiment has a configuration in which the influence on the end face (a phenomenon in which light outside the critical angle is converted into light within the critical angle) can be ignored more than the first embodiment, and the effect of confining the light is further improved. It can be said that it is a strong composition.
  • the length of the light source is set to 5 ⁇ m.
  • FIG. 13 is a schematic cross section showing an example of a procedure for producing the light capturing sheet 52 of the present embodiment.
  • the light capturing sheet 52 can be manufactured by providing inclinations 25A 'and 25B' on the outer edges of the microstructures 25A and 25B of the molds 25a and 25b and using the same procedure as in the first embodiment. Except for the differences in the shapes of the molds 25a and 25b, the light capturing sheet 52 of this embodiment can be manufactured in the same manner as the light capturing sheet 51 of the first embodiment. Description is omitted.
  • the light capturing sheet 53 of this embodiment differs from the light coupling structure of the second embodiment in the structure at the end face of the light coupling structure. For this reason, the optical coupling structure in this embodiment will be mainly described below.
  • FIGS. 14A and 14B schematically show a cross-sectional structure and a planar structure of the optical coupling structure 3 ′′ along the thickness direction of the light capturing sheet 53.
  • tapers 3u and 3v are provided in regions of width e adjacent to the end faces 3r and 3s. Therefore, the first light transmissive layer 3a and the second light transmissive layer 3b maintain the flatness of the interface with the third light transmissive layer 3c, and the first light transmissive layer 3a and the second light transmissive layer 3b.
  • the thickness of the optical layer 3b decreases from the center of the optical coupling structure 3 ′′ toward the outer edge side.
  • FIG. 15 shows a cross-sectional structure of the light capturing sheet used in the analysis for confirming the effect of light confinement in the light capturing sheet 53 having the light coupling structure 3 ′′.
  • the optical coupling structure and the light source are installed at exactly the same position as the structure used in the analysis of the first embodiment (FIG. 3).
  • the former is within the critical angle (41.8 degrees) from the latter.
  • the latter becomes zero at larger angles, whereas the former remains lifted up to 55 degrees.
  • the reason why the former becomes smaller within the critical angle is that, as described with reference to FIG. 2 (d), the light incident on the surface 3q of the second light transmitting layer 3b is refracted, and a part thereof is outside the critical angle. This is because the light is emitted from the right side surface (the right side surface of the third light-transmitting layer 3c) as the light.
  • the former rising above the critical angle.
  • the first is that the surface 3q of the second light transmissive layer 3b is inclined toward the outer edge, so that a part of the light exceeding the critical angle is critical to the surface 3q of the second light transmissive layer 3b. This is because the light can be incident within an angle, and this light diffracts the grating inside the optical coupling structure to become light within the critical angle.
  • the thickness of the second light-transmitting layer 3b becomes too thin at the outer edge, and part of the light exceeding the critical angle is transmitted to the inside of the optical coupling structure in the state of evanescent light. This is because the grating is diffracted into light within a critical angle.
  • the lift of the transmitted light is settled at an incident angle of 55 ° or more and becomes almost zero. Therefore, once the light emitted as guided light repeats total reflection and stays inside the sheet, the light is outside the critical angle ( It can be seen that the light has a propagation angle of 55 degrees or more.
  • the surface 3p of the 1st translucent layer 3a and the surface 3q of the 2nd translucent layer 3b incline toward an outer edge part, The propagation angle of the light which totally reflects these surfaces is an inclination direction. Depending on the probability of occurrence, the probability of occurrence is the same, so that almost the same propagation angle can be maintained as a whole.
  • FIG. 16D shows a standard value (value divided by 90) obtained by integrating the curves of FIGS. 16A, 16B, and 16C with respect to the incident angle ⁇ , and the groove depth d as a parameter. Show.
  • FIG. 17 is an analysis result showing the relationship between the incident angle ⁇ and the transmittance to the outside of the sheet due to the incidence on the end face of the single optical coupling structure in the sheet of the third embodiment.
  • the analysis conditions used in FIGS. 15 and 3 are those in which only the position of the light source S is shifted to the minus side of the x axis by 5 ⁇ m.
  • the results of the model of the third embodiment are largely reduced to zero in the range where the incident angle is 55 degrees or more and almost zero. This is because there is no region occupied by the first light-transmitting layer 3a and the second light-transmitting layer 3b at the end face in the third embodiment, and the component that originally refracts the end face is inclined by the second light-transmitting layer 3b. This is because the reflected surface 3q is totally reflected. Therefore, the third embodiment has a configuration that can suppress the influence on the end face (a phenomenon in which light outside the critical angle is converted into light within the critical angle) more than the first embodiment and the second embodiment. It can be said that the effect of confining light is stronger.
  • the light capturing sheet 53 can be manufactured, for example, by the following method.
  • 18 (a) to 18 (f) are schematic cross-sectional configuration diagrams showing a manufacturing procedure of the light capturing sheet 53
  • FIGS. 19 (a) and 19 (b) are patterns on the mold surface for creating the sheet. It is a typical top view which shows.
  • the surface of the mold 25a is a flat surface, and for example, rectangular microstructures 25A having the same dimensions are two-dimensionally arranged on the surface of the mold 25a.
  • the rectangular microstructure 25A is a diffraction grating having a height d and a pitch ⁇ . The orientation of the diffraction grating differs for each microstructure 25A.
  • FIG. 19A the surface of the mold 25a is a flat surface, and for example, rectangular microstructures 25A having the same dimensions are two-dimensionally arranged on the surface of the mold 25a.
  • the rectangular microstructure 25A is a diffraction grating having a height d
  • diffraction gratings in 45 ° increments of 0 °, 45 °, 90 °, and 135 ° are regularly arranged, but actually smaller, such as 30 ° and 15 ° increments.
  • the gratings can be arranged with equal frequency in the direction of the step size.
  • Rectangular microstructures 25B and 25B ' are also two-dimensionally arranged on the surfaces of the molds 25b and 25b' in FIG.
  • the arrangement pitch of the minute structures 25B and 25B ' is equal to the arrangement pitch of the minute structures 25A.
  • the microstructures 25B and 25B ' are concave portions, and the bottoms are flat.
  • the depth of the recess corresponds to the dimension a or b in FIG.
  • the microstructure 25A of the mold 25a is large enough to be in contact with the square (may be in contact), but the squares of the microstructures 25B and 25B 'of the mold 25b and 25b' are small.
  • a transparent resin sheet 24 is laid on a mold 25c having a flat surface, and pressed with a mold 25a in a state where a spacer is thinly applied thereon.
  • the mold 25a is lifted, the mold 25a is peeled off from the resin sheet, and a flat resin sheet 24a is laid on the resin sheet 24 to which the diffraction grating is transferred.
  • the resin sheet 24 and the resin sheet 24a are pressed by the mold 25b while being heated, and the resin sheet 24a is lifted up in the region of the recess 25B of the mold 25b, and the resin in the other region.
  • the sheet 24 and the resin sheet 24a are joined.
  • the diffraction grating is completely buried in the joint, and remains only in the region where the resin sheet 24a is lifted.
  • the floating of the resin sheet 24 a forms an air layer (or vacuum layer) between the resin sheet 24 a and the resin sheet 24.
  • the mold 25 c is lifted and peeled off from the resin sheet 24, and a resin sheet 24 a ′ is laid under the resin sheet 24.
  • FIG. 18D the mold 25 c is lifted and peeled off from the resin sheet 24, and a resin sheet 24 a ′ is laid under the resin sheet 24.
  • the resin sheet 24 and the resin sheet 24a ′ are heated and pressed by the mold 25b ′, and the resin sheet 24a ′ is lifted in the region of the recess 25B ′ of the mold 25b ′.
  • the resin sheet 24 and the resin sheet 24a ′ are joined in the other region.
  • the floating of the resin sheet 24 a ′ forms an air layer (or vacuum layer) between the resin sheet 24 a ′ and the resin sheet 24.
  • the molds 25 b and 25 b ′ are peeled off to complete the joining sheet of the resin sheet 24 a, the resin sheet 24, and the resin sheet 24 a ′.
  • the light capturing sheet 53 is completed by bonding the resin sheets to be the first region 2 a and the second region 2 b of the light transmitting sheet 2 to the front and back surfaces of the third region 2 c of the light transmitting sheet 2.
  • a non-reflective nanostructure may be formed in advance on the surfaces of the resin sheets 24a and 24a 'and the resin sheets that become the first region 2a and the second region 2b.
  • the description regarding the cover sheet 2e is the same as that in the first embodiment, and is omitted because it is redundant.
  • the translucent sheet 2 will be described with an example of one layer.
  • the light-transmitting sheet 2 is configured to be overlapped as in the first embodiment. It forms on the surface of the translucent sheet 2 located in the outermost surface side among the translucent sheets 2.
  • FIG. 20 schematically shows a cross-sectional structure of the light receiving device 54 of the present embodiment.
  • the light receiving device 54 includes the light capturing sheet 51 and the photoelectric conversion unit 7 of the first embodiment.
  • the light capturing sheet 51 the light capturing sheet 52 of the second embodiment or the light capturing sheet 53 of the third embodiment may be used.
  • the reflection film 11 is preferably provided on the end faces 2 s and 2 r of the light capturing sheet 51.
  • the photoelectric conversion unit 7 is provided adjacent to the second main surface 2q of the light capturing sheet 51.
  • the reflective film 11 can be provided on all end surfaces.
  • a part of the second main surface 2q is in contact with the light receiving unit of the photoelectric conversion unit 7.
  • the photoelectric conversion unit 7 may be provided on a part of the first main surface 2 p of the light capturing sheet 51.
  • the light captured and sealed in the light capturing sheet 51 circulates in the light capturing sheet 51.
  • the photoelectric conversion unit 7 is a solar cell made of silicon. A plurality of photoelectric conversion units 7 may be attached to one light capturing sheet 51. Since the refractive index of silicon is about 5, normally, even when light is incident perpendicularly to the light receiving surface of the solar cell, about 40% of the incident light is reflected without being taken into the photoelectric conversion unit 7. Lost in. This reflection loss further increases when light is incident obliquely. In order to reduce the amount of reflection, an AR coat and a non-reflective nanostructure are formed on the surface of a commercially available solar cell, but sufficient performance is not obtained. Furthermore, there is a metal layer inside the solar cell, and a significant part of the light that reflects it is emitted to the outside. If there is an AR coat or non-reflective nanostructure, the reflected light is emitted to the outside with high efficiency.
  • the light capturing sheet of the present disclosure captures all visible light wavelengths into the light capturing sheet at all incident angles and seals them. Therefore, in the light receiving device 54, light incident from the first main surface 2 p of the light capturing sheet 51 is captured by the light capturing sheet 51 and circulates in the light capturing sheet 51. Since the refractive index of silicon is larger than the refractive index of the translucent sheet 2, the light 5b ′ and 6b ′ outside the critical angle incident on the second main surface 2q is not totally reflected, and a part of the light 5b ′ and 6b ′ is refracted light 5d ′. 6d 'is transmitted to the photoelectric conversion unit 7 and converted into current in the photoelectric conversion unit.
  • the reflected light 5c 'and 6c' outside the critical angle propagates in the sheet and then enters the photoelectric conversion unit 7 again, and is used for photoelectric conversion until all the sealing light is eliminated.
  • the refractive index of the transmissive sheet 2 is 1.5
  • the reflectance of light perpendicularly incident on the first main surface 2p is about 4%.
  • an AR coat or a non-reflective nanostructure is formed. In this case, the reflectance can be suppressed to 1 to 2% or less including wavelength dependency and angle dependency.
  • Other light enters the light capturing sheet 51 and is confined to be used for photoelectric conversion.
  • the light receiving device of this embodiment most of the incident light can be confined in the sheet and most of it can be used for photoelectric conversion. Therefore, the energy conversion efficiency of the photoelectric conversion unit can be greatly improved.
  • the light receiving area is determined by the area of the first main surface p, and all the light received by this surface enters the photoelectric conversion unit 7. For this reason, the area of the photoelectric conversion unit 7 can be reduced, the number of the photoelectric conversion units 7 can be reduced, and the cost of the light receiving device can be significantly reduced.
  • FIG. 21 schematically shows a cross-sectional structure of the light receiving device 55 of the present embodiment.
  • the light receiving device 55 includes the light capturing sheet 51 and the photoelectric conversion unit 7 of the first embodiment.
  • the light capturing sheet 51 the light capturing sheet 52 of the second embodiment or the light capturing sheet 53 of the third embodiment may be used.
  • the light receiving device 55 is different from the light receiving device 54 of the fourth embodiment in that an uneven structure 8 is provided on the second main surface 2q and a gap is provided between the light receiving device 55 and the photoelectric conversion unit 7.
  • the concavo-convex structure 8 provided on the second main surface 2q has a concave and convex width of 0.1 ⁇ m or more, and may be a periodic pattern or a random pattern.
  • the light reflected from the surface of the photoelectric conversion unit 7 is taken in from the second main surface 2q of the light capturing sheet 51, propagates through the light capturing sheet 51, and then again becomes emitted light 5d ′ and 6d ′ as photoelectric light.
  • the light travels toward the conversion unit 7. Therefore, also in the light receiving device of this embodiment, most of the incident light can be confined in the light capturing sheet, and most of it can be used for photoelectric conversion. Further, similarly to the fourth embodiment, the area of the photoelectric conversion unit 7 can be reduced or the number of the photoelectric conversion units 7 can be reduced. Therefore, it is possible to realize a low-cost light receiving device with greatly improved energy conversion efficiency.
  • FIG. 22 schematically shows a cross-sectional structure of the light receiving device 56 of the present embodiment.
  • the light receiving device 56 includes the light capturing sheet 51, the photoelectric conversion unit 7, and the prism sheet 9 of the first embodiment.
  • the light capturing sheet 51 the light capturing sheet 52 of the second embodiment or the light capturing sheet 53 of the third embodiment may be used.
  • the light receiving device 56 is different from the light receiving device 54 of the fourth embodiment in that a prism sheet 9 is provided between the second main surface 2q and the photoelectric conversion unit 7.
  • a prism sheet 9 is provided between the second main surface 2q and the photoelectric conversion unit 7.
  • the prism sheet 9 may be configured by stacking two sheets of triangular prism prisms orthogonally. Since the refractive index of the prism 10 is set to be larger than the refractive index of the prism sheet 9, the critical angle outside lights 5 b ′ and 6 b ′ incident on the surface of the prism sheet 9 are refracted on the prism surface to become 5 d ′ and 6 d ′.
  • the light receiving device of this embodiment most of the incident light can be confined in the light capturing sheet, and most of it can be used for photoelectric conversion. Further, similarly to the fourth embodiment, the area of the photoelectric conversion unit 7 can be reduced or the number of the photoelectric conversion units 7 can be reduced. Therefore, it is possible to realize a low-cost light receiving device with greatly improved energy conversion efficiency. In addition, since the number of light circulations in the sheet is small as compared with the fourth embodiment, it is less affected by the light sealing performance of the light capturing sheet.
  • FIG. 23 schematically shows a cross-sectional structure of the light receiving device 57 of the present embodiment.
  • the light receiving device 57 includes the light capturing sheet 51 and the photoelectric conversion unit 7 of the first embodiment.
  • the light capturing sheet 51 the light capturing sheet 52 of the second embodiment or the light capturing sheet 53 of the third embodiment may be used.
  • the light receiving device 57 is different from the light receiving device 54 of the fourth embodiment in that the photoelectric conversion unit 7 covers the end faces 2s and 2r instead of the reflective film 11.
  • the photoelectric conversion units 7 can be provided on all the end faces.
  • the fourth region 2 h may not be provided in the light capturing sheet 51.
  • the light 5c, 6c, 5c ′, and 6c ′ outside the critical angle are along the normal line of the light receiving surface of the photoelectric conversion unit 7.
  • the light enters the photoelectric conversion unit 7. For this reason, reflection on the surface of the photoelectric conversion unit 7 is small, and the number of light circulation in the light capturing sheet 51 can be reduced.
  • the light receiving device of this embodiment most of the incident light can be confined in the light capturing sheet, and most of it can be used for photoelectric conversion. Therefore, it is possible to realize a light receiving device with greatly improved energy conversion efficiency. Moreover, since the area of the photoelectric conversion unit 7 can be reduced as compared with the fourth embodiment, significant cost reduction can be realized. In addition, since the number of light circulations in the sheet is small as compared with the fourth embodiment, it is less affected by the light sealing performance of the light capturing sheet.
  • FIG. 24 schematically shows a cross-sectional structure of the light receiving device 58 of the present embodiment.
  • the light receiving device 58 includes light capturing sheets 51 and 51 ′ and a photoelectric conversion unit 7.
  • the first light capturing sheet 51, the light capturing sheet 52 of the second embodiment, or the light capturing sheet 53 of the third embodiment may be used independently.
  • the fourth region 2h may not be provided in the light capturing sheet 51 ′.
  • the light receiving device 58 is different from the fourth embodiment in that the light receiving device 58 is joined so that the end surface 2s of the light capturing sheet 51 is in contact with the first main surface 2p of the light receiving device 54 of the fourth embodiment.
  • the light capturing sheet 51 ′ may be bonded orthogonally to the light capturing sheet 51. Further, in the light capturing sheet 51 ′, the reflection film 11 is provided on the end surface 2r, and the first main surface 2p ′ and the second main surface 2q ′ in the vicinity of the end surface 2s joined to the light capturing sheet 51 are reflected.
  • a film 11 ′ may be provided.
  • the reflective film 11 ′ functions to reflect the light 6 b so that the light 6 b outside the critical angle from the light capturing sheet 51 does not leak out of the light capturing sheet 51 ′.
  • the light 4 incident on the first main surface 2 p of the light capturing sheet 51 is captured in the light capturing sheet 51.
  • the light 4 ′ incident on the first main surface 2 p ′ and the second main surface 2 q ′ of the light capturing sheet 51 ′ is captured in the light capturing sheet 51 ′.
  • the light captured in the light capturing sheet 51 ′ becomes the guided light 12 that propagates toward the end surface 2 s because the end surface 2 r is covered with the reflective film 11, and merges with the light in the light capturing sheet 51.
  • a part of the second main surface 2q in the light capturing sheet 51 is in contact with the surface of the photoelectric conversion unit 7, and the refractive index of silicon is larger than the refractive index of the translucent sheet 2, and therefore the second main surface 2q.
  • Light 5b ′ and 6b ′ outside the critical angle incident on the light is not totally reflected, and part of the light enters the photoelectric conversion unit 7 as refracted light 5d ′ and 6d ′, and is converted into current in the photoelectric conversion unit 7.
  • the reflected light 5c 'and 6c' outside the critical angle propagates in the light capturing sheet 51 and again enters the light receiving surface of the photoelectric conversion unit 7, and continues to be used for photoelectric conversion until most of the sealing light disappears.
  • the light receiving device of the present embodiment includes the light capturing sheet 51 ′ that is perpendicular to the light receiving surface of the photoelectric conversion unit 7, the light is incident obliquely on the first main surface 2 p of the light capturing sheet 51. However, the light is incident on the first main surface 2p ′ and the second main surface 2q ′ of the light capturing sheet 51 ′ at an angle close to vertical. For this reason, it becomes easier to capture light in all directions.
  • the light receiving device of this embodiment most of the incident light can be confined in the light capturing sheet, and most of it can be used for photoelectric conversion. Further, similarly to the fourth embodiment, the area of the photoelectric conversion unit 7 can be reduced or the number of the photoelectric conversion units 7 can be reduced. Therefore, it is possible to realize a low-cost light receiving device with greatly improved energy conversion efficiency.
  • FIG. 25 schematically shows a cross-sectional structure of the daylighting plate 59 of the present embodiment.
  • the daylighting plate 59 includes the light capturing sheet 51 of the first embodiment and the concavo-convex structure 8 provided on a part of the first main surface 2p and the second main surface 2q of the light capturing sheet 51.
  • the light capturing sheet 52 of the second embodiment or the light capturing sheet 53 of the third embodiment may be used.
  • the reflection film 11 is provided on the end faces 2r and 2s.
  • the concavo-convex structure 8 is formed on a part of the first main surface 2p, and forms a random pattern in which the width of the concave and convex portions is 0.1 ⁇ m or more.
  • the light captured by the light capturing sheet 51 propagates inside the light capturing sheet 51, and a part of the propagated light is emitted to the outside as emitted light 5 d ′ and 6 d ′ by the uneven structure 8.
  • the daylighting plate 59 is provided in a daylighting window of a building such as a house so that the first main surface 2p provided with the concavo-convex structure 8 is located on the indoor side.
  • the daylighting plate 59 takes in the light of the sun 13a from the second main surface 2q and radiates this light from the concave-convex structure 8 into the room. Thereby, it can be used as indoor lighting in which light radiates from the uneven structure 8.
  • the daylighting plate 59 takes in the light of the room illumination 13b from the first main surface 2p and radiates this light from the concavo-convex structure 8.
  • the daylighting plate 59 can be used to assist room lighting.
  • most incident light can be confined in a sheet
  • FIG. 26 schematically shows a cross-sectional structure of the light emitting device 60 of the present embodiment.
  • the light emitting device 60 includes a light capturing sheet 51, a light source 14, and a prism sheet 9.
  • the light capturing sheet 52 of the second embodiment or the light capturing sheet 53 of the third embodiment may be used.
  • the light source 14 such as an LED is provided adjacent to one of the first main surface 2p or the second main surface 2q of the light capturing sheet 51, and the concavo-convex structure 8 is provided on the other side.
  • the light source 14 is disposed adjacent to the first main surface 2p, and the concavo-convex structure 8 is provided on the second main surface 2q.
  • the reflection film 11 is provided on the end faces 2 s and 2 r of the light capturing sheet 51.
  • the concavo-convex structure 8 has a concave and convex width of 0.1 ⁇ m or more, and may be a periodic pattern or a random pattern.
  • the prism sheet 9 is disposed with a gap so as to face the concave-convex structure 8 on the second main surface 2q.
  • tetrahedral prisms 10 are arranged adjacent to each other.
  • the prism sheet 9 may be configured by stacking two sheets of triangular prism prisms orthogonally.
  • the light 4 emitted from the light source 14 is captured from the first main surface 2p of the light capturing sheet 51 and becomes the light 12 propagating through the light capturing sheet 51. A part of the light is emitted to the outside by the concave-convex structure 8 as emitted light 5d 'and 6d'. The emitted light is collected by the prism 10 in the prism sheet 9, and becomes light 4a having a substantially parallel wavefront.
  • the light emitted from the point light source can be confined in the light capturing sheet with a simple and thin structure, and the light can be extracted as a surface light source.
  • the sheet of the present disclosure can capture light at all incident angles over a wide range and a wide wavelength range (for example, the entire visible light range), and a light receiving device and a light emitting device using them can be solar cells with high conversion efficiency. While being useful for batteries, light-receiving and light-emitting devices using them provide new forms of illumination and light sources, and are useful as recycled illumination using sunlight and illumination light, and as high-efficiency backlights.

Abstract

 本開示の光取り込みシートは、各々が第1および第2の主面を有する複数の透光シートと、複数の透光シートの各々の内部であって、第1および第2の主面からそれぞれ第1および第2の距離以上隔てた内部に配置された複数の光結合構造とを備える。複数の光結合構造のそれぞれは、第1の透光層と、第2の透光層と、これらに挟まれた第3の透光層とを含む。第1および第2の透光層の屈折率は透光シートの屈折率よりも小さく、第3の透光層の屈折率は前記第1および第2の透光層の屈折率よりも大きい。第3の透光層は、前記透光シートの前記第1および第2の主面と平行な回折格子を有する。

Description

光取り込みシート、ならびに、それを用いた受光装置および発光装置
 本開示は、回折を利用して光の取り込みを行う光取り込みシート、ならびに、それを用いた受光装置および発光装置に関する。
 屈折率の異なる2つの光伝搬媒質の間で光を伝搬させる場合、界面において光の透過や反射が存在するため、高効率で一方の光伝播媒質から他方の光伝搬媒質に光を移し、この状態を保持することは、一般に難しい。空気などの環境媒質から、透明なシートに光を取り込む技術として、例えば、非特許文献1に示される従来のグレーティング結合法が挙げられる。図27(a)および(b)はグレーティング結合法の原理を示す説明図であって、表面にピッチΛの直線グレーティングが設けられた透光層20の断面図および平面図を示している。図27(a)に示すように、グレーティングに特定の入射角θで波長λの光23aを入射させると透光層20内を伝搬する導波光23Bに結合させることができる。
オーム社 光集積回路、p94,p243 西原浩ほか
 しかし、非特許文献1に開示された方法によれば、透光層20には、決められた条件を満たす光のみを取り込むことができ、条件からずれた光は取り込まれない。
 本開示の実施形態は、光を取り込むことが可能な光取り込みシートを提供することにある。また、それらを用いた受光装置および発光装置を提供する。
 本開示の光取り込みシートは、各々が第1および第2の主面を有する複数の透光シートと、前記複数の透光シートの各々の内部であって、前記第1および第2の主面からそれぞれ第1および第2の距離以上隔てた内部に配置された複数の光結合構造とを備える。前記複数の光結合構造のそれぞれは、第1の透光層と、第2の透光層と、これらに挟まれた第3の透光層とを含み、前記第1および第2の透光層の屈折率は前記透光シートの屈折率よりも小さく、前記第3の透光層の屈折率は前記第1および第2の透光層の屈折率よりも大きく、前記第3の透光層は、前記透光シートの前記第1および第2の主面と平行な回折格子を有する。
 本開示の受光装置は上記に規定される光取り込みシートと、前記光取り込みシートの前記第1の主面または前記第2の主面、またはそれらの主面に隣接する側面に設けられた光電変換部とを備える。
 また、本開示の受光装置は上記に規定される光取り込みシートと、前記光取り込みシートの前記第1の主面または前記第2の主面に設けられた凹凸構造またはプリズムシートと、前記凹凸構造または前記プリズムシートから出射する光を受光する光電変換部とを備える。
 本開示の実施形態によれば、光の全反射を利用して光を効率的に取り込むことが可能になる。
(a)は、本開示による光取り込みシートの第1の実施形態を示す模式的な断面図であり、(b)は、第1の実施形態における第4の領域の位置を示す平面図である。 (a)および(b)は、第1の実施形態の光結合構造を示す模式的な断面図および平面図であり、(c)は、光結合構造の端面に入射する光の様子を示す断面図であり、(d)は、透光層3cを抜き取った光結合構造に入射する光の様子を示す断面図であり、(e)は、光結合構造の他の構成例を示す断面図である。 第1の実施形態の光取り込みシートの解析に用いた構造を示す断面図である。 図3に示す構造を用いて行った解析結果であって、(a)から(c)は、光の入射角とシート外への透過率との関係を示し、(d)は、回折格子の溝深さとシート外への光取り出し効率との関係を示す。 (a)から(e)は、図4(a)から(c)の矢印で示す位置の条件におけるシート断面の光強度分布図を示す。 図3に示す構造において、第1の透光層3aおよび第2の透光層3bの屈折率を透光シートの屈折率に一致させ、第3の透光層3cの屈折率を2.0にした場合における解析結果であって、(a)から(c)は、入射角とシート外への透過率との関係を示し、(d)は、回折格子の溝深さとシート外への光取り出し効率との関係を示す。 (a)から(e)は、第1の実施形態の光取り込みシートの製造手順を示す模式的な断面図である。 (a)および(b)は、第1の実施形態の光取り込みシートの製造に用いる金型の表面パターンを示す模式的な平面図である。 (a)および(b)は、本開示による光取り込みシートの第2の実施形態で用いる光結合構造を示す模式的な断面図および平面図である。 第2の実施形態の光取り込みシートの解析に用いた構造を示す断面図である。 図10に示す構造を用いて行った解析結果であって、(a)から(c)は、入射角とシート外への透過率との関係を示し、(d)は、回折格子の溝深さとシート外への光取り出し効率との関係を示す。 図3および図10に示す構造を用い、光源の位置をx軸の負の方向に5μmずらして行った解析結果であって、(a)から(c)は、単一の光結合構造の端面への光の入射角と、シート外への透過率との関係を示す。 (a)から(e)は、第2の実施形態の光取り込みシートの製造手順を示す模式的な断面図である。 (a)および(b)は、本開示による光取り込みシートの第3の実施形態で用いる光結合構造を示す模式的な断面図および平面図である。 第3の実施形態の光取り込みシートの解析に用いた構造を示す断面図である。 図15に示す構造を用いて行った解析結果であって、(a)から(c)は、入射角とシート外への透過率との関係を示し、(d)は、回折格子の溝深さとシート外への光取り出し効率との関係を示す。 図3および図15に示す構造を用い、光源の位置をx軸の負の方向に5μmずらして行った解析結果であって、(a)から(c)は、単一の光結合構造の端面への光の入射角と、シート外への透過率との関係を示す。 (a)から(f)は、第3の実施形態の光取り込みシートの製造手順を示す模式的な断面図である。 (a)および(b)は、第3の実施形態の光取り込みシートの製造に用いる金型の表面パターンを示す模式的な平面図である。 本開示による受光装置の実施形態を示す模式的な断面図である。 本開示による受光装置の他の実施形態を示す模式的な断面図である。 本開示による受光装置の他の実施形態を示す模式的な断面図である。 本開示による受光装置の他の実施形態を示す模式的な断面図である。 本開示による受光装置の他の実施形態を示す模式的な断面図である。 本開示による採光板の実施形態を示す模式的な断面図である。 本開示による発光装置の実施形態を示す模式的な断面図である。 (a)および(b)は、グレーティング結合法により、光を取り込むための直線グレーティングの断面図および平面図であり、(c)および(d)は、グレーティング結合法の原理を示す図である。 (a)および(b)は、本開示による光取り込みシートの更に他の実施形態を示す模式的な断面図である。
 まず、前述した従来技術の課題についての本発明者の考察を説明する。
 図27(c)は、透光層20に設けられたグレーティングに入射する光のベクトルダイアグラムを示している。図27(c)において、円21、22は点Oを中心とし、円21の半径は透光層20を取り巻く環境媒質1の屈折率n0に等しく、円22の半径は導波光23Bの等価屈折率neffに等しい。等価屈折率neffは透光層20の厚さに依存し、導波モードに応じて環境媒質1の屈折率n0から透光層20の屈折率n1までの間の特定の値をとる。図27(d)は、透光層20をTEモードで光が伝搬する場合における実効的な厚さteffと等価屈折率neffとの関係を示す。実効的な厚さとは、グレーティングがない場合には透光層20の厚さそのものであり、グレーティングがある場合には、透光層20の厚さにグレーティングの平均高さを加えたものである。励起される導波光には、0次、1次、2次などのモードが存在し、図27(d)に示すように、それぞれ特性カーブが異なる。図27(c)において、点Pは点Oから入射角θに沿って線を引き、円21と交わる点であり、点P’は点Pのx軸への垂線の足、点Q、Q’は円22とx軸との交点である。x軸正方向への光の結合条件はP’Qの長さがλ/Λの整数倍に等しいこと、負方向への光の結合条件はP’Q’の長さがλ/Λの整数倍に等しいことで表される。ただし、λは光の波長、Λはグレーティングのピッチである。すなわち、光の結合条件は式(1)で表される。
Figure JPOXMLDOC01-appb-M000001

ここで、qは整数で表わされる回折次数である。式(1)で定まるθ以外の入射角では、光は透光層20内に結合しない。また同じ入射角θであっても、波長が異なれば、やはり光は結合しない。
 なお、図27(b)に示すように、光23aの入射方向から角度φだけシフトした方位角φで透光層20に入射する光23aaに対する、透光層20のグレーティングの実質的なピッチはΛ/cosφとなる。このため、異なる方位で入射する光23aは、式(1)で規定される条件とは異なる入射角θおよび波長でも光の結合条件を満たし得る。つまり、透光層20に入射する光の方位の変化を許容する場合には、式(1)で示される光の結合条件は、ある程度広くなる。しかし、広い波長範囲および全ての入射角で入射光を導波光23Bに結合させることはできない。
 また導波光23Bはグレーティングの領域を伝搬する間に、入射光23aに対する反射光と同じ方向に光23b’を放射する。このため、グレーティングの端部20aから遠い位置で入射し、導波光23Bとして透光層20を伝搬することができても、グレーティングの端部20aに至る時には減衰してしまう。したがって、グレーティングの端部20aに近い位置で入射する光23aのみが放射による減衰を受けることなく、導波光23Bとして透光層20内を伝搬することができる。つまり、多くの光を結合させるため、グレーティングの面積を大きくしても、グレーティングに入射する光の全てを導波光23Bとして伝搬させることはできない。
 本開示の実施形態における光取り込みシートによれば、透光シートに入射した光は内部に配置された光結合構造に入射し、光結合構造内の第3の透光層の回折格子により、第3の透光層に沿った方向に伝搬する光に変換され、光結合構造の端面から放射される。光結合構造は透光シート表面と平行な位置関係にあり、光結合構造から放射された光は透光シートの表面、および他の光結合構造の表面の間で全反射を繰り返し、透光シート内に閉じ込められる。このような透光シートを複数枚重ねることで光取り込みシートが構成される。取り込まれた光を効率的に光電変換することが可能になる。
 (第1の実施形態)
 本開示による光取り込みシートの第1の実施形態を説明する。図1(a)は、光取り込みシート51の模式的な断面図である。光取り込みシート51は、各々が第1の主面2pおよび第2の主面2qを有する複数の透光シート2と、各透光シート2内に配設された複数の光結合構造3を備える。複数の透光シート2は積層されている。すなわち、複数の透光シートは、第1の主面2pおよび第2の主面2qに垂直な方向に並んで配置されている。ここで、「垂直」とは、数学的に厳密に垂直である必要はない。本明細書における「垂直」の用語は、厳密に垂直な方向に対して10度以下の範囲で傾斜している場合を含むものとする。図1(a)では、簡単のため、一番上の透光シート2の構成を詳しく示すため、その透光シート2が他の透光シート2よりも厚く記載されている。積層される透光シート2の厚さおよび構造は、典型的には、全て等しい。しかし、1つの光取り込みシートを構成する複数の透光シート2の厚さや構造は、同一である必要はない。
 透光シート2は、用途に応じた所望の波長、あるいは、所望の波長域内の光を透過する透明な材料によって構成されている。例えば、可視光(波長0.4μm以上0.7μm以下)を透過する材料によって構成されている。透光シート2の厚さは例えば0.03mm~1mm程度である。第1の主面2pおよび第2の主面2qの大きさに特に制限はなく、用途に応じた面積を有している。図示される例では、この透光シート2の内、最表面に位置するものの上にはスペーサ2dを挟んで、カバーシート2eが接着されている。従って、透光シート2の第1の主面2p(または第2の主面2q)のほとんどはバッファー層2fに接している。スペーサ2dはエアロゲルのような透光シート2よりも屈折率が低い材料から構成されている。カバーシート2eの厚さは、例えば0.1mm~1.0mm程度である。
 図1(a)に示すように、各々の透光シート2内において、光結合構造3は、第1の主面2pおよび第2の主面2qからそれぞれ第1の距離d1および第2の距離d2以上隔てた内部に配置されている。このため、透光シート2において、第1の主面2pと接し、第1の距離d1を厚さに有する第1の領域2aおよび第2の主面2qと接し、第2の距離d2を厚さに有する第2の領域2bには光結合構造3は配設されておらず、第1の領域2aおよび第2の領域2bに挟まれた第3の領域2cに光結合構造3は配設されている。
 光結合構造3は、透光シート2の第3の領域2cにおいて、3次元に配列されている。好ましくは、光結合構造3は、第1の主面2pおよび第2の主面2qに平行な面において、2次元に配列され、かつ、2次元に配列された複数の光結合構造3が透光シート2の厚さ方向に複数積層されている。ここで、「平行」とは、数学的に厳密に平行である必要はない。本明細書における「平行」の用語は、厳密に平行な方向に対して10度以下の範囲で傾斜している場合を含むものとする。
 光結合構造3はx、y軸方向(面内方向)およびz軸方向(厚さ方向)に所定の密度で配置されている。例えば、その密度はx軸方向に1mm当たり10~103個、y軸方向に1mm当たり10~103個、z軸方向に1mm当たり10~103個程度である。透光シート2の第1の主面2pおよび第2の主面2q全体に照射される光を効率よく取り込むためには、透光シート2のx軸方向、y軸方向およびz軸方向における光結合構造3の配置密度はそれぞれ独立して均一あり得る。ただし、用途や、透光シート2の第1の主面2pおよび第2の主面2qに照射する光の分布によっては、透光シート2中の光結合構造3の配置は均一でなくてもよく、所定の分布を有していてもよい。
 図2(a)および(b)は、光結合構造3の厚さ方向に沿った断面図およびそれに直交する平面図である。光結合構造3は、第1の透光層3aと第2の透光層3bとこれらに挟まれた第3の透光層3cとを含む。第1の透光層3aと、第2の透光層3bと、これらに挟まれた第3の透光層3cとは、第1および第2の主面に垂直な方向に積層されている。第3の透光層3cは、基準平面に配設されたピッチΛの直線格子を有する回折格子3dを含む。回折格子3dの直線格子は、第3の透光層3cと第1の透光層3aまたは第2の透光層3bとの界面に設けられた凹凸によって構成されていてもよいし、図2(e)に示すように、第3の透光層3c内部に設けられていてもよい。また、凹凸による格子ではなく、屈折率差による格子であってもよい。光結合構造3は、第3の透光層3cの回折格子3dが光取り込みシート51の第1の主面2pおよび第2の主面2qと平行になるように、透光シート2内に配置されている。ここで、回折格子が第1の主面2pおよび第2の主面2qと平行であるとは、格子が配設されている基準平面が第1の主面2pおよび第2の主面2qと平行であることを意味する。
 ある実施形態において、光結合構造3を、第1の主面2pおよび第2の主面2qに平行な面において複数配列する場合、少なくとも第1の透光層3aおよび第2の透光層3bが、互いに離間するように配列する。つまり、複数の結合構造3が第1および第2の主面(2p、2q)と平行な面において2次元に並んで配置された、第1の光結合構造および第2の光結合構造を含む場合、第1の光結合構造が有する第1および/または第2の透光層(3a、3b)と、第2の光結合構造が有する第1および/または第2の透光層(3a、3b)とは、互いに離間している。ここで、第1の光結合構造が有する第1および/または第2の透光層(3a、3b)と、第2の光結合構造が有する第1および/または第2の透光層(3a、3b)とは、互いに離間しているとは、以下の場合の何れをも含む。すなわち、第1の光結合構造が有する第1の透光層3aと、第2の光結合構造が有する第1の透光層3aとが互いに離間している場合、第1の光結合構造が有する第2の透光層3bと、第2の光結合構造が有する第2の透光層3bとが互いに離間している場合、並びに、第1の光結合構造が有する第1および第2の透光層(3a、3b)と第2の光結合構造が有する第1および第2の透光層(3a、3b)とが、それぞれ、互いに離間している場合である。第3の透光層3cは、互いに離間するように配列してもよいし、互いに連続するように配列してもよい。製造プロセスが容易になるという点で、第3の透光層3cは互いに連続するように配列することができる。つまり、第1の光結合構造が有する第3の透光層と、第2の光結合構造が有する第3の透光層とは、互いに連続し得る。
 光結合構造3を、透光シート2の厚さ方向に複数配列する場合、互いに離間するように配列する。例えば、第1の光結合構造が有する第1の透光層の上方に、第2の光結合構造が有する第2の透光層がある場合、第1の光結合構造が有する第1の透光層と、第2の光結合構造が有する第2透光層とは、互いに離間するように配列する。
 第1の透光層3a、第2の透光層3bおよび第3の透光層3cの厚さはそれぞれa、b、tであり、第3の透光層3cの直線回折格子の段差(深さ)はdである。第3の透光層3cの表面は透光シート2の第1の主面2p、第2の主面2qと平行であり、第1の透光層3aおよび第2の透光層3bの、第3の透光層3cと反対側に位置する表面3p、3qも透光シート2の第1の主面2p、第2の主面2qと平行である。
 以下において説明するように、光取り込みシートに入射する異なる波長の光を取り込むことができるように、光取り込みシート51は複数の光結合構造3を備え、複数の光結合構造のうち少なくとも2つにおいて、回折格子3dの伸びる方向が互いに異なっていてもよい。あるいは、複数の光結合構造3のうち少なくとも2つにおいて、回折格子3dのピッチΛが互いに異なっていてもよい。あるいは、これらの組み合わせであっても良い。
 第1の透光層3aおよび第2の透光層3bの屈折率は透光シート2の屈折率よりも小さく、第3の透光層3cの屈折率は第1の透光層3aおよび第2の透光層3bの屈折率よりも大きい。以下では、第1の透光層3aおよび第2の透光層3bは空気であり、屈折率が1であるとする。また、第3の透光層3cは透光シート2と同じ媒質から構成されており、屈折率は互いに等しいとする。
 光結合構造3の第1の透光層3aおよび第2の透光層3bの表面3p、3qは、例えば、長さWおよびLを2辺とする矩形であり、WおよびLは3μm以上100μm以下である。つまり、光結合構造3の第1の透光層3aおよび第2の透光層3bの表面は3μm以上、100μm以下の直径の円に外接する大きさを有している。また、光結合構造3の厚さ(a+t+d+b)は3μm以下である。図2(b)に示すように、本実施形態では光結合構造3の表面(平面)は矩形を有しているが、他の形状、例えば、多角形や円や楕円形状を有していてもよい。
 光取り込みシート51は、環境媒質に囲まれて使用される。例えば、光取り込みシート51は空気中で使用される。この場合環境媒質の屈折率は1である。以下、透光シート2の屈折率をnsとする。環境媒質からの光4はカバーシート2eとバッファー層2fを透過し、最表面にある透光シート2の第1の主面2pや第2の主面2qから透光シート2の内部に入射する。バッファー層2fは環境媒質と同じ媒質で構成され、その屈折率は1である。また、スペーサ2dの屈折率もほとんど1に等しい。カバーシート2eの両面や第1の主面2pや第2の主面2qには入射した光4の透過率を高めるため、ARコートや無反射ナノ構造が形成されていてもよい。無反射ナノ構造には、モスアイ構造等、ピッチおよび高さが設計波長の1/3以下の微細な凹凸構造が含まれる。設計波長は、光取り込みシート51が所定の機能を発揮するように各要素を設計する際に用いる光の波長である。なお、無反射ナノ構造では、フレネル反射は低減するが、全反射は存在する。複数の透光シート2の間は、各表面がほとんど平行をなしながら、部分的に接触する部分が存在する。この接触面を介し、相互に臨界角外の光の遣り取りがなされる。従って透光シート2の重ね合わせは、光結合構造3の個数や密度を増やすことと等価な効果があり、光の閉じ込め効果が増大する。
 以下、透光シート2の内部に存在する光のうち、その伝搬方位と透光シート2の法線(第1の主面2pおよび第2の主面2qに垂直な線)とのなす角θ(以下、伝搬角と呼ぶ)がsinθ<1/nsを満たす光を臨界角内の光、sinθ≧1/nsを満たす光を臨界角外の光と呼ぶ。図1(a)において透光シート2の内部に臨界角内の光5aがある場合、その一部は光結合構造3により、臨界角外の光5bに変換され、この光は第1の主面2pを全反射して、シート内部にとどまる臨界角外の光5cとなる。また、臨界角内の光5aの残りの臨界角内の光5a’のうちの一部は別の光結合構造3により臨界角外の光5b’に変換され、この光は第2の主面2qを全反射して、シート内部にとどまる臨界角外の光5c’となる。このようにして臨界角内の光5aの全てが、光結合構造3が配置された第3の領域2c内で臨界角外の光5bや5b’に変換される。
 一方、透光シート2に臨界角外の光6aがある場合、その一部は光結合構造3の表面を全反射して臨界角外の光6bとなり、この光は第1の主面2pを全反射して、シート内部にとどまる臨界角外の光6cとなる。また、光6aの残りの光の一部は光結合構造3が設けられた第3の領域2cを透過する臨界角外の光6b’となり、この光は第2の主面2qにおいて全反射し、透光シート2内部にとどまる臨界角外の光6c’となる。また図に示していないが、異なる光結合構造3の間と第1の主面2p、第2の主面2qの間を全反射しながらシート内部にとどまる臨界角外の光、つまり、第1の領域2a、第2の領域2b、あるいは第3の領域2cに止まって伝搬する光も存在する。この場合、第1の領域2a、および第2の領域2bを伝搬する光の分布に偏りが生じる可能性がある。透光シート2における光の分布の偏りが問題となる場合には、図1(a)に示すように、透光シート2内の第3の領域2cにおいて、光結合構造3が配設されていない第4の領域2hを1つ以上設けられ得る。つまり、光結合構造3は、第4の領域2hを除く第3の領域2c内にのみ配置されている。透光シート2において、第4の領域2hは第1の領域2aと第2の領域2bとを接続している。第4の領域2hは、第1の領域2aから第2の領域2bへまたは逆の方向に沿って伸びており、第4の領域2hを貫通する任意の直線の方位は透光シートの屈折率と透光シートの周囲の環境媒質の屈折率とで規定される臨界角よりも大きな角度に沿っている。すなわち、環境媒質の屈折率が1であり、透光シート2の屈折率をneとすれば、第4の領域2hを貫く任意の直線の延びる方向2hxが透光シート2の法線となす角度θ’は、sinθ’≧1/nsを満たしている。ここで、直線が第4の領域2hを貫通するとは、第4の領域2hの第1の領域2aと接する面と、第4の領域2hの第2の領域2bとを直線が貫くことを言う。
 図1(b)は、光取り込みシート51の平面図であって、第4の領域2hの配置を示している。図1(b)に示すように、第4の領域2hは、好ましくは、透光シート2内に複数設けられている。第4の領域2hは、臨界角よりも大きな角度で第1の領域2aから第2の領域2bへまたは逆の方向に伸びているため、透光シート2の第1の領域2aおよび第2の領域2bを伝搬する光のうち、臨界角外の光のみが、第4の領域2hを透過し、第1の領域2aから第2の領域2bへまたは逆に透過し得る。このため、光取り込みシート51内での光分布の偏りを防ぐことができる。
 図2(a)に示すように、臨界角内の光5aは、第2の透光層3bの表面3qを透過し、その一部は回折格子3dの作用で第3の透光層3c内を伝搬する導波光5Bに変換される。残りは透過光や回折光として、主に臨界角内の光5a’となって光結合構造3を透過するか、または、反射光として、臨界角内の光5rとなり、光結合構造3を通過する。第2の透光層3bへの入射の際、表面3qを反射する臨界角外の光6bもあるが、表面3q、3pに無反射ナノ構造を形成しておけば、ほとんどの光を透過させることができる。
 導波光5Bへの結合は、従来のグレーティング結合法の原理と同じである。導波光5Bは第3の透光層3cの端面3Sに至るまでにその一部が臨界角内の光5rと同じ方向に放射されて臨界角内の光5r’となり、残りは導波して第3の透光層3cの端面3Sから放射され、臨界角外の光5cとなる。一方、臨界角外の光6aは、第2の透光層3bの表面3qにおいて全反射し、その全てが臨界角外の光6bとなる。このように、光結合構造3の表面(第1の透光層3aの表面3pおよび第2の透光層3bの表面3q)に入射する臨界角外の光は臨界角外の光としてそのまま反射され、臨界角内の光はその一部が臨界角外の光に変換される。
 なお、第3の透光層3cの回折格子3dの長さが長すぎると、導波光5Bはその端面3Sに到達する前に全て放射される。また短すぎると導波光5Bへの結合効率が十分でない。導波光5Bの放射しやすさは放射損失係数αで表され、伝搬距離Lで導波光5Bの強度はexp(-2αL)倍になる。仮にαの値を10(1/mm)とすると、10μmの伝搬で0.8倍の光強度となる。放射損失係数αは回折格子3dの深さdに関係し、d≦dcの範囲では単調増加し、d>dcの範囲では飽和する。光の波長をλ、導波光5Bの等価屈折率neff、透光層3cの屈折率をn1、回折格子3dのデューティ(凸部の幅のピッチに対する比)を0.5とするとdcは以下の式(2)で与えられる。
Figure JPOXMLDOC01-appb-M000002
 例えば、λ=0.55μm、neff=1.25、n1=1.5とすると、dc=0.107μmとなる。単調増加領域では放射損失係数αはdの2乗に比例する。したがって、回折格子3dの長さ、すなわち第3の透光層3cの長さ(寸法WとL)は、放射損失係数αにより決まり、回折格子3dの深さdに依存する。仮に、深さdを調整してαの値を2~100(1/mm)の範囲に設定し、減衰比を0.5とすると、WおよびLは3μmから170μm程度となる。このため、上述したようにWおよびLが3μm以上100μm以下であれば、深さdの調整で放射損失を抑制し、高い結合効率を得ることができる。
 導波光5Bの等価屈折率neffを1.25とした場合において、式(1)よりピッチΛ、入射角θに対して、どの可視光の波長(λ=0.4~0.7μm)の光が結合するかを(表1)に示す。点線の区間が結合の範囲である。例えば、ピッチ0.4μmの場合、θ=-14度で波長0.4μmの光、θ=30度で波長0.7μmの光が結合し、θ=-14度からθ=30度までが可視光の結合範囲となる。
Figure JPOXMLDOC01-appb-T000001
 入射角θの極性は光の結合方向に関係する。したがって、光の結合方向を無視して結合の有無のみに注目すると、入射角の範囲が0から90度、または、-90から0度のいずれかをカバーできれば、全ての入射角度に対する結合がなされたことになる。したがって、表1から、全ての可視光波長、全ての入射角度に対し、光が結合するためには、0.18μmから0.56μm(0度から90度)、または、0.30μmから2.80μm(-90度から0度)までのピッチΛの回折格子3dを有する光結合構造3を組み合わせて用いられ得ることが分かる。等価屈折率の変化や導波層や回折格子を形成する際に生じ得る製造誤差を考慮すると、回折格子3dのピッチは概ね0.1μm以上3μm以下であればよい。
 また、図2(b)に示すように、例えば、回折格子3dが伸びる方向と垂直な方向に入射する臨界角内の光5aに対する回折格子3dのピッチはΛであるが、方位角φで入射する光5aaに対する回折格子3dの実効的なピッチはΛ/cosφとなる。例えば、光5aaの入射方位角φが0~87度である場合、実効的なピッチはΛ~19Λとなる。このため、Λ=0.18μmに設定すると、同一の回折格子3dでも入射する光の方位によって0.18から2.80μmまでの実効的なピッチΛが実現でき、Λ=0.30μmに設定すると、0.30から2.80μmまでのピッチΛが実現できる。したがって、異なるピッチの回折格子3dを有する光結合構造3を組み合わせる以外に、単一のピッチの光結合構造3を、回折格子の伸びる方向(回折格子の方位)が0度から180度まで変わるように回転させて透光シート2内に配置することによっても、全ての可視光波長の光を全ての入射角度で取り込むことができる。さらに、複数の光結合構造3において、回折格子3dのピッチおよび回折格子3dの伸びる方向の両方を異ならせてもよい。
 次に、光結合構造3の表面3p、3qと垂直な端面3r、3s(透光層3bの法線方向に沿った面)における光を検討する。図2(c)に示すように、光結合構造3の端面3rに入射する光は、端面3rで反射する場合、端面3rを回折する場合、端面3rを透過して屈折する場合、端面3rを経て第3の透光層3cを導波する場合が考えられる。例えば、第1の透光層3aおよび第2の透光層3bの端面に入射しこれを透過する臨界角外の光6aは屈折して、臨界角内の光6a’となる。また、第3の透光層3cの端面に入射しこれを透過する光6Aの一部は、第3の透光層3c内を伝搬する導波光6Bに変換される。
 参考として、図2(d)は光結合構造3から第3の透光層3cを抜き取り、抜き取った後の空間を第1の透光層3aおよび第2の透光層3bと同じ空気で埋めた場合の光路を示している。臨界角内の光5aが光結合構造3の表面3qに入射する場合、その入射位置が端面3sに近ければ、屈折の結果、端面3sで臨界角外の光5a’として出射する。また、臨界角内の光5aが光結合構造3の端面3rに入射する場合、端面3rで全反射する。臨界角外の光6aが光結合構造3の端面3rに入射する場合、その入射位置に寄らず、屈折の結果、表面3pから臨界角内の光6a’として出射する。また、臨界角外の光6aが光結合構造3の表面3qに入射する場合、表面3qで全反射する。
 このように、光結合構造3の端面3r、3sに入射する光の場合は振る舞いが複雑で、臨界角外の光が端面に入射しても臨界角外の光として出射するとは限らない。しかし、表面の大きさ(W、L)を端面の大きさ(a+t+d+b)よりも十分(例えば4倍以上に)大きくしておけば、端面での影響は十分小さくなり、表面3p、3qにおける光の透過あるいは反射が光結合構造3全体における光の透過や反射の振る舞いとみることができる。具体的には、第1の透光層3aの表面3pおよび第2の透光層3bの表面3qの大きさが、光結合構造3の厚さの4倍以上であれば、十分に光結合構造3の端面3r、3sにおける光の影響を無視することができる。したがって、光結合構造3は臨界角外の光を臨界角外の光として保持する一方、臨界角内の光を非可逆的に臨界角外の光に変換する機能を発揮し、光結合構造3の密度を十分に設定しておけば、光取り込みシート51に入射した全ての光を臨界角外の光(すなわちシート内に閉じ込められた光)に変換できる。
 図3は光取り込みシート51における光閉じ込めの効果を確認するための解析に用いた光取り込みシートの断面構造を示している。解析には、光結合構造を1つ含む光取り込みシートを用いた。図3に示すように、透光シート2の第2の主面2qから1.7μmの位置に平行に幅5μmの光源S(破線で表示)を設定し、その上方に0.5μmの距離をおいて幅6μmの第2の透光層3bを平行に配置し、この上に同じ幅の第3の透光層3cおよび第1の透光層3aを配置した。透光シート2の第1の主面2pは第1の透光層3aの表面から2.5μmの位置にある。光源Sから、第2の主面2qの法線に対しθの角をなす方位に、紙面に対し45度の角度をなす偏光の平面波が出射し、入射光の中心が第2の透光層3bの表面の中心を透過するように、角θに応じて第1の透光層3a、第2の透光層3bおよび第3の透光層3cの位置を横にシフトさせた。また、第1の透光層3aの厚さaを0.3μm、第2の透光層3bの厚さcを0.3μm、第3の透光層3cの厚さtを0.4μm、回折格子の深さdを0.18μm、回折格子のピッチΛを0.36μmとした。透光シート2および第3の透光層3cの屈折率を1.5とし、環境媒質、第1の透光層3aおよび第2の透光層3bの屈折率を1.0とした。
 図4(a)から(c)は図3に示す構造の光取り込みシートにおいて、光源Sから光結合構造3へ入射した光の入射角θと、光取り込みシート外へ出射した光の透過率との関係を示す解析結果である。解析に用いた構造は上述したとおりである。解析には2次元の時間領域差分法(FDTD)を用いた。したがって、図3に示す断面が紙面垂直方向に無限に続いている構造による解析結果である。透過率は安定時での計測であり、光源を取り巻く閉曲面を通過するPoynting Vectorの積分値に対する、解析領域最下面(z=0μm)、および最上面(z≒8μm)を通過するPoynting Vectorの積分値の比で定義した。一部に100%を超える計算結果があるが、これは光源のPoynting Vectorの計測に若干の誤差があるためである。図4(a)は光源の波長λが0.45μmの場合、図4(b)は波長λが0.55μmの場合、図4(c)は波長λが0.65μmの場合の計算結果を示している。それぞれ回折格子の深さdをパラメータにするとともに、光結合構造3がない条件(透光シート2と光源Sだけの構成)での結果もプロットしている。
 光結合構造3はあるが回折格子の深さd=0の場合の結果を、光結合構造がない場合の結果(Nothing)と比較すると、前者は後者より臨界角(41.8度)以内の範囲で透過率が小さくなり、それ以上の角度ではどちらもほぼゼロになる。臨界角以内で前者における透過率が小さくなるのは、図2(d)を参照して説明したように、第2の透光層3bの表面3qに入射する光が屈折し、その一部が臨界角外の光として端面3sから出射するためである。ただし、前者の場合、同じく図2(c)、(d)を参照して説明したように、光結合構造3の端面3rから入射する臨界角外の光はこの面を屈折した後、第1の透光層3aの表面3pを屈折して、透光シート2内で臨界角内の光になる。したがって、d=0の場合の構造には、臨界角外の光への変換がある一方、臨界角内の光への変換もあり、全体として光を閉じ込める効果は小さいといえる。
 一方、グレーティングの深さd=0.18μmの場合の結果をd=0の場合の結果と比較すると、前者の透過率は後者のそれにほぼ近接しているが、矢印a、b、c、d、eの位置で透過率が落ち込んでいる。図4(d)は、図4(a)、(b)、(c)の曲線を入射角θに関して積分した値の規格値(90で割った値)を、回折格子の深さdをパラメータにして示している。解析モデルが2次元であるため、この積分値は光閉じ込めシート内の光がシート外に取り出される効率に等しい。いずれの波長でも、dの増大に伴い(少なくともd=0、d=0.18の比較では)、取り出し効率は低減する。これは、単一の光結合構造による光閉じ込めの効果を現している。この効果は累積でき、光結合構造の数を増やせば、最終的に全ての光を閉じ込めることができる。なお、本解析は2次元のモデルであったが、実際のモデル(3次元モデル)では図2(a)の平面図に示した任意の方位角φに対して結合条件である式(1)を満たす入射光が必ず存在するので、図4で示した透過率の曲線は矢印a、b、c、d、e等の局所的な範囲でなく全ての入射角θの範囲に関して落ち込むことになり、光結合構造による光閉じ込めの効果はより大きくなる。
 図5は、図4の矢印a、b、c、d、eに示す条件における光取り込みシート内での光強度分布図を示している。具体的には、図5(a)は波長λ=0.45μm、θ=5度における結果、図5(b)は波長λ=0.55μm、θ=0度における結果、図5(c)は波長λ=0.55μm、θ=10度における結果、図5(d)は波長λ=0.65μm、θ=10度における結果、図5(e)は波長λ=0.65μm、θ=20度における結果を示している。
 図5(a)、(b)に示す条件および入射角の場合、第3の透光層3cの屈折率がそれを取り巻く第1の透光層3aおよび第2の透光層3bの屈折率よりも高いため、第3の透光層3cは導波層として機能し、入射光が回折格子の作用で第3の透光層3c内を伝搬する導波光に結合し、この光が第3の透光層3cの端面3r、3sから透光シート2内に放射されている。この放射光は臨界角外の光であり、透光シート2の第1の主面2pおよび第2の主面2qで全反射し、透光シート2内に閉じ込められている。図5(c)、(d)、(e)に示す条件および入射角の場合も、入射光が回折格子の作用で第3の透光層3c内を伝搬する導波光に結合し、この光が第3の透光層3cの端面3rからシート内に放射されている。この放射光は臨界角外の光であり、透光シート2の第1の主面2pおよび第2の主面2qで全反射し、透光シート2内に閉じ込められている。なお、図5(a)、(c)、(e)では、放射光が二股に分かれており、結合した光は導波層断面の上下で位相が反転する1次モードの導波光である。一方、図5(b)、(d)では放射光がひとまとまりの状態にあり、結合した光は0次モードの導波光である。
 図6は、図3に示す構造において第1の透光層3aおよび第2の透光層3bの屈折率を透光シート2の屈折率と一致させ、第3の透光層3cの屈折率を2.0に変更した場合における解析結果を示している。他の条件は図4に示す解析結果が得られた場合の条件と同じである。図6(a)は光源の波長λ=0.45μmの場合、図6(b)は波長λ=0.55μmの場合、図6(c)は波長λ=0.65μmの場合の結果を示している。グレーティングの深さd=0.18μmの場合の結果をd=0の場合の結果と比較すると、前者の透過率は後者のそれに比べ、矢印a、b、c、d、e、fの位置で落ち込んでいる。これは、図4を参照して説明したのと同じ理由による。しかし臨界角以上の領域において、後者がゼロ近傍になるのに比べ、前者は大きく浮き上がってしまう。これは臨界角以上の入射角の光が光結合構造3の回折格子により回折し、その一部がシート内で臨界角内の光に変換されるためである。図6(d)は、図6(a)、(b)、(c)の曲線を入射角θに関して積分した値の規格値(90で割った値)を、溝深さdをパラメータにして示している。いくつかの条件で、dの増大に伴い取り出し効率はかえって増大しており、光閉じ込めの効果が得られない。これは臨界角以上の領域での特性が矢印a、b、c、d、e、fの位置における効果を打ち消していることを示す。
 図4および図6に示す解析結果を比較してみると、図4では臨界角以上で、透過率をゼロにできている。グレーティングの深さd=0.18μmの場合の結果をd=0の場合の結果と比較しても、臨界角以上での領域で差はなく、どちらもほぼゼロである。これは、第1の透光層3aおよび第2の透光層3bの屈折率を透光シート2の屈折率よりも小さくしたため、第2の透光層3bと透光シート2との界面である表面3qで全反射が発生し、入射角の大きい光が光結合構造3内の回折格子に入射できず、回折格子による回折光が発生しないためである。このように、光結合構造3として、第3の透光層3cが導光層となるためにはその屈折率が第1の透光層3aおよび第2の透光層3bの屈折率よりも大きく、臨界角外の光が第3の透光層3cに入射しないためには、第1の透光層3aおよび第2の透光層3bの屈折率が透光シート2の屈折率より小さくすればよいことが分かる。また、透光シート2と光結合構造との間の全反射に対する臨界角を小さくするためには、第1の透光層3aおよび第2の透光層3bの屈折率と透光シートの屈折率の差が大きいことが好ましく、例えば、第1の透光層3aおよび第2の透光層3bの屈折率が1であり得ることが分かる。
 このように本実施形態の光取り込みシートによれば、透光シートの第1の主面および第2の主面に種々の角度で入射する光は、臨界角内の光となって透光シートの内部に配置された光結合構造に入射し、光結合構造内の回折格子によって、その一部が、第3の透光層内を伝搬する導波光に変換され、光結合構造の端面から放射されて、臨界角外の光となる。光結合構造によってその回折格子のピッチが異なっていたり、回折格子の方位が異なっているため、この変換は全ての方位、広い波長範囲、例えば可視光全域に渡って行われる。また回折格子の長さが短いため、導波光の放射損失を少なくできる。したがって、透光シート内に存在する臨界角内の光は、複数の光結合構造によって全て臨界角外の光に変換される。光結合構造の第1および第2の透過層の屈折率は透光シートの屈折率より小さいため、臨界角外の光は光結合構造の表面を全反射し、この光は他の光結合構造の表面や透光シートの表面の間で全反射を繰り返し、透光シート内に閉じ込められる。このように、光結合構造は臨界角内の光を非可逆的に臨界角外の光に変換する一方、臨界角外の光を臨界角外の状態のまま保持する。したがって、光結合構造の密度を十分に設定しておけば、光取り込みシートに入射した全ての光を臨界角外の光、すなわちシート内に閉じ込められた光に変換できる。仮に、1枚の透光シートでの閉じ込め効果が小さい場合には、透光シートを複数枚重ね合わせることで、容易に所定の効果を達成することができる。
 なお図1(a)に於いて、最表面にある透光シート2の第1の主面2pはバッファー層2fを介してカバーシート2eで覆われている。従って、水滴などの異物2gはカバーシート2eの表面に付着し、第1の主面2pに接触するのを防いでいる。もし、異物2gが第1の主面2pと接触すれば、その接触面で全反射の関係が崩れ、透光シート2内に閉じ込められた臨界角外の光が異物2gを介して外部に漏れ出ることになる。スペーサ2dも第1の主面2pと接するが、その屈折率が環境媒質の屈折率とほとんど変わらないので、その接触面で全反射の関係は維持され、臨界角外の光がスペーサ2dを介して外部に漏れ出ることはない。また、透光シートの表面積が小さい場合は、スペーサ2dを挟まずにカバーシート2eと第1の主面2pの間にバッファー層2fを形成する構成も考えられる。
 図28(a)および(b)は、カバーシート2eの配置例を示す断面図である。図28(a)の例では、最上面に位置する透光シート2の第1の主面2pおよび最下面に位置する透光シート2の第2の主面2qの両方に「隙間」を介してカバーシート2eが対向するように構成されている。この例では、最上面に位置する透光シート2の第1の主面2pおよび最下面に位置する透光シート2の第2の主面2qの両方の全体がカバーシート2eによって覆われている。図28(b)の例では、最上面に位置する透光シート2の第1の主面2pの一部は、カバーシート2eと対向していない。また、この例では、スペーサ2dが最下面に位置する透光シート2の第2の主面2qの端部以外の位置に設けられている。なお、上記の「隙間」は、屈折率が十分に小さい流体または固体によって埋められていてもよい。
 光取り込みシート51は例えば、以下の方法によって製造することができる。図7(a)から(e)は、光取り込みシート51の製造手順を示す模式的な断面構成図であり、図8(a),(b)はシートを作成するための金型表面のパターンを示す模式的な平面図である。
 図8(a),(b)において、金型25a、25bの表面には、例えば、同じ寸法の矩形の微小構造25A、25Bが二次元に配列されている。金型25aにおける微小構造25Aの配置と金型25bにおける微小構造25Bの配置は等しい。微小構造25A、25Bは本実施形態では、突起である。微小構造25Aの高さは、図2(a)の寸法bであり、微小構造25Bの高さは寸法aに相当する。微小構造25Bの表面は平面だが、微小構造25Aの表面の上には高さd、ピッチΛの直線回折格子が形成されており、回折格子の方位(凹部または凸部の伸びる方向)は微小構造25Aごとに異なっている。図8では、0度、45度、90度、135度の45度刻みの方位のグレーティングを規則的に配列させているが、実際には30度や15度刻み等、もっと小さい刻み幅の方位でグレーティングを等頻度に配列させ得る。
 図7(a)に示すように、金型25bの表面に離間剤を薄く塗布した状態で透明な樹脂シート24を敷き、このシート上に金型25aを配置し、互いの微小構造25Bと微小構造25Aの位置を揃えた状態で金型25bと金型25bとに挟まれた樹脂シート24をプレスする。
 図7(b)に示すように、金型25aを持ち上げて、樹脂シート24を金型25bから引き剥がし、図7(c)に示すように、表面に接着剤が薄く塗布された樹脂シート24aに押し当て、樹脂シート24と樹脂シート24aを接着する。図7(d)に示すように、接着剤を樹脂シート24aの底面に薄く塗布し、これを同様の方法により形成した樹脂シート24’、24’aの上にアライメントを無視して押し当て、これらを接着する。
 図7(e)に示すように、樹脂シート24’aを固定した状態で、金型25aを持ち上げ、樹脂シート24、24a、24’、24’aの全体を金型25aから引き剥がす。
 以降、樹脂シート24、24a、24’、24’aを図7(d)の樹脂シート24’、24’aに置き換え、これらの手順を繰り返すことで、図1(a)に示す透光シート2の第3の領域2cが作製される。透光シート2の第3の領域2cの表面および裏面に、透光シート2の第1の領域2aおよび第2の領域2bとなる樹脂シートを接着することにより図1(a)に示す光取り込みシート51が完成する。本実施形態では、樹脂シートの接着に接着剤を用いているが、接着剤を用いず、樹脂シートの表面を加熱することによって、樹脂シート同士を融着させてもよい。また、樹脂シート24aや第1の領域2aおよび第2の領域2bとなる樹脂シートの表面には予め無反射ナノ構造が形成されていても良い。
 以下の実施形態では、簡単のため、積層された複数の透光シート2を区別して記載せず、全体として1枚の透光シート2であるかのように説明する。
 (第2の実施形態)
 本開示による光取り込みシートの第2の実施形態を説明する。本実施形態の光取り込みシート52は、光結合構造の端面における構造が第1の実施形態の光結合構造と異なっている。このため、以下、本実施形態における光結合構造を中心に説明する。
 図9(a)および(b)は、光取り込みシート52の厚さ方向に沿った光結合構造3’の断面構造および平面構造を模式的に示している。図9(a)および(b)に示すように、光結合構造3’において、端面3r、3sには深さeの凹部3tが設けられている。凹部3tの断面は、内部に向かうにつれて幅が狭くなっている。このため、光結合構造3’において、第1の透光層3aおよび第2の透光層3bの厚さが、光結合構造3’の中心から外縁側に向かうにつれて小さくなっている。表面3p、3qは第1の実施形態と同様、平坦である。
 図10は光結合構造3’を備えた光取り込みシート52における光閉じ込めの効果を確認するための解析に用いた光取り込みシートの断面構造を示している。光結合構造や光源は、第1の実施形態の解析に用いた構造(図3)における対応する要素と全く同じ位置に設置されている。
 図11(a)から(c)は図10に示す構造の光取り込みシートにおいて、光源Sから光結合構造3’へ入射した光の入射角θと、光取り込みシート外へ出射した光の透過率との関係を示す解析結果である。解析には、第1の実施形態と同じ手法を用いた。図11(a)は光源の波長λ=0.45μmの場合、図11(b)は波長λ=0.55μmの場合、図11(c)は波長λ=0.65μmの場合の結果を示している。それぞれにおいて、回折格子の深さdをパラメータにするとともに、光結合構造がない条件(透光シート2と光源Sだけの構成)での結果もプロットしている。
 光結合構造3’はあるが回折格子の深さd=0の場合の結果を、光結合構造がない場合の結果(Nothing)と比較すると、前者は後者より臨界角(41.8度)以内の範囲で小さくなり、それ以上の角度では両者ともゼロになる。臨界角以内で前者が小さくなるのは、図2(d)を参照して説明したように、第2の透光層3bの表面3qに入射する光が屈折し、その一部が臨界角外の光として右側面(第3の透光層3cの右側面)から出射するためである。
 一方、グレーティングの深さd=0.18μmの場合の結果をd=0の場合の結果と比較すると、前者の透過率は後者のそれにほぼ近接しているが、矢印a、b、c、d、eの位置では透過率が落ち込んでいる。これらの位置は光が導波光に結合する条件に相当する。図11(d)は、図11(a)、(b)、(c)の曲線を入射角θに関して積分した値の規格値(90で割った値)を、溝深さdをパラメータにして示している。この積分値は、解析モデルが2次元なので、シート内の光がシート外に取り出される効率に等しい。いずれの波長でも、dの増大に伴い(少なくともd=0、d=0.18の比較では)、取り出し効率は低減する。これは、単一の光結合構造による光閉じ込めの効果を表しており、第1の実施形態における解析結果と同様である。この効果は累積でき、光結合構造の数を増やせば、全ての光を閉じ込めることができる。なお、本解析は2次元のモデルであったが、現実の3次元モデルでは図2(a)の平面図に示した任意の方位角φに対して結合条件である式(1)を満たす入射光が必ず存在するので、図11で示した透過率の曲線は矢印a、b、c、d、e等の局所的な範囲でなく全ての入射角θの範囲に関して落ち込むことになり、光結合構造による光閉じ込めの効果はより大きくなる。また、第1の実施形態の解析結果に比べ矢印b、c、d、eの位置での落ち込みが小さくなっているのは、グレーティングの長さ(結合長)を本実施例の解析モデルでは小さくしているためである。
 図12は第2の実施形態における、単一の光結合構造の端面への光の入射による、入射角θと光取り込みシート外への透過率との関係を示す解析結果である。解析条件には図10や図3において光源Sの位置だけをx軸のマイナス側に5μmだけシフトさせたものを用いている。図12(a)は光源の波長λ=0.45μmの場合、図12(b)は波長λ=0.55μmの場合、図12(c)は波長λ=0.65μmの場合であり、それぞれ本実施例のモデルを第1の実施形態のモデルと比較するとともに、光結合構造がない条件(透光シート2と光源Sだけの構成)での結果もプロットしている。
 第2の実施形態のモデルの結果を光結合構造がない場合の結果(Nothing)と比較すると、両方とも臨界角内(41.8度以下)ではほぼ一致するが、臨界角外(41.8度以上)の範囲では、後者がほぼゼロになるのに対し、前者はゼロから大きく浮き上がる。前者が臨界角外で浮き上がるのは、図2(c)、(d)を参照して説明したように、光結合構造の第1の透光層3aおよび第2の透光層3bの端面に入射する光が屈折の後、臨界角内の光となって第1の主面2pから出射するためである。これに対し、第2の実施形態のモデルの解析結果は、臨界角外の範囲における浮き上がりが部分的に抑制されている。これは、第2の実施形態における端面において、第1の透光層3aおよび第2の透光層3bが占める領域がなく、端面での屈折がある程度抑えられるためである。したがって、第2の実施形態は第1の実施形態以上に端面での影響(臨界角外の光が臨界角内の光に変換される現象)を無視できる構成であり、光を閉じ込める効果がより強い構成といえる。なお、図12では光源の長さを5μmに設定した。この長さを長くすると、光結合構造の端面からそれて、第1の主面2pに直接入射して全反射するか、光結合構造の表面3qを全反射するかの成分の比率が増すので、臨界角外での浮き上がりは緩和する。仮に光源の長さを4倍の20μmにし、光結合構造を21μm程度に設定すれば、他の特性は維持しつつ、端面入射の特性の臨界角外での浮き上がりだけが1/4程度に低下する。
 図13は本実施形態の光取り込みシート52の作製手順の一例を示す模式的な断面である。金型25a,25bの微小構造25A、25Bの外縁部に傾斜25A’、25B’を設け、第1の実施形態と同様の手順を用いれば、光取り込みシート52を製造することができる。金型25a、25bの形状が異なる点を除けば、第1の実施形態の光取り込みシート51と同様にして本実施形態の光取り込みシート52を製造することができるため、具体的な製造手順の説明を省略する。
 (第3の実施形態)
 本開示による光取り込みシートの第3の実施形態を説明する。本実施形態の光取り込みシート53は、光結合構造の端面における構造が第2の実施形態の光結合構造と異なっている。このため、以下、本実施形態における光結合構造を中心に説明する。
 図14(a)および(b)は、光取り込みシート53の厚さ方向に沿った光結合構造3’’の断面構造および平面構造を模式的に示している。図14(a)および(b)に示すように、光結合構造3’’の表面3p、3qにおいて、端面3r、3sに隣接する幅eの領域にテーパ3u、3vが設けられている。このため、第1の透光層3aおよび第2の透光層3bは、第3の透光層3cとの界面の平坦性を維持したまま、第1の透光層3aおよび第2の透光層3bの厚さが、光結合構造3’’の中心から外縁側に向かうにつれて小さくなっている。
 図15は光結合構造3’’を備えた光取り込みシート53における光閉じ込めの効果を確認するための解析に用いた光取り込みシートの断面構造を示している。光結合構造や光源は、第1の実施形態の解析に用いた構造(図3)と全く同じ位置に設置されている。
 図16(a)から(c)は図15に示す構造の光取り込みシートにおいて、光源Sから光結合構造3’側へ入射した光の入射角θと、光取り込みシート外へ出射した光の透過率との関係を示す解析結果である。解析には、第1の実施形態と同じ手法を用いた。図16(a)は光源の波長λ=0.45μmの場合、図16(b)は波長λ=0.55μmの場合、図16(c)は波長λ=0.65μmの場合であり、それぞれ回折格子の深さdをパラメータにするとともに、光結合構造がない条件(透光シート2と光源Sだけの構成)での結果もプロットしている。
 光結合構造はあるがグレーティングの深さd=0の場合の結果を、光結合構造がない場合の結果(Nothing)と比較すると、前者は後者より臨界角(41.8度)以内の範囲で小さくなり、それ以上の角度では後者がゼロになるのに対し、前者は55度までの範囲で浮き上がりが残る。臨界角以内で前者が小さくなるのは、図2(d)を参照して説明したように、第2の透光層3bの表面3qに入射する光が屈折し、その一部が臨界角外の光として右側面(第3の透光層3cの右側面)から出射するためである。臨界角以上で前者が浮き上がる理由は2つ考えられる。1つ目は、第2の透光層3bの表面3qが外縁部に向かって傾斜していることで、臨界角を超えた光の一部が第2の透光層3bの表面3qに臨界角以内で入射でき、この光が光結合構造内部のグレーティングを回折して臨界角内の光になるためである。2つ目は、第2の透光層3bの厚さが外縁部で薄くなりすぎて、臨界角を超えた光の一部がエバネッセント光の状態で光結合構造内部まで透過し、この光がグレーティングを回折して臨界角内の光になるためである。
 一方、回折格子の深さd=0.18μmの場合の結果をd=0の場合の結果と比較すると、前者の透過率は後者のそれにほぼ近接しているが、矢印a、b、c、d、eの位置では透過率が落ち込んでいる。これらの位置は光が導波光に結合する条件に相当し、導波した後、第3の透光層3cの端面から放射されて、臨界角外の光となる。この放射光は、伝搬角90度(x軸方向)を中心に±35度程度の範囲に収まる(図5参照)。
 図16において、透過光の浮き上がりは入射角55度以上では収まり、ほぼゼロとなるので、一度、導波光となって放射される光は全反射を繰り返してシート内部にとどまる臨界角外の光(伝搬角55度以上の光)となることが分かる。なお、第1の透光層3aの表面3p、および第2の透光層3bの表面3qが外縁部に向かって傾斜することで、これらの面を全反射する光の伝搬角は傾斜方向に応じて大きくなったり、小さくなったりするが、これらの発生確率は同じであるので、全体としてはほとんど同じ伝搬角を維持できる。
 図16(d)は、図16(a)、(b)、(c)の曲線を入射角θに関して積分した値の規格値(90で割った値)を、溝深さdをパラメータにして示している。この積分値は、解析モデルが2次元なので、シート内の光がシート外に取り出される効率に等しい。いずれの波長でも、dの増大に伴い(少なくともd=0、d=0.18の比較では)、取り出し効率は低減する。これは、単一の光結合構造による光閉じ込めの効果を現しており、第1実施形態における解析結果と同様である。この効果は累積でき、光結合構造の数を増やせば、全ての光を閉じ込めることができる。なお、本解析は2次元のモデルであったが、現実の3次元モデルでは図2(a)の平面図に示した任意の方位角φに対して結合条件である式(1)を満たす入射光が必ず存在するので、図16で示した透過率の曲線は矢印a、b、c、d、e等の局所的な範囲でなく全ての入射角θの範囲に関して落ち込むことになり、光結合構造による光閉じ込めの効果はより大きくなる。
 図17は第3の実施形態のシートに於ける、単一の光結合構造の端面への入射による、入射角θとシート外への透過率の関係を示す解析結果である。解析条件は図15や図3において光源Sの位置だけをx軸のマイナス側に5μmだけシフトさせたものを用いている。図17(a)は光源の波長λ=0.45μmの場合、図17(b)は波長λ=0.55μmの場合、図17(c)は波長λ=0.65μmの場合であり、それぞれ本実施例のモデルを実施例1のモデルと比較するとともに、光結合構造がない条件(透光シート2と光源Sだけの構成)での結果もプロットしている。実施例1のモデルの結果を光結合構造がない場合の結果(Nothing)と比較すると、両方とも臨界角内(41.8度以下)ではほぼ一致するが、臨界角外(41.8度以上)の範囲では、後者がほぼゼロになるのに対し、前者は大きく浮き上がる。前者が臨界角外で浮き上がるのは、図2(c)、(d)を参照して説明したように、光結合構造の第1の透光層3aおよび第2の透光層3bの端面に入射する光が屈折の後、臨界角内の光となって上面から出射するためである。これに対し、第3の実施形態のモデルの結果は、入射角55度以上の範囲で浮き上がりが大きく抑制され、ほとんどゼロになっている。これは、第3の実施形態における端面において、第1の透光層3aおよび第2の透光層3bが占める領域がなく、本来端面を屈折する成分が、第2の透光層3bの傾斜した表面3qを全反射するためである。したがって、第3の実施形態は第1の実施形態や第2の実施形態以上に、端面での影響(臨界角外の光が臨界角内の光に変換される現象)を抑制できる構成であり、光を閉じ込める効果がより強い構成といえる。
 光取り込みシート53は例えば、以下の方法によって製造することができる。図18(a)から(f)は、光取り込みシート53の製造手順を示す模式的な断面構成図であり、図19(a),(b)はシートを作成するための金型表面のパターンを示す模式的な平面図である。図19(a)において、金型25aの表面は平面であり、金型25aの表面には、例えば、同じ寸法の矩形の微小構造25Aが二次元に配列されている。矩形の微小構造25Aは、高さd、ピッチΛの回折格子である。回折格子の方位は微小構造25Aごとに異なっている。図19(a)では、0度、45度、90度、135度の45度刻みの方位の回折格子を規則的に配列させているが、実際には30度や15度刻み等、もっと小さい刻み幅の方位でグレーティングを等頻度に配列させることができる。図19(b)の金型25b、25b’の表面にも、矩形の微小構造25B、25B’が二次元に配列されている。微小構造25B、25B’の配置のピッチは、微小構造25Aの配置のピッチと等しい。微小構造25B、25B’は、凹部であり、その底は平面である。凹部の深さは図14の寸法aまたはbに相当する。金型25aの微小構造25Aはその方形がほとんど接するほどの大きさだが(接していても良い)、金型25b,25b’の微小構造25B、25B’の方形は小さい。
 図18(a)に示すように、平坦な表面を持つ金型25cの上に透明な樹脂シート24を敷き、この上に離間剤を薄く塗布した状態で、金型25aでプレスする。図18(b)に示すように、金型25aを持ち上げて、金型25aを樹脂シートから引き剥がし、回折格子の転写された樹脂シート24の上に平坦な樹脂シート24aを敷く。
 図18(c)に示すように、樹脂シート24、樹脂シート24aを加熱しながら金型25bでプレスし、金型25bの凹み25Bの領域で樹脂シート24aを浮き上がらせ、それ以外の領域で樹脂シート24、樹脂シート24aを接合する。この時、回折格子は接合部では全て埋滅し、樹脂シート24aが浮き上がった領域にだけ残る。樹脂シート24aの浮き上がりが、樹脂シート24との間に空気層(または真空層)を形成する。図18(d)に示すように、金型25cを持ち下げて樹脂シート24から引き剥がし、樹脂シート24の下に樹脂シート24a’を敷く。図18(e)に示すように、樹脂シート24、樹脂シート24a’を加熱しながら金型25b’でプレスし、金型25b’の凹み25B’の領域で樹脂シート24a’を浮き上がらせ、それ以外の領域で樹脂シート24、樹脂シート24a’を接合する。樹脂シート24a’の浮き上がりが、樹脂シート24との間に空気層(または真空層)を形成する。図18(f)に示すように、金型25b、25b’を引き剥がし、樹脂シート24a、樹脂シート24、樹脂シート24a’の接合シートが完成する。以降、これらの接合シートを、接着層を介して貼り合わせ、これを繰り返すことで図1(a)に示す透光シート2の第3の領域2cが作製される。透光シート2の第3の領域2cの表面および裏面に、透光シート2の第1の領域2aおよび第2の領域2bとなる樹脂シートを接着することにより光取り込みシート53が完成する。なお、樹脂シート24a、24a’や第1の領域2aおよび第2の領域2bとなる樹脂シートの表面には予め無反射ナノ構造が形成されていても良い。
 以降の実施形態では、カバーシート2eに関する説明は第1の実施形態と同じであり、重複するので省略する。また簡単のため透光シート2が一層の例で説明するが、実際には第1の実施形態と同様、重ね合わされた構成であり、この場合、光電変換部や凹凸構造などは、重ね合わされた透光シート2の内の、最表面側に位置する透光シート2の表面上に形成される。
 (第4の実施形態)
 本開示による受光装置の実施形態を説明する。図20は、本実施形態の受光装置54の断面構造を模式的に示している。受光装置54は、第1の実施系形態の光取り込みシート51と光電変換部7とを備える。光取り込みシート51に替えて、第2の実施形態の光取り込みシート52または第3の実施形態の光取り込みシート53を用いてもよい。
 光取り込みシート51の端面2s、2rには、好ましくは、反射膜11が設けられている。光取り込みシート51の第2の主面2qに隣接して光電変換部7が設けられている。透光シート2に端面が複数ある場合には、全ての端面に反射膜11が設けられ得る。本実施形態では、第2の主面2qの一部と光電変換部7の受光部とが接している。光電変換部7は光取り込みシート51の第1の主面2pの一部に設けられてもよい。
 光取り込みシート51の端面2r、2sを反射膜11で覆うことで、光取り込みシート51内に取り込まれ、封止された光は光取り込みシート51内を循環することになる。
 光電変換部7は、シリコンによって構成される太陽電池である。1枚の光取り込みシート51に複数の光電変換部7を取り付けても良い。シリコンの屈折率は5程度であるため、通常、太陽電池の受光面に垂直に光を入射させた場合でも、入射の光のうち、40%前後の光が光電変換部7に取り込まれずに反射で失われる。斜めに光が入射する場合、さらにこの反射損失は増大する。この反射量を小さくするために、市販の太陽電池の表面にはARコートや無反射ナノ構造が形成されているが、十分な性能が得られていない。さらに、太陽電池内部には金属層が存在し、これを反射する光のかなりの部分が、外部に放出される。ARコートや無反射ナノ構造があると、反射光は高効率で外部に放出される。
 これに対し、本開示の光取り込みシートは全ての可視光波長の光を、全ての入射角度で光取り込みシート内に取り込み、封止する。このため、受光装置54において、光取り込みシート51の第1の主面2pから入射する光は、光取り込みシート51に取り込まれ、光取り込みシート51内を循環する。シリコンの屈折率は透光シート2の屈折率より大きいので、第2の主面2qに入射する臨界角外の光5b’、6b’は全反射せず、その一部が屈折光5d’、6d’として光電変換部7へ透過し、光電変換部において電流に変換される。反射した臨界角外の光5c’、6c’はシート内を伝搬したあと、再び光電変換部7に入射し、全ての封止光がなくなるまで、光電変換に利用される。透過シート2の屈折率を1.5とすると、第1の主面2pに垂直に入射する光の反射率は4%程度であるが、この面にはARコートや無反射ナノ構造が形成されていれば、波長依存性や角度依存性を含めて、反射率を1~2%以下に抑制できる。これ以外の光は光取り込みシート51に入射して閉じ込められ、光電変換に利用される。
 本実施形態の受光装置によれば、入射光のほとんどをシート内に閉じ込め、そのほとんどを光電変換に利用することができる。したがって、光電変換部のエネルギー変換効率を大幅に改善できる。また、受光面積は第1の主面pの面積で決まり、この面で受光された光は全て光電変換部7へ入射する。このため、光電変換部7の面積を小さくしたり、光電変換部7の数を少なくでき、受光装置の大幅な低コスト化が実現できる。
 (第5の実施形態)
 本開示による受光装置の他の実施形態を説明する。図21は、本実施形態の受光装置55の断面構造を模式的に示している。受光装置55は、第1の実施系形態の光取り込みシート51と光電変換部7とを備える。光取り込みシート51に替えて、第2の実施形態の光取り込みシート52または第3の実施形態の光取り込みシート53を用いてもよい。
 受光装置55は、第2の主面2qに凹凸構造を8が設けられ、光電変換部7との間に隙間が設けられている点で第4の実施形態の受光装置54と異なる。第2の主面2qに設けられた凹凸構造8は凹部および凸部の幅が0.1μm以上あり、周期パターンであってもランダムパターンであってもよい。この凹凸構造8により、第2の主面2qへ入射する臨界角外の光5b’、6b’は全反射せず、その一部が出射光5d’、6d’として光電変換部7に向かう光となり、光電変換される。光電変換部7の表面を反射する光は、光取り込みシート51の第2の主面2qから内部に取り込まれ、光取り込みシート51内を伝搬したあと、再び再び出射光5d’、6d’として光電変換部7に向かう光となる。したがって、本実施形態の受光装置においても、入射光のほとんどを光取り込みシート内に閉じ込め、そのほとんどを光電変換に利用することができる。また、第4実施例と同様に、光電変換部7の面積を小さくしたり、光電変換部7の数を少なくできる。したがって、エネルギー変換効率が大幅に改善された、低コスト化の受光装置を実現できる。
 (第6の実施形態)
 本開示による受光装置の他の実施形態を説明する。図22は、本実施形態の受光装置56の断面構造を模式的に示している。受光装置56は、第1の実施系形態の光取り込みシート51と光電変換部7とプリズムシート9とを備える。光取り込みシート51に替えて、第2の実施形態の光取り込みシート52または第3の実施形態の光取り込みシート53を用いてもよい。
 受光装置56は、第2の主面2qと光電変換部7との間にプリズムシート9が設けられている点で第4の実施形態の受光装置54と異なる。プリズムシート9の内部には4面体状のプリズム10が互いに隣接して配置されている。2枚の3角柱プリズム列のシートを直交して積層することで、プリズムシート9を構成してもよい。プリズム10の屈折率はプリズムシート9の屈折率より大きく設定されているため、プリズムシート9の表面に入射する臨界角外光5b’、6b’はプリズム表面で屈折して5d’、6d’となり、光電変換部7に向かう。光電変換部7への光の入射角が垂直に近くなるので、光電変換部7の受光面での反射を小さくでき、第4の実施形態に比べ光取り込みシート51内における光の循環数を少なくできる。
 本実施形態の受光装置においても、入射光のほとんどを光取り込みシート内に閉じ込め、そのほとんどを光電変換に利用することができる。また、第4実施例と同様に、光電変換部7の面積を小さくしたり、光電変換部7の数を少なくできる。したがって、エネルギー変換効率が大幅に改善された、低コスト化の受光装置を実現できる。また、第4の実施形態に比べ、シート内の光の循環数が少ないので、光取り込みシートの光封止性能の影響を受けにくい。
 (第7の実施形態)
 本開示による受光装置の他の実施形態を説明する。図23は、本実施形態の受光装置57の断面構造を模式的に示している。受光装置57は、第1の実施系形態の光取り込みシート51と光電変換部7とを備える。光取り込みシート51に替えて、第2の実施形態の光取り込みシート52または第3の実施形態の光取り込みシート53を用いてもよい。
 受光装置57は、反射膜11に替えて光電変換部7が端面2s、2rを覆っている点で第4の実施形態の受光装置54と異なる。透光シート2の端面が複数ある場合には、全ての端面に光電変換部7を設けることができる。本実施形態の場合、光取り込みシート51には第4の領域2hを設けなくてもよい。
 端面2s、2rに光電変換部7を設ける場合、第4の実施形態とは異なり、臨界角外の光5c、6c、5c’、6c’は光電変換部7の受光面の法線に沿って光電変換部7に入射する。このため光電変換部7の表面での反射が小さく、光取り込みシート51内における光の循環数を少なくできる。
 本実施形態の受光装置においても、入射光のほとんどを光取り込みシート内に閉じ込め、そのほとんどを光電変換に利用することができる。したがって、エネルギー変換効率が大幅に改善された受光装置を実現できる。また、第4の実施形態に比べ、光電変換部7の面積を小さくできるため大幅な低コスト化が実現できる。また、第4の実施形態に比べ、シート内の光の循環数が少ないので、光取り込みシートの光封止性能の影響を受けにくい。
 (第8の実施形態)
 本開示による受光装置の他の実施形態を説明する。図24は、本実施形態の受光装置58の断面構造を模式的に示している。受光装置58は、光取り込みシート51、51’と光電変換部7とを備える。光取り込みシート51、51’に替えて、それぞれ独立に、第1の光取り込みシート51、第2の実施形態の光取り込みシート52または第3の実施形態の光取り込みシート53を用いてもよい。本実施形態の場合、光取り込みシート51’には第4の領域2hを設けなくてもよい。
 受光装置58は、第4の実施形態の受光装置54の第1の主面2pに光取り込みシート51の端面2sが接するように接合されている点で、第4の実施形態と異なる。光取り込みシート51’は光取り込みシート51と直交に接合されていても良い。また、光取り込みシート51’において、端面2rには反射膜11が設けられ、光取り込みシート51と接合された端面2s近傍の第1の主面2p’および第2の主面2q’には反射膜11’が設けられていても良い。反射膜11’は、光取り込みシート51からの臨界角外の光6bが光取り込みシート51’外に漏れ出さないよう光6bを反射する働きがある。
 光取り込みシート51の第1の主面2pに入射する光4は光取り込みシート51内に取り込まれる。一方、光取り込みシート51’の第1の主面2p’および第2の主面2q’に入射する光4’は光取り込みシート51’内に取り込まれる。光取り込みシート51’内に取り込まれた光は、端面2rが反射膜11で覆われているため、端面2s側に伝搬する導波光12となり、光取り込みシート51内の光に合流する。光取り込みシート51内の第2の主面2qの一部は光電変換部7の表面と接触しており、シリコンの屈折率が透光シート2の屈折率より大きいため、第2の主面2qに入射する臨界角外の光5b’、6b’は全反射せず、その一部が屈折光5d’、6d’として光電変換部7へ入射し、光電変換部7において電流に変換される。反射した臨界角外の光5c’、6c’は光取り込みシート51内を伝搬し、再び光電変換部7の受光面に入射し、ほとんどの封止光がなくなるまで、光電変換に利用され続ける。
 本実施形態の受光装置は光電変換部7の受光面に対して垂直な光取り込みシート51’を備えているため、光取り込みシート51の第1の主面2pに対し斜めに入射する光であっても、光取り込みシート51’の第1の主面2p’および第2の主面2q’には、垂直に近い角度で入射する。このため、全ての方位の光をより取り込みやすくなっている。
 本実施形態の受光装置においても、入射光のほとんどを光取り込みシート内に閉じ込め、そのほとんどを光電変換に利用することができる。また、第4実施例と同様に、光電変換部7の面積を小さくしたり、光電変換部7の数を少なくできる。したがって、エネルギー変換効率が大幅に改善された、低コスト化の受光装置を実現できる。
 (第9の実施形態)
 本開示による採光板の実施形態を説明する。図25は、本実施形態の採光板59の断面構造を模式的に示している。採光板59は、第1の実施形態の光取り込みシート51と、光取り込みシート51の第1の主面2pおよび第2の主面2qの一部に設けられた凹凸構造8とを備える。光取り込みシート51に替えて、第2の実施形態の光取り込みシート52または第3の実施形態の光取り込みシート53を用いてもよい。光取り込みシート51において、端面2r、2sには反射膜11が設けられている。
 凹凸構造8は第1の主面2pの一部に形成され、その凹部および凸部の幅が0.1μm以上あるランダムパターンをなす。光取り込みシート51に取り込まれた光は光取り込みシート51の内部を伝搬し、この凹凸構造8により、伝搬光の一部が出射光5d’、6d’として、外部に放射される。
 採光板59は、住宅などの建物の採光用窓に、凹凸構造8が設けられた第1の主面2pが室内側に位置するように設けられる。昼間、採光板59は、太陽13aの光を第2の主面2qから取り込み、この光を凹凸構造8から室内に放射する。これにより凹凸構造8から光が放射する室内照明として用いることができる。また、夜間、採光板59は、室内照明13bの光を第1の主面2pから取り込み、この光を凹凸構造8から放射する。これにより、採光板59を室内照明の補助にすることができる。このように本実施形態による採光板によれば、入射光のほとんどをシート内に閉じ込め、これを照明として再利用でき、エネルギーの有効利用を実現できる。
 (第10の実施形態)
 本開示による発光装置の実施形態を説明する。図26は、本実施形態の発光装置60の断面構造を模式的に示している。発光装置60は、光取り込みシート51と、光源14と、プリズムシート9とを備える。光取り込みシート51に替えて、第2の実施形態の光取り込みシート52または第3の実施形態の光取り込みシート53を用いてもよい。
 LEDなどの光源14は、光取り込みシート51の第1の主面2pまたは第2の主面2qの一方に隣接して設けられ、他方には凹凸構造8が設けられている。本実施形態では、光源14が第1の主面2pに隣接して配置されて、第2の主面2qに凹凸構造8が設けられている。また、光取り込みシート51の端面2s、2rには反射膜11が設けられている。凹凸構造8は凹部および凸部の幅が0.1μm以上あり、周期パターンであってもランダムパターンであってもよい。
 プリズムシート9は、第2の主面2qに凹凸構造8に対向するように間隙を隔てて配置されている。プリズムシート9の内部には4面体状のプリズム10が互いに隣接して配置されている。2枚の3角柱プリズム列のシートを直交して積層することで、プリズムシート9を構成してもよい。
 光源14から出射する光4は光取り込みシート51の第1の主面2pから取り込まれ、光取り込みシート51内を伝搬する光12となる。この光は凹凸構造8により、その一部が出射光5d’、6d’として、外部に放射される。放射された光はプリズムシート9内のプリズム10により集光され、ほぼ平行な波面の光4aとなる。
 本実施形態の発光素子によれば、簡単で薄い構成で、点光源から出射する光を光取り込みシート内に閉じ込め、その光を面光源として取り出すことができる。
 本開示のシートは広い領域、広い波長範囲(例えば可視光全域)に渡って、全ての入射角で光を取り込むことが可能であり、それらを用いた受光装置および発光装置は高変換効率の太陽電池に有用である一方、それらを用いた受光および発光装置は、新たな照明や光源の形態を提供し、太陽光や照明光を利用したリサイクル照明、高効率のバックライトとして有用である。
  2   透光シート
  2p  第1の主面
  2q  第2の主面
  3、3’、3’’    光結合構造
  3a  第1の透光層
  3b  第2の透光層
  3c  第3の透光層
  3d  回折格子
  4   入射光
  5a、5a’           臨界角内の光
  5b、5c、5b’、 5c’   臨界角外の光
  6a、6b、6c、6b’、6c’ 臨界角外の光
  9  プリズムシート
 10  プリズム
 11  反射膜
 14  光源

Claims (20)

  1.  各々が第1および第2の主面を有する複数の透光シートと、
     前記複数の透光シートの各々の内部であって、前記第1および第2の主面からそれぞれ第1および第2の距離以上隔てた内部に配置された複数の光結合構造と、
    を備え、
     前記複数の光結合構造のそれぞれは、第1の透光層と、第2の透光層と、これらに挟まれた第3の透光層とを含み、
     前記第1および第2の透光層の屈折率は前記透光シートの屈折率よりも小さく、前記第3の透光層の屈折率は前記第1および第2の透光層の屈折率よりも大きく、前記第3の透光層は、前記透光シートの前記第1および第2の主面と平行な回折格子を有する光取り込みシート。
  2.  前記複数の透光シートは、積層されている、請求項1に記載の光取り込みシート。
  3.  前記第1及び第2の透光層の、前記第3の透光層と反対側に位置する表面は、前記透光シートの前記第1および第2の主面と平行な面である、請求項1に記載の光取り込みシート。
  4.  前記複数の光結合構造は、前記第1および第2の主面と平行な面において2次元に並んで配置された、第1の光結合構造および第2の光結合構造を含み、前記第1の光結合構造が有する前記第1および/または第2の透光層と、前記第2の光結合構造が有する前記第1および/または第2の透光層とは、互いに離間している、請求項1に記載の光取り込みシート。
  5.  前記第1の光結合構造が有する前記第3の透光層と、前記第2の光結合構造が有する前記第3の透光層とは、互いに連続している、請求項4に記載の光取り込みシート。
  6.  前記複数の光結合構造は、前記複数の透光シートの内部であって、前記第1および第2の主面からそれぞれ前記第1および第2の距離以上隔てた内部において、三次元に配置されている請求項1から5のいずれかに記載の光取り込みシート。
  7.  前記複数の透光シートの内、最表面に位置する透光シートの前記第1の主面または第2の主面に隙間を介して対向する透明カバーシートを更に備える請求項1から6のいずれかに記載の光取り込みシート。
  8.  前記回折格子のピッチが0.1μm以上3μm以下である請求項1から7のいずれかに記載の光取り込みシート。
  9.  前記第1および第2の透光層の表面は、100μm以下の直径の円に外接する大きさを有し、
     前記複数の光結合構造のそれぞれの厚さは3μm以下である請求項8に記載の光取り込みシート。
  10.  前記複数の光結合構造のうち少なくとも2つにおいて、前記回折格子の伸びる方向は互いに異なっている請求項9に記載の光取り込みシート。
  11.  前記複数の光結合構造のうち少なくとも2つにおいて、前記回折格子のピッチは互いに異なっている請求項9に記載の光取り込みシート。
  12.  前記透光シートは、前記第1の主面と接し、前記第1の距離を厚さに有する第1の領域と、前記第2の主面と接し、前記第2の距離を厚さに有する第2の領域と、前記第1および第2の領域に挟まれた第3の領域と、前記第3の領域内に設けられており、前記第1の領域および前記第2の領域を接続する少なくとも1つの第4の領域とを含み、前記複数の光結合構造は、前記少なくとも1つの第4の領域以外の前記第3の領域内にのみ配置されており、前記第4の領域を貫通する任意の直線は、前記透光シートの厚さ方向に対して、前記透光シートの屈折率と前記透光シートの周囲の環境媒質の屈折率とで規定される臨界角よりも大きな角度に沿って伸びている請求項1から11のいずれかに記載の光取り込みシート。
  13.  前記複数の光結合構造の少なくとも1つにおいて、前記第1および第2の透光層の厚さは、前記光結合構造の中心から外縁側に向かうにつれて小さくなっている請求項1から11のいずれかに記載の光取り込みシート。
  14.  前記複数の光結合構造の少なくとも1つにおいて、前記第1および第2の透光層の、前記透光シートと接する面、及び前記第1の主面、前記第2の主面のいずれかには、ピッチ及び高さが設計波長の1/3以下の凹凸構造が形成されている請求項1から11のいずれかに記載の光取り込みシート。
  15.  前記第1および第2の透光層の屈折率は、前記環境媒質の屈折率と等しい請求項1から7のいずれかに記載の光取り込みシート。
  16.  請求項1から15のいずれかに記載の光取り込みシートと、前記光取り込みシートの前記第1の主面、前記第2の主面および前記第1の主面と前記第2の主面に隣接する端面のいずれかに設けられた光電変換部と、を備える受光装置。
  17.  請求項1から15のいずれかに記載の他の光取り込みシートをさらに備え、前記光取り込みシートの前記第1の主面に前記光電変換部が設けられ、前記光取り込みシートの前記第2の主面に前記他の光取り込みシートの端面が接続された請求項16に記載の受光装置。
  18.  請求項1から15のいずれかに記載の光取り込みシートと、前記光取り込みシートの前記第1の主面または前記第2の主面に設けられた凹凸構造またはプリズムシートと、前記凹凸構造または前記プリズムシートから出射する光を受光する光電変換部とを備えた受光装置。
  19.  請求項1から15のいずれかに記載の光取り込みシートと、前記光取り込みシートの前記第1の主面または前記第2の主面の一部に設けられた凹凸構造とを備える受光装置。
  20.  請求項1から15のいずれかに記載の光取り込みシートと、前記光取り込みシートの前記第1の主面または前記第2の主面の一方に近接して設けられた光源と、前記光取り込みシートの前記第1の主面または前記第2の主面の他方に設けられた凹凸構造と、前記凹凸構造から出射する光が入射するように配置されたプリズムシートとを備える発光装置。
PCT/JP2012/007082 2011-11-08 2012-11-05 光取り込みシート、ならびに、それを用いた受光装置および発光装置 WO2013069250A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013513480A JP5649725B2 (ja) 2011-11-08 2012-11-05 光取り込みシート、ならびに、それを用いた受光装置および発光装置
CN201280004228.7A CN103261933B (zh) 2011-11-08 2012-11-05 取光板和使用了它的光接收装置和发光装置
US13/947,541 US9103978B2 (en) 2011-11-08 2013-07-22 Light-trapping sheet, and light-receiving device and light-emitting device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011244603 2011-11-08
JP2011-244603 2011-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/947,541 Continuation US9103978B2 (en) 2011-11-08 2013-07-22 Light-trapping sheet, and light-receiving device and light-emitting device using the same

Publications (1)

Publication Number Publication Date
WO2013069250A1 true WO2013069250A1 (ja) 2013-05-16

Family

ID=48289343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007082 WO2013069250A1 (ja) 2011-11-08 2012-11-05 光取り込みシート、ならびに、それを用いた受光装置および発光装置

Country Status (4)

Country Link
US (1) US9103978B2 (ja)
JP (1) JP5649725B2 (ja)
CN (1) CN103261933B (ja)
WO (1) WO2013069250A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107238979A (zh) * 2017-08-11 2017-10-10 京东方科技集团股份有限公司 导光组件及制备方法、背光模组以及显示装置
CN110073259A (zh) * 2016-12-15 2019-07-30 松下知识产权经营株式会社 波导片以及光电变换装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
WO2012136970A1 (en) 2011-04-07 2012-10-11 Milan Momcilo Popovich Laser despeckler based on angular diversity
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
JP6238203B2 (ja) * 2011-11-08 2017-11-29 パナソニックIpマネジメント株式会社 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置
US20140063841A1 (en) * 2012-08-28 2014-03-06 Heng-Sheng Kuo Front light module
US9933684B2 (en) * 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
CN103912824B (zh) * 2013-11-15 2016-06-15 厦门天马微电子有限公司 一种背光源、显示设备
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
CN111323867A (zh) 2015-01-12 2020-06-23 迪吉伦斯公司 环境隔离的波导显示器
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
JP6598269B2 (ja) 2015-10-05 2019-10-30 ディジレンズ インコーポレイテッド 導波管ディスプレイ
JP6895451B2 (ja) 2016-03-24 2021-06-30 ディジレンズ インコーポレイテッド 偏光選択ホログラフィー導波管デバイスを提供するための方法および装置
US10371873B2 (en) * 2016-12-07 2019-08-06 Bae Systems Information And Electronic Systems Integration Inc. High fidelity optical beam dump
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
WO2020168348A1 (en) 2019-02-15 2020-08-20 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
US20200386947A1 (en) 2019-06-07 2020-12-10 Digilens Inc. Waveguides Incorporating Transmissive and Reflective Gratings and Related Methods of Manufacturing
JP2022546413A (ja) 2019-08-29 2022-11-04 ディジレンズ インコーポレイテッド 真空回折格子および製造方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05224018A (ja) * 1991-07-30 1993-09-03 Nippondenso Co Ltd 導光装置
JP2001510902A (ja) * 1997-07-18 2001-08-07 テラサン エルエルシー 光放射集束デバイス
JP2003066203A (ja) * 2001-08-28 2003-03-05 Hitachi Maxell Ltd 微細凹凸構造の形成方法及び当該凹凸を有する部材
JP2003248128A (ja) * 2002-02-25 2003-09-05 Matsushita Electric Works Ltd 光結合器およびその製造方法、光電気混載配線板およびその製造方法
JP2005037872A (ja) * 2003-01-28 2005-02-10 Nippon Sheet Glass Co Ltd 光学素子およびそれを備えた光回路並びに光分波器
JP2005173116A (ja) * 2003-12-10 2005-06-30 Dainippon Printing Co Ltd 光回路部材とその製造方法
WO2005093493A1 (ja) * 2004-03-29 2005-10-06 Sony Corporation 光学装置及び虚像表示装置
JP2007538292A (ja) * 2004-05-18 2007-12-27 サイファージェン バイオシステムズ インコーポレイテッド 信号変調を低減した集積光導波路センサ
JP2008523434A (ja) * 2004-12-13 2008-07-03 ノキア コーポレイション ディスプレー装置におけるビーム拡大方法及びシステム
JP2008535032A (ja) * 2005-04-04 2008-08-28 ミラージュ イノヴェイションズ リミテッド 多平面光学装置
WO2009005072A1 (ja) * 2007-07-03 2009-01-08 Asahi Glass Company, Limited 雨滴検出システム
WO2010151253A1 (en) * 2009-06-24 2010-12-29 University Of Rochester Dimpled light collection and concentration system, components thereof, and methods
JP2011222735A (ja) * 2010-04-09 2011-11-04 Nisshinbo Mechatronics Inc 太陽電池の検査方法および検査装置
WO2012046414A1 (ja) * 2010-10-04 2012-04-12 パナソニック株式会社 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251038A (ja) 1997-03-14 1998-09-22 Matsushita Electric Works Ltd 光ファイバの製造方法
JP3326390B2 (ja) 1998-07-07 2002-09-24 日本電信電話株式会社 再生専用多重ホログラムカード
US7349612B2 (en) 2003-01-28 2008-03-25 Nippon Sheet Glass Company, Limited Optical element, optical circuit provided with the optical element, and method for producing the optical element
JP4064378B2 (ja) 2004-07-26 2008-03-19 日本電信電話株式会社 導波路ホログラムにおける外部光の結合方法及び結合装置
JP2009538937A (ja) 2006-05-31 2009-11-12 セエスウエム サントル スイス デレクトロニクエ ドゥ ミクロテクニク ソシエテ アノニム−ルシェルシェ エ デブロップマン 0次回折顔料
US8267583B2 (en) * 2009-10-19 2012-09-18 Oracle America, Inc. Three-dimensional macro-chip including optical interconnects

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05224018A (ja) * 1991-07-30 1993-09-03 Nippondenso Co Ltd 導光装置
JP2001510902A (ja) * 1997-07-18 2001-08-07 テラサン エルエルシー 光放射集束デバイス
JP2003066203A (ja) * 2001-08-28 2003-03-05 Hitachi Maxell Ltd 微細凹凸構造の形成方法及び当該凹凸を有する部材
JP2003248128A (ja) * 2002-02-25 2003-09-05 Matsushita Electric Works Ltd 光結合器およびその製造方法、光電気混載配線板およびその製造方法
JP2005037872A (ja) * 2003-01-28 2005-02-10 Nippon Sheet Glass Co Ltd 光学素子およびそれを備えた光回路並びに光分波器
JP2005173116A (ja) * 2003-12-10 2005-06-30 Dainippon Printing Co Ltd 光回路部材とその製造方法
WO2005093493A1 (ja) * 2004-03-29 2005-10-06 Sony Corporation 光学装置及び虚像表示装置
JP2007538292A (ja) * 2004-05-18 2007-12-27 サイファージェン バイオシステムズ インコーポレイテッド 信号変調を低減した集積光導波路センサ
JP2008523434A (ja) * 2004-12-13 2008-07-03 ノキア コーポレイション ディスプレー装置におけるビーム拡大方法及びシステム
JP2008535032A (ja) * 2005-04-04 2008-08-28 ミラージュ イノヴェイションズ リミテッド 多平面光学装置
WO2009005072A1 (ja) * 2007-07-03 2009-01-08 Asahi Glass Company, Limited 雨滴検出システム
WO2010151253A1 (en) * 2009-06-24 2010-12-29 University Of Rochester Dimpled light collection and concentration system, components thereof, and methods
JP2011222735A (ja) * 2010-04-09 2011-11-04 Nisshinbo Mechatronics Inc 太陽電池の検査方法および検査装置
WO2012046414A1 (ja) * 2010-10-04 2012-04-12 パナソニック株式会社 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110073259A (zh) * 2016-12-15 2019-07-30 松下知识产权经营株式会社 波导片以及光电变换装置
CN107238979A (zh) * 2017-08-11 2017-10-10 京东方科技集团股份有限公司 导光组件及制备方法、背光模组以及显示装置
CN107238979B (zh) * 2017-08-11 2020-04-10 京东方科技集团股份有限公司 导光组件及制备方法、背光模组以及显示装置
US11237429B2 (en) 2017-08-11 2022-02-01 Boe Technology Group Co., Ltd. Light guiding assembly and fabricating method thereof, backlight module and display device

Also Published As

Publication number Publication date
US20130306844A1 (en) 2013-11-21
JPWO2013069250A1 (ja) 2015-04-02
JP5649725B2 (ja) 2015-01-07
CN103261933A (zh) 2013-08-21
CN103261933B (zh) 2016-04-06
US9103978B2 (en) 2015-08-11

Similar Documents

Publication Publication Date Title
JP5649725B2 (ja) 光取り込みシート、ならびに、それを用いた受光装置および発光装置
JP5650752B2 (ja) 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置
JP6238203B2 (ja) 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置
JP6132241B2 (ja) 光取り込みシートを備える受光装置
JP5646748B2 (ja) 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置
JP5970660B2 (ja) 光取り込みシートおよび光取り込みロッド、ならびにそれらを用いた受光装置、発光装置および光ファイバー用増幅器
WO2018109966A1 (ja) 導波シート及び光電変換装置
JP6146627B2 (ja) 太陽電池モジュール
JP2014206680A (ja) 光取り込みシート、ならびに、それを用いた受光装置および発光装置
US11112552B2 (en) Light-guide sheet and photoelectric conversion device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280004228.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013513480

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848136

Country of ref document: EP

Kind code of ref document: A1