WO2013082924A1 - 一种无线通信收发系统 - Google Patents

一种无线通信收发系统 Download PDF

Info

Publication number
WO2013082924A1
WO2013082924A1 PCT/CN2012/076154 CN2012076154W WO2013082924A1 WO 2013082924 A1 WO2013082924 A1 WO 2013082924A1 CN 2012076154 W CN2012076154 W CN 2012076154W WO 2013082924 A1 WO2013082924 A1 WO 2013082924A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing circuit
receiving
transmitting
pole
wireless communication
Prior art date
Application number
PCT/CN2012/076154
Other languages
English (en)
French (fr)
Inventor
白剑
Original Assignee
捷开通讯科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 捷开通讯科技(上海)有限公司 filed Critical 捷开通讯科技(上海)有限公司
Priority to US14/125,880 priority Critical patent/US9204488B2/en
Priority to EP12856313.7A priority patent/EP2790330A4/en
Publication of WO2013082924A1 publication Critical patent/WO2013082924A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0067Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • the present invention relates to the field of wireless communications, and more particularly to a wireless communication transceiver system employing dual antennas.
  • the FDD (Frequency Division Duplex) terminal uses a full-duplex design, so the transceiver path works simultaneously.
  • Duplex is an indispensable device. Its main functions are: (1) merging the transceiver channels into one way; (2) providing isolation between the transceiver channels, ie, attenuation.
  • the RF signal of the transmit path is in the receiving band of noise to prevent it from interfering with the received signal.
  • the reason for providing isolation between the transmit and receive paths is because the receive path requirements can work under very weak conditions (now typically -110dBm).
  • the transmission path is a high-power path that can reach 28dBm. Due to the nonlinearity of the RF system, in the case of a main wave of 28 dBm, there must be a strong out-of-band spur. These spurs are in the receiving band if Without isolation, it is fed directly into the receiving end, and its intensity will be higher than the useful received signal, ultimately affecting the receiving performance.
  • the typical RFD structure of the FDD mobile terminal is shown in Figure 1.
  • the WCDMA FDD terminal is taken as an example to analyze the design of the receiving system:
  • the typical receiving sensitivity of existing WCDMA terminals is -110 dBm.
  • DPDCH Dedicated Physical Data Channel, dedicated physical data channel
  • power is -120.3dBm
  • WCDAMA's QPSK modulation mode decoding threshold is 5.2dB, and a 2dB margin is required. Therefore, the demodulation module input signal-to-noise ratio is required to be 7.2 dB.
  • the noise at the input of the demodulation module should be lower than -173.343. dBm/Hz.
  • K Boltzmann constant
  • IL Insertion Loss
  • WCDMA Wideband Code Division Multiple Access
  • the duplexer used in BC2 has an insertion loss of more than 2.5dB. The main reason is that the transmitting frequency band is at 1850MHz-1910MHz, and the receiving frequency band is at 1930-1990MHz. It is required to be centered at 1950MHz, and the transition band has only 20MHz bandpass filter. Very big.
  • Cost problem The cost of a device with high technical indicators will inevitably rise, resulting in an increase in the cost of the entire terminal.
  • the present invention provides a wireless communication transceiver system for solving the problem of large insertion loss caused by the use of a duplexer in the prior art.
  • a wireless communication transceiver system embodying the present invention includes a wireless transceiver unit, a reception processing circuit, a transmission processing circuit, a receiving antenna, and a transmitting antenna, wherein the receiving processing circuit and the transmitting processing circuit are both connected to the wireless transceiver unit, and the receiving antenna And the transmitting antenna is respectively connected to the receiving processing circuit and the transmitting processing circuit.
  • the receiving processing circuit includes a receiving surface acoustic filter and a single-pole five-throw switch, wherein the single-pole five-throw switch is connected to the receiving antenna to transmit the received signal to the single-pole five-throw switch.
  • the transmission processing circuit includes a transmitting surface acoustic filter, a power amplifier, a low pass filter, a single-pole five-throw switch, and a wideband coupler, wherein the transmitting surface acoustic filter is connected to the wireless transceiver unit, and then the signal is output to The power amplifier is amplified, then output to a low-pass filter for filtering, then output to a single-pole, five-throw switch, and finally output to the transmit antenna through a wideband coupler.
  • the low-pass filter, the single-pole five-throw switch, and the wideband coupler are integrated.
  • the present invention does not use a duplexer, and therefore has the following advantages: (1) reducing the insertion loss of the system, thereby achieving the purpose of saving power consumption; and (2) reducing the maximum power that the power amplifier needs to output, Therefore, the purpose of reducing the heat dissipation of the terminal is achieved; (3) a duplexer that does not require the use of the surface acoustic filter process can integrate the front-end modules such as an amplifier.
  • the present invention uses a dual antenna structure, that is, the transmission path and the reception path are separated, and one antenna is used for communication, since the separation antenna can provide about 10 dB of isolation. Therefore, it is possible to meet the requirement of reducing the noise in the receiving band of the transmission path.
  • FIG. 1 is a diagram showing a radio frequency structure of a typical FDD mobile terminal.
  • FIG. 2 is a functional block diagram of a wireless communication transceiver system embodying the present invention.
  • Fig. 3 is a block diagram showing the structure of a separate device for implementing the wireless communication transceiver system of the present invention.
  • the wireless communication transceiver system includes a wireless transceiver unit 10, a reception processing circuit 11, a transmission processing circuit 12, a receiving antenna 13, and a transmitting antenna 14.
  • the receiving processing circuit 11 and the transmitting processing circuit 12 are both connected to the wireless transceiver unit 10, and the receiving antenna 13 and the transmitting antenna 14 are connected to the receiving processing circuit 11 and the transmitting processing circuit 12, respectively.
  • FIG. 3 is a structural diagram of a separate device for implementing the wireless communication transceiver system of the present invention, wherein the receiving processing circuit 11 includes a receiving surface acoustic wave filter 110 and a single-pole five-throw switch 111, wherein the single-pole five-throw switch 111 Connected to the receiving antenna 13, the received signal is transmitted to the single-pole five-throw switch 111, and the receiving surface acoustic filter 110 is provided with a plurality of corresponding receiving bands, and the received signal of the receiving antenna 13 is system-dependent.
  • the signals are transmitted to different receiving surface acoustic filters 110, and the signals output by the receiving surface acoustic wave filter 110 are transmitted to the wireless transceiver unit 10 for processing.
  • the transmit processing circuit 12 includes a transmit surface acoustic filter 120, a power amplifier 121, a low pass filter 122, a wideband coupler 123, and a single-pole, five-throw switch 124, wherein the transmit surface acoustic filter 120 is coupled to the wireless transceiver unit 10, and then the signal The output is output to the power amplifier 121 for amplification, and then output to the low pass filter 122 for filtering, output to the single-pole five-throw switch 124, and finally output to the transmitting antenna 14 through the wideband coupler 123.
  • the operating band of the wireless transceiver unit includes Global System for Mobile Communications (GSM) 900 MHz, 850 MHz, 1800 MHz, 1900 MHz and Universal Mobile Telecommunications System (UMTS) 2100 MHz.
  • GSM Global System for Mobile Communications
  • UMTS Universal Mobile Telecommunications System
  • the maximum output power is 7dBm; the minimum output power is -76dBm; the receiving band noise: -140dBm/Hz.
  • the insertion loss is 2 dB and the receive band attenuation is 30 dB.
  • the amplification gain of the high-band transmit band is 23dB, and the gain of the low-band transmit band is 22dB.
  • the high-frequency receiving band has an amplification gain of 9dB
  • the low-frequency receiving band has an amplification gain of 8dB
  • the transmission band to the receiving band has a gain of 14dB
  • the high-frequency total output receiving band has a noise of -161dBm/Hz.
  • the low-frequency total output receiving band noise is -162dBm/Hz.
  • the insertion loss is high frequency 0.8dB, low frequency 0.5dB, harmonic rejection is 25dB, and the output receiving band noise is high frequency.
  • the insertion loss is high frequency 0.8dB, low frequency 0.5dB, and the output receiving band noise high frequency is -162.6dBm/Hz, low frequency -163dBm/Hz.
  • the insertion loss of the wideband coupler is 0.3 dB.
  • the insertion loss of the RF transmission line is high frequency 0.6dB, low frequency 0.2dB, and the output receiving band noise is high frequency. -163.5dBm/Hz, low frequency -163.5dBm/Hz.
  • the noise level of the transmission path at the receiving end is -173.5 dBm/Hz at the antenna of the receiving end, thereby satisfying the requirements of the overall system receiving performance.
  • the technical specifications of the transmitting acoustic surface filter can also be achieved by existing devices. For example, many manufacturers such as Murata and EPCOS can produce the above-mentioned indicators in mass production.
  • CMOS technology can integrate the inductor and capacitor into the power amplifier, it can filter the received frequency band to achieve this effect.
  • Dual antenna isolation is also achievable, and existing antenna suppliers such as Skycross and ethertronics can achieve this.
  • the low-pass filter, single-pole five-throw switch and wideband coupler in FIG. 3 can be integrated into one chip, so that space can be saved on the one hand, and the length of the RF transmission line can be saved. This makes the path between the amplifier output and the transmitting antenna as short as possible, further reducing the insertion loss.
  • the above architecture represents a solution for three bands of WCDMA. If you need to increase the path like 4G or other 3G
  • the frequency band supported by FDD only needs to increase and decrease the number of antenna switch ports.
  • Each transmission path configuration is almost the same. For its specific working principle, it will not be described in detail here.
  • the FDD terminal RF architecture proposed by the present invention can not use a duplexer, and therefore has the following advantages: (1) reducing system insertion loss, thereby achieving power saving purpose; (2) reducing The power amplifier needs the maximum output power to achieve the purpose of reducing the heat dissipation of the terminal; (3) The duplexer that does not require the surface acoustic filter process can integrate the front-end modules such as the amplifier.
  • the present invention uses a dual antenna structure, that is, the transmission path and the reception path are separated, and one antenna is used for communication, since the separation antenna can provide about 10 dB of isolation. Therefore, it is possible to reduce the noise in the receiving band of the transmission path (Rx Band Noise) requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transceivers (AREA)

Abstract

本发明公开了无线通信收发系统,包括无线收发单元、接收处理电路、发射处理电路、接收天线和发射天线,其中接收处理电路与发射处理电路均与无线收发单元连接,而接收天线与发射天线分别与接收处理电路与发射处理电路连接,如此不需要使用双工器,因此可以降低系统插损,从而达到节省耗电的目的,并且降低了功率放大器需要输出的最大功率,从而达到降低终端散热目的,同时,由于本发明使用双天线的结构,即将发射通路和接收通路分开,分别使用一只天线进行通信,由于分离天线能够提供10dB左右的隔离度,因此可以降低发射通路的接收带内噪声的要求。

Description

一种无线通信收发系统
技术领域
本发明涉及无线通信领域,尤其是一种采用双天线的无线通信收发系统。
背景技术
现有的3G/4G FDD(频分双工)终端采用的是全双工设计,因此收发通路会同时工作。传统的射频架构中,双工器(Duplex)是必不可少的设备,它的主要的作用是:(1)将收发通路汇合并为一路;(2)提供收发通路之间的隔离,即衰减发射通路的射频信号在接收频段的噪声,以防止其干扰接收信号。
之所以要在收发通路之间提供隔离,是因为接收通路要求在很微弱的情况下(现在典型为-110dBm)也能工作。而发射通路是高功率通路,可以达到28dBm的强度。由于射频系统的非线性,在28dBm的主波情况下,必然存在很强的带外杂散。这些杂散在接收频段如果 不加以隔离则会直接馈入接收端,其强度将高于有用的接收信号,从而最终影响接收性能。
典型的FDD移动终端射频结构如图1所示,下面以WCDMA FDD终端为例,分析其接收系统的设计:
现有的WCDMA终端典型的接收灵敏度为-110dBm。
其中DPDCH(Dedicated Physical Data Channel,专用物理数据信道)的功率为-120.3dBm;
用于WCDMA灵敏度测试的信道编码速率为12.2kbps, 其编码增益:10Xlg(3.84MHz/12.2)=25dB。
WCDAMA的QPSK调制方式解码门限为:5.2dB,需要预留2dB的余量,因此要求解调模块输入信噪比为7.2 dB。
因此在解调模块输入端的噪声应该低于: -120.3 +25 -7.2 = -102.5 dBm/3.84MHz=-168.343dBm/Hz;
考虑到接收机噪声指数典型为5dB,因此要求解调模块输入端的噪声应该低于-173.343 dBm/Hz。而系统热噪声KBT = -200+26.022=-173.977dBm/Hz=-108.13dBm/3.84MHz;
其中,K(玻尔兹曼常数)=1.38x10-20mJ/K ,B=3.84MHz (65.843dB) ,T=290 K。
现有典型的放大器输出噪声为:-160dBm/Hz(无线收发信机输出)+28dB(放大器在接收频段的典型放大增益)=-132dBm/Hz = -66.16 dBm/3.84MHz。
因此典型的双工器至少需要提供173.343-132= 41dB的隔离度,提供了这么大的隔离度,所以现有的双工器的插入损耗(Insertion Loss,IL)比较大,尤其是高频并且收发频段接近情况下,插入损耗很大。如WCDMA BC2使用的双工器,插入损耗在2.5dB以上,主要原因是发射频段在1850MHz-1910MHz,而接收频段在1930-1990MHz,要求做中心在1950MHz,过渡带只有20MHz的带通滤波器,其难度非常大。
而如此大的插入损耗会带来如下问题:
(1)耗电问题:在插入损耗大的情况下,为了输出的功率足够,放大器必须提升输出功率,耗电必然增加。
(2) 散热问题:功放输出功率增加,耗电增大,必然会产生更大的热量。现有的WCDMA终端的功放发热非常大,会影响电池和用户体验。
(3)成本问题:技术指标高的器件其成本必然上升,从而导致整个终端的成本上升。
发明内容
为了改善这种状况,本发明提供了一种无线通信收发系统,用以解决现有技术因使用双工器而导致插入损耗大的问题。
为实现上述目的,实施本发明的无线通信收发系统包括无线收发单元、接收处理电路、发射处理电路、接收天线和发射天线,其中接收处理电路与发射处理电路均与无线收发单元连接,而接收天线与发射天线分别与接收处理电路与发射处理电路连接。
依据上述主要特征,其中接收处理电路包括接收声表面滤波器及单刀五掷开关,其中单刀五掷开关与接收天线连接,将接收到的信号传输到单刀五掷开关。
依据上述主要特征,其中发射处理电路包括发射声表面滤波器、功率放大器、低通滤波器、单刀五掷开关及宽带耦合器,其中发射声表面滤波器与无线收发单元连接,之后将信号输出至功率放大器进行放大,之后输出至低通滤波器进行滤波,再输出至单刀五掷开关,最后通过宽带耦合器输出至发射天线。
依据上述主要特征,所述的低通滤波器、单刀五掷开关以及宽带耦合器为一整体。
与现有技术相比较,本发明不使用双工器,因此具有以下优点:(1)降低了系统插损,从而达到节省耗电的目的;(2)降低了功率放大器需要输出的最大功率,从而达到降低终端散热目的;(3)不需要使用声表面滤波器工艺的双工器,可以将放大器等前段模块集成到一起。同时,由于本发明使用双天线的结构,即将发射通路和接收通路分开,分别使用一只天线进行通信,由于分离天线能够提供10dB左右的隔离度。因此可以满足降低发射通路的接收带内噪声的要求。
附图说明
图1为典型的FDD移动终端射频结构图。
图2为实施本发明的无线通信收发系统的功能架构图。
图3为实施本发明的无线通信收发系统的的分离式器件组成架构图。
具体实施方式
以下结合附图对本发明具体实施方式进行说明。
请参阅图2所示,是本发明实施方式的无线通信收发系统的功能架构图,无线通信收发系统包括无线收发单元10、接收处理电路11、发射处理电路12、接收天线13和发射天线14,其中接收处理电路11与发射处理电路12均与无线收发单元10连接,而接收天线13与发射天线14分别与接收处理电路11与发射处理电路12连接。
请参阅图3所示,为实施本发明的无线通信收发系统的的分离式器件组成架构图,其中接收处理电路11包括接收声表面滤波器110及单刀五掷开关111,其中单刀五掷开关111与接收天线13连接,将接收到的信号传输到单刀五掷开关111,而接收声表面滤波器110设有多个,分别与不同的接收频段相对应,接收天线13接收到的信号依系统的设置而传输至不同的接收声表面滤波器110,而接收声表面滤波器110输出的信号传输到无线收发单元10进行处理。
发射处理电路12包括发射声表面滤波器120、功率放大器121、低通滤波器122、宽带耦合器123及单刀五掷开关124,其中发射声表面滤波器120与无线收发单元10连接,之后将信号输出至功率放大器121进行放大,之后输出至低通滤波器122进行滤波,再输出至单刀五掷开关124,最后通过宽带耦合器123输出至发射天线14。
该无线收发单元的工作频带包括全球移动通信系统(GSM)900MHz、850MHz、1800MHz、1900MHz与通用移动通信系统(UMTS)2100MHz。
另外,图3中各个器件的主要参数指标如下:
对于无线收发单元10,其最大输出功率为7dBm;最小输出功率: -76dBm;接收频段噪声: -140dBm/Hz。
而对于发射声表面滤波器,其插入损耗为2dB,而接收频段衰减为30 dB。
对于功率放大器,其中高频段发射频段放大增益为23dB,低频段发射频段放大增益为22dB ,高频接收带内放大增益为9dB,低频接收带内放大增益为8dB,发射频带到接收频段增益衰减为14dB,高频总输出接收频段噪声为-161dBm/Hz,低频总输出接收频段噪声为 -162dBm/Hz。
对于低通滤波器,其中插入损耗为高频 0.8dB,低频 0.5dB,谐波抑制为25dB,输出接收频段噪声为高频 -161.8dBm/Hz,低频 -162.5dBm/Hz
对于单刀五掷开关,其插入损耗为高频 0.8dB,低频 0.5dB,输出接收频段噪声高频为 -162.6dBm/Hz,低频 -163dBm/Hz。
宽带耦合器的插入损耗为0.3dB。
射频传输线的插入损耗为高频 0.6dB,低频 0.2dB,而输出接收频段噪声为高频 -163.5dBm/Hz,低频 -163.5dBm/Hz。
通过上述的结构安排及相应的参数配置,即经过将收发天线隔离以后,在接收端的天线处,发射通路落在接收端的噪声水平是-173.5dBm/Hz,从而满足了整个系统接收性能的要求。
另外,上述的各个元件的技术指标是不需要通过选定特定组件来完成的。对于无线收发信机,这个技术指标对于现有的无线收发信机是能够完成的,典型应用是高通平台的无线收发信机,如RTR8600、8615等型号,均可以达到上述技术指标。
而发射声表面滤波器的技术指标也是现有的器件能够完成的,如Murata和EPCOS等很多厂商都有量产的产品均可以完成上述指标。
而发射功率放大器的技术指标可采用CMOS技术的PA厂商(如Javelin)的产品以实现。因为CMOS技术可以将电感电容集成到功放内部,对接受频段进行滤波,从而达到此效果。
双天线的隔离度也是可以实现的,现有的天线供应商如Skycross和ethertronics的产品可以实现此项指标。
另外,在实际实现时,图3中的低通滤波器、单刀五掷开关以及宽带耦合器都可以整合在一个芯片中,如此,一方面可以节省空间,再者也可以节省射频传输线的长度,使得放大器输出和发射天线之间路径尽可能的短,进一步降低插损。
上述架构表示了WCDMA 3个频段的解决方案。如果需要增加如4G的通路或其他3G FDD支持的频段,仅仅需要增加、减少天线开关端口数量即可,每个发射通路配置几乎一样,对于其具体的工作原理,此处不再详细说明。
与现有技术相比较,本发明提出的FDD终端RF架构,可以不使用双工器,因此具有以下优点:(1)降低了系统插损,从而达到节省耗电的目的;(2)降低了功率放大器需要输出的最大功率,从而达到降低终端散热目的;(3)不需要使用声表面滤波器工艺的双工器,可以将放大器等前段模块集成到一起。
并且,由于本发明使用双天线的结构,即将发射通路和接收通路分开,分别使用一只天线进行通信,由于分离天线能够提供10dB左右的隔离度。因此可以满足降低发射通路的接收带内噪声(Rx Band Noise)的要求。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (15)

  1. 一种无线通信收发系统,包括:无线收发单元、接收处理电路、发射处理电路、接收天线和发射天线,其中,
    所述接收处理电路与发射处理电路均与无线收发单元连接;
    所述接收天线与所述接收处理电路连接;
    所述发射天线与所述发射处理电路连接;
    所述接收处理电路包括接收声表面滤波器及单刀五掷开关,其中所述单刀五掷开关与所述接收天线连接,将接收到的信号传输到所述单刀五掷开关;
    所述发射处理电路包括发射声表面滤波器、功率放大器、低通滤波器、单刀五掷开关及宽带耦合器,其中所述发射声表面滤波器与所述无线收发单元连接,之后将信号输出至所述功率放大器进行放大,之后输出至所述低通滤波器进行滤波,再输出至所述单刀五掷开关,最后通过所述宽带耦合器输出至所述发射天线。
  2. 如权利要求1所述的无线通信收发系统,其特征在于:所述的低通滤波器、单刀五掷开关以及宽带耦合器为一整体。
  3. 如权利要求2所述的无线通信收发系统,其特征在于:所述的低通滤波器、单刀五掷开关以及宽带耦合器整合在一芯片中。
  4. 如权利要求1所述的无线通信收发系统, 其特征在于:所述系统收声表面滤波器设有多个,分别与不同的接收频段相对应。
  5. 如权利要求1所述的无线通信收发系统,其特征在于:所述单刀五掷开关,其插入损耗为高频 0.8dB,低频 0.5dB。
  6. 一种无线通信收发系统,包括:无线收发单元、接收处理电路、发射处理电路、接收天线和发射天线,其中,
    所述接收处理电路与发射处理电路均与无线收发单元连接;
    所述接收天线与所述接收处理电路连接;
    所述发射天线与所述发射处理电路连接;
    所述接收处理电路包括接收声表面滤波器及单刀五掷开关,其中所述单刀五掷开关与所述接收天线连接,将接收到的信号传输到所述单刀五掷开关。
  7. 如权利要求6所述的无线通信收发系统,其特征在于:所述的低通滤波器、单刀五掷开关以及宽带耦合器为一整体。
  8. 如权利要求7所述的无线通信收发系统,其特征在于:所述的低通滤波器、单刀五掷开关以及宽带耦合器整合在一芯片中。
  9. 如权利要求6所述的无线通信收发系统, 其特征在于:所述系统收声表面滤波器设有多个,分别与不同的接收频段相对应。
  10. 如权利要求6所述的无线通信收发系统,其特征在于:所述单刀五掷开关,其插入损耗为高频 0.8dB,低频 0.5dB。
  11. 一种无线通信收发系统,包括:无线收发单元、接收处理电路、发射处理电路、接收天线和发射天线,其中,
    所述接收处理电路与发射处理电路均与无线收发单元连接;
    所述接收天线与所述接收处理电路连接;
    所述发射天线与所述发射处理电路连接。
  12. 如权利要求11所述的无线通信收发系统,其特征在于:所述的低通滤波器、单刀五掷开关以及宽带耦合器为一整体。
  13. 如权利要求12所述的无线通信收发系统,其特征在于:所述的低通滤波器、单刀五掷开关以及宽带耦合器整合在一芯片中。
  14. 如权利要求9所述的无线通信收发系统, 其特征在于:所述系统收声表面滤波器设有多个,分别与不同的接收频段相对应。
  15. 如权利要求11所述的无线通信收发系统,其特征在于:所述单刀五掷开关,其插入损耗为高频 0.8dB,低频 0.5dB。
PCT/CN2012/076154 2011-12-07 2012-05-28 一种无线通信收发系统 WO2013082924A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/125,880 US9204488B2 (en) 2011-12-07 2012-05-28 Wireless communication transmitting and receiving system
EP12856313.7A EP2790330A4 (en) 2011-12-07 2012-05-28 WIRELESS COMMUNICATION TRANSMITTING AND RECEIVING SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011104042052A CN102420634A (zh) 2011-12-07 2011-12-07 无线通信收发系统
CN201110404205.2 2011-12-07

Publications (1)

Publication Number Publication Date
WO2013082924A1 true WO2013082924A1 (zh) 2013-06-13

Family

ID=45944889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076154 WO2013082924A1 (zh) 2011-12-07 2012-05-28 一种无线通信收发系统

Country Status (4)

Country Link
US (1) US9204488B2 (zh)
EP (1) EP2790330A4 (zh)
CN (1) CN102420634A (zh)
WO (1) WO2013082924A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420634A (zh) * 2011-12-07 2012-04-18 捷开通讯科技(上海)有限公司 无线通信收发系统
CN103067061A (zh) * 2013-01-17 2013-04-24 深圳市中兴移动通信有限公司 一种收发分离的多天线移动终端系统及用于该系统的方法
CN104753553B (zh) * 2013-12-26 2019-02-12 中兴通讯股份有限公司 一种提高射频链路收发性能的装置、移动终端及方法
US9797978B1 (en) 2014-09-03 2017-10-24 Howard Melamed UAV, system, and method for radio frequency spectral analysis
US9689976B2 (en) 2014-12-19 2017-06-27 Xidrone Systems, Inc. Deterent for unmanned aerial systems
US9715009B1 (en) 2014-12-19 2017-07-25 Xidrone Systems, Inc. Deterent for unmanned aerial systems
US9847035B1 (en) 2015-01-28 2017-12-19 Howard Melamed Methods for radio frequency spectral analysis
US9529360B1 (en) 2015-01-28 2016-12-27 Howard Melamed System and method for detecting and defeating a drone
CN105137802A (zh) * 2015-09-23 2015-12-09 天津光电新亚电子通信技术有限公司 一种可进行车辆识别的etc智能开闸系统及开闸方法
CN107371279A (zh) * 2016-05-12 2017-11-21 北京佰才邦技术有限公司 一种基站射频装置
CN106330213A (zh) * 2016-09-18 2017-01-11 深圳铂睿智恒科技有限公司 一种增强灵敏度的射频装置
CN107196688B (zh) * 2017-07-07 2020-07-28 成都新光微波工程有限责任公司 一种室外广播电视mimo双极化双通道宽带发射系统
CN107612563B (zh) * 2017-08-31 2018-09-07 广东欧珀移动通信有限公司 射频前端系统、移动终端及信号处理方法
US10907940B1 (en) 2017-12-12 2021-02-02 Xidrone Systems, Inc. Deterrent for unmanned aerial systems using data mining and/or machine learning for improved target detection and classification
US11277251B1 (en) 2019-07-03 2022-03-15 Michael Patrick Millard Radio frequency spectrum management system and method
CN111162816B (zh) * 2019-12-15 2021-09-10 扬州船用电子仪器研究所(中国船舶重工集团公司第七二三研究所) 一种高隔离度收发天线共用的干扰系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1220460A2 (en) * 2000-12-29 2002-07-03 Nokia Corporation Arrangement and method for reducing losses in radio transmitter
WO2010075190A2 (en) * 2008-12-24 2010-07-01 Rayspan Corporation Rf front-end module and antenna systems
CN102113220A (zh) * 2008-06-26 2011-06-29 高通股份有限公司 低功率解串器和解多路复用方法
CN102404879A (zh) * 2011-11-04 2012-04-04 惠州Tcl移动通信有限公司 一种移动通讯终端
CN102420634A (zh) * 2011-12-07 2012-04-18 捷开通讯科技(上海)有限公司 无线通信收发系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491889B2 (en) * 2000-04-03 2002-12-10 Ibule Photonics Co., Ltd. Ferroelectric single crystal wafer and process for the preparation thereof
DE10052711A1 (de) * 2000-10-24 2002-05-02 Siemens Ag Multiband-Endgerät
DE10102201C2 (de) * 2001-01-18 2003-05-08 Epcos Ag Elektrisches Schaltmodul, Schaltmodulanordnung und verwendung des Schaltmoduls und der Schaltmodulanordnung
US6995630B2 (en) * 2001-10-24 2006-02-07 Matsushita Electric Industrial Co., Ltd. High-frequency compound switch module and communication terminal using it
US6751470B1 (en) * 2002-04-08 2004-06-15 Nokia Corporation Versatile RF front-end multiband mobile terminals
US20040018815A1 (en) * 2002-07-25 2004-01-29 Tsung-Liang Lin Wireless communication circuit architecture
US7076216B2 (en) * 2002-09-17 2006-07-11 Hitachi Metals, Ltd. High-frequency device, high-frequency module and communications device comprising them
US7149483B1 (en) * 2003-10-28 2006-12-12 Magnolia Broadband Inc. Amplifying diversity signals using power amplifiers
US8000737B2 (en) * 2004-10-15 2011-08-16 Sky Cross, Inc. Methods and apparatuses for adaptively controlling antenna parameters to enhance efficiency and maintain antenna size compactness
US7801556B2 (en) * 2005-08-26 2010-09-21 Qualcomm Incorporated Tunable dual-antenna system for multiple frequency band operation
JP2007336034A (ja) * 2006-06-13 2007-12-27 Matsushita Electric Ind Co Ltd 無線通信装置
US20090180403A1 (en) * 2008-01-11 2009-07-16 Bogdan Tudosoiu Multi-band and multi-mode radio frequency front-end module architecture
JP5136532B2 (ja) * 2009-09-29 2013-02-06 株式会社村田製作所 高周波スイッチモジュール
CN102185623B (zh) * 2011-02-16 2015-06-17 惠州Tcl移动通信有限公司 一种移动终端及其多天线实现方法
CN102148622A (zh) * 2011-03-22 2011-08-10 中兴通讯股份有限公司 消除终端模式间互扰的方法及终端
US20130016633A1 (en) * 2011-07-14 2013-01-17 Lum Nicholas W Wireless Circuitry for Simultaneously Receiving Radio-frequency Transmissions in Different Frequency Bands

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1220460A2 (en) * 2000-12-29 2002-07-03 Nokia Corporation Arrangement and method for reducing losses in radio transmitter
CN102113220A (zh) * 2008-06-26 2011-06-29 高通股份有限公司 低功率解串器和解多路复用方法
WO2010075190A2 (en) * 2008-12-24 2010-07-01 Rayspan Corporation Rf front-end module and antenna systems
CN102404879A (zh) * 2011-11-04 2012-04-04 惠州Tcl移动通信有限公司 一种移动通讯终端
CN102420634A (zh) * 2011-12-07 2012-04-18 捷开通讯科技(上海)有限公司 无线通信收发系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2790330A4 *

Also Published As

Publication number Publication date
US20140133372A1 (en) 2014-05-15
EP2790330A4 (en) 2015-09-16
US9204488B2 (en) 2015-12-01
EP2790330A1 (en) 2014-10-15
CN102420634A (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
WO2013082924A1 (zh) 一种无线通信收发系统
WO2013063915A1 (zh) 一种移动通讯终端
WO2020192527A1 (zh) 射频前端电路及移动终端
KR101763997B1 (ko) 전송 무선 주파수 신호와 수신 무선 주파수 신호 간의 개선된 격리에 관한 시스템 및 방법
WO2013063924A1 (zh) 功率放大模块、射频前端模块和多模终端
WO2015131456A1 (zh) 多模双通终端
WO2013063938A1 (zh) 功率放大模块、多模射频收发器、双工器和多模终端
WO2011076133A1 (zh) 天线振子复用的方法、装置和天线组件
WO2013063926A1 (zh) 功率放大模块、多模射频收发器和多模终端
US20150043620A1 (en) Mobile communication terminal
WO2013189411A2 (zh) 通信终端及降低通信终端干扰的方法
CN109547038A (zh) 一种带间上行载波聚合射频电路、天线装置和电子设备
WO2012152034A1 (zh) 双模射频模块、双模射频发送、接收方法以及用户终端
WO2013185665A1 (zh) Tdd制式射频收发电路及方法、射频前端电路和终端
WO2023147749A1 (zh) 信号发射装置及射频前端模块、设备
WO2008119284A1 (fr) Application frontale radiofréquence partagée, station de base et procédé permettant de partager une application frontale radiofréquence
WO2014067353A1 (zh) 中频模数转换装置
CN208904990U (zh) 有gsm的蜂窝射频电路
CN201307855Y (zh) 一种基站信号塔顶优化系统
CN216056990U (zh) 一种通讯模块
CN220254503U (zh) 一种三波段手持终端对讲机
CN204145509U (zh) 一种多频段无源奇次和偶次互调测试系统
CN215646784U (zh) 一种射频前端电路及移动终端设备
CN203596817U (zh) 一种跳频发射器
KR100688190B1 (ko) 선형증폭기를 내장한 무선신호 송수신장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856313

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14125880

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012856313

Country of ref document: EP