WO2013065229A1 - 充填材及び地盤の補修方法 - Google Patents
充填材及び地盤の補修方法 Download PDFInfo
- Publication number
- WO2013065229A1 WO2013065229A1 PCT/JP2012/006249 JP2012006249W WO2013065229A1 WO 2013065229 A1 WO2013065229 A1 WO 2013065229A1 JP 2012006249 W JP2012006249 W JP 2012006249W WO 2013065229 A1 WO2013065229 A1 WO 2013065229A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parts
- filler
- mass
- cement
- weight
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K17/00—Soil-conditioning materials or soil-stabilising materials
- C09K17/02—Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
- C09K17/10—Cements, e.g. Portland cement
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D3/00—Improving or preserving soil or rock, e.g. preserving permafrost soil
- E02D3/12—Consolidating by placing solidifying or pore-filling substances in the soil
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00034—Physico-chemical characteristics of the mixtures
- C04B2111/00146—Sprayable or pumpable mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00663—Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00732—Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Definitions
- the present invention relates to a filler that can be manufactured at low cost and has excellent fluidity / pumpability and moderate strength, and a ground repair method using the filler.
- a filler such as micro sand air mortar.
- the filler is hardened by cement, so improvement is desired in that it is difficult to pump, such as when it takes construction time, and the cost increases due to the use of many materials such as cement. It was.
- the maximum particle size is 2.380 mm
- the sieve screen has a 1.190 mm passage rate of 95% or more
- the sieve screen has a 0.590 mm passage rate of 70% or more
- the sieve screen has a 0.279 mm passage rate of 40% or more.
- Adjust the lightweight foaming filler by adding air to the slurry consisting of granulated slag and cement adjusted to a particle size of 15% or more with a sieve mesh of 0.149 mm, and water, adding foaming agent, water reducing agent, viscosity agent. Techniques to do this are disclosed. If this technology is used, it is characterized by good fluidity, light weight, less breathing, and low cost compared to bentonite mortar composed of cement, bentonite, sand and water.
- Patent Document 2 discloses that the weight ratio of a converter or ingot with a grain size of 13 mm or less is 38 to 65% and the weight ratio of a starch syrup with a particle diameter of 10 mm or less, which is a grout material used as an underfill void filler. Is blended so that the weight ratio of bentonite with a particle size of 1 mm or less is 8-17% and the weight ratio of water is 12-20%, and the unit volume is 1.8-2.8 g / cm 2 . A grout material is disclosed. Since pumping is possible, there is no equipment trouble due to blockage like air mortar, no cement mixing, no short-term self-hardening, and material costs are about 40% lower than air mortar. There is.
- Patent Document 3 discloses an injection material composed of blast furnace slag, cement, bentonite, and water, and the blending amount of cement is 20 parts by weight or less with respect to 100 parts by weight of blast furnace slag.
- This injection material has a high initial fluidity, can obtain a desired plasticity within a relatively short time, can reduce manufacturing costs and construction costs, and can save labor in construction. There is.
- Patent Documents 1 to 3 have the following problems.
- the technology of Patent Document 1 can obtain a lightweight foaming filler at a lower cost than the prior art, but has a problem that the cost increases because the amount of cement is as large as about 100 kg per 1 m 3 .
- mixing various types of chemicals such as foaming agents, water reducing agents, and viscosity agents shows good blending results at the laboratory test level. Because it is difficult, a high level of technology is required to use a lot of chemicals, and there is a problem that it takes a lot of work.
- Patent Document 2 does not contain cement and is not self-hardening in the short term, so that construction troubles are unlikely to occur.
- there is no alkali stimulator for the converter and water tanks so there is no solidification.
- the weight per unit volume is as large as 1.8 g / cm 3 or more, which may cause further consolidation settlement.
- Patent Document 3 Since the technique of Patent Document 3 has a simple configuration of blast furnace slag, cement, bentonite, and water, it can save labor for construction. However, as shown in the example of Patent Document 3, 20 The flow value became less than half of the initial value in minutes, and there was a problem that the curability was too early. In actual sites, there are many cases where placement is stopped due to troubles and the like, and this technology, which cannot secure fluidity to some extent (2 to 4 hours), may be difficult to apply.
- an object of the present invention is to provide a filler that can be produced at low cost, and has excellent fluidity / pumpability and moderate strength.
- the inventors of the present invention contain a specific amount of steel slag, cement, water, and bentonite, and are excellent in that the amount of bubbles is in the range of 10 to 40% by volume.
- the amount of the cement can be reduced, so that it has been found that the manufacturing cost can be reduced and the curing rate can be optimized, and the present invention has been completed.
- steel slag, cement, water, and bentonite it discovered that the same effect as the case where the optimization of the said bubble amount was achieved by including a specific amount of foaming agents.
- a filler that contains 2 to 10 parts by weight of cement, 30 to 100 parts by weight of water, and 3 to 10 parts by weight of bentonite with respect to 100 parts by weight of steel slag, and the amount of bubbles is in the range of 10 to 40% by volume.
- the said steel slag is a filler as described in said (1) or (2) containing at least 1 type of a granulated slag and steelmaking slag.
- the amount of cement relative to the amount of slag can be reduced compared to the prior art, so (A) slow down the hardening speed and reduce the occurrence of trouble on site (B) it is possible to suppress material separation and to achieve an appropriate strength, and (C) to reduce the total cost. Further, by optimizing the amount of bubbles in the filler, it is possible to adjust the strength of the filler (D) and improve the pumpability.
- the change in flow value (mm) and unit volume weight (kN / m 3 ) when the amount of bubbles is changed is shown.
- the particle size accumulation curve of granulated slag is shown.
- the state of the field construction test in an example is shown typically.
- the present invention will be specifically described below.
- the first filler according to the present invention comprises 2 to 10 parts by weight of cement, 30 to 100 parts by weight of water and 3 to 10 parts by weight of bentonite with respect to 100 parts by weight of steel slag, and the amount of bubbles is 10 to 40% by volume. It is a range.
- the second filler according to the present invention comprises 2 to 10 parts by weight of cement, 30 to 100 parts by weight of water, 3 to 10 parts by weight of bentonite, and 0.05 to 2 parts by weight of a foaming agent for 100 parts by weight of steel slag. It is characterized by including.
- the steel slag is a material used as a fine aggregate of mortar. Mixing steel slag in the filler of the present invention contributes to the cost reduction of the filler of the present invention.
- the steel slag preferably contains at least one of granulated slag and steelmaking slag from the viewpoint of having latent hydraulic properties and reducing the amount of cement.
- the steel slag is composed of granulated slag and steelmaking slag from the standpoint that stronger strength can be expected by mixing different types of slag, and the mass ratio of the steelmaking slag to the granulated slag is 0.1 to 1.5. It is more preferable. When the mass ratio is less than 0.1, there is a risk that reliable strength development may not be possible. On the other hand, when the mass ratio exceeds 1.5, there is a possibility that separation may be easily caused by a weight difference between the granulated slag and the steelmaking slag. .
- the steel slag preferably has a particle size of 10 mm or less. If too large particle size is mixed, a large pressure is required at the time of pumping, so a particle size of 5 mm or less is more preferable. However, due to the recent improvement in mechanical capacity, the pumping capacity has become larger than before. Even if a slightly larger particle size (about 10 mm) is mixed, it does not cause a big problem.
- the steel slag when it is granulated slag, it may be hardened due to the latent hydraulic properties over time, but it is crushed by the kneading operation of the mixer and becomes an appropriate size. Not only slag but also granulated slag which has been stored for a long time and hardened to some extent can be applied to the present invention.
- the weight is heavier than the granulated slag, so the pressure of the pump used for pumping the filler of the present invention needs to be slightly increased.
- the fluidity is hardly changed, so that there is little influence on the workability of the filler of the present invention.
- the water content of the steel slag is not particularly limited, and it is possible to obtain an effect as a filler without considering it. Since the filler of the present invention requires the inclusion of water as will be described later, even if the water content of the steel slag is changed by adjusting the water content, the filler is desired as a whole. This is because the water content can be secured.
- cement The cement is mixed in an amount of 2 to 10 parts by mass, preferably 4 to 7 parts by mass, with respect to 100 parts by mass of the steel slag.
- amount of the cement is less than 2 parts by mass, the amount of cement is too small to obtain a sufficient filler strength.
- the amount of the cement exceeds 10 parts by mass, there is too much cement. This is because, in addition to an increase in the curing rate, the manufacturing cost is increased, and it becomes difficult to use on site.
- the type of cement for example, ordinary Portland cement, blast furnace cement, and the like can be used. It is also possible to use a mixture of a small amount of ordinary Portland cement and blast furnace slag fine powder. This is because a small amount of cement acts as an alkali stimulant, causes a latent hydraulic reaction of slags, and a hardening phenomenon can be expected.
- the blast furnace slag fine powder also has an effect of suppressing material separation as a powder component together with bentonite.
- the water is used for a hydration reaction with the cement.
- the water is blended in an amount of 30 to 100 parts by mass, preferably 50 to 80 parts by mass with respect to 100 parts by mass of the steel slag. If the amount of water is less than 30 parts by mass, it will be difficult to obtain the fluidity required for construction, while if the amount of water exceeds 100 parts by mass, the amount of water will increase, causing material separation or This is because sufficient strength of the filler may not be obtained.
- the said bentonite is used in order to suppress the isolation
- the bentonite is mixed in an amount of 3 to 10 parts by mass, preferably 4 to 7 parts by mass, with respect to 100 parts by mass of the steel slag. When the amount of the bentonite is less than 3 parts by mass, the material separation cannot be sufficiently suppressed, and an appropriate filler strength cannot be obtained.
- the first filler according to the present invention has a bubble amount in the range of 10 to 40% by volume, preferably 10 to 30% by volume.
- the reason for this is that by setting the amount of bubbles in the filler within the above range, the desired strength can be ensured and the frictional resistance in the pipe for pumping can be reduced. This is because it can be pumped.
- the amount of bubbles was set in the range of 10 to 40% by volume. If the amount of bubbles exceeds 40% by volume, the unit volume weight may be less than 10kN / m 3. The material floats and cannot be used. On the other hand, if the amount of bubbles is less than 10% by volume, the flow value decreases, so the pressure at the time of pumping increases and the desired pumpability cannot be obtained. It is.
- FIG. 1 shows the flow value (mm) when the amount of bubbles is changed in a filler containing 6.5 parts by mass of cement, 72 parts by mass of water and 6.5 parts by mass of bentonite with respect to 100 parts by mass of steel slag. It shows the change in unit volume weight (kN / m 3 ).
- the bar graph indicates the flow value
- the line graph indicates the unit volume weight.
- a desired flow value and unit volume weight can be obtained by setting the amount of bubbles in the range of 10 to 40% by volume.
- the amount of bubbles in the filler is determined in accordance with, for example, the cylinder method of the air amount test method of the former Japan Highway Public Corporation Standard JHS A313-1992 “Testing Method of Air Mortar and Air Milk”. Specifically, 200 ml of sample is taken into a 500 ml graduated cylinder, 200 ml of water is added, and the graduated cylinder is sufficiently shaken to stand. After separation of bubbles, weigh 100 ml of pharmacopoeia alcohol, gradually drop on the bubbles to defoam, completely defoam, then read the total amount of sample, added water and alcohol on the scale of the graduated cylinder. Calculate the air volume (bubble volume) using the formula. Alternatively, the unit volume weight is measured, and the amount of bubbles can be calculated by the following formula.
- the second filler according to the present invention is contained in an amount of 0.05 to 2 parts by mass, preferably 0.08 to 1.2 parts by mass with respect to 100 parts by mass of the steel slag.
- This foaming agent is a kind of surfactant that generates bubbles and is homogeneously dispersed when mixed with the steel slag, cement, water, etc., and exhibits the effect of suppressing material separation.
- the content of the foaming agent is less than 0.05 parts by mass, the strength of the filler may be too high, while when the content of the foaming agent exceeds 2 parts by mass, the unit volume weight of the filler May become too small.
- the type of foaming agent is not particularly limited. A commercially available product can be used.
- the foaming using the foaming agent can be performed by a known method.
- the foaming agent can be foamed to a desired magnification by diluting the foaming agent with dilution water and feeding compressed air. Specifically, foaming by stirring using a foaming apparatus or a hand mixer is mentioned.
- the filler according to the present invention can be manufactured at a low cost and has excellent fluidity / pumpability and moderate strength, so that it can be used for filling the cavity under the foundation, backfill injection, ground reinforcement, etc. it can.
- the mortar is a material for constituting the filler according to the present invention by mixing with the foaming agent, and is obtained by stirring and mixing the steel slag, the cement, the water, and the bentonite.
- the stirring and mixing conditions are not particularly limited.
- bentonite and water may be mixed first, and then steel slag and cement may be mixed, or all materials may be mixed simultaneously.
- a fixed plant or a mobile plant may be used.
- blending which increases the cement amount in the said mortar and reduces bentonite.
- the breathing becomes large it can be suppressed by appropriately balancing the amount of powder.
- the curing time can be controlled by further blending a retarder or the like.
- the required value of the strength of the filler according to the present invention varies depending on the application destination. In the case of a cavity under the floor, it will be filled around the pile, but if the strength is high, the adhesion will also increase, and the pile and filler will be integrated. When ground subsidence occurs due to further consolidation or liquefaction, if it is integrated, it will not follow the ground, and hard filler will not be able to excavate, so it will not be possible to fill the cavity between the filler and the ground . When the strength is high, maintenance of incidental facilities such as piping becomes difficult. Furthermore, since the mass of the pile head increases, the pile body may be damaged by the inertial force during the earthquake.
- the strength is preferably about 0.05 to 1.5 N / mm 2 .
- the unit volume weight is not too large, and is generally about 10 to 20 kN / m 3 .
- the quality of the filler of the present invention can be judged by the flow value after kneading, breathing, and unit volume weight.
- the flow value is preferably 200 mm or more.
- the breathing rate is preferably determined using 5% or less as a guide.
- the unit volume weight of the filler of the present invention is set to 10 kN / m 3 or more so that it can be reliably filled during underwater construction.
- the steel slag may show a behavior such as expansion after hardening, it contains air generated by the foaming agent described above, so that it plays a cushioning role and has a negative effect on the structure. Will not bring. Furthermore, this air has the effect of further improving fluidity and pumpability.
- ground repair method The ground repair method according to the present invention is characterized by using the above-described filler of the present invention.
- the filler of the present invention can be manufactured at low cost, and has excellent fluidity / pumpability and moderate strength, and therefore enables reliable ground repair at a relatively low cost.
- ground repair means repair of all ground including not only the ground but also water.
- the filler is pumped by a pump, but the method of pumping is not particularly limited, and pumping is performed depending on the conditions normally used. It can be performed.
- Examples 1 to 5 Fillers were prepared with the formulations shown in Table 1. Note that the blended granulated slag has a particle size of 1 mm passing through 50% or more and a maximum particle size of 9.5 mm, and has a particle size accumulation curve shown in FIG. Blast furnace type B was used as the blast furnace cement.
- Strength is uniaxial compressive strength, an index that determines whether or not it adheres to the pile following the subsidence of the ground, and was measured according to Japanese Industrial Standard JIS-A1216 “Soil uniaxial compression test method”.
- the unit volume weight is an index for determining whether underwater construction is possible, and was measured in accordance with the unit volume weight test of Japanese Industrial Standard JIS-A1171 “Testing Method for Polymer Cement Mortar”.
- each of the fillers of each of the present invention examples had a value better than the target value, and the performance of the obtained filler was excellent.
- a comparative example it turned out that it may be less than a target value in any item, and sufficient performance was not acquired.
- the present invention it is possible to provide a filler that can be manufactured at low cost, has excellent fluidity / pumpability and moderate strength, and a ground repair method using the filler.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Soil Sciences (AREA)
- Civil Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Paleontology (AREA)
- Agronomy & Crop Science (AREA)
- Mining & Mineral Resources (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Foundations (AREA)
Abstract
Description
特許文献1の技術は、従来技術より安価に軽量起泡充填材を得られるが、セメント量が1m3あたり100kg程度と量が多いため、コストが高騰するという問題があった。さらに、起泡剤、減水剤及び粘性剤といった多品種の薬品を混合させることは、室内実験レベルでは良い配合結果を示すが、現場施工ではばらつきが大きく、想定どおりの性能を発揮させるのは非常に難しいことから、薬品を多用するには高度な技術が必要となり、施工に手間がかかるという問題があった。
また、鉄鋼スラグ、セメント、水及びベントナイトに加えて、起泡剤を特定量含むことによって、上記気泡量の適正化を図った場合と同様の効果が得られることを見出した。
(1)鉄鋼スラグ100質量部に対し、セメント2~10質量部、水30~100質量部及びベントナイト3~10質量部を含み、気泡量が10~40体積%の範囲である充填材。
さらに、充填材の気泡量について適正化を図ることで、(D)充填材の強度調整及び圧送性の向上が可能となる。
本発明による第1の充填材は、鉄鋼スラグ100質量部に対し、セメント2~10質量部、水30~100質量部及びベントナイト3~10質量部を含み、気泡量が10~40体積%の範囲であることを特徴とする。
本発明による第2の充填材は、鉄鋼スラグ100質量部に対し、セメント2~10質量部、水30~100質量部、ベントナイト3~10質量部、及び、起泡剤0.05~2質量部を含むことを特徴とする。
前記鉄鋼スラグは、モルタルの細骨材等として用いられる材料である。本発明の充填材中に鉄鋼スラグを配合することで、本発明の充填材の低コスト化に寄与する。
前記セメントは、前記鉄鋼スラグ100質量部に対して、2~10質量部混合され、好ましくは4~7質量部混合される。前記セメントの量が2質量部未満の場合、セメントが少なすぎるため、十分な充填材の強度を得ることができず、一方、前記セメントの量が10質量部を超えると、セメントが多すぎるため、硬化速度が速くなることに加えて、製造コストの高騰を招くため、現場での使用が難しくなるからである。
前記水は、前記セメントとの水和反応のために用いられる。前記水は、前記鉄鋼スラグ100質量部に対して、30~100質量部配合され、好ましくは50~80質量部配合される。前記水の量が30質量部未満の場合、施工に必要な流動性を得ることが困難となり、一方、前記水の量が100質量部を超えると水が多くなるため、材料分離を引き起こすことや、充填材の強度が十分に得られないことがあるからである。
前記ベントナイトは、本発明の充填材を構成する材料の分離を抑制すること、及び、充填材の強度が大きくなりすぎることを抑制するために用いられる。前記ベントナイトは、前記鉄鋼スラグ100質量部に対して、3~10質量部混合され、好ましくは4~7質量部混合される。前記ベントナイトの量が3質量部未満の場合、十分に材料分離を抑制することができず、適度な充填材強度を得ることができない。一方、前記ベントナイトの量が10質量部を超えると、粘性が過剰となり流動性が悪くなることや、強度が発現しにくく制御できないことに加えて、材料費がかかるため製造コストが高騰するためである。
なお、本発明で用いられるベントナイトについては、市販のものを使用することができる。
本発明による第1の充填材は、気泡量が10~40体積%の範囲、好ましくは10~30体積%である。その理由としては、充填材中の気泡量を上記範囲とすることで、所望の強度を確保するとともに、圧送するためのパイプ内の摩擦抵抗も低減することができるため、小さな圧力で充填材を圧送することが可能となるからである。ここで、前記気泡量を10~40体積%の範囲としたのは、気泡量が40体積%を超えると、単位体積重量が10kN/m3を下回ることが考えられ、水中での施工では充填材が浮いてしまい、使用することができず、一方、前記気泡量が10体積%を下回ると、フロー値が低下するため、圧送時の圧力も大きくなり、所望の圧送性が得られないからである。
図1からもわかるように、気泡量を10~40体積%の範囲とすることで、所望のフロー値及び単位体積重量が得られることがわかる。
この起泡剤については、界面活性剤の一種で、気泡を発生し、前記鉄鋼スラグやセメント、水等と混合した際に、均質に分散し、材料の分離を抑制する効果を発揮する。前記起泡剤の含有量が0.05質量部未満の場合、充填材の強度が大きくなりすぎることがあり、一方、前記起泡剤の含有量が2質量部を超えると、充填材の単位体積重量が小さくなりすぎることがある。
また、前記起泡剤を用いた発泡については、公知の方法によって行うことができる。例えば、希釈水を用いて前記起泡剤を希釈し、圧縮空気を送り込むことで、所望の倍率に発泡させることができる。具体的には、発泡装置や、ハンドミキサーを用いた攪拌による発泡が挙げられる。
本発明による充填材は、低コストで製造できると共に、優れた流動性・圧送性及び適度な強度を有していることから、基礎下の空洞充填、裏込め注入、地盤強化等に用いることができる。
また、各材料の配合条件によって、モルタルの固結が早期に開始される場合には、遅延剤等をさらに配合することで、硬化時期を制御することも可能である。
そのため、床下充填などの場合は、強度の弱い充填材を適用するのが望ましい。強度は、0.05~1.5N/mm2程度が望ましい。また、圧密が進行中の地盤では圧密促進をしてしまうおそれがあるので、単位体積重量もあまり大き過ぎないほうが望ましく、おおむね10~20kN/m3程度が望ましい。
本発明による地盤の補修方法は、上述した本発明の充填材を用いることを特徴とする。本発明の充填材は、低コストで製造できると共に、優れた流動性・圧送性及び適度な強度を有するため、比較的低コストで、確実な地盤補修を可能とする。ここで、「地盤補修」とは、地上だけでなく、水中も含んだ全ての地盤の補修を意味する。
表1に示す配合で、充填材を作製した。
なお、配合した水砕スラグについては、粒径1mm通過量を50%以上、最大粒径9.5mmのものであり、図2に示す粒径加積曲線を有する。なお、高炉セメントは高炉B種を使用した。
(1)室内試験
また、各実施例及び比較例において作製された充填材の、フロー値、ブリージング率、強度(7日経過時、28日経過時)及び単位体積重量について測定を行い、測定結果を目標値とともに表2に示す。
なお、前記フロー値とは、長距離圧送(200m以上)が可能であり、隙間なく確実に充填できる流動性を示す値のことであり、旧日本道路公団規格JHS A313-1992「エアモルタル及びエアミルクの試験方法」のコンシステンシー試験方法のシリンダー法に準拠して測定した。
ブリージング率とは、施工時の材料分離の度合を示す指標であり、土木学会規格JSCE F522-2007「プレパックドコンクリートの注入モルタルのブリージング率および膨張率試験方法(ポリエチレン袋方法)」に準拠して測定した。
強度とは、一軸圧縮強度であり、地盤の沈下に追従し杭に付着しないかどうかを見極める指標であり、日本工業規格JIS-A1216「土の一軸圧縮試験方法」に準拠して測定した。
単位体積重量は、水中施工が可能かどうかを見極める指標であり、日本工業規格JIS-A1171「ポリマーセメントモルタルの試験方法」の単位容積重量試験に準拠して測定した。
さらに、表1のサンプルNo.1,2,8に示す配合の充填材を、図3に示すような実際の現場で用いることによって充填材の性能を評価した。具体的には、サンプルの充填材を200mの配管によって打設場所までポンプ圧送を行うことができたか、及び、水中施工時に分離することなく打設できたか否かの確認を行い,いずれの配合においても問題なく施工できたことを確認した。
なお、固定プラントから遠距離位置への移送には、アジテート車を使用することとなり、充填材の経時的な変化を調査する必要があるため、モルタルミキサーに充填材を投入し、回転させて2時間後のフロー値についても確認した。その結果、本発明例の各サンプルについては練りあがり直後の値とほぼ同等であり、プラントからの移送には練り返しをおこなえば施工性に問題ないことを確認した。
一方、比較例については、いずれかの項目で目標値を下回ることがあり、十分な性能を得られていないことがわかった。
Claims (5)
- 鉄鋼スラグ100質量部に対し、セメント2~10質量部、水30~100質量部及びベントナイト3~10質量部を含み、
気泡量が10~40体積%の範囲である充填材。 - 鉄鋼スラグ100質量部に対し、セメント2~10質量部、水30~100質量部、ベントナイト3~10質量部、及び、起泡剤0.05~2質量部を含む充填材。
- 前記鉄鋼スラグは、水砕スラグ及び製鋼スラグのうちの少なくとも一種を含む請求項1又は2に記載の充填材。
- 前記鉄鋼スラグは、水砕スラグ及び製鋼スラグからなり、該水砕スラグに対する該製鋼スラグの質量比が0.1~1.5である請求項3に記載の充填材。
- 請求項1~4のいずれかに記載の充填材を用いる地盤の補修方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013541596A JP5862676B2 (ja) | 2011-11-04 | 2012-09-28 | 充填材及び地盤の補修方法 |
KR20147015091A KR20140097293A (ko) | 2011-11-04 | 2012-09-28 | 충전재 및 지반 보수 방법 |
CN201280054109.2A CN103917626A (zh) | 2011-11-04 | 2012-09-28 | 填充材料及地基的修补方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011242734 | 2011-11-04 | ||
JP2011-242734 | 2011-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013065229A1 true WO2013065229A1 (ja) | 2013-05-10 |
Family
ID=48191612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/006249 WO2013065229A1 (ja) | 2011-11-04 | 2012-09-28 | 充填材及び地盤の補修方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5862676B2 (ja) |
KR (1) | KR20140097293A (ja) |
CN (1) | CN103917626A (ja) |
WO (1) | WO2013065229A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103243748A (zh) * | 2013-05-14 | 2013-08-14 | 广东盛瑞土建科技发展有限公司 | 泡沫轻质土在修复建筑物地基沉陷空洞中的应用 |
CN103343539A (zh) * | 2013-07-08 | 2013-10-09 | 赵宝云 | 一种山区路基抢修的方法 |
JP2015098699A (ja) * | 2013-11-19 | 2015-05-28 | 徳倉建設株式会社 | 遅延硬化型流動化処理土及び地下空洞の充填方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58176155A (ja) * | 1982-04-09 | 1983-10-15 | 川崎製鉄株式会社 | 空洞充填材の調製方法 |
JPS58195633A (ja) * | 1982-05-12 | 1983-11-14 | Nippon Kokan Kk <Nkk> | 基礎下空隙充填材として用いるグラウト材料 |
JPH1060470A (ja) * | 1996-08-22 | 1998-03-03 | Mitsubishi Materials Corp | 一粉型徐硬性裏込め材用組成物 |
JPH11124574A (ja) * | 1997-10-07 | 1999-05-11 | Shimoda Gijutsu Kenkyusho:Kk | グラウト材及びグラウト注入工法 |
JP2001064648A (ja) * | 1999-08-27 | 2001-03-13 | Sumitomo Osaka Cement Co Ltd | 可塑性注入材 |
JP2002155277A (ja) * | 2000-11-22 | 2002-05-28 | Sumitomo Osaka Cement Co Ltd | 1液性可塑性注入材 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60101181A (ja) * | 1983-11-08 | 1985-06-05 | Nippon Concrete Kogyo Kk | 基礎用注入液 |
JP4621949B2 (ja) * | 2005-02-03 | 2011-02-02 | ショーボンド建設株式会社 | セメント系充填材 |
JP5190587B2 (ja) * | 2005-08-17 | 2013-04-24 | 強化土エンジニヤリング株式会社 | 空洞充填材 |
JP4610581B2 (ja) * | 2007-06-06 | 2011-01-12 | 強化土エンジニヤリング株式会社 | 地盤強化方法 |
CN101973778B (zh) * | 2010-09-28 | 2013-05-22 | 广东冠生土木工程技术有限公司 | 塑化型气泡混合轻质土 |
-
2012
- 2012-09-28 WO PCT/JP2012/006249 patent/WO2013065229A1/ja active Application Filing
- 2012-09-28 KR KR20147015091A patent/KR20140097293A/ko not_active Application Discontinuation
- 2012-09-28 JP JP2013541596A patent/JP5862676B2/ja active Active
- 2012-09-28 CN CN201280054109.2A patent/CN103917626A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58176155A (ja) * | 1982-04-09 | 1983-10-15 | 川崎製鉄株式会社 | 空洞充填材の調製方法 |
JPS58195633A (ja) * | 1982-05-12 | 1983-11-14 | Nippon Kokan Kk <Nkk> | 基礎下空隙充填材として用いるグラウト材料 |
JPH1060470A (ja) * | 1996-08-22 | 1998-03-03 | Mitsubishi Materials Corp | 一粉型徐硬性裏込め材用組成物 |
JPH11124574A (ja) * | 1997-10-07 | 1999-05-11 | Shimoda Gijutsu Kenkyusho:Kk | グラウト材及びグラウト注入工法 |
JP2001064648A (ja) * | 1999-08-27 | 2001-03-13 | Sumitomo Osaka Cement Co Ltd | 可塑性注入材 |
JP2002155277A (ja) * | 2000-11-22 | 2002-05-28 | Sumitomo Osaka Cement Co Ltd | 1液性可塑性注入材 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103243748A (zh) * | 2013-05-14 | 2013-08-14 | 广东盛瑞土建科技发展有限公司 | 泡沫轻质土在修复建筑物地基沉陷空洞中的应用 |
CN103243748B (zh) * | 2013-05-14 | 2015-03-11 | 广东盛瑞土建科技发展有限公司 | 泡沫轻质土在修复建筑物地基沉陷空洞中的应用 |
CN103343539A (zh) * | 2013-07-08 | 2013-10-09 | 赵宝云 | 一种山区路基抢修的方法 |
CN103343539B (zh) * | 2013-07-08 | 2015-12-23 | 重庆科技学院 | 一种山区路基抢修的方法 |
JP2015098699A (ja) * | 2013-11-19 | 2015-05-28 | 徳倉建設株式会社 | 遅延硬化型流動化処理土及び地下空洞の充填方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20140097293A (ko) | 2014-08-06 |
JPWO2013065229A1 (ja) | 2015-04-02 |
JP5862676B2 (ja) | 2016-02-16 |
CN103917626A (zh) | 2014-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11078117B2 (en) | Thermally-conductive, low strength backfill material | |
US20090158960A1 (en) | Highly workable concrete compositions having minimal bleeding and segregation | |
JP6022747B2 (ja) | 高強度モルタル組成物 | |
Lee et al. | Shear strength and interface friction characteristics of expandable foam grout | |
JP5862676B2 (ja) | 充填材及び地盤の補修方法 | |
JP2011057555A (ja) | ポリマーセメントグラウト材組成物及びグラウト材 | |
JP2004067453A (ja) | 空隙充填材および空隙充填工法 | |
JP2007269609A (ja) | ポリマーセメントグラウト材組成物及びグラウト材 | |
CN114477902A (zh) | 一种土壤固化剂、自密实高流态回填材料及其施工方法 | |
Wu | Soil-based flowable fill for pipeline construction | |
JP2000086320A (ja) | グラウト組成物及びグラウト材用混和材 | |
JP6508526B2 (ja) | 重量流動化処理土 | |
JP2008031638A (ja) | 地中充填材および土構造物の補修工法 | |
JP5664395B2 (ja) | 住宅基礎用構造体の施工方法及びそれを用いて施工される住宅基礎用構造体 | |
JP2012131673A (ja) | 流込成形用繊維補強セメント複合材料及びその製造方法 | |
JP2011236080A (ja) | 中流動コンクリートの製造方法及びその方法にて製造された中流動コンクリート | |
JP7441685B2 (ja) | 流動化処理土及びその製造方法 | |
JP4970547B2 (ja) | 気泡安定液の調整方法と気泡掘削施工法 | |
JP5192186B2 (ja) | コンクリートガラを含むセメント混合物及びその製造方法 | |
JP2024101915A (ja) | 硬化型滑材、及び推進工法 | |
JP4953007B2 (ja) | 可塑性グラウト材の製造方法 | |
JP5002896B2 (ja) | 空隙充填材とその製造方法 | |
JP2649092B2 (ja) | 基礎下空隙充填用気泡モルタル | |
JP4776184B2 (ja) | 地中遮水壁材料の配合方法および地中遮水壁の施工方法 | |
Lam et al. | Experimental Study of the Principal Characteristics of Sustainable Micropile Grout Containing Alternative Sands |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12845898 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013541596 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147015091 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12845898 Country of ref document: EP Kind code of ref document: A1 |