WO2013065229A1 - 充填材及び地盤の補修方法 - Google Patents

充填材及び地盤の補修方法 Download PDF

Info

Publication number
WO2013065229A1
WO2013065229A1 PCT/JP2012/006249 JP2012006249W WO2013065229A1 WO 2013065229 A1 WO2013065229 A1 WO 2013065229A1 JP 2012006249 W JP2012006249 W JP 2012006249W WO 2013065229 A1 WO2013065229 A1 WO 2013065229A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
filler
mass
cement
weight
Prior art date
Application number
PCT/JP2012/006249
Other languages
English (en)
French (fr)
Inventor
林 正宏
靖史 林堂
克佳 中西
英樹 吉武
雅樹 篠原
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2013541596A priority Critical patent/JP5862676B2/ja
Priority to KR20147015091A priority patent/KR20140097293A/ko
Priority to CN201280054109.2A priority patent/CN103917626A/zh
Publication of WO2013065229A1 publication Critical patent/WO2013065229A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/10Cements, e.g. Portland cement
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a filler that can be manufactured at low cost and has excellent fluidity / pumpability and moderate strength, and a ground repair method using the filler.
  • a filler such as micro sand air mortar.
  • the filler is hardened by cement, so improvement is desired in that it is difficult to pump, such as when it takes construction time, and the cost increases due to the use of many materials such as cement. It was.
  • the maximum particle size is 2.380 mm
  • the sieve screen has a 1.190 mm passage rate of 95% or more
  • the sieve screen has a 0.590 mm passage rate of 70% or more
  • the sieve screen has a 0.279 mm passage rate of 40% or more.
  • Adjust the lightweight foaming filler by adding air to the slurry consisting of granulated slag and cement adjusted to a particle size of 15% or more with a sieve mesh of 0.149 mm, and water, adding foaming agent, water reducing agent, viscosity agent. Techniques to do this are disclosed. If this technology is used, it is characterized by good fluidity, light weight, less breathing, and low cost compared to bentonite mortar composed of cement, bentonite, sand and water.
  • Patent Document 2 discloses that the weight ratio of a converter or ingot with a grain size of 13 mm or less is 38 to 65% and the weight ratio of a starch syrup with a particle diameter of 10 mm or less, which is a grout material used as an underfill void filler. Is blended so that the weight ratio of bentonite with a particle size of 1 mm or less is 8-17% and the weight ratio of water is 12-20%, and the unit volume is 1.8-2.8 g / cm 2 . A grout material is disclosed. Since pumping is possible, there is no equipment trouble due to blockage like air mortar, no cement mixing, no short-term self-hardening, and material costs are about 40% lower than air mortar. There is.
  • Patent Document 3 discloses an injection material composed of blast furnace slag, cement, bentonite, and water, and the blending amount of cement is 20 parts by weight or less with respect to 100 parts by weight of blast furnace slag.
  • This injection material has a high initial fluidity, can obtain a desired plasticity within a relatively short time, can reduce manufacturing costs and construction costs, and can save labor in construction. There is.
  • Patent Documents 1 to 3 have the following problems.
  • the technology of Patent Document 1 can obtain a lightweight foaming filler at a lower cost than the prior art, but has a problem that the cost increases because the amount of cement is as large as about 100 kg per 1 m 3 .
  • mixing various types of chemicals such as foaming agents, water reducing agents, and viscosity agents shows good blending results at the laboratory test level. Because it is difficult, a high level of technology is required to use a lot of chemicals, and there is a problem that it takes a lot of work.
  • Patent Document 2 does not contain cement and is not self-hardening in the short term, so that construction troubles are unlikely to occur.
  • there is no alkali stimulator for the converter and water tanks so there is no solidification.
  • the weight per unit volume is as large as 1.8 g / cm 3 or more, which may cause further consolidation settlement.
  • Patent Document 3 Since the technique of Patent Document 3 has a simple configuration of blast furnace slag, cement, bentonite, and water, it can save labor for construction. However, as shown in the example of Patent Document 3, 20 The flow value became less than half of the initial value in minutes, and there was a problem that the curability was too early. In actual sites, there are many cases where placement is stopped due to troubles and the like, and this technology, which cannot secure fluidity to some extent (2 to 4 hours), may be difficult to apply.
  • an object of the present invention is to provide a filler that can be produced at low cost, and has excellent fluidity / pumpability and moderate strength.
  • the inventors of the present invention contain a specific amount of steel slag, cement, water, and bentonite, and are excellent in that the amount of bubbles is in the range of 10 to 40% by volume.
  • the amount of the cement can be reduced, so that it has been found that the manufacturing cost can be reduced and the curing rate can be optimized, and the present invention has been completed.
  • steel slag, cement, water, and bentonite it discovered that the same effect as the case where the optimization of the said bubble amount was achieved by including a specific amount of foaming agents.
  • a filler that contains 2 to 10 parts by weight of cement, 30 to 100 parts by weight of water, and 3 to 10 parts by weight of bentonite with respect to 100 parts by weight of steel slag, and the amount of bubbles is in the range of 10 to 40% by volume.
  • the said steel slag is a filler as described in said (1) or (2) containing at least 1 type of a granulated slag and steelmaking slag.
  • the amount of cement relative to the amount of slag can be reduced compared to the prior art, so (A) slow down the hardening speed and reduce the occurrence of trouble on site (B) it is possible to suppress material separation and to achieve an appropriate strength, and (C) to reduce the total cost. Further, by optimizing the amount of bubbles in the filler, it is possible to adjust the strength of the filler (D) and improve the pumpability.
  • the change in flow value (mm) and unit volume weight (kN / m 3 ) when the amount of bubbles is changed is shown.
  • the particle size accumulation curve of granulated slag is shown.
  • the state of the field construction test in an example is shown typically.
  • the present invention will be specifically described below.
  • the first filler according to the present invention comprises 2 to 10 parts by weight of cement, 30 to 100 parts by weight of water and 3 to 10 parts by weight of bentonite with respect to 100 parts by weight of steel slag, and the amount of bubbles is 10 to 40% by volume. It is a range.
  • the second filler according to the present invention comprises 2 to 10 parts by weight of cement, 30 to 100 parts by weight of water, 3 to 10 parts by weight of bentonite, and 0.05 to 2 parts by weight of a foaming agent for 100 parts by weight of steel slag. It is characterized by including.
  • the steel slag is a material used as a fine aggregate of mortar. Mixing steel slag in the filler of the present invention contributes to the cost reduction of the filler of the present invention.
  • the steel slag preferably contains at least one of granulated slag and steelmaking slag from the viewpoint of having latent hydraulic properties and reducing the amount of cement.
  • the steel slag is composed of granulated slag and steelmaking slag from the standpoint that stronger strength can be expected by mixing different types of slag, and the mass ratio of the steelmaking slag to the granulated slag is 0.1 to 1.5. It is more preferable. When the mass ratio is less than 0.1, there is a risk that reliable strength development may not be possible. On the other hand, when the mass ratio exceeds 1.5, there is a possibility that separation may be easily caused by a weight difference between the granulated slag and the steelmaking slag. .
  • the steel slag preferably has a particle size of 10 mm or less. If too large particle size is mixed, a large pressure is required at the time of pumping, so a particle size of 5 mm or less is more preferable. However, due to the recent improvement in mechanical capacity, the pumping capacity has become larger than before. Even if a slightly larger particle size (about 10 mm) is mixed, it does not cause a big problem.
  • the steel slag when it is granulated slag, it may be hardened due to the latent hydraulic properties over time, but it is crushed by the kneading operation of the mixer and becomes an appropriate size. Not only slag but also granulated slag which has been stored for a long time and hardened to some extent can be applied to the present invention.
  • the weight is heavier than the granulated slag, so the pressure of the pump used for pumping the filler of the present invention needs to be slightly increased.
  • the fluidity is hardly changed, so that there is little influence on the workability of the filler of the present invention.
  • the water content of the steel slag is not particularly limited, and it is possible to obtain an effect as a filler without considering it. Since the filler of the present invention requires the inclusion of water as will be described later, even if the water content of the steel slag is changed by adjusting the water content, the filler is desired as a whole. This is because the water content can be secured.
  • cement The cement is mixed in an amount of 2 to 10 parts by mass, preferably 4 to 7 parts by mass, with respect to 100 parts by mass of the steel slag.
  • amount of the cement is less than 2 parts by mass, the amount of cement is too small to obtain a sufficient filler strength.
  • the amount of the cement exceeds 10 parts by mass, there is too much cement. This is because, in addition to an increase in the curing rate, the manufacturing cost is increased, and it becomes difficult to use on site.
  • the type of cement for example, ordinary Portland cement, blast furnace cement, and the like can be used. It is also possible to use a mixture of a small amount of ordinary Portland cement and blast furnace slag fine powder. This is because a small amount of cement acts as an alkali stimulant, causes a latent hydraulic reaction of slags, and a hardening phenomenon can be expected.
  • the blast furnace slag fine powder also has an effect of suppressing material separation as a powder component together with bentonite.
  • the water is used for a hydration reaction with the cement.
  • the water is blended in an amount of 30 to 100 parts by mass, preferably 50 to 80 parts by mass with respect to 100 parts by mass of the steel slag. If the amount of water is less than 30 parts by mass, it will be difficult to obtain the fluidity required for construction, while if the amount of water exceeds 100 parts by mass, the amount of water will increase, causing material separation or This is because sufficient strength of the filler may not be obtained.
  • the said bentonite is used in order to suppress the isolation
  • the bentonite is mixed in an amount of 3 to 10 parts by mass, preferably 4 to 7 parts by mass, with respect to 100 parts by mass of the steel slag. When the amount of the bentonite is less than 3 parts by mass, the material separation cannot be sufficiently suppressed, and an appropriate filler strength cannot be obtained.
  • the first filler according to the present invention has a bubble amount in the range of 10 to 40% by volume, preferably 10 to 30% by volume.
  • the reason for this is that by setting the amount of bubbles in the filler within the above range, the desired strength can be ensured and the frictional resistance in the pipe for pumping can be reduced. This is because it can be pumped.
  • the amount of bubbles was set in the range of 10 to 40% by volume. If the amount of bubbles exceeds 40% by volume, the unit volume weight may be less than 10kN / m 3. The material floats and cannot be used. On the other hand, if the amount of bubbles is less than 10% by volume, the flow value decreases, so the pressure at the time of pumping increases and the desired pumpability cannot be obtained. It is.
  • FIG. 1 shows the flow value (mm) when the amount of bubbles is changed in a filler containing 6.5 parts by mass of cement, 72 parts by mass of water and 6.5 parts by mass of bentonite with respect to 100 parts by mass of steel slag. It shows the change in unit volume weight (kN / m 3 ).
  • the bar graph indicates the flow value
  • the line graph indicates the unit volume weight.
  • a desired flow value and unit volume weight can be obtained by setting the amount of bubbles in the range of 10 to 40% by volume.
  • the amount of bubbles in the filler is determined in accordance with, for example, the cylinder method of the air amount test method of the former Japan Highway Public Corporation Standard JHS A313-1992 “Testing Method of Air Mortar and Air Milk”. Specifically, 200 ml of sample is taken into a 500 ml graduated cylinder, 200 ml of water is added, and the graduated cylinder is sufficiently shaken to stand. After separation of bubbles, weigh 100 ml of pharmacopoeia alcohol, gradually drop on the bubbles to defoam, completely defoam, then read the total amount of sample, added water and alcohol on the scale of the graduated cylinder. Calculate the air volume (bubble volume) using the formula. Alternatively, the unit volume weight is measured, and the amount of bubbles can be calculated by the following formula.
  • the second filler according to the present invention is contained in an amount of 0.05 to 2 parts by mass, preferably 0.08 to 1.2 parts by mass with respect to 100 parts by mass of the steel slag.
  • This foaming agent is a kind of surfactant that generates bubbles and is homogeneously dispersed when mixed with the steel slag, cement, water, etc., and exhibits the effect of suppressing material separation.
  • the content of the foaming agent is less than 0.05 parts by mass, the strength of the filler may be too high, while when the content of the foaming agent exceeds 2 parts by mass, the unit volume weight of the filler May become too small.
  • the type of foaming agent is not particularly limited. A commercially available product can be used.
  • the foaming using the foaming agent can be performed by a known method.
  • the foaming agent can be foamed to a desired magnification by diluting the foaming agent with dilution water and feeding compressed air. Specifically, foaming by stirring using a foaming apparatus or a hand mixer is mentioned.
  • the filler according to the present invention can be manufactured at a low cost and has excellent fluidity / pumpability and moderate strength, so that it can be used for filling the cavity under the foundation, backfill injection, ground reinforcement, etc. it can.
  • the mortar is a material for constituting the filler according to the present invention by mixing with the foaming agent, and is obtained by stirring and mixing the steel slag, the cement, the water, and the bentonite.
  • the stirring and mixing conditions are not particularly limited.
  • bentonite and water may be mixed first, and then steel slag and cement may be mixed, or all materials may be mixed simultaneously.
  • a fixed plant or a mobile plant may be used.
  • blending which increases the cement amount in the said mortar and reduces bentonite.
  • the breathing becomes large it can be suppressed by appropriately balancing the amount of powder.
  • the curing time can be controlled by further blending a retarder or the like.
  • the required value of the strength of the filler according to the present invention varies depending on the application destination. In the case of a cavity under the floor, it will be filled around the pile, but if the strength is high, the adhesion will also increase, and the pile and filler will be integrated. When ground subsidence occurs due to further consolidation or liquefaction, if it is integrated, it will not follow the ground, and hard filler will not be able to excavate, so it will not be possible to fill the cavity between the filler and the ground . When the strength is high, maintenance of incidental facilities such as piping becomes difficult. Furthermore, since the mass of the pile head increases, the pile body may be damaged by the inertial force during the earthquake.
  • the strength is preferably about 0.05 to 1.5 N / mm 2 .
  • the unit volume weight is not too large, and is generally about 10 to 20 kN / m 3 .
  • the quality of the filler of the present invention can be judged by the flow value after kneading, breathing, and unit volume weight.
  • the flow value is preferably 200 mm or more.
  • the breathing rate is preferably determined using 5% or less as a guide.
  • the unit volume weight of the filler of the present invention is set to 10 kN / m 3 or more so that it can be reliably filled during underwater construction.
  • the steel slag may show a behavior such as expansion after hardening, it contains air generated by the foaming agent described above, so that it plays a cushioning role and has a negative effect on the structure. Will not bring. Furthermore, this air has the effect of further improving fluidity and pumpability.
  • ground repair method The ground repair method according to the present invention is characterized by using the above-described filler of the present invention.
  • the filler of the present invention can be manufactured at low cost, and has excellent fluidity / pumpability and moderate strength, and therefore enables reliable ground repair at a relatively low cost.
  • ground repair means repair of all ground including not only the ground but also water.
  • the filler is pumped by a pump, but the method of pumping is not particularly limited, and pumping is performed depending on the conditions normally used. It can be performed.
  • Examples 1 to 5 Fillers were prepared with the formulations shown in Table 1. Note that the blended granulated slag has a particle size of 1 mm passing through 50% or more and a maximum particle size of 9.5 mm, and has a particle size accumulation curve shown in FIG. Blast furnace type B was used as the blast furnace cement.
  • Strength is uniaxial compressive strength, an index that determines whether or not it adheres to the pile following the subsidence of the ground, and was measured according to Japanese Industrial Standard JIS-A1216 “Soil uniaxial compression test method”.
  • the unit volume weight is an index for determining whether underwater construction is possible, and was measured in accordance with the unit volume weight test of Japanese Industrial Standard JIS-A1171 “Testing Method for Polymer Cement Mortar”.
  • each of the fillers of each of the present invention examples had a value better than the target value, and the performance of the obtained filler was excellent.
  • a comparative example it turned out that it may be less than a target value in any item, and sufficient performance was not acquired.
  • the present invention it is possible to provide a filler that can be manufactured at low cost, has excellent fluidity / pumpability and moderate strength, and a ground repair method using the filler.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Soil Sciences (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Paleontology (AREA)
  • Agronomy & Crop Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Foundations (AREA)

Abstract

 低コストで製造できると共に、優れた流動性・圧送性及び適度な強度を有する充填材、並びに、該充填材を用いた地盤の補修方法を提供する。 鉄鋼スラグ100質量部に対し、セメント2~10質量部、水30~100質量部及びベントナイト3~10質量部を含み、気泡量が10~40体積%の範囲であることを特徴とする。

Description

充填材及び地盤の補修方法
 本発明は、低コストで製造できると共に、優れた流動性・圧送性及び適度な強度を有する充填材、並びに、該充填材を用いた地盤の補修方法に関するものである。
 地盤の圧密沈下や地震に伴い発生する液状化によって、表層地盤の沈下、道路の陥没が起きたり、建物の基礎と地盤の間に空洞(空隙とも称する。)ができることで、土間コンクリート床に亀裂や陥没が発生するなど問題が生じている。
 上述の問題を解決する手段として、ミクロサンドエアモルタルなどの充填材を用いることが挙げられる。しかしながら、充填材については、セメントによる硬化が速いため、施工時間がかかる場合など圧送が困難となる点や、セメント等の材料を多く使用するためにコストが高騰するという点について改善が望まれていた。加えて、天然の砂よりもリサイクル材料を用いる方が、地球環境保護やコスト削減の点から有用であると考えられており、天然砂に代えて鉄鋼スラグ等を採用した充填材が提案されている。
 スラグを利用した充填材として、例えば特許文献1には、最大粒径2.380mm、ふるい目1.190mm通過量95%以上、ふるい目0.590mm通過量70%以上、ふるい目0.279mm通過量40%以上、ふるい目0.149mm通過量15%以上に粒度調整した水砕スラグとセメント、水からなるスラリーに起泡剤、減水剤、粘性剤を添加して空気を加えることで軽量起泡充填材を調整する技術が開示されている。この技術を用いれば、セメント、ベントナイト、砂及び水からなるベントナイトモルタルなどに比べて、流動性がよく、軽量で、ブリージングが少なく、安価であるという特徴がある。
 また、特許文献2には、基礎下空隙充填材として用いるグラウト材料で、粒径13mm以下の転炉滓又は造塊滓の重量比が38~65%、粒径10mm以下の水滓の重量比が16~29%、粒径1mm以下のベントナイトの重量比が8~17%、及び水の重量比が12~20%と配合し、単位体積が1.8~2.8g/cm2となるようにしたグラウト材料が開示されている。ポンプによる圧送が可能となるため、エアーモルタルのような閉塞による機器トラブルがなく、セメント混入がないことから短期的自硬性がなく、エアーモルタルに比べて材料費が約4割程度低くなるという特徴がある。
 さらに、特許文献3には、高炉スラグ、セメント、ベントナイト及び水で構成し、高炉スラグ100重量部に対し、セメントの配合量が20重量部以下である注入材が開示されている。この注入材は、初期の流動性が高く、比較的短時間内に所望の可塑性を得ることができ、製造コスト及び施工コストを低下させることができ、また施工の省力化も可能となるという特徴がある。
特公昭63-61355号公報 特開昭58-195633号公報 特開2002-155277号公報
 しかしながら、特許文献1~3の技術には、以下の問題があった。
 特許文献1の技術は、従来技術より安価に軽量起泡充填材を得られるが、セメント量が1m3あたり100kg程度と量が多いため、コストが高騰するという問題があった。さらに、起泡剤、減水剤及び粘性剤といった多品種の薬品を混合させることは、室内実験レベルでは良い配合結果を示すが、現場施工ではばらつきが大きく、想定どおりの性能を発揮させるのは非常に難しいことから、薬品を多用するには高度な技術が必要となり、施工に手間がかかるという問題があった。
 特許文献2の技術は、セメントを混入しておらず短期的に自硬性がないため施工トラブルが発生しにくいが、転炉滓と水滓に対してアルカリ刺激剤が無いことから、固化しない場合もあり、周囲地盤よりも弱いグラウト材になるおそれがあった。さらに、単位体積あたりの重量が1.8g/cm3以上と大きく、さらなる圧密沈下を引き起こすおそれがあった。
 特許文献3の技術は、高炉スラグ、セメント、ベントナイト及び水という単純な構成であることから、施工の省力化を図ることはできるが、特許文献3の実施例に示されているように、20分でフロー値が初期の半分以下となり、硬化性が早すぎるという問題があった。実際の現場では、トラブルなどによって打設が止まる場合も多々あることから、流動性がある程度(2~4時間)確保できない本技術は、適用が困難となるおそれがあった。
 以上の問題を鑑み、本発明は、低コストで製造できると共に、優れた流動性・圧送性及び適度な強度を有する充填材を提供することを目的とする。
 本発明者らは、上記目的を達成すべく検討を重ねた結果、鉄鋼スラグ、セメント、水及びベントナイトを特定量含有するとともに、気泡量を10~40体積%の範囲とすることによって、優れた流動性及び圧送性を実現できることに加え、前記セメントの量を低減できるため、製造コストの低減、硬化速度の最適化を図れることを見出し、本発明を完成するに到った。
 また、鉄鋼スラグ、セメント、水及びベントナイトに加えて、起泡剤を特定量含むことによって、上記気泡量の適正化を図った場合と同様の効果が得られることを見出した。
 本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。
(1)鉄鋼スラグ100質量部に対し、セメント2~10質量部、水30~100質量部及びベントナイト3~10質量部を含み、気泡量が10~40体積%の範囲である充填材。
(2)鉄鋼スラグ100質量部に対し、セメント2~10質量部、水30~100質量部、ベントナイト3~10質量部、及び、起泡剤0.05~2質量部を含む充填材。
(3)前記鉄鋼スラグは、水砕スラグ及び製鋼スラグのうちの少なくとも一種を含む上記(1)又は(2)に記載の充填材。
(4)前記鉄鋼スラグは、水砕スラグ及び製鋼スラグからなり、該水砕スラグに対する該製鋼スラグの質量比が0.1~1.5である上記(3)に記載の充填材。
(5)上記(1)~(4)のいずれかに記載の充填材を用いる地盤の補修方法。
 本発明によれば、鉄鋼スラグとベントナイトの量を調整することで、スラグ量に対するセメント量を従来技術に比べて減らすことができるため、(A)硬化速度を遅らせ、現場でのトラブル発生を低減すること、(B)材料分離を抑えて適度な強度発現を可能とすること、及び、(C)トータルコストを低減する、ことが可能となる。
 さらに、充填材の気泡量について適正化を図ることで、(D)充填材の強度調整及び圧送性の向上が可能となる。
気泡量を変化させた場合の、フロー値(mm)及び単位体積重量(kN/m3)の変化を示したものである。 水砕スラグの粒径加積曲線を示したものである。 実施例における現場施工試験の状態を模式的に示したものである。
 以下、本発明を具体的に説明する。
 本発明による第1の充填材は、鉄鋼スラグ100質量部に対し、セメント2~10質量部、水30~100質量部及びベントナイト3~10質量部を含み、気泡量が10~40体積%の範囲であることを特徴とする。
 本発明による第2の充填材は、鉄鋼スラグ100質量部に対し、セメント2~10質量部、水30~100質量部、ベントナイト3~10質量部、及び、起泡剤0.05~2質量部を含むことを特徴とする。
(鉄鋼スラグ)
 前記鉄鋼スラグは、モルタルの細骨材等として用いられる材料である。本発明の充填材中に鉄鋼スラグを配合することで、本発明の充填材の低コスト化に寄与する。
 前記鉄鋼スラグについては、潜在水硬性を有し、セメント量を削減できる点から、水砕スラグ及び製鋼スラグの内の少なくとも一種を含むことが好ましい。
 また、前記鉄鋼スラグは、異種スラグの混合により、より強固な強度発現が期待できる点から、水砕スラグ及び製鋼スラグからなり、該水砕スラグに対する該製鋼スラグの質量比が0.1~1.5であることがより好ましい。前記質量比が0.1未満の場合、確実な強度発現が不可となるおそれがあり、一方、前記質量比が1.5を超えると、水砕スラグと製鋼のスラグの重量差で分離しやすくなるおそれがある。
 さらに、前記鉄鋼スラグは、粒径10mm以下のものが好ましい。あまり大きな粒径が混入するとポンプ圧送時に大きな圧力が必要になるので、粒径5mm以下のものがより好ましいが、近年の機械能力の向上により、従来に比べればポンプ圧送能力は大きくなっているため、多少大きな粒径(10mm程度)が混入しても大きな問題とはならない。
 なお、前記鉄鋼スラグが水砕スラグの場合、時間が経過すると潜在水硬性により固まることも考えられるが、ミキサーの混練作業で砕けて適度な大きさになるので、製造して間もない水砕スラグだけでなく、長期保存されてある程度固まった水砕スラグでも本発明への適用は可能である。
 また、前記鉄鋼スラグが製鋼スラグの場合、水砕スラグより重量が重くなるため、本発明の充填材を圧送するために用いるポンプの圧力は多少大きくする必要がある。ただし、その場合も流動性はほとんど変わらないため、本発明の充填材の施工性に影響は少ない。
 なお、前記鉄鋼スラグの含水量については、特に限定はされず、考慮することなく充填材としての効果を得ることが可能である。本発明の充填材は、後述するように水の含有を必須とするため、水の含有量を調整することで、前記鉄鋼スラグの含水量が変化した場合であっても、充填材全体として所望の含水量を確保できるためである。
(セメント)
 前記セメントは、前記鉄鋼スラグ100質量部に対して、2~10質量部混合され、好ましくは4~7質量部混合される。前記セメントの量が2質量部未満の場合、セメントが少なすぎるため、十分な充填材の強度を得ることができず、一方、前記セメントの量が10質量部を超えると、セメントが多すぎるため、硬化速度が速くなることに加えて、製造コストの高騰を招くため、現場での使用が難しくなるからである。
 また、前記セメントの種類については、例えば、普通ポルトランドセメント、高炉セメント等を用いることができる。また、少量の普通ポルトランドセメントと高炉スラグ微粉末との混合物を用いることもできる。少量のセメントは、アルカリ刺激剤として作用し、スラグ類の潜在水硬性反応を起こし、硬化現象が期待できるからである。前記高炉スラグ微粉末も、粉末分としてベントナイトとともに材料分離を抑制する効果もある。
(水)
 前記水は、前記セメントとの水和反応のために用いられる。前記水は、前記鉄鋼スラグ100質量部に対して、30~100質量部配合され、好ましくは50~80質量部配合される。前記水の量が30質量部未満の場合、施工に必要な流動性を得ることが困難となり、一方、前記水の量が100質量部を超えると水が多くなるため、材料分離を引き起こすことや、充填材の強度が十分に得られないことがあるからである。
(ベントナイト)
 前記ベントナイトは、本発明の充填材を構成する材料の分離を抑制すること、及び、充填材の強度が大きくなりすぎることを抑制するために用いられる。前記ベントナイトは、前記鉄鋼スラグ100質量部に対して、3~10質量部混合され、好ましくは4~7質量部混合される。前記ベントナイトの量が3質量部未満の場合、十分に材料分離を抑制することができず、適度な充填材強度を得ることができない。一方、前記ベントナイトの量が10質量部を超えると、粘性が過剰となり流動性が悪くなることや、強度が発現しにくく制御できないことに加えて、材料費がかかるため製造コストが高騰するためである。
 なお、本発明で用いられるベントナイトについては、市販のものを使用することができる。
(気泡量、起泡剤)
 本発明による第1の充填材は、気泡量が10~40体積%の範囲、好ましくは10~30体積%である。その理由としては、充填材中の気泡量を上記範囲とすることで、所望の強度を確保するとともに、圧送するためのパイプ内の摩擦抵抗も低減することができるため、小さな圧力で充填材を圧送することが可能となるからである。ここで、前記気泡量を10~40体積%の範囲としたのは、気泡量が40体積%を超えると、単位体積重量が10kN/m3を下回ることが考えられ、水中での施工では充填材が浮いてしまい、使用することができず、一方、前記気泡量が10体積%を下回ると、フロー値が低下するため、圧送時の圧力も大きくなり、所望の圧送性が得られないからである。
 ここで、図1は、鉄鋼スラグ100質量部に対し、セメント6.5質量部、水72質量部及びベントナイト6.5質量部を含む充填材において、気泡量を変化させた場合の、フロー値(mm)及び単位体積重量(kN/m3)の変化を示したものである。図1では、棒グラフがフロー値、折れ線グラフが単位体積重量を示す。
 図1からもわかるように、気泡量を10~40体積%の範囲とすることで、所望のフロー値及び単位体積重量が得られることがわかる。
 ここで、充填材中の気泡量は、例えば、旧日本道路公団規格JHS A313-1992「エアモルタル及びエアミルクの試験方法」の空気量試験方法のシリンダー法に準拠して行われる。具体的には、500mlのメスシリンダーに試料200mlを取り、水200mlを加えた後、十分にメスシリンダーを振って静置する。気泡分離後、局方アルコール100mlを計量し、気泡の上に徐々に滴下して消泡し、完全に消泡した後、試料、加えた水及びアルコールの全量をメスシリンダーの目盛りで読み取り、下記式により空気量(気泡量)を算定する。
Figure JPOXMLDOC01-appb-M000001
または、単位体積重量を測定し、以下の式によって気泡量を算定することができる。
Figure JPOXMLDOC01-appb-M000002
 また、本発明による第2の充填材は、前記鉄鋼スラグ100質量部に対して、0.05~2質量部含有し、好ましくは0.08~1.2質量部含有する。
 この起泡剤については、界面活性剤の一種で、気泡を発生し、前記鉄鋼スラグやセメント、水等と混合した際に、均質に分散し、材料の分離を抑制する効果を発揮する。前記起泡剤の含有量が0.05質量部未満の場合、充填材の強度が大きくなりすぎることがあり、一方、前記起泡剤の含有量が2質量部を超えると、充填材の単位体積重量が小さくなりすぎることがある。
 なお、前記起泡剤の種類については、特に限定はしない。市販されているものを使用することができる。
 また、前記起泡剤を用いた発泡については、公知の方法によって行うことができる。例えば、希釈水を用いて前記起泡剤を希釈し、圧縮空気を送り込むことで、所望の倍率に発泡させることができる。具体的には、発泡装置や、ハンドミキサーを用いた攪拌による発泡が挙げられる。
(充填材)
 本発明による充填材は、低コストで製造できると共に、優れた流動性・圧送性及び適度な強度を有していることから、基礎下の空洞充填、裏込め注入、地盤強化等に用いることができる。
 なお、上述した、鉄鋼スラグ、セメント、水及びベントナイトについては、例えば、モルタルとして用いられる。モルタルは、前記起泡剤と混合して、本発明による充填材を構成するための材料であり、前記鉄鋼スラグと、前記セメントと、前記水と、前記ベントナイトとを攪拌混合してなる。攪拌混合の条件については、特に限定はされず、例えば、ベントナイトと水を先に混ぜてから鉄鋼スラグとセメントを混合しても良いし、全部の材料を同時に混合することも可能であるが、品質を管理する上ではバッチ式のミキサーを用いて攪拌混合することが望ましい。また、固定プラントを用いても、移動式プラントを用いても構わない。
 なお、本発明の充填材の適用先に高い強度が要求される場合には、前記モルタル中のセメント量を増やし、ベントナイトを減らす配合とする。ブリージングが大きくなる場合は、粉末分の量を適度にバランスさせることにより、抑止することができる。
 また、各材料の配合条件によって、モルタルの固結が早期に開始される場合には、遅延剤等をさらに配合することで、硬化時期を制御することも可能である。
 本発明による充填材の強度は、適用先によって要求値が異なる。床下の空洞の場合、杭周囲に充填されることとなるが、強度が高いと付着力も大きくなり、杭と充填材が一体化することになる。さらなる圧密沈下や液状化による地盤の沈下が発生したとき、一体化していると地盤に追随しなくなり、硬い充填材は掘削が困難となるため、充填材と地盤の間の空洞に充填ができなくなる。強度が高いと配管などの付帯施設のメンテナンスも困難となる。さらに、杭頭部の質量が増すので、地震時の慣性力で杭体を破損しかねない。
 そのため、床下充填などの場合は、強度の弱い充填材を適用するのが望ましい。強度は、0.05~1.5N/mm2程度が望ましい。また、圧密が進行中の地盤では圧密促進をしてしまうおそれがあるので、単位体積重量もあまり大き過ぎないほうが望ましく、おおむね10~20kN/m3程度が望ましい。
 さらに、本発明の充填材の良否の判定は、練りあがり後のフロー値、ブリージング、単位体積重量によって行うことができる。200m程度の圧送を考えた場合、フロー値200mm以上であることが好ましい。前記ブリージング率は5%以下を目安として判断するのが良い。
 床下充填などの地中の空間では、地下水や雨水が混入して水がたまっていることがある。そこで、本発明の充填材の単位体積重量を、10kN/m3以上となるようにすることで、水中施工時に確実に充填できるようにする。
 なお、前記鉄鋼スラグは硬化後、膨張などの挙動を示す場合があるが、前述した起泡剤により生成したエアーを含んでいるので、それがクッション的な役割を果たし、構造物へ悪い影響をもたらすことはない。さらに、このエアーは、流動性や圧送性をさらに改善する効果もある。
(地盤の補修方法)
 本発明による地盤の補修方法は、上述した本発明の充填材を用いることを特徴とする。本発明の充填材は、低コストで製造できると共に、優れた流動性・圧送性及び適度な強度を有するため、比較的低コストで、確実な地盤補修を可能とする。ここで、「地盤補修」とは、地上だけでなく、水中も含んだ全ての地盤の補修を意味する。
 また、本発明の充填材を用いて、空洞充填、裏込め注入、地盤強化を行う場合、充填材はポンプにより圧送されるが、圧送の方法については特に限定されず、通常用いられる条件によって圧送を行うことができる。
 次に、実施例および比較例により本発明の効果を説明するが、本実施例はあくまで本発明を説明する一例に過ぎず、本発明を限定するものではない。
<サンプル1~5>
 表1に示す配合で、充填材を作製した。
 なお、配合した水砕スラグについては、粒径1mm通過量を50%以上、最大粒径9.5mmのものであり、図2に示す粒径加積曲線を有する。なお、高炉セメントは高炉B種を使用した。
Figure JPOXMLDOC01-appb-T000001
<評価>
(1)室内試験
 また、各実施例及び比較例において作製された充填材の、フロー値、ブリージング率、強度(7日経過時、28日経過時)及び単位体積重量について測定を行い、測定結果を目標値とともに表2に示す。
 なお、前記フロー値とは、長距離圧送(200m以上)が可能であり、隙間なく確実に充填できる流動性を示す値のことであり、旧日本道路公団規格JHS A313-1992「エアモルタル及びエアミルクの試験方法」のコンシステンシー試験方法のシリンダー法に準拠して測定した。
 ブリージング率とは、施工時の材料分離の度合を示す指標であり、土木学会規格JSCE F522-2007「プレパックドコンクリートの注入モルタルのブリージング率および膨張率試験方法(ポリエチレン袋方法)」に準拠して測定した。
 強度とは、一軸圧縮強度であり、地盤の沈下に追従し杭に付着しないかどうかを見極める指標であり、日本工業規格JIS-A1216「土の一軸圧縮試験方法」に準拠して測定した。
 単位体積重量は、水中施工が可能かどうかを見極める指標であり、日本工業規格JIS-A1171「ポリマーセメントモルタルの試験方法」の単位容積重量試験に準拠して測定した。
(2)施工試験
 さらに、表1のサンプルNo.1,2,8に示す配合の充填材を、図3に示すような実際の現場で用いることによって充填材の性能を評価した。具体的には、サンプルの充填材を200mの配管によって打設場所までポンプ圧送を行うことができたか、及び、水中施工時に分離することなく打設できたか否かの確認を行い,いずれの配合においても問題なく施工できたことを確認した。
 なお、固定プラントから遠距離位置への移送には、アジテート車を使用することとなり、充填材の経時的な変化を調査する必要があるため、モルタルミキサーに充填材を投入し、回転させて2時間後のフロー値についても確認した。その結果、本発明例の各サンプルについては練りあがり直後の値とほぼ同等であり、プラントからの移送には練り返しをおこなえば施工性に問題ないことを確認した。
Figure JPOXMLDOC01-appb-T000002
 室内試験及び施工試験の結果、各本発明例の充填材については、いずれも目標値よりも良好な値となっており、得られた充填材の性能が優れることがわかった。
 一方、比較例については、いずれかの項目で目標値を下回ることがあり、十分な性能を得られていないことがわかった。
 本発明によれば、低コストで製造できると共に、優れた流動性・圧送性及び適度な強度を有する充填材、並びに、該充填材を用いた地盤の補修方法の提供が可能となる。

Claims (5)

  1.  鉄鋼スラグ100質量部に対し、セメント2~10質量部、水30~100質量部及びベントナイト3~10質量部を含み、
     気泡量が10~40体積%の範囲である充填材。
  2.  鉄鋼スラグ100質量部に対し、セメント2~10質量部、水30~100質量部、ベントナイト3~10質量部、及び、起泡剤0.05~2質量部を含む充填材。
  3.  前記鉄鋼スラグは、水砕スラグ及び製鋼スラグのうちの少なくとも一種を含む請求項1又は2に記載の充填材。
  4.  前記鉄鋼スラグは、水砕スラグ及び製鋼スラグからなり、該水砕スラグに対する該製鋼スラグの質量比が0.1~1.5である請求項3に記載の充填材。
  5.  請求項1~4のいずれかに記載の充填材を用いる地盤の補修方法。
     
PCT/JP2012/006249 2011-11-04 2012-09-28 充填材及び地盤の補修方法 WO2013065229A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013541596A JP5862676B2 (ja) 2011-11-04 2012-09-28 充填材及び地盤の補修方法
KR20147015091A KR20140097293A (ko) 2011-11-04 2012-09-28 충전재 및 지반 보수 방법
CN201280054109.2A CN103917626A (zh) 2011-11-04 2012-09-28 填充材料及地基的修补方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011242734 2011-11-04
JP2011-242734 2011-11-04

Publications (1)

Publication Number Publication Date
WO2013065229A1 true WO2013065229A1 (ja) 2013-05-10

Family

ID=48191612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006249 WO2013065229A1 (ja) 2011-11-04 2012-09-28 充填材及び地盤の補修方法

Country Status (4)

Country Link
JP (1) JP5862676B2 (ja)
KR (1) KR20140097293A (ja)
CN (1) CN103917626A (ja)
WO (1) WO2013065229A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243748A (zh) * 2013-05-14 2013-08-14 广东盛瑞土建科技发展有限公司 泡沫轻质土在修复建筑物地基沉陷空洞中的应用
CN103343539A (zh) * 2013-07-08 2013-10-09 赵宝云 一种山区路基抢修的方法
JP2015098699A (ja) * 2013-11-19 2015-05-28 徳倉建設株式会社 遅延硬化型流動化処理土及び地下空洞の充填方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176155A (ja) * 1982-04-09 1983-10-15 川崎製鉄株式会社 空洞充填材の調製方法
JPS58195633A (ja) * 1982-05-12 1983-11-14 Nippon Kokan Kk <Nkk> 基礎下空隙充填材として用いるグラウト材料
JPH1060470A (ja) * 1996-08-22 1998-03-03 Mitsubishi Materials Corp 一粉型徐硬性裏込め材用組成物
JPH11124574A (ja) * 1997-10-07 1999-05-11 Shimoda Gijutsu Kenkyusho:Kk グラウト材及びグラウト注入工法
JP2001064648A (ja) * 1999-08-27 2001-03-13 Sumitomo Osaka Cement Co Ltd 可塑性注入材
JP2002155277A (ja) * 2000-11-22 2002-05-28 Sumitomo Osaka Cement Co Ltd 1液性可塑性注入材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101181A (ja) * 1983-11-08 1985-06-05 Nippon Concrete Kogyo Kk 基礎用注入液
JP4621949B2 (ja) * 2005-02-03 2011-02-02 ショーボンド建設株式会社 セメント系充填材
JP5190587B2 (ja) * 2005-08-17 2013-04-24 強化土エンジニヤリング株式会社 空洞充填材
JP4610581B2 (ja) * 2007-06-06 2011-01-12 強化土エンジニヤリング株式会社 地盤強化方法
CN101973778B (zh) * 2010-09-28 2013-05-22 广东冠生土木工程技术有限公司 塑化型气泡混合轻质土

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176155A (ja) * 1982-04-09 1983-10-15 川崎製鉄株式会社 空洞充填材の調製方法
JPS58195633A (ja) * 1982-05-12 1983-11-14 Nippon Kokan Kk <Nkk> 基礎下空隙充填材として用いるグラウト材料
JPH1060470A (ja) * 1996-08-22 1998-03-03 Mitsubishi Materials Corp 一粉型徐硬性裏込め材用組成物
JPH11124574A (ja) * 1997-10-07 1999-05-11 Shimoda Gijutsu Kenkyusho:Kk グラウト材及びグラウト注入工法
JP2001064648A (ja) * 1999-08-27 2001-03-13 Sumitomo Osaka Cement Co Ltd 可塑性注入材
JP2002155277A (ja) * 2000-11-22 2002-05-28 Sumitomo Osaka Cement Co Ltd 1液性可塑性注入材

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243748A (zh) * 2013-05-14 2013-08-14 广东盛瑞土建科技发展有限公司 泡沫轻质土在修复建筑物地基沉陷空洞中的应用
CN103243748B (zh) * 2013-05-14 2015-03-11 广东盛瑞土建科技发展有限公司 泡沫轻质土在修复建筑物地基沉陷空洞中的应用
CN103343539A (zh) * 2013-07-08 2013-10-09 赵宝云 一种山区路基抢修的方法
CN103343539B (zh) * 2013-07-08 2015-12-23 重庆科技学院 一种山区路基抢修的方法
JP2015098699A (ja) * 2013-11-19 2015-05-28 徳倉建設株式会社 遅延硬化型流動化処理土及び地下空洞の充填方法

Also Published As

Publication number Publication date
KR20140097293A (ko) 2014-08-06
JPWO2013065229A1 (ja) 2015-04-02
JP5862676B2 (ja) 2016-02-16
CN103917626A (zh) 2014-07-09

Similar Documents

Publication Publication Date Title
US11078117B2 (en) Thermally-conductive, low strength backfill material
US20090158960A1 (en) Highly workable concrete compositions having minimal bleeding and segregation
JP6022747B2 (ja) 高強度モルタル組成物
Lee et al. Shear strength and interface friction characteristics of expandable foam grout
JP5862676B2 (ja) 充填材及び地盤の補修方法
JP2011057555A (ja) ポリマーセメントグラウト材組成物及びグラウト材
JP2004067453A (ja) 空隙充填材および空隙充填工法
JP2007269609A (ja) ポリマーセメントグラウト材組成物及びグラウト材
CN114477902A (zh) 一种土壤固化剂、自密实高流态回填材料及其施工方法
Wu Soil-based flowable fill for pipeline construction
JP2000086320A (ja) グラウト組成物及びグラウト材用混和材
JP6508526B2 (ja) 重量流動化処理土
JP2008031638A (ja) 地中充填材および土構造物の補修工法
JP5664395B2 (ja) 住宅基礎用構造体の施工方法及びそれを用いて施工される住宅基礎用構造体
JP2012131673A (ja) 流込成形用繊維補強セメント複合材料及びその製造方法
JP2011236080A (ja) 中流動コンクリートの製造方法及びその方法にて製造された中流動コンクリート
JP7441685B2 (ja) 流動化処理土及びその製造方法
JP4970547B2 (ja) 気泡安定液の調整方法と気泡掘削施工法
JP5192186B2 (ja) コンクリートガラを含むセメント混合物及びその製造方法
JP2024101915A (ja) 硬化型滑材、及び推進工法
JP4953007B2 (ja) 可塑性グラウト材の製造方法
JP5002896B2 (ja) 空隙充填材とその製造方法
JP2649092B2 (ja) 基礎下空隙充填用気泡モルタル
JP4776184B2 (ja) 地中遮水壁材料の配合方法および地中遮水壁の施工方法
Lam et al. Experimental Study of the Principal Characteristics of Sustainable Micropile Grout Containing Alternative Sands

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541596

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147015091

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12845898

Country of ref document: EP

Kind code of ref document: A1