WO2013063915A1 - 一种移动通讯终端 - Google Patents

一种移动通讯终端 Download PDF

Info

Publication number
WO2013063915A1
WO2013063915A1 PCT/CN2012/075587 CN2012075587W WO2013063915A1 WO 2013063915 A1 WO2013063915 A1 WO 2013063915A1 CN 2012075587 W CN2012075587 W CN 2012075587W WO 2013063915 A1 WO2013063915 A1 WO 2013063915A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
port
antenna
radio frequency
transmitted
Prior art date
Application number
PCT/CN2012/075587
Other languages
English (en)
French (fr)
Inventor
白剑
Original Assignee
惠州Tcl移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州Tcl移动通信有限公司 filed Critical 惠州Tcl移动通信有限公司
Priority to US14/123,218 priority Critical patent/US9172420B2/en
Priority to EP12844740.6A priority patent/EP2775781B1/en
Priority to ES12844740T priority patent/ES2714695T3/es
Publication of WO2013063915A1 publication Critical patent/WO2013063915A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a mobile communication terminal.
  • FDD Frequency Division Duplexing, frequency division duplex
  • Insertion loss of the current duplexer is large, especially at high frequencies and the transmission and reception bands are close, the insertion loss is large.
  • WCDMA BC2 Wideband Code Division Multiple Access BC2, wideband code division multiple access band 2 signal
  • the duplexer used, the insertion loss is above 2.5dB, the main reason is that the transmission frequency band is at 1850MHz-1910MHz, the receiving frequency band is at 1930-1990MHz, the center frequency is required to be 1950MHz, and the transition band is only The 20MHz bandpass filter is very difficult.
  • the radio frame of a typical WCDMA+GSM dual-mode terminal is as shown in FIG. 1 , which mainly includes an antenna 95, a duplexer 90, a wireless transceiver 10, multiple signal receiving branches, and multiple signals. Launch branch.
  • GSM980/850 RX SAW Module 20 and DCS/PCS RX SAW Module 30 is a two signal receiving branch for receiving radio frequency signals acquired by antenna 95 and gated by duplexer 90, while wireless transceiver 10 acquires GSM 980/850 RX via port 1011 and port 1012.
  • the RF signal processed by the SAW module 20 acquires the RF signal processed by the DCS/PCS RX SAW module 30 through the port 1013 and the port 1014.
  • GSM HB PA GSM High Band Power Amplifier, GSM high band power amplifier
  • HB MN High Band Match Network, high-band matching network
  • the wireless transceiver 10 transmits the GSM high-band signal sent through the port 1015 to the GSM HB PA 40 and the HB MN.
  • 41, GSM HB PA 40 and HB MN 41 respectively performs power amplification and network matching processing on the GSM high-band signal, and the processed GSM high-band signal is gated by the duplexer 90 and then transmitted by the antenna 95.
  • GSM LB PA GSM Low Band Power Amplifier, GSM Low Band Power Amplifier
  • LB MN Low Band Match
  • Low-band matching network 51 is another GSM signal transmission branch, and the wireless transceiver 10 transmits the GSM low-band signal sent through the port 1016 to the GSM LB PA 50 and the LB MN.
  • 51, GSM HB PA 50 and HB MN 51 respectively performs power amplification and network matching processing on the GSM low-band signal, and the processed GSM low-band signal is gated by the duplexer 90 and then transmitted by the antenna 95.
  • WCDMA BC1 PA WCDMA Band 1 Power Amplifier 60, W MN1 (WCDMA Matching Network) 61, Duplexer 62 and DPX MN (Duplexer Match) Network, duplexer matching network) 63 is a WCDMA signal transmitting/receiving branch for transmitting or receiving the WCDMA band 1 signal, wherein the wireless transceiver 10 transmits the band 1 signal through the port 1019, WCDMA.
  • BC1 PA 60, W MN1 61 and DPX MN 63 respectively performs power amplification and network matching processing on the frequency band 1 signal, and the processed frequency band 1 signal is gated by the duplexer 90 and then transmitted by the antenna 95.
  • the duplexer 62 can be used to select a path such that the band 1 signal that the wireless transceiver 10 can transmit via the port 1019 is transmitted via the antenna 95, or the corresponding WCDMA signal can be acquired from the antenna 95 through the port 1017.
  • the wireless transceiver 10 generates the WCDMA band 2 signal and the band 5 signal through the port 1022 and the port 1023, respectively, and obtains the band 2 signal and the band 5 signal received by the antenna 95 from the outside through the port 1017 and the port 1018, respectively.
  • 1022 and port 1023 respectively correspond to two WCDMA signal transmission branches, and corresponding to two WCDMA signal receiving branches respectively through port 1017 and port 1018, wherein the above WCDMA signal transmission/reception branch and the above-mentioned frequency band 1 signal corresponding to the WCDMA signal
  • the architecture of the transmit/receive branch is identical and will not be described here.
  • a radio frequency signal connector (RF Connector) 92 and an antenna matching network (ANT) are further disposed between the antenna and the duplexer 90.
  • RF Connector radio frequency signal connector
  • ANT antenna matching network
  • MN Antenna Match Network
  • the main functions of the duplexer 90 are:
  • the reason for the need for transceiver isolation is because the sensitivity of the receive path is very high (typically -110dBm), and the transmit path is a high-power path that can achieve 28dBm. Due to the nonlinearity of the RF system, in the case of a dominant wave of 28 dBm, there must be strong out-of-band spurs. These spurs are directly fed into the receiving end if they are not isolated, and their intensity will be higher than the useful received signal. Ultimately affects reception performance.
  • the typical receiving sensitivity of existing WCDAMA terminals is -110 dBm.
  • DPDCH Dedicated Physical Data Channel, dedicated physical data channel
  • power is -120.3dBm.
  • WCDAMA's QPSK modulation mode decoding threshold is 5.2dB, and a 2dB margin is required. Therefore, the demodulation module input signal-to-noise ratio is required to be 7.2 dB.
  • the wireless transceiver 10 noise figure is typically 5 dB. Therefore, the noise at the input of the demodulation module should be lower than -173.343. dBm/Hz.
  • K Boltzmann constant
  • Typical power amplifier (60, 70, 80) output noise is:
  • the present invention provides a mobile communication terminal to solve the technical problem that the insertion loss of the duplexer in the prior art is relatively large.
  • a technical solution adopted by the present invention to solve the technical problem is to provide a mobile communication terminal, comprising: a first antenna for receiving a radio frequency signal from the outside; and a surface acoustic wave filter for receiving the first antenna
  • the radio frequency signal is subjected to receiving surface acoustic wave filtering processing
  • the wireless transceiver comprises a signal receiving port and a signal transmitting port, and the wireless transceiver uses the signal receiving port to obtain the radio frequency signal processed by the received surface acoustic wave filter from the receiving surface acoustic wave filter, And amplifying the down-converted signal in the radio frequency signal to a baseband signal; a baseband processor, obtaining a baseband signal from the wireless transceiver and demodulating, and generating a signal to be transmitted for transmission to the wireless transceiver; the wireless transceiver further converting the signal to be transmitted into a radio frequency signal and outputting from the signal transmitting port; the power amplifier, The input end of the power amplifier is connected to the signal
  • the radio frequency signal includes WCDMA BC1 signal, WCDMA BC2 signal, WCDMA BC5 signal and WCDMA
  • the BC8 signal the signal receiving port includes a first signal receiving port, a second signal receiving port, a third signal receiving port, and a fourth signal receiving port, the mobile communication terminal further comprising a first single-pole multi-throw switch, and the first single-pole multi-throw switch setting Between the first antenna and the wireless transceiver, one of the first signal receiving port, the second signal receiving port, the third signal receiving port, and the fourth signal receiving end is selectively connected to the first antenna;
  • the signal includes the WCDMA to be transmitted BC1 signal, WCDMA BC2 signal to be transmitted or WCDMA to be transmitted
  • the BC5 signal the signal sending port comprises a first signal sending port, a second signal sending port and a third signal sending port
  • the mobile communication terminal further comprises a second single-pole multi-throw switch, and the second single-pole multi-throw switch is arranged in the second antenna and the wireless Between the trans
  • a mobile communication terminal including: a first antenna for receiving radio frequency signals from the outside; a wireless transceiver, including a signal receiving port and a signal transmitting port, and wireless
  • the transceiver uses the signal receiving port to obtain the radio frequency signal from the first antenna, and amplifies the down-converted signal in the radio frequency signal into a baseband signal; the baseband processor obtains the baseband signal from the wireless transceiver and demodulates, and generates a signal to be transmitted for transmission to
  • the wireless transceiver further converts the signal to be transmitted into a radio frequency signal and outputs the signal from the signal transmitting port; and the second antenna acquires the radio frequency signal to be transmitted from the signal transmitting port and transmits the signal.
  • the mobile communication terminal further includes: a power amplifier disposed between the wireless transceiver and the second antenna, the input end of the power amplifier is connected to the signal sending port, and the output end is connected to the second antenna, and is used for outputting from the signal sending port.
  • the RF signal to be transmitted is subjected to power amplification processing, and the RF signal to be transmitted subjected to power amplification processing is output to the second antenna.
  • the mobile communication terminal further includes a low pass filter disposed between the power amplifier and the second antenna for performing low pass filtering on the RF signal to be transmitted outputted from the output end of the power amplifier.
  • the mobile communication terminal further includes: a receiving surface acoustic wave filter disposed between the first antenna and the wireless transceiver, configured to perform receiving surface acoustic wave filtering processing on the radio frequency signal received by the first antenna, and receive the received signal The surface acoustic wave filter processed RF signal is output to the signal receiving port.
  • a receiving surface acoustic wave filter disposed between the first antenna and the wireless transceiver, configured to perform receiving surface acoustic wave filtering processing on the radio frequency signal received by the first antenna, and receive the received signal
  • the surface acoustic wave filter processed RF signal is output to the signal receiving port.
  • the radio frequency signal includes WCDMA BC1 signal, WCDMA BC2 signal, WCDMA BC5 signal and WCDMA
  • the signal receiving port includes a first signal receiving port, a second signal receiving port, a third signal receiving port, and a fourth signal receiving port
  • the mobile communication terminal further comprising a first single-pole multi-throw switch, and the first single-pole multi-throw switch setting Between the first antenna and the wireless transceiver, one of the first signal receiving port, the second signal receiving port, the third signal receiving port, and the fourth signal receiving end is selectively coupled to the first antenna.
  • the radio frequency signal to be transmitted includes a WCDMA BC1 signal to be transmitted, a WCDMA BC2 signal to be transmitted, or a WCDMA to be transmitted.
  • the BC5 signal, the signal sending port comprises a first signal sending port, a second signal sending port and a third signal sending port, the mobile communication terminal further comprises a second single-pole multi-throw switch, and the second single-pole multi-throw switch is arranged in the second antenna and the wireless Between the transceivers, the second antenna is selectively connected to one of the first signal transmitting port, the second signal transmitting port, and the third signal transmitting port and the second antenna.
  • the radio frequency signal further includes GSM 900 signal, GSM 850 signal and GSM
  • the DCS signal the signal receiving port includes a fifth signal receiving port, a sixth signal receiving port, and a seventh signal receiving port
  • the first single-pole multi-throw switch further has a fifth signal receiving port, a sixth signal receiving port, and a seventh signal receiving port. One of them is selectively coupled to the first antenna.
  • the radio frequency signal to be transmitted further includes a GSM HB signal and a GSM
  • the LB signal, the signal transmitting port further includes a fourth signal transmitting port and a fifth signal transmitting port, and the second single-pole multi-throw switch further selectively connects the fourth signal transmitting port and the fifth signal transmitting port with the second antenna.
  • the mobile communication terminal further includes a broadband power coupler, and the broadband power coupler is disposed between the first antenna and the second single-pole multi-throw switch for detecting the transmit power of the radio frequency signal to be transmitted.
  • the low pass filter, the second single pole multi throw switch and the wideband power coupler are integrated in one chip.
  • the technical solution provided by the present invention is that the first antenna and the second antenna are configured to receive the radio frequency signal from the outside and the second antenna is to be transmitted.
  • the RF signal which omits the duplexer, solves the insertion loss problem caused by the use of the duplexer, thereby improving the noise level of the transmission path in the receiving frequency band, and further reducing the power consumption and heating level of the system, while simplifying the RF
  • the architecture provides a low-cost, more compact space, and the present invention is particularly suitable for platforms with relatively low output power.
  • 1 is a schematic circuit diagram of a prior art mobile communication terminal
  • FIG. 2 is a schematic diagram showing the circuit structure of a mobile communication terminal according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a circuit of a mobile communication terminal according to a preferred embodiment of the present invention.
  • the mobile communication terminal of the present invention includes: a first antenna 101 for receiving a radio frequency signal from the outside; a wireless transceiver 102 including a signal receiving port and a signal transmitting port, and the wireless transceiver 102 utilizing the signal receiving port
  • the first antenna 101 acquires a radio frequency signal, and amplifies the down-converted signal in the radio frequency signal into a baseband signal; a baseband processor (not shown) obtains a baseband signal from the wireless transceiver 102 and demodulates, and generates a signal to be transmitted for transmission to
  • the wireless transceiver 102 further converts the signal to be transmitted into a radio frequency signal and outputs it from the signal transmitting port.
  • the second antenna 103 acquires the radio frequency signal to be transmitted from the signal transmitting port and transmits it.
  • the improvement of the present invention relative to the prior art mainly lies in the first antenna 101, the second antenna 103, and the wireless transceiver 102, and does not involve the working process and the connection manner between the baseband processor and the wireless transceiver 102.
  • the baseband processor is not shown in FIG.
  • a power amplifier 301, 302, 303, 304, 305 is disposed between the wireless transceiver 102 and the second antenna 103, and an input end of the power amplifier 301, 302, 303, 304, 305 is connected to the signal sending port, and the output end is
  • the two antennas 103 are connected to perform power amplification processing on the radio frequency signal to be transmitted outputted from the signal transmission port, and output the radio frequency signal to be transmitted subjected to power amplification processing to the second antenna 103.
  • a low pass filter 401, 402, 403, 404, 405 is provided between the power amplifiers 301, 302, 303, 304, 305 and the second antenna 103 for the slave power amplifiers 301, 302, 303, 304, 305.
  • the RF signal to be transmitted outputted by the output terminal is subjected to low-pass filtering processing.
  • a receiving surface acoustic wave filter 200, 201, 202, 203, 204 is disposed between the first antenna 101 and the wireless transceiver 102 for receiving a surface acoustic wave filtering process on the radio frequency signal received by the first antenna 101. And outputting the RF signal processed by the surface acoustic wave filtering to the signal receiving port.
  • the radio frequency signals include WCDMA BC8, WCDMA BC5 signals, and WCDMA.
  • the BC4 signal, the signal receiving port includes a first signal receiving port 2011, a second signal receiving port 2012, a third signal receiving port 2014, and a fourth signal receiving port 2015.
  • the mobile communication terminal further includes a first single-pole multi-throw switch 501, first The single-pole multi-throw switch 501 is disposed between the first antenna 101 and the wireless transceiver 102, and one of the first signal receiving port 2011, the second signal receiving port 2012, the third signal receiving port 2014, and the fourth signal receiving end 2015 The first antenna 101 is selectively connected.
  • the radio frequency signal to be transmitted includes a WCDMA BC1 signal to be transmitted, a WCDMA BC2 signal to be transmitted, or a WCDMA to be transmitted.
  • the BC5 signal, the signal sending port includes a first signal sending port 2016, a second signal sending port 2017, and a third signal sending port 2018.
  • the mobile communication terminal further includes a second single-pole multi-throw switch 502, and the second single-pole multi-throw switch 502 is disposed at The second antenna 103 and the wireless transceiver 102 selectively connect the second antenna 103 to one of the first signal transmission port, the second signal transmission port, and the third signal transmission port to the second antenna 103.
  • the RF signal further includes GSM 900 signal, GSM. 850 signal and GSM
  • the DCS signal the signal receiving port includes a fifth signal receiving port 2011, a sixth signal receiving port 2012, and a seventh signal receiving port 2013, wherein the fifth signal receiving port 2011 and the sixth signal receiving port 2012 can be multiplexed into the first signal.
  • the receiving port 2011 and the second signal receiving port 2012, the first single-pole multi-throw switch 501 further selects one of the fifth signal receiving port 2011, the sixth signal receiving port 2012, and the seventh signal receiving port 2013 and the first antenna 101.
  • Sexual connection the fifth signal receiving port 2011, the sixth signal receiving port 2012, and the seventh signal receiving port 2013 and the first antenna 101.
  • the RF signal to be transmitted further includes GSM HB signal and GSM
  • the LB signal the signal transmitting port further includes a fourth signal transmitting port 2019 and a fifth signal transmitting port 2020, and the second single-pole multi-throw switch 502 further selects the fourth signal transmitting port 2019 and the fifth signal transmitting port 2020 and the second antenna 103.
  • Sexual connection further includes GSM HB signal and GSM
  • the LB signal the signal transmitting port further includes a fourth signal transmitting port 2019 and a fifth signal transmitting port 2020
  • the second single-pole multi-throw switch 502 further selects the fourth signal transmitting port 2019 and the fifth signal transmitting port 2020 and the second antenna 103.
  • the mobile communication terminal further includes a wideband power coupler 601 disposed between the first antenna 101 and the second single-pole multi-throw switch 502 for detecting the transmit power of the radio frequency signal to be transmitted.
  • Wireless transceiver 102
  • Power amplifiers 301, 302, 303, 304, 305 (301, 302, 303):
  • the second single-pole multi-throw switch 502502 is the first single-pole multi-throw switch 502502:
  • Broadband coupler 601 is a Broadband coupler 601:
  • the noise level of the transmitting path falling on the first antenna 101 is -173.5 dBm/Hz at the receiving end. Meet the requirements of the entire system receiving performance.
  • the low-pass filters 401, 402, 403, 404, 405, the second single-pole multi-throw switch 502, and the wideband power coupler 601 are integrated in a chip, which saves space and can save the length of the RF transmission line, so that the power The path between the amplifier output and the second antenna 103 is as short as possible, further reducing insertion loss.
  • the amplifier of the CMOS (Complementary Metal Oxide Semiconductor) process can integrate small-sized and high-precision inductors and capacitors. Therefore, it is easy to meet the specifications of the above amplifiers.
  • CMOS Complementary Metal Oxide Semiconductor
  • the invention proposes a new RF architecture of the FDD mobile communication terminal, which can not use the duplexer, so the following benefits can be obtained:
  • a front-end module such as power amplifiers 301, 302, 303, 304, 305 can be integrated without using a duplexer of the surface acoustic filter process.
  • the duplexer architecture due to the introduction of the duplexer architecture, its nonlinearity makes the transmission path impedance not converge, and it is difficult to adjust to the emission band very flat.
  • the present invention proposes a solution using dual antennas.
  • the transmission path and the reception path are separated, and one antenna is used for communication, because the separated antenna can provide about 10 dB of isolation. Therefore, it is possible to reduce the Rx of the transmission path.
  • FIG. 2 shows a block diagram of the RF architecture of this solution. It is worth noting that this solution is especially suitable for platforms with low output power of the wireless transceiver 102.
  • the technical solution provided by the present invention allows the first antenna 101 to receive a radio frequency signal from the outside by setting the first antenna 101 and the second antenna 103, and causes the second antenna 103 to transmit a radio frequency signal to be transmitted, thereby omitting the duplexer.
  • the present invention is particularly suitable for platforms with relatively low output power.

Abstract

本发明公开了一种移动通讯终端,包括:第一天线,用于从外界接收射频信号;无线收发机,包括信号接收端口和信号发送端口,无线收发机利用信号接收端口从第一天线获取射频信号,并放大射频信号中的下变频信号为基带信号;基带处理器,从无线收发机获取基带信号并解调,并产生待发射信号以传输至无线收发信机;无线收发机进一步将待发射信号转换为射频信号并从信号发送端口输出;第二天线,从信号发送端口获取待发射射频信号并发射出去。通过以上技术方案,本发明解决了因使用双工器而引起的插损问题,从而改善了发射通路在接收频段的噪声水平,另更可降低系统的耗电和发热水平,同时简化射频架构,可获得具有低成本、更紧凑的空间。

Description

一种移动通讯终端
【技术领域】
本发明涉及通信技术领域,特别是涉及一种移动通讯终端。
【背景技术】
现有的3G(3rd-generation,第三代移动通信技术)/4G(4rd-generation,第四代移动通信技术) FDD(Frequency Division Duplexing,频分双工)移动终端采用全双工设计,因此收发通路会同时工作,传统的FDD射频架构中,双工器(Duplex)是必不可少的设备,它的主要的作用是:
1)将收发通路汇合到一路;
2)对发送和接收通路进行滤波。
现在的双工器的插损(Insertion Loss,IL)是较大的,尤其是在高频并且收发频段接近情况下,插损很大。如WCDMA BC2(Wideband Code Division Multiple Access BC2,宽带码分多址频段2信号)使用的双工器,插损在2.5dB以上,主要原因是发射频段在1850MHz-1910MHz,接收频段在1930-1990MHz,要求中心频率在1950MHz,过渡带只有20MHz的带通滤波器,其难度非常大。
如此大插损带来了如下问题:
1)大耗电问题。在插损大的情况下,为了输出功率足够,放大器必须提升输出功率,耗电必然增加。
2)散热问题。功放输出功率增加,耗电增大,必然会产生更大的热量,现有的WCDMA终端的功放发热非常大,会影响电池和用户体验。
3)成本问题。技术指标高的器件其成本必然上升。
如图1所示,一个典型的WCDMA+GSM双模终端的射频框架如下图1所示,其主要包括天线95、双工器90、无线收发机10、多个信号接收支路以及多个信号发射支路。
GSM980/850 RX SAW模块20和DCS/PCS RX SAW 模块30为两个信号接收支路,用于接收天线95获取且被双工器90选通的射频信号,而无线收发机10通过端口1011和端口1012获取经GSM980/850 RX SAW模块20处理的射频信号,通过端口1013和端口1014获取经DCS/PCS RX SAW 模块30处理的射频信号。
GSM HB PA(GSM High Band Power Amplifier,GSM高频段功率放大器)40和HB MN(High Band Match Network,高频段匹配网络)41为一个GSM信号发射支路,无线收发机10通过端口1015发出的GSM高频段信号发送至GSM HB PA 40和HB MN 41,GSM HB PA 40和HB MN 41分别对GSM高频段信号进行功率放大以及网络匹配处理,经处理后的GSM高频段信号经双工器90选通后由天线95发送出去。
而GSM LB PA(GSM Low Band Power Amplifier,GSM低频段功率放大器)50和LB MN(Low Band Match Network,低频段匹配网络)51为另一个GSM信号发射支路,无线收发机10通过端口1016发出的GSM低频段信号发送至GSM LB PA 50和LB MN 51,GSM HB PA 50和HB MN 51分别对GSM低频段信号进行功率放大以及网络匹配处理,经处理后的GSM低频段信号经双工器90选通后由天线95发送出去。
WCDMA BC1 PA(WCDMA 频段1功率放大器)60、W MN1(WCDMA匹配网络)61、双工器62以及DPX MN(Duplexer Match Network,双工器匹配网络)63为一个WCDMA信号发射/接收支路,用于发射或接收WCDMA的频段1信号,其中,无线收发机10通过端口1019发出频段1信号,WCDMA BC1 PA 60、W MN1 61以及DPX MN 63分别对频段1信号进行功率放大以及网络匹配处理,经处理后的频段1信号经双工器90选通后由天线95发射出去。其中,双工器62可用于选择通路,使得无线收发机10可通过端口1019发出的频段1信号经由天线95发射出去,或可通过端口1017从天线95获取对应的WCDMA信号。
同样地,无线收发机10通过端口1022和端口1023分别产生WCDMA的频段2信号和频段5信号,通过端口1017和端口1018分别获取天线95从外界接收的频段2信号和频段5信号,因此,端口1022和端口1023分别对应两个WCDMA信号发射支路,通过端口1017和端口1018分别对应两个WCDMA信号接收支路,其中上述的WCDMA信号发射/接收支路与上述的频段1信号对应的WCDMA信号发射/接收支路的架构完全一致,于此不作赘述。
另外,在天线与双工器90之间更设置有射频信号连接器(RF Connector)92和天线匹配网络(ANT MN,Antenna Match Network)94,分别用于耦合多个来自不同信源的信号以及对该信号进行天线匹配。
在现有的移动通讯终端中,双工器90的主要功能是:
1) 将收发通路合并为一路;
2) 提供收发通路之间的隔离,即衰减发射通路的射频信号在接收频段的噪声,以防止其干扰到接收信号。
之所以有收发隔离的需要,是因为接收通路要求的灵敏度很高(现有典型在-110dBm),而发射通路是高功率通路,可以达到28dBm的强度。由于射频系统的非线性,在28dBm的主波情况下,必然存在很强的带外杂散,这些杂散在接收频段如果不加以隔离而直接馈入接收端,其强度将高于有用接收信号。最终影响接收性能。
下面分析图1所示移动通讯终端的WCDMA信号的接收系统设计:
现有WCDAMA终端的典型的接收灵敏度为-110dBm。
其中DPDCH(Dedicated Physical Data Channel,专用物理数据信道)的功率为-120.3dBm.
用于WCDMA灵敏度测试的信道编码速率为12.2kbps, 其编码增益:10×log(3.84MHz/12.2)=25dB。
WCDAMA的QPSK调制方式解码门限为:5.2dB,需要预留2dB的余量,因此要求解调模块输入信噪比为7.2 dB。
因此在解调模块输入端的噪声应该低于:
-120.3 +25 -7.2 = -102.5 dBm/3.84MHz=-168.343dBm/Hz
考虑到无线收发机10噪声指数典型为5dB。因此要求解调模块输入端的噪声应该低于-173.343 dBm/Hz。
系统热噪声:
KBT = -200+26.022=-173.977dBm/Hz=-108.13dBm/3.84MHz
其中,K(玻尔兹曼常数)=1.38x10-20mJ/K ,B=3.84MHz (65.843dB) ,T=290 K。
典型的功率放大器(60,70,80)输出噪声为:
-160dBm/Hz(无线收发信机输出)+28dB(放大器在接收频段的典型放大增益)=-132dBm/Hz = -66.16 dBm/3.84MHz。
因此双工器90至少需要提供173.343-132= 41dB的隔离度。
提供了这么大的隔离度,所以现有的双工器的插入损耗比较大。
因此,需提供一种移动通讯终端的天线调试方法,以解决上述问题。
【发明内容】
为解决上述技术问题,本发明提供一种移动通讯终端,以解决现有技术中双工器的插入损耗比较大的技术问题。
本发明为解决技术问题而采用的一个技术方案是:提供一种移动通讯终端,包括:第一天线,用于从外界接收射频信号;接收声表面波滤波器,用于对第一天线所接收的射频信号进行接收声表面波滤波处理;无线收发机,包括信号接收端口和信号发送端口,无线收发机利用信号接收端口从接收声表面波滤波器获取经接收声表面波滤波处理的射频信号,并放大射频信号中的下变频信号为基带信号; 基带处理器,从无线收发机获取基带信号并解调,并产生待发射信号以传输至无线收发信机;无线收发机进一步将待发射信号转换为射频信号并从信号发送端口输出;功率放大器,功率放大器的输入端与信号发送端口连接,从信号发送端口获取射频信号,对待发射射频信号进行功率放大处理,并将经功率放大处理的待发射射频信号从功率放大器的输出端输出;第二天线,与输出端连接,从输出端获取待发射射频信号并发射出去。其中,射频信号包括WCDMA BC1信号、WCDMA BC2信号、WCDMA BC5信号以及WCDMA BC8信号,信号接收端口包括第一信号接收端口、第二信号接收端口、第三信号接收端口以及第四信号接收端口,移动通讯终端进一步包括第一单刀多掷开关,第一单刀多掷开关设置在第一天线与无线收发机之间,将第一信号接收端口、第二信号接收端口、第三信号接收端口以及第四信号接收端中的一者与第一天线选择性连接;待发射射频信号包括待发射WCDMA BC1信号、待发射WCDMA BC2信号或待发射WCDMA BC5信号,信号发送端口包括第一信号发送端口、第二信号发送端口以及第三信号发送端口,移动通讯终端进一步包括第二单刀多掷开关,第二单刀多掷开关设置在第二天线与无线收发机之间,将第二天线与第一信号发送端口、第二信号发送端口以及第三信号发送端口中的一者与第二天线选择性连接。
本发明为解决技术问题而采用的另一个技术方案是:提供一种移动通讯终端,包括:第一天线,用于从外界接收射频信号;无线收发机,包括信号接收端口和信号发送端口,无线收发机利用信号接收端口从第一天线获取射频信号,并放大射频信号中的下变频信号为基带信号;基带处理器,从无线收发机获取基带信号并解调,并产生待发射信号以传输至无线收发信机;无线收发机进一步将待发射信号转换为射频信号并从信号发送端口输出;第二天线,从信号发送端口获取待发射射频信号并发射出去。
其中,移动通讯终端进一步包括:功率放大器,设置在无线收发机与第二天线之间,功率放大器的输入端与信号发送端口连接,输出端与第二天线连接,用于对从信号发送端口输出的待发射射频信号进行功率放大处理,并将经功率放大处理的待发射射频信号输出至第二天线。
其中,移动通讯终端进一步包括低通滤波器,低通滤波器设置在功率放大器与第二天线之间,用于对从功率放大器的输出端输出的待发射射频信号进行低通滤波处理。
其中,移动通讯终端进一步包括:接收声表面波滤波器,设置在第一天线与无线收发机之间,用于对第一天线所接收的射频信号进行接收声表面波滤波处理,并将经接收声表面波滤波处理的射频信号输出至信号接收端口。
其中,射频信号包括WCDMA BC1信号、WCDMA BC2信号、WCDMA BC5信号以及WCDMA BC8信号,信号接收端口包括第一信号接收端口、第二信号接收端口、第三信号接收端口以及第四信号接收端口,移动通讯终端进一步包括第一单刀多掷开关,第一单刀多掷开关设置在第一天线与无线收发机之间,将第一信号接收端口、第二信号接收端口、第三信号接收端口以及第四信号接收端中的一者与第一天线选择性连接。
其中,待发射射频信号包括待发射WCDMA BC1信号、待发射WCDMA BC2信号或待发射WCDMA BC5信号,信号发送端口包括第一信号发送端口、第二信号发送端口以及第三信号发送端口,移动通讯终端进一步包括第二单刀多掷开关,第二单刀多掷开关设置在第二天线与无线收发机之间,将第二天线与第一信号发送端口、第二信号发送端口以及第三信号发送端口中的一者与第二天线选择性连接。
其中,射频信号进一步包括GSM 900信号、GSM 850信号以及GSM DCS信号,信号接收端口包括第五信号接收端口、第六信号接收端口以及第七信号接收端口,第一单刀多掷开关进一步将第五信号接收端口、第六信号接收端口以及第七信号接收端口中的一者与第一天线选择性连接。
其中,待发射射频信号进一步包括GSM HB信号和GSM LB信号,信号发送端口进一步包括第四信号发送端口和第五信号发送端口,第二单刀多掷开关进一步将第四信号发送端口和第五信号发送端口与第二天线选择性连接。
其中,移动通讯终端进一步包括宽带功率耦合器,宽带功率耦合器设置在第一天线与第二单刀多掷开关之间,用于检测待发射射频信号的发射功率。
其中,低通滤波器、第二单刀多掷开关以及宽带功率耦合器整合在一芯片中。
本发明的有益效果是:区别于现有技术的情况,本发明所提供的技术方案通过设置第一天线和第二天线,令第一天线从外界接收射频信号,并令第二天线发射待发送射频信号,从而省略了双工器,解决因使用双工器而引起的插损问题,从而改善了发射通路在接收频段的噪声水平,另更可降低系统的耗电和发热水平,同时简化射频架构,可获得具有低成本、更紧凑的空间,本发明尤其适合于输出功率比较低的平台。
【附图说明】
图1是现有技术的移动通讯终端的电路结构示意图;
图2是根据本发明一优选实施例的移动通讯终端的电路结构示意图。
【具体实施方式】
请参见图2,图2是根据本发明一优选实施例的移动通讯终端的电路结构示意图。如图2所示,本发明的移动通讯终端包括:第一天线101,用于从外界接收射频信号;无线收发机102,包括信号接收端口和信号发送端口,无线收发机102利用信号接收端口从第一天线101获取射频信号,并放大射频信号中的下变频信号为基带信号;基带处理器(图未示),从无线收发机102获取基带信号并解调,并产生待发射信号以传输至无线收发信机102;无线收发机102进一步将待发射信号转换为射频信号并从信号发送端口输出;第二天线103,从信号发送端口获取待发射射频信号并发射出去。
其中,因本发明相对于现有技术的改进主要在于第一天线101、第二天线103以及无线收发机102,并未涉及基带处理器与无线收发机102之间的工作过程以及连接方式,因此,在图2中并未绘示出基带处理器。
在无线收发机102与第二天线103之间设置有功率放大器301,302,303,304,305,功率放大器301,302,303,304,305的输入端与信号发送端口连接,输出端与第二天线103连接,用于对从信号发送端口输出的待发射射频信号进行功率放大处理,并将经功率放大处理的待发射射频信号输出至第二天线103。
在功率放大器301,302,303,304,305与第二天线103之间设置有低通滤波器401,402,403,404,405,用于对从功率放大器301,302,303,304,305的输出端输出的待发射射频信号进行低通滤波处理。
在第一天线101与无线收发机102之间设置有接收声表面波滤波器200,201,202,203,204,用于对第一天线101所接收的射频信号进行接收声表面波滤波处理,并将经接收声表面波滤波处理的射频信号输出至信号接收端口。
当移动通讯终端支持WCDMA制式时,射频信号包括WCDMA BC8、WCDMA BC5信号、WCDMA BC2信号以及WCDMA BC4信号,信号接收端口包括第一信号接收端口2011、第二信号接收端口2012、第三信号接收端口2014以及第四信号接收端口2015,移动通讯终端进一步包括第一单刀多掷开关501,第一单刀多掷开关501设置在第一天线101与无线收发机102之间,将第一信号接收端口2011、第二信号接收端口2012、第三信号接收端口2014以及第四信号接收端2015中的一者与第一天线101选择性连接。
待发射射频信号包括待发射WCDMA BC1信号、待发射WCDMA BC2信号或待发射WCDMA BC5信号,信号发送端口包括第一信号发送端口2016、第二信号发送端口2017以及第三信号发送端口2018,移动通讯终端进一步包括第二单刀多掷开关502,第二单刀多掷开关502设置在第二天线103与无线收发机102之间,将第二天线103与第一信号发送端口、第二信号发送端口以及第三信号发送端口中的一者与第二天线103选择性连接。
当移动通讯终端同时支持WCDMA制式和GSM制式时,射频信号进一步包括GSM 900信号、GSM 850信号以及GSM DCS信号,信号接收端口包括第五信号接收端口2011、第六信号接收端口2012以及第七信号接收端口2013,其中,第五信号接收端口2011、第六信号接收端口2012可复用为第一信号接收端口2011、第二信号接收端口2012,第一单刀多掷开关501进一步将第五信号接收端口2011、第六信号接收端口2012以及第七信号接收端口2013中的一者与第一天线101选择性连接。
待发射射频信号进一步包括GSM HB信号和GSM LB信号,信号发送端口进一步包括第四信号发送端口2019和第五信号发送端口2020,第二单刀多掷开关502进一步将第四信号发送端口2019和第五信号发送端口2020与第二天线103选择性连接。
另外,移动通讯终端进一步包括宽带功率耦合器601,宽带功率耦合器601设置在第一天线101与第二单刀多掷开关502之间,用于检测待发射射频信号的发射功率。
以上各模块的功率参数如下:
无线收发机102:
1) 最大输出功率:4dBm
2) 最小输出功率: -78dBm
3) 接收频段噪声: -160dBm/Hz
功率放大器301,302,303,304,305(301,302,303):
1)高频段发射频段放大增益:24dB
2)低频段发射频段放大增益:23dB
3)高频接收带内放大增益:-1dB
4)高频接收带内放大增益:-2dB
5)发射频带到接收频段增益衰减: 25dB
6)高频总输出接收频段噪声: -161dBm/Hz
7)低频总输出接收频段噪声: -162dBm/Hz
低通滤波器(401,402,403):
1)插入损耗: 高频 0.8dB 低频 0.5dB。
2)谐波抑制: 25dB
3) 输出接收频段噪声: 高频 -161.8dBm/Hz 低频 -162.5dBm/Hz
第二单刀多掷开关502502:
1)插入损耗:高频 0.8dB 低频 0.5dB。
2)输出接收频段噪声:高频 -162.6dBm/Hz 低频 -163dBm/Hz
宽带耦合器601:
1)插入损耗: 0.3dB
射频传输线(图未示):
1) 插入损耗:高频 0.6dB 低频 0.2dB。
2) 输出接收频段噪声:高频 -163.5dBm/Hz 低频 -163.5dBm/Hz
在经过收发天线隔离以后,在接收端天线出,发射通路落在第一天线101的噪声水平是-173.5dBm/Hz。满足了整个系统接收性能的要求。
其中,低通滤波器401,402,403,404,405、第二单刀多掷开关502以及宽带功率耦合器601整合在一芯片中,其可节省空间,并且可以节省射频传输线的长度,使得功率放大器输出端和第二天线103之间路径尽可能的短,进一步降低插损。
也需要指出的是,上述分析表示了WCDMA 3个频段的解决方案。如果需要增加如4G的通路或其他3G 、FDD支持的频段,仅仅需要增加、减少第一单刀多掷开关501和第二单刀多掷开关502的端口数量即可。每个发射通路配置几乎一样。
现有的放大器技术中,CMOS(互补金属氧化物半导体)工艺的放大器可以集成小尺寸高精度的电感电容。因此很容易满足上述放大器的指标要求。
本发明提出了新的FDD移动通讯终端射频架构,可以不使用双工器,因此可以获得以下好处:
1)降低了系统插损,从而达到节省耗电的目的;
2)降低了功率放大器301,302,303,304,305需要输出的最大功率,从而达到降低终端散热目的;
3)不需要使用声表面滤波器工艺的双工器,可以将功率放大器301,302,303,304,305等前端模块集成到一起。在现有设计中,由于引入了双工器架构,其非线性使得发射通路阻抗不收敛,很难调到发射带内非常平坦。
本发明提出了使用双天线的解决方案。即将发射通路和接收通路分开,分别使用一只天线进行通信,由于分离的天线能够提供10dB左右的隔离度。因此可以降低发射通路的Rx Band Noise(接收带内噪声)的要求。
图2显示了这种方案的射频架构框图,值得注意的是,这种方案尤其适用于无线收发机102输出功率比较低的平台。
因此,本发明所提供的技术方案通过设置第一天线101和第二天线103,令第一天线101从外界接收射频信号,并令第二天线103发射待发送射频信号,从而省略了双工器,解决因使用双工器而引起的插损问题,从而改善了发射通路在接收频段的噪声水平,另更可降低系统的耗电和发热水平,同时简化射频架构,可获得具有低成本、更紧凑的空间,本发明尤其适合于输出功率比较低的平台。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

  1. 一种移动通讯终端,其特征在于,包括:
    第一天线,用于从外界接收射频信号;
    接收声表面波滤波器,用于对所述第一天线所接收的射频信号进行接收声表面波滤波处理;
    无线收发机,包括信号接收端口和信号发送端口,所述无线收发机利用所述信号接收端口从所述接收声表面波滤波器获取经所述接收声表面波滤波处理的射频信号,并放大所述射频信号中的下变频信号为基带信号;
    基带处理器,从所述无线收发机获取所述基带信号并解调,并产生待发射信号以传输至所述无线收发信机;
    所述无线收发机进一步将所述待发射信号转换为射频信号并从信号发送端口输出;
    功率放大器,所述功率放大器的输入端与所述信号发送端口连接,从所述信号发送端口获取所述射频信号,对所述待发射射频信号进行功率放大处理,并将经功率放大处理的待发射射频信号从所述功率放大器的输出端输出;
    第二天线,与所述输出端连接,从所述输出端获取所述待发射射频信号并发射出去。
    其中,所述射频信号包括WCDMA BC1信号、WCDMA BC2信号、WCDMA BC5信号以及WCDMA BC8信号,所述信号接收端口包括第一信号接收端口、第二信号接收端口、第三信号接收端口以及第四信号接收端口,所述移动通讯终端进一步包括第一单刀多掷开关,所述第一单刀多掷开关设置在所述第一天线与所述无线收发机之间,将所述第一信号接收端口、第二信号接收端口、第三信号接收端口以及第四信号接收端中的一者与所述第一天线选择性连接;所述待发射射频信号包括待发射WCDMA BC1信号、待发射WCDMA BC2信号或待发射WCDMA BC5信号,所述信号发送端口包括第一信号发送端口、第二信号发送端口以及第三信号发送端口,所述移动通讯终端进一步包括第二单刀多掷开关,所述第二单刀多掷开关设置在所述第二天线与所述无线收发机之间,将所述第二天线与所述第一信号发送端口、第二信号发送端口以及第三信号发送端口中的一者与所述第二天线选择性连接。
  2. 一种移动通讯终端,其特征在于,包括:
    第一天线,用于从外界接收射频信号;
    无线收发机,包括信号接收端口和信号发送端口,所述无线收发机利用所述信号接收端口从所述第一天线获取所述射频信号,并放大所述射频信号中的下变频信号为基带信号;
    基带处理器,从所述无线收发机获取所述基带信号并解调,并产生待发射信号以传输至所述无线收发信机;
    所述无线收发机进一步将所述待发射信号转换为射频信号并从信号发送端口输出;
    第二天线,从所述信号发送端口获取所述待发射射频信号并发射出去。
  3. 根据权利要求2所述的移动通讯终端,其特征在于,所述移动通讯终端进一步包括:
    功率放大器,设置在所述无线收发机与所述第二天线之间,所述功率放大器的输入端与所述信号发送端口连接,输出端与所述第二天线连接,用于对从所述信号发送端口输出的待发射射频信号进行功率放大处理,并将经功率放大处理的待发射射频信号输出至所述第二天线。
  4. 根据权利要求3所述的移动通讯终端,其特征在于,所述移动通讯终端进一步包括:
    低通滤波器,所述低通滤波器设置在所述功率放大器与所述第二天线之间,用于对从所述功率放大器的输出端输出的待发射射频信号进行低通滤波处理。
  5. 根据权利要求2所述的移动通讯终端,其特征在于,所述移动通讯终端进一步包括:
    接收声表面波滤波器,设置在所述第一天线与所述无线收发机之间,用于对所述第一天线所接收的射频信号进行接收声表面波滤波处理,并将经接收声表面波滤波处理的射频信号输出至所述信号接收端口。
  6. 根据权利要求2所述的移动通讯终端,其特征在于,所述射频信号包括WCDMA BC1信号、WCDMA BC2信号、WCDMA BC5信号以及WCDMA BC8信号,所述信号接收端口包括第一信号接收端口、第二信号接收端口、第三信号接收端口以及第四信号接收端口,所述移动通讯终端进一步包括第一单刀多掷开关,所述第一单刀多掷开关设置在所述第一天线与所述无线收发机之间,将所述第一信号接收端口、第二信号接收端口、第三信号接收端口以及第四信号接收端中的一者与所述第一天线选择性连接。
  7. 根据权利要求6所述的移动通讯终端,其特征在于,所述待发射射频信号包括待发射WCDMA BC1信号、待发射WCDMA BC2信号或待发射WCDMA BC5信号,所述信号发送端口包括第一信号发送端口、第二信号发送端口以及第三信号发送端口,所述移动通讯终端进一步包括第二单刀多掷开关,所述第二单刀多掷开关设置在所述第二天线与所述无线收发机之间,将所述第二天线与所述第一信号发送端口、第二信号发送端口以及第三信号发送端口中的一者与所述第二天线选择性连接。
  8. 根据权利要求7所述的移动通讯终端,其特征在于,所述射频信号进一步包括GSM 900信号、GSM 850信号以及GSM DCS信号,所述信号接收端口包括第五信号接收端口、第六信号接收端口以及第七信号接收端口,所述第一单刀多掷开关进一步将所述第五信号接收端口、第六信号接收端口以及第七信号接收端口中的一者与所述第一天线选择性连接。
  9. 根据权利要求8所述的移动通信终端,其特征在于,所述待发射射频信号进一步包括GSM HB信号和GSM LB信号,所述信号发送端口进一步包括第四信号发送端口和第五信号发送端口,所述第二单刀多掷开关进一步将所述第四信号发送端口和第五信号发送端口与所述第二天线选择性连接。
  10. 根据权利要求9所述的移动通讯终端,其特征在于,所述移动通讯终端进一步包括宽带功率耦合器,所述宽带功率耦合器设置在所述第一天线与所述第二单刀多掷开关之间,用于检测所述待发射射频信号的发射功率。
  11. 根据权利要求9所述的移动通讯终端,其特征在于,所述低通滤波器、所述第二单刀多掷开关以及所述宽带功率耦合器整合在一芯片中。
PCT/CN2012/075587 2011-11-04 2012-05-16 一种移动通讯终端 WO2013063915A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/123,218 US9172420B2 (en) 2011-11-04 2012-05-16 Mobile communication terminal
EP12844740.6A EP2775781B1 (en) 2011-11-04 2012-05-16 Mobile communication terminal
ES12844740T ES2714695T3 (es) 2011-11-04 2012-05-16 Terminal de comunicación móvil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110346486.0 2011-11-04
CN201110346486.0A CN102404879B (zh) 2011-11-04 2011-11-04 一种移动通讯终端

Publications (1)

Publication Number Publication Date
WO2013063915A1 true WO2013063915A1 (zh) 2013-05-10

Family

ID=45886531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075587 WO2013063915A1 (zh) 2011-11-04 2012-05-16 一种移动通讯终端

Country Status (5)

Country Link
US (1) US9172420B2 (zh)
EP (1) EP2775781B1 (zh)
CN (1) CN102404879B (zh)
ES (1) ES2714695T3 (zh)
WO (1) WO2013063915A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105049077A (zh) * 2015-05-28 2015-11-11 络达科技股份有限公司 宽带前端装置及其过滤射频信号的方法
CN107612563A (zh) * 2017-08-31 2018-01-19 广东欧珀移动通信有限公司 射频前端系统、移动终端及信号处理方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404879B (zh) 2011-11-04 2016-04-13 惠州Tcl移动通信有限公司 一种移动通讯终端
CN102420634A (zh) * 2011-12-07 2012-04-18 捷开通讯科技(上海)有限公司 无线通信收发系统
CN102684864B (zh) * 2012-05-02 2017-04-19 惠州Tcl移动通信有限公司 一种移动通讯终端
GB2512586B (en) * 2013-04-02 2015-08-12 Broadcom Corp Switch arrangement
CN103780280B (zh) * 2014-02-27 2016-06-15 华为技术有限公司 射频通路
US20160190995A1 (en) * 2014-08-17 2016-06-30 Skyworks Solutions, Inc. Power amplifier interface compatible with inputs separated by mode or frequency
CN105577221A (zh) * 2015-10-21 2016-05-11 东莞酷派软件技术有限公司 射频装置及通信终端
CN105634569B (zh) * 2015-12-31 2019-03-08 宇龙计算机通信科技(深圳)有限公司 实现载波聚合和wifi双频mimo的控制电路、终端
KR102473191B1 (ko) * 2016-03-10 2022-12-02 삼성전자주식회사 안테나를 포함하는 전자 장치
CN107371279A (zh) * 2016-05-12 2017-11-21 北京佰才邦技术有限公司 一种基站射频装置
CN112910575B (zh) * 2016-07-19 2022-05-17 荣耀终端有限公司 一种射频性能测试方法、装置及用户终端
CN106452471B (zh) * 2016-09-29 2019-10-11 宇龙计算机通信科技(深圳)有限公司 一种gsm射频电路及包括该电路的终端
CN108768415A (zh) * 2018-05-22 2018-11-06 Oppo广东移动通信有限公司 射频电路、天线组件及电子设备
CN111277292A (zh) * 2018-11-19 2020-06-12 联发科技股份有限公司 具有多通道传输架构的通信装置
CN110504984A (zh) * 2019-09-02 2019-11-26 联想(北京)有限公司 一种电子设备
CN111769851B (zh) * 2020-06-28 2022-04-19 深圳市锐尔觅移动通信有限公司 射频装置以及移动终端
CN112615630B (zh) * 2020-12-08 2022-07-08 惠州Tcl移动通信有限公司 一种提高射频隔离度的电路、方法及移动终端
CN112994729B (zh) * 2021-02-03 2023-02-03 昆山睿翔讯通通信技术有限公司 一种移动终端射频模块及移动终端
CN113300734A (zh) * 2021-05-10 2021-08-24 Tcl通讯(宁波)有限公司 射频天线装置、射频天线装置信号收发方法及移动终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1476680A (zh) * 2000-10-24 2004-02-18 多频带终端装置
CN1647401A (zh) * 2002-04-08 2005-07-27 诺基亚有限公司 用于多频段移动终端的通用射频前端
CN102404879A (zh) * 2011-11-04 2012-04-04 惠州Tcl移动通信有限公司 一种移动通讯终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070243832A1 (en) * 2004-03-15 2007-10-18 Hyung-Weon Park Multimode/Multiband Mobile Station and Method for Operating the Same
JP2007180597A (ja) * 2004-09-01 2007-07-12 Nokia Corp 中継器及び中継方法
US8781522B2 (en) * 2006-11-02 2014-07-15 Qualcomm Incorporated Adaptable antenna system
CN101578779A (zh) * 2007-01-19 2009-11-11 松下电器产业株式会社 多天线发送装置、多天线接收装置、多天线发送方法、多天线接收方法、终端装置以及基站装置
CN102185623B (zh) * 2011-02-16 2015-06-17 惠州Tcl移动通信有限公司 一种移动终端及其多天线实现方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1476680A (zh) * 2000-10-24 2004-02-18 多频带终端装置
CN1647401A (zh) * 2002-04-08 2005-07-27 诺基亚有限公司 用于多频段移动终端的通用射频前端
CN102404879A (zh) * 2011-11-04 2012-04-04 惠州Tcl移动通信有限公司 一种移动通讯终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105049077A (zh) * 2015-05-28 2015-11-11 络达科技股份有限公司 宽带前端装置及其过滤射频信号的方法
CN107612563A (zh) * 2017-08-31 2018-01-19 广东欧珀移动通信有限公司 射频前端系统、移动终端及信号处理方法

Also Published As

Publication number Publication date
EP2775781A4 (en) 2015-07-01
ES2714695T3 (es) 2019-05-29
US20140087670A1 (en) 2014-03-27
US9172420B2 (en) 2015-10-27
EP2775781B1 (en) 2019-02-20
CN102404879B (zh) 2016-04-13
EP2775781A1 (en) 2014-09-10
CN102404879A (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
WO2013063915A1 (zh) 一种移动通讯终端
WO2013082924A1 (zh) 一种无线通信收发系统
KR101763997B1 (ko) 전송 무선 주파수 신호와 수신 무선 주파수 신호 간의 개선된 격리에 관한 시스템 및 방법
CN100490341C (zh) 移动终端信号分路设备和方法
JP4755258B2 (ja) マルチバンド無線モジュール
WO2018103469A1 (zh) 一种分布式无线信号覆盖系统
WO2013060209A1 (zh) 一种测试系统和移动通讯终端的天线调试方法
WO2015120624A1 (zh) 一种天线切换系统以及方法
WO2012024874A1 (zh) 射频功率放大器功率合成电路
KR20020063644A (ko) 중간주파수 분산형 안테나 시스템
WO2013063924A1 (zh) 功率放大模块、射频前端模块和多模终端
WO2013163906A1 (zh) 一种移动通讯终端
WO2011076133A1 (zh) 天线振子复用的方法、装置和天线组件
WO2013063926A1 (zh) 功率放大模块、多模射频收发器和多模终端
CN202872780U (zh) 超宽带分布系统的覆盖装置及其射频模块
WO2013185665A1 (zh) Tdd制式射频收发电路及方法、射频前端电路和终端
CN103716062A (zh) 一种集成低噪放大器、功率放大器和天线开关的射频电路
JP2004147191A (ja) 高出力多モード移動体通信用送受信装置
CN112039554A (zh) 铁路无线通信的终端设备及方法
KR101027032B1 (ko) 이동통신장치의 출력단
KR100568402B1 (ko) 이동 통신의 기지국 급전선 장치
KR100524754B1 (ko) 삼중 밴드 이동 통신 단말기의 증폭기
KR100811342B1 (ko) 다이버서티 수신기능을 갖는 이동 통신 단말기
CN116846474A (zh) 一种低成本宽频回传系统及其实现方法
CN113746554A (zh) 一种光纤射频信号拉远装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844740

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012844740

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14123218

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE