WO2020192527A1 - 射频前端电路及移动终端 - Google Patents

射频前端电路及移动终端 Download PDF

Info

Publication number
WO2020192527A1
WO2020192527A1 PCT/CN2020/080003 CN2020080003W WO2020192527A1 WO 2020192527 A1 WO2020192527 A1 WO 2020192527A1 CN 2020080003 W CN2020080003 W CN 2020080003W WO 2020192527 A1 WO2020192527 A1 WO 2020192527A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
antenna
switch
double
frequency circuit
Prior art date
Application number
PCT/CN2020/080003
Other languages
English (en)
French (fr)
Inventor
谢政男
盛雪锋
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP20776630.4A priority Critical patent/EP3944510A4/en
Priority to AU2020248826A priority patent/AU2020248826B2/en
Priority to CA3133982A priority patent/CA3133982A1/en
Priority to KR1020217033806A priority patent/KR102552627B1/ko
Priority to JP2021556822A priority patent/JP7270763B2/ja
Publication of WO2020192527A1 publication Critical patent/WO2020192527A1/zh
Priority to US17/481,409 priority patent/US11757484B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0067Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands
    • H04B1/0075Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands using different intermediate frequencied for the different bands
    • H04B1/0078Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands using different intermediate frequencied for the different bands with a common intermediate frequency amplifier for the different intermediate frequencies, e.g. when using switched intermediate frequency filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching

Definitions

  • the embodiments of the present disclosure relate to the technical field of terminal applications, and in particular to a radio frequency front-end circuit and a mobile terminal.
  • FIG. 1 it is a schematic diagram of the structure of the radio frequency front-end circuit of 5G mobile terminal equipment.
  • the circuit architecture is used to implement one-transmit and four-receive 1T4R and two-transmit and four-receive 2T4R.
  • the layout of 5G mobile terminal equipment directly affects The path difference loss, as shown in Fig. 1, the RF front-end circuit structure of the 5G mobile terminal equipment in the related art, and its long wiring leads to high path difference loss.
  • the RF front-end circuit structure of 5G mobile terminal equipment in the related art often uses a three-pole three-throw switch.
  • the higher the signal transmission frequency the larger the bandwidth, resulting in greater component loss, and also increasing the output power. Difficulty in implementing the specification. Therefore, how to reduce the path difference loss, the component difference loss, and the complexity of the circuit design becomes an urgent problem to be solved.
  • the embodiments of the present disclosure provide a radio frequency front-end circuit and a mobile terminal to solve the problem of complex circuit design and the structure of the radio frequency front-end circuit of 5G mobile terminal equipment in the related art.
  • an embodiment of the present disclosure provides a radio frequency front-end circuit, including:
  • the strobe switch is respectively connected to the first antenna, the second antenna and the radio frequency circuit module;
  • a double-pole double-throw switch respectively connected to the strobe switch, the third antenna, the fourth antenna and the first radio frequency circuit;
  • the radio frequency circuit module is connected to the first target antenna of the first antenna and the second antenna through the strobe switch, and receives and/or transmits signals through the first target antenna;
  • the radio frequency circuit module is connected to the second target antenna of the third antenna and the fourth antenna through the strobe switch and the double-pole double-throw switch, and passes through the second target The antenna receives and/or transmits signals;
  • the radio frequency circuit module When the radio frequency circuit module is connected to the first target antenna of the first antenna and the second antenna, the first radio frequency circuit is connected to the third antenna through the double pole double throw switch.
  • the antenna is connected to the second target antenna of the fourth antenna, and receives and/or transmits signals through the second target antenna;
  • the radio frequency circuit module is connected to the second target antenna of the third antenna and the fourth antenna
  • the first radio frequency circuit is connected to the third antenna through the double pole double throw switch.
  • the antenna is connected to a third target antenna other than the second target antenna of the fourth antenna, and receives and/or transmits signals through the third target antenna.
  • the embodiments of the present disclosure also provide a mobile terminal, including:
  • controller is used to control the opening and closing of the strobe switch and/or the opening and closing of the double pole double throw switch.
  • the double-pole double-throw switch is connected to the strobe switch, wherein the strobe switch is also connected to the first antenna, the second antenna and the radio frequency circuit module, and the double-pole double-throw switch is also connected respectively
  • the third antenna, the fourth antenna and the first radio frequency circuit enable the radio frequency circuit modules respectively connected to the strobe switch to flexibly receive and/or transmit signals through any antenna.
  • the circuit design is simple, and the signal transmission and/or Or on the basis of receiving, the radio frequency layout can be shortened, thereby reducing the path difference loss.
  • Figure 1 is a schematic diagram of the structure of a radio frequency front-end circuit in the related art
  • FIG. 3 is a second structural diagram of a radio frequency front-end circuit provided by an embodiment of the disclosure.
  • FIG. 4 is the third structural diagram of the radio frequency front-end circuit provided by the embodiments of the disclosure.
  • the radio frequency front-end circuit includes: a strobe switch 1, respectively connected to the first antenna 2, the second antenna 3 and the radio frequency circuit module; a double pole double throw switch 4, respectively connected to the strobe switch 1, the third antenna 5, and the fourth antenna 6 and the first radio frequency circuit 7; wherein the radio frequency circuit module is connected to the first target antenna of the first antenna 2 and the second antenna 3 through the gate switch 1, and receives and/or transmits signals through the first target antenna Or, the radio frequency circuit module is connected to the second target antenna of the third antenna 5 and the fourth antenna 6 through the strobe switch 1, the double pole double throw switch 4, and receives and/or transmits signals through the second target antenna .
  • the radio frequency circuit module When the radio frequency circuit module is connected to the first target antenna of the first antenna 2 and the second antenna 3, the first radio frequency circuit 7 is connected to the third antenna 5 and the fourth antenna 6 through the double-pole double-throw switch 4
  • the second target antenna is connected, and signals are received and/or transmitted through the second target antenna;
  • the radio frequency circuit module When the radio frequency circuit module is connected to the second target antenna of the third antenna 5 and the fourth antenna 6, the first radio frequency circuit 7 is connected to the third antenna 5 and the fourth antenna 6 through the double-pole double-throw switch 4 A third target antenna other than the second target antenna is connected, and signals are received and/or transmitted through the third target antenna.
  • the first target antenna is the first antenna 2 or the second antenna 3.
  • the second target antenna is the third antenna 5 or the fourth antenna 6.
  • the third target antenna is the fourth antenna 6; if the second target antenna is the fourth antenna 6, the third target antenna is the third antenna 5.
  • the radio frequency circuit module includes: a signal receiving circuit and/or a signal transmitting circuit.
  • the signal receiving circuit is used to receive signals through the connected antenna.
  • the signal transmitting circuit is used to transmit signals through the connected antenna.
  • the strobe switch is also connected to the first antenna, the second antenna and the radio frequency circuit module, and the double-pole double throw switch is also connected to the third antenna and the fourth antenna respectively And the first radio frequency circuit, so that the radio frequency circuit modules respectively connected to the gate switch can flexibly receive and/or transmit signals through any antenna.
  • the circuit design is simple, and on the basis of realizing signal transmission and/or reception, Shorten the RF layout traces, thereby reducing the path difference loss.
  • the radio frequency circuit module includes: a second radio frequency circuit 8, a third radio frequency circuit 9 and a fourth radio frequency circuit 10;
  • the strobe switch 1 includes: a first movable end, a second Two movable ends, third movable ends, first fixed ends, second fixed ends, and third fixed ends; wherein, the first movable end is connected to the second radio frequency circuit 8; the second movable end is connected to the third radio frequency circuit 9; the third The movable end is connected to the fourth radio frequency circuit 10; the first fixed end is connected to the first antenna 2; the second fixed end is connected to the second antenna 3; the third fixed end is connected to a movable end of the double-pole double-throw switch 4.
  • the strobe switch 1 is used to connect the first movable end to a certain end of the first fixed end, the second fixed end, and the third fixed end; it is also used to connect the second movable end to the first fixed end and the third fixed end.
  • the second fixed end and the third fixed end are connected to a certain end; and the third movable end is also used to connect the third fixed end to one of the first fixed end, the second fixed end and the third fixed end.
  • the double-pole double-throw switch 4 includes: a fourth movable end, a fifth movable end, a fourth fixed end, and a fifth fixed end; wherein the fourth movable end is connected to the Turn on the switch 1; the fifth movable end is connected to the first radio frequency circuit 7; the fourth fixed end is connected to the third antenna 5; the fifth fixed end is connected to the fourth antenna 6.
  • the second radio frequency circuit 8 includes: a first low noise amplifier; a first filter connected to the first low noise amplifier and the first movable end of the gate switch 1 respectively Wherein, when the first movable end of the strobe switch 1 is connected to one of its first fixed end and a second fixed end, the second radio frequency circuit 8 receives a signal through the first target antenna.
  • the first target antenna connected to the second radio frequency circuit 8 is the first antenna 2 or the second antenna. Two or three antenna 3.
  • the first movable end of the strobe switch 1 is connected to its third fixed end, and a movable end of the double pole double throw switch 4 of the third fixed end is connected to one of the two fixed ends of the double pole double throw switch 4
  • the second radio frequency circuit 8 receives the signal through the second target antenna.
  • a movable end of the double-pole double-throw switch 4 connected to the third fixed end specifically refers to the fourth movable end of the double-pole double-throw switch 4. Since the two fixed ends of the double-pole double-throw switch 4 are connected to the third antenna 5 and the fourth antenna 6 respectively, the second target antenna connected to the second radio frequency circuit 8 is the third antenna 5 or the fourth antenna 6.
  • the second radio frequency circuit 8 is a signal receiving circuit, that is, receiving signals through a connected antenna. It should be noted that the second radio frequency circuit 8 can flexibly receive signals through any antenna in the radio frequency front-end circuit through the strobe switch 1 and the double-pole double-throw switch 4 connected to the strobe switch 1, thereby shortening the radio frequency layout. Routes to reduce path loss.
  • the second radio frequency circuit 8 when the second radio frequency circuit 8 is connected to the third antenna 5 or the fourth antenna 6 through the double-pole double-throw switch 4, since the double-pole double-throw switch itself has small component loss and good isolation, it can also improve the second The receiving performance of the radio frequency circuit 8.
  • the second radio frequency circuit 8 includes: a second low-noise amplifier, a first power amplifier, a first switch 11, and a first movable end connected to the gate switch 1 respectively.
  • the second filter connected to the first switch 11.
  • the second low-noise amplifier when the second low-noise amplifier is connected to the second filter through the first switch 11, and the first movable end of the gate switch 1 is connected to one of its first fixed end and second fixed end, the second The radio frequency circuit 8 receives signals through the connected first target antenna.
  • the first target antenna connected to the second radio frequency circuit 8 is the first antenna 2 or the second antenna 3.
  • the second low-noise amplifier is connected to the second filter through the first switch 11, and the first movable end of the gate switch 1 is connected to its third fixed end, and is connected to the double pole double throw switch 4 of the third fixed end.
  • the second radio frequency circuit 8 receives the signal through the connected second target antenna.
  • a movable end of the double-pole double-throw switch 4 connected to the third fixed end specifically refers to the fourth movable end of the double-pole double-throw switch 4. Since the two fixed ends of the double-pole double-throw switch 4 are connected to the third antenna 5 and the fourth antenna 6, respectively, the second target antenna connected to the second radio frequency circuit 8 is the third antenna 5 or the fourth antenna 6.
  • the second radio frequency transmits a signal through the connected first target antenna.
  • the first target antenna connected to the second radio frequency circuit 8 is the first antenna 2 or the second antenna 3.
  • the first amplifier is connected to the second filter through the first switch 11, and the first movable end of the strobe switch 1 is connected to its third fixed end, and is connected to a movable end of the double pole double throw switch 4 of the third fixed end.
  • the second radio frequency circuit 8 transmits a signal through the connected second target antenna.
  • a movable end of the double-pole double-throw switch 4 connected to the third fixed terminal specifically refers to the fourth movable end of the double-pole double-throw switch 4. Since the two fixed ends of the double-pole double-throw switch 4 are connected to the third antenna 5 and the fourth antenna 6 respectively, the second target antenna connected to the second radio frequency circuit 8 is the third antenna 5 or the fourth antenna 6.
  • the second radio frequency circuit 8 includes a signal receiving circuit and a signal transmitting circuit.
  • the second low-noise amplifier and the second filter form a signal receiving circuit, that is, receive signals through the connected antenna.
  • the first power amplifier When the first power amplifier is connected to the second filter through the first switch 11, the first power amplifier and the second filter form a signal transmitting circuit, that is, a signal is transmitted through the connected antenna.
  • the second radio frequency circuit 8 can flexibly receive and/or transmit signals through any antenna in the radio frequency front-end circuit through the strobe switch 1 and the double-pole double-throw switch 4 connected to the strobe switch 1, thereby shortening the radio frequency. Layout and routing to reduce path loss.
  • the signal receiving circuit in the second radio frequency circuit 8 is connected to the third antenna 5 or the fourth antenna 6 through the double-pole double-throw switch 4, since the double-pole double-throw switch itself has small component loss and good isolation, The receiving performance of the second radio frequency circuit 8 can also be improved.
  • the double-pole double-throw switch itself has small component loss and good isolation, which can also improve The emission performance of the second radio frequency circuit 8.
  • the first switch 11 is a single-pole double-throw switch, including a movable end and two fixed ends.
  • the movable end is connected with the second filter
  • a certain end is connected with the input end of the second low noise amplifier
  • the other fixed end is connected with the output end of the first power amplifier.
  • the third radio frequency circuit 9 includes: a third low-noise amplifier; a third low-noise amplifier connected to the third low-noise amplifier and the second movable end of the gate switch 1. filter.
  • the third radio frequency circuit 9 receives the signal through the connected first target antenna.
  • the first target antenna connected to the third radio frequency circuit 9 is the first antenna 2 or the second antenna. Two antenna 3.
  • the second movable end is connected to the third fixed end, and a movable end of the double pole double throw switch connected to the third fixed end and two fixed ends of the double pole double throw switch
  • the third radio frequency circuit 9 receives the signal through the connected second target antenna.
  • a movable end of the double-pole double-throw switch 4 connected to the third fixed end is specifically the fourth movable end of the double-pole double-throw switch 4. Since the two fixed ends of the double-pole double-throw switch 4 are connected to the third antenna 5 and the fourth antenna 6 respectively, the second target antenna connected to the third radio frequency circuit 9 is the third antenna 5 or the fourth antenna 6.
  • the third radio frequency circuit 9 is a signal receiving circuit, that is, receiving signals through a connected antenna. It should be noted that the third radio frequency circuit 9 can flexibly receive signals through any antenna in the radio frequency front-end circuit through the strobe switch 1 and the double-pole double-throw switch 4 connected to the strobe switch 1, thereby shortening the radio frequency layout. Routes to reduce path loss.
  • the third radio frequency circuit 9 is connected to the third antenna 5 or the fourth antenna 6 through the double-pole double-throw switch 4, since the double-pole double-throw switch itself has small component loss and good isolation, it can also improve the third The receiving performance of the radio frequency circuit 9.
  • the fourth radio frequency circuit 10 includes: a fourth low-noise amplifier, a second power amplifier, a second switch 12, and a third activity with the gate switch 1 respectively. Terminal and the second switch 12 connected to the fourth filter.
  • the fourth radio frequency circuit 10 receives signals through the connected first target antenna
  • the first target antenna connected to the fourth radio frequency circuit 10 is the first antenna 2 or the second antenna 3.
  • the fourth low-noise amplifier is connected to the fourth filter through the second switch 12, and the third movable end of the strobe switch 1 is connected to its third fixed end, and is connected to the double pole double throw switch 4 of the third fixed end.
  • the fourth radio frequency circuit 10 receives a signal through the connected second target antenna.
  • a movable end of the double-pole double-throw switch 4 connected to the third fixed end refers specifically to the fourth movable end of the double-pole double-throw switch 4. Since the two fixed ends of the double-pole double-throw switch 4 are connected to the third antenna 5 and the fourth antenna 6 respectively, the second target antenna connected to the fourth radio frequency circuit 10 is the third antenna 5 or the fourth antenna 6.
  • the fourth radio frequency transmits a signal through the connected first target antenna.
  • the first target antenna connected to the fourth radio frequency circuit 10 is the first antenna 2 or the second antenna 3.
  • the second power amplifier is connected to the fourth filter through the second switch 12, and the third movable end of the strobe switch 1 is connected to its third fixed end, and is connected to one of the double pole double throw switch 4 of the third fixed end.
  • the fourth radio frequency circuit 10 transmits a signal through the connected second target antenna.
  • a movable end of the double-pole double-throw switch 4 connected to the third fixed end refers specifically to the fourth movable end of the double-pole double-throw switch 4. Since the two fixed ends of the double-pole double-throw switch 4 are connected to the third antenna 5 and the fourth antenna 6 respectively, the second target antenna connected to the fourth radio frequency circuit 10 is the third antenna 5 or the fourth antenna 6.
  • the fourth radio frequency circuit 10 includes a signal receiving circuit and a signal transmitting circuit.
  • the fourth low-noise amplifier and the fourth filter form a signal receiving circuit, that is, receive signals through the connected antenna.
  • the second power amplifier When the second power amplifier is connected to the fourth filter through the second switch 12, the second power amplifier and the fourth filter form a signal transmitting circuit, that is, a signal is transmitted through the connected antenna.
  • the fourth radio frequency circuit 10 can flexibly receive and/or transmit signals through any antenna in the radio frequency front-end circuit through the strobe switch 1 and the double-pole double-throw switch 4 connected to the strobe switch 1, thereby shortening the radio frequency. Layout and routing to reduce path loss.
  • the signal receiving circuit in the fourth radio frequency circuit 10 is connected to the third antenna 5 or the fourth antenna 6 through the double-pole double-throw switch 4, since the double-pole double-throw switch itself has small component loss and good isolation, The receiving performance of the fourth radio frequency circuit 10 can also be improved.
  • the double-pole double-throw switch itself has small component loss and good isolation, which can also improve Transmission performance of the fourth radio frequency circuit 10.
  • the second switch 12 is a single-pole double-throw switch, including a movable terminal and two fixed terminals.
  • the movable end is connected with the fourth filter
  • a certain end is connected with the input end of the fourth low noise amplifier
  • the other end is connected with the output end of the second power amplifier.
  • the first radio frequency circuit 7 includes: a fifth low-noise amplifier, a third power amplifier, a third switch 13, and a fifth activity with the double-pole double-throw switch 4 respectively. Terminal and the third switch 13 connected to the fifth filter.
  • the first radio frequency circuit 7 receives signals through the connected second target antenna.
  • the first The radio frequency circuit 7 transmits signals through the connected second target antenna.
  • the fourth fixed end is connected to the third antenna 5, and the fifth fixed end is connected to the fourth antenna 6, the second target antenna connected to the first radio frequency circuit 7 is the third antenna 5 or the fourth antenna 6. .
  • the first radio frequency circuit 7 includes a signal receiving circuit and a signal transmitting circuit.
  • the fifth low-noise amplifier and the fifth filter form a signal receiving circuit, that is, the signal is received through the connected antenna.
  • the third power amplifier When the third power amplifier is connected to the fifth filter through the third switch 13, the third power amplifier and the fifth filter form a signal transmitting circuit, that is, the signal is transmitted through the connected antenna.
  • the double-pole double-throw switch itself has small component loss and good isolation, so as to improve the first radio frequency.
  • the first radio frequency circuit 7 includes: a sixth low-noise amplifier; and the sixth low-noise amplifier and the fifth movable end of the double-pole double-throw switch 4 respectively. Connected sixth filter;
  • the first radio frequency circuit 7 receives the signal through the connected second target antenna.
  • the fourth fixed end is connected to the third antenna 5
  • the fifth fixed end is connected to the fourth antenna 6
  • the second target antenna connected to the first radio frequency circuit 7 is the third antenna 5 or the third antenna 5.
  • the third switch 13 is a single-pole double-throw switch, which includes a movable end and two fixed ends. Among them, the movable end is connected with the fifth filter, a certain end is connected with the input end of the fifth low noise amplifier, and the other fixed end is connected with the output end of the third power amplifier.
  • the first radio frequency circuit 7 is a signal receiving circuit, that is, receiving signals through a connected antenna. It should be noted that the fifth radio frequency circuit is connected to the third antenna 5 or the fourth antenna 6 through the double-pole double-throw switch 4. As the double-pole double-throw switch itself has small component loss and good isolation, the first radio frequency can be improved. The receiving performance of circuit 7.
  • the third radio frequency circuit 9 can be connected to the second antenna 3 through the strobe switch 1, or the third radio frequency circuit 9 can The third antenna 5 is connected through the strobe switch 1 and the double-pole double-throw switch 4; if at this time, the third radio frequency circuit 9 is connected to the second antenna 3 through the strobe switch 1, then the fourth radio frequency circuit 10 passes through the double-pole double The throw switch 4 is connected to the third antenna 5 or the fourth antenna 6. If the fourth radio frequency circuit 10 is connected to the third antenna 5 through the double pole double throw switch 4 at this time, the first radio frequency circuit 7 is connected through the double pole double throw switch 4 is connected to the fourth antenna 6.
  • the radio frequency front-end circuit of the embodiment of the present disclosure further includes: a radio frequency transceiver (not shown in the figure), and the radio frequency transceiver is connected to the radio frequency circuit module and the first radio frequency circuit 7 respectively.
  • radio frequency front-end circuit shown in Figure 2 and the radio frequency front-end circuit shown in Figure 4 can realize the 1T4R/2T4R function of the 5G NR system, ensuring the functions of 1 transmission and 4 reception; or, 2 channels Transmit, 4-channel receiving function.
  • the above-mentioned radio frequency front-end circuit shown in Figure 3 can realize the 1T4R function of the 5G NR system, ensuring the functions of 1 channel of transmission and 4 channels of reception.
  • the signal can be amplified by the second power amplifier, after passing through the second switch 12, and filtered by the fourth filter, and then After strobe switch 1:
  • the third antenna 5 and the fourth antenna 6 can be transmitted.
  • the second transmission signal can be amplified by the third power amplifier after being sent by the radio frequency transceiver (not shown in the figure), after passing through the third switch 13, filtered by the fifth filter, and then After the double pole double throw switch 4:
  • the second transmission signal is divided by the third antenna 5 and the fourth antenna 6 to transmit the first An antenna other than the one transmitting the signal is transmitted.
  • the first received signal can be received through the first antenna 2, then filtered by the fourth filter through the gate switch 1, and then switched to the fourth low noise through the second switch 12
  • the amplifier path amplifies the signal and transmits it to the RF transceiver for subsequent processing.
  • the second received signal is received by the second antenna 3, it is filtered by the first filter through the gate switch 1, and then enters the first low-noise amplifier path, where the signal is amplified and transmitted to the radio frequency transceiver for subsequent processing.
  • the pass switch 1 can choose to enter the receiving pass including the first low noise amplifier, or the receiving pass including the third low noise amplifier, or the receiving path including the fourth low noise amplifier according to actual conditions, which is not specifically limited here.
  • the third received signal is received by the third antenna 5, after passing through the double-pole double-throw switch 4, and then through the strobe switch 1, after being filtered by the third filter, it enters the third low-noise amplifier path to amplify the signal It is then sent to the RF transceiver for subsequent processing.
  • the fourth received signal is received by the third antenna 5 or the fourth antenna 6, after being filtered by the double-pole double-throw switch 4 to the fifth filter path, the signal is amplified by the fifth low-noise amplifier and transmitted to the RF transceiver for processing Follow-up processing.
  • the signal transmission path of the third received signal and the signal transmission path of the fourth received signal are only an example, that is, after the received signal is received by the third antenna 5 or the fourth antenna 6,
  • the double-pole double-throw switch 4 switches into the receiving path including the fifth low-noise amplifier, or the double-pole double-throw switch 4, and then through the strobe switch 1, selects to enter the receiving channel including the first low-noise amplifier according to the actual situation, Either it includes the receiving pass of the third low noise amplifier, or it includes the receiving path of the fourth low noise amplifier, which is not specifically limited here.
  • the radio frequency front-end circuit of the embodiment of the present disclosure uses a double-pole double-throw switch connected to a strobe switch, wherein the strobe switch is also connected to the first antenna, the second antenna and the three radio frequency circuits, namely the second radio frequency circuit and the third radio frequency circuit.
  • the radio frequency circuit and the fourth radio frequency circuit, the double pole double throw switch are also connected to the third antenna, the fourth antenna and one radio frequency circuit, namely the first radio frequency circuit, so that the three radio frequency circuits connected to the strobe switch can flexibly pass Any antenna receives and/or transmits signals, and a radio frequency circuit connected to the double-pole double-throw switch can flexibly receive and/or transmit signals through the third antenna or the fourth antenna.
  • This circuit has a simple design and is effective in realizing signal transmission and/or Or on the basis of receiving, the radio frequency layout can be shortened, thereby reducing the path difference loss.
  • the RF front-end circuit of the present disclosure can also be integrated into an integrated circuit chip.
  • Embodiments of the present disclosure also provide a mobile terminal, including: a controller; and the radio frequency front-end circuit as described in the above embodiments; wherein the controller is used to control the opening and closing of the strobe switch and/or the double-pole double-throw switch Opening and closing.
  • controller is also used to control the closing of the first switch, the opening and closing of the second switch, and/or the opening and closing of the third switch.

Abstract

本公开提供一种射频前端电路及移动终端。该电路包括:选通开关,分别连接第一天线、第二天线以及射频电路模组;双刀双掷开关,分别连接选通开关、第三天线、第四天线以及第一射频电路;其中,射频电路模组通过选通开关,与第一天线和第二天线中的第一目标天线连接,并通过第一目标天线接收和/或发射信号;或者,射频电路模组通过选通开关、双刀双掷开关,与第三天线和第四天线中的第二目标天线连接,并通过第二目标天线接收和/或发射信号;第一射频电路通过双刀双掷开关,与第三天线和第四天线中的一者连接。

Description

射频前端电路及移动终端
相关申请的交叉引用
本申请主张在2019年3月22日在中国提交的中国专利申请号No.201910222617.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及终端应用技术领域,尤其涉及一种射频前端电路及移动终端。
背景技术
随着互联网通信技术的快速发展,以及移动智能终端的不断普及,用户对数据流量的需求也在不断增加。从第四代移动通信技术(the fourth generation wireless technology,4G)的传输速率为100Mbps~1Gbps,到第五代移动通信技术(the fifth generation wireless technology,5G)新空口(New Radio,NR)的峰值传输速率可达20Gbps,速率的提升要求5G必备4*4多入多出(Multiple Input Multiple Output,MIMO)关键技术。
如图1所示,为5G移动终端设备的射频前端电路的结构示意图,该电路架构用于实现一发四收1T4R与二发四收2T4R,其中,5G移动终端设备的布局走线直接影响到路径差损,如图1所示,相关技术中的5G移动终端设备的射频前端电路结构,其走线长,导致路径差损高。另外,相关技术中的5G移动终端设备的射频前端电路结构常使用三刀三掷开关,信号传输频率越高,频宽越大,导致元件差损越大,而且也增大了使输出功率达到规范的实现难度。因此,如何降低路径差损、元件差损以及降低电路设计的复杂度成为亟待解决的问题。
发明内容
本公开实施例提供一种射频前端电路及移动终端,以解决相关技术中的5G移动终端设备的射频前端电路结构,电路设计复杂的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开的实施例提供了一种射频前端电路,包括:
选通开关,分别连接第一天线、第二天线以及射频电路模组;
双刀双掷开关,分别连接所述选通开关、第三天线、第四天线以及第一射频电路;
其中,所述射频电路模组通过所述选通开关,与所述第一天线和所述第二天线中的第一目标天线连接,并通过所述第一目标天线接收和/或发送信号;或者,所述射频电路模组通过所述选通开关、所述双刀双掷开关,与所述第三天线和所述第四天线中的第二目标天线连接,并通过所述第二目标天线接收和/或发送信号;
在所述射频电路模组与所述第一天线和所述第二天线中的第一目标天线连接的情况下,所述第一射频电路通过所述双刀双掷开关,与所述第三天线和所述第四天线中的第二目标天线连接,并通过所述第二目标天线接收和/或发射信号;
在所述射频电路模组与所述第三天线和所述第四天线中的第二目标天线连接的情况下,所述第一射频电路通过所述双刀双掷开关,与所述第三天线和所述第四天线中除与所述第二目标天线之外的第三目标天线连接,并通过所述第三目标天线接收和/或发射信号。
第二方面,本公开的实施例还提供了一种移动终端,包括:
控制器;以及,
如上述实施例所述的射频前端电路;
其中,所述控制器用于控制选通开关的开闭和/或双刀双掷开关的开闭。
本公开实施例的上述方案中,通过与选通开关连接的双刀双掷开关,其中选通开关还分别连接第一天线、第二天线以及射频电路模组,双刀双掷开关还分别连接第三天线、第四天线以及第一射频电路,使得分别与选通开关连接的射频电路模组能够灵活地通过任一天线接收和/或发射信号,此电路设计简单,在实现信号发射和/或接收的基础上,能够缩短射频布局走线,从而降低路径差损。
附图说明
图1为相关技术中的射频前端电路的结构示意图;
图2为本公开实施例提供的射频前端电路的结构示意图之一;
图3为本公开实施例提供的射频前端电路的结构示意图之二;
图4为本公开实施例提供的射频前端电路的结构示意图之三。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图2所示,为本公开实施例提供的射频前端电路的接收示意图之一。该射频前端电路包括:选通开关1,分别连接第一天线2、第二天线3以及射频电路模组;双刀双掷开关4,分别连接选通开关1、第三天线5、第四天线6以及第一射频电路7;其中,射频电路模组通过选通开关1,与第一天线2和第二天线3中的第一目标天线连接,并通过第一目标天线接收和/或发射信号;或者,射频电路模组通过选通开关1、双刀双掷开关4,与第三天线5和第四天线6中的第二目标天线连接,并通过第二目标天线接收和/或发射信号。
在射频电路模组与第一天线2和第二天线3中的第一目标天线连接的情况下,第一射频电路7通过双刀双掷开关4,与第三天线5和第四天线6中第二目标天线连接,并通过第二目标天线接收和/或发射信号;
在射频电路模组与第三天线5和第四天线6中的第二目标天线连接的情况在,第一射频电路7通过双刀双掷开关4,与第三天线5和第四天线6中除第二目标天线之外的第三目标天线连接,并通过第三目标天线接收和/或发射信号。
这里,第一目标天线为第一天线2或第二天线3。第二目标天线为第三天线5或第四天线6。
需要说明的是,若第二目标天线为第三天线5,则第三目标天线为第四天线6;若第二目标天线为第四天线6,则第三目标天线为第三天线5。
需要说明的是,射频电路模组包括:信号接收电路和/或信号发射电路。
具体的,信号接收电路用于通过相连接的天线接收信号。信号发射电路用于通过相连接的天线发射信号。
这里,通过与选通开关连接的双刀双掷开关,其中选通开关还分别连接第一天线、第二天线以及射频电路模组,双刀双掷开关还分别连接第三天线、第四天线以及第一射频电路,使得分别与选通开关连接的射频电路模组能够灵活地通过任一天线接收和/或发射信号,此电路设计简单,在实现信号发射和/或接收的基础上,能够缩短射频布局走线,从而降低路径差损。
可选的,如图2~4所示,射频电路模组包括:第二射频电路8、第三射频电路9和第四射频电路10;所述选通开关1包括:第一活动端、第二活动端、第三活动端、第一定端、第二定端和第三定端;其中,第一活动端连接第二射频电路8;第二活动端连接第三射频电路9;第三活动端连接第四射频电路10;第一定端连接第一天线2;第二定端连接第二天线3;第三定端连接双刀双掷开关4的一活动端。
这里,选通开关1用于使第一活动端与第一定端、第二定端和第三定端中的其中一定端连接;还用于使第二活动端与第一定端、第二定端和第三定端中的其中一定端连接;还用于使第三活动端与第一定端、第二定端和第三定端中的其中一定端连接。
可选的,如图2~4所示,所述双刀双掷开关4包括:第四活动端、第五活动端、第四定端和第五定端;其中,第四活动端连接选通开关1;第五活动端连接第一射频电路7;第四定端连接第三天线5;第五定端连接第四天线6。
在一可选实施例中,如图2所示,第二射频电路8包括:第一低噪声放大器;分别与第一低噪声放大器以及选通开关1的第一活动端连接的第一滤波器;其中,选通开关1的第一活动端与其第一定端和第二定端中的一者连接时,第二射频电路8通过第一目标天线接收信号。
需要说明的是,由于第一定端与第一天线2连接,第二定端与第二天线3连接,所以,与第二射频电路8相连接的第一目标天线为第一天线2或者第二三天线3。
或者,选通开关1的第一活动端与其第三定端连接,且连接第三定端的双刀双掷开关4的一活动端与该双刀双掷开关4的两个定端中的一者连接时,第二射频电路8通过第二目标天线接收信号。
需要说明的是,如图2所示,连接第三定端的双刀双掷开关4的一活动端,具体是指双刀双掷开关4的第四活动端。由于双刀双掷开关4的两个定端分别连接第三天线5和第四天线6,所以,与第二射频电路8相连接的第二目标天线为第三天线5或者第四天线6。
在本实施例中,第二射频电路8为信号接收电路,即通过相连接的天线接收信号。需要说明的是,第二射频电路8可通过选通开关1以及与选通开关1连接的双刀双掷开关4能够灵活地通过射频前端电路中的任一天线接收信号,从而能够缩短射频布局走线,降低路径差损。
还有,在第二射频电路8通过双刀双掷开关4与第三天线5或第四天线6连接时,由于双刀双掷开关本身元件差损小且隔离度好,还能够提升第二射频电路8的接收性能。
在另一可选实施例中,如图3所示,第二射频电路8包括:第二低噪声放大器、第一功率放大器、第一切换开关11以及分别与选通开关1的第一活动端和第一切换开关11连接的第二滤波器。
具体的,第二低噪声放大器通过第一切换开关11与第二滤波器连接,且选通开关1的第一活动端与其第一定端和第二定端中的一者连接时,第二射频电路8通过相连接的第一目标天线接收信号。
这里,由于第一定端与第一天线2连接,第二定端与第二天线3连接,所以,与第二射频电路8相连接的第一目标天线为第一天线2或者第二天线3。
或者,第二低噪声放大器通过第一切换开关11与第二滤波器连接,且选通开关1的第一活动端与其第三定端连接,且连接第三定端的双刀双掷开关4的一活动端与双刀双掷开关4的两个定端中的一者连接时,第二射频电路8通过相连接的第二目标天线接收信号。
这里,需要说明的是,如图3所示,连接第三定端的双刀双掷开关4的一活动端,具体是指双刀双掷开关4的第四活动端。由于双刀双掷开关4的 两个定端分别连接第三天线5和第四天线6,所以,与第二射频电路8相连接的第二目标天线为第三天线5或者第四天线6。
具体的,第一功率放大器通过第一切换开关11与第二滤波器连接,且选通开关1的第一活动端与其第一定端和第二定端中的一者连接时,第二射频电路8通过相连接的第一目标天线发射信号。
这里,由于第一定端与第一天线2连接,第二定端与第二天线3连接,所以,与第二射频电路8相连接的第一目标天线为第一天线2或者第二天线3。
或者,第一放大器通过第一切换开关11与第二滤波器连接,且选通开关1的第一活动端与其第三定端连接,且连接第三定端的双刀双掷开关4的一活动端与双刀双掷开关4的两个定端中的一者连接时,第二射频电路8通过相连接的第二目标天线发射信号。
这里,需要说明的是,如图3所示,连接第三定端的双刀双掷开关4的一活动端,具体是指双刀双掷开关4的第四活动端。由于双刀双掷开关4的两个定端分别连接第三天线5和第四天线6,所以,与第二射频电路8相连接的第二目标天线为第三天线5或者第四天线6。
在本实施例中,第二射频电路8包括信号接收电路和信号发射电路。
具体的,第二低噪声放大器通过第一切换开关11与第二滤波器连接时,第二低噪声放大器与第二滤波器形成信号接收电路,即通过相连接的天线接收信号。
第一功率放大器通过第一切换开关11与第二滤波器连接时,第一功率放大器与第二滤波器形成信号发射电路,即通过相连接的天线发射信号。
这里,第二射频电路8可通过选通开关1以及与选通开关1连接的双刀双掷开关4能够灵活地通过射频前端电路中的任一天线接收和/或发射信号,从而能够缩短射频布局走线,降低路径差损。
还有,在第二射频电路8中的信号接收电路通过双刀双掷开关4与第三天线5或第四天线6连接时,由于双刀双掷开关本身元件差损小且隔离度好,还能够提升第二射频电路8的接收性能。
在第二射频电路8中的信号发射电路通过双刀双掷开关4与第三天线5 或第四天线6连接时,由于双刀双掷开关本身元件差损小且隔离度好,还能够提升第二射频电路8的发射性能。
这里,可选地,第一切换开关11为单刀双掷开关,包括一活动端和两个定端。其中,其活动端与第二滤波器连接,其中一定端与第二低噪声放大器的输入端连接,另一定端与第一功率放大器的输出端连接。
在一可选实施例中,如图2~4所示,第三射频电路9包括:第三低噪声放大器;分别与第三低噪声放大器以及选通开关1的第二活动端连接的第三滤波器。
其中,选通开关1的第二活动端与其第一定端和第二定端中的一者连接时,第三射频电路9通过相连接的第一目标天线接收信号。
需要说明的是,由于第一定端与第一天线2连接,第二定端与第二天线3连接,所以,与第三射频电路9相连接的第一目标天线为第一天线2或者第二天线3。
或者,所述第二活动端与所述第三定端连接,且连接所述第三定端的所述双刀双掷开关的一活动端与所述双刀双掷开关的两个定端中的一者连接时,所述第三射频电路9通过相连接的第二目标天线接收信号。
需要说明的是,如图2~4所示所示,连接第三定端的双刀双掷开关4的一活动端,具体是指双刀双掷开关4的第四活动端。由于双刀双掷开关4的两个定端分别连接第三天线5和第四天线6,所以,与第三射频电路9相连接的第二目标天线为第三天线5或者第四天线6。
在本实施例中,第三射频电路9为信号接收电路,即通过相连接的天线接收信号。需要说明的是,第三射频电路9可通过选通开关1以及与选通开关1连接的双刀双掷开关4能够灵活地通过射频前端电路中的任一天线接收信号,从而能够缩短射频布局走线,降低路径差损。
还有,在第三射频电路9通过双刀双掷开关4与第三天线5或第四天线6连接时,由于双刀双掷开关本身元件差损小且隔离度好,还能够提升第三射频电路9的接收性能。
在一可选实施例中,如图2~4所示,第四射频电路10包括:第四低噪声放大器、第二功率放大器、第二切换开关12以及分别与选通开关1的第三活 动端和第二切换开关12连接的第四滤波器。
具体的,第四低噪声放大器通过第二切换开关12与所述第四滤波器连接,且选通开关1的第三活动端与其第一定端和第二定端中的一者连接时,第四射频电路10通过相连接的第一目标天线接收信号;
这里,由于第一定端与第一天线2连接,第二定端与第二天线3连接,所以,与第四射频电路10相连接的第一目标天线为第一天线2或者第二天线3。
或者,第四低噪声放大器通过第二切换开关12与第四滤波器连接,且选通开关1的第三活动端与其第三定端连接,且连接第三定端的双刀双掷开关4的一活动端与双刀双掷开关4的两个定端中的一者连接时,第四射频电路10通过相连接的第二目标天线接收信号。
这里,需要说明的是,如图2~4所示,连接第三定端的双刀双掷开关4的一活动端,具体是指双刀双掷开关4的第四活动端。由于双刀双掷开关4的两个定端分别连接第三天线5和第四天线6,所以,与第四射频电路10相连接的第二目标天线为第三天线5或者第四天线6。
具体的,第二功率放大器通过第二切换开关12与第四滤波器连接,且选通开关1的第三活动端与其第一定端和第二定端中的一者连接时,第四射频电路10通过相连接的第一目标天线发射信号。
这里,由于第一定端与第一天线2连接,第二定端与第二天线3连接,所以,与第四射频电路10相连接的第一目标天线为第一天线2或者第二天线3。
或者,第二功率放大器通过第二切换开关12与第四滤波器连接,且选通开关1的第三活动端与其第三定端连接,且连接第三定端的双刀双掷开关4的一活动端与双刀双掷开关4的两个定端中的一者连接时,第四射频电路10通过相连接的第二目标天线发射信号。
这里,需要说明的是,如图2~4所示,连接第三定端的双刀双掷开关4的一活动端,具体是指双刀双掷开关4的第四活动端。由于双刀双掷开关4的两个定端分别连接第三天线5和第四天线6,所以,与第四射频电路10相连接的第二目标天线为第三天线5或者第四天线6。
本实施例中,第四射频电路10包括信号接收电路和信号发射电路。
具体的,第四低噪声放大器通过第二切换开关12与所述第四滤波器连接时,第四低噪声放大器与第四滤波器形成信号接收电路,即通过相连接的天线接收信号。
第二功率放大器通过第二切换开关12与第四滤波器连接时,第二功率放大器与第四滤波器形成信号发射电路,即通过相连接的天线发射信号。
这里,第四射频电路10可通过选通开关1以及与选通开关1连接的双刀双掷开关4能够灵活地通过射频前端电路中的任一天线接收和/或发射信号,从而能够缩短射频布局走线,降低路径差损。
还有,在第四射频电路10中的信号接收电路通过双刀双掷开关4与第三天线5或第四天线6连接时,由于双刀双掷开关本身元件差损小且隔离度好,还能够提升第四射频电路10的接收性能。
在第四射频电路10中的信号发射电路通过双刀双掷开关4与第三天线5或第四天线6连接时,由于双刀双掷开关本身元件差损小且隔离度好,还能够提升第四射频电路10的发射性能。
这里,可选地,第二切换开关12为单刀双掷开关,包括一活动端和两个定端。其中,其活动端与第四滤波器连接,其中一定端与第四低噪声放大器的输入端连接,另一端与第二功率放大器的输出端连接。
在一可选实施例中,如图2所示,第一射频电路7包括:第五低噪声放大器、第三功率放大器、第三切换开关13以及分别与双刀双掷开关4的第五活动端和第三切换开关13连接的第五滤波器。
具体的,第五低噪声放大器通过第三切换开关13与第五滤波器连接,且双刀双掷开关4的第五活动端与其第四定端和第五定端中的一者连接时,第一射频电路7通过相连接的第二目标天线接收信号。
或者,第三功率放大器通过第三切换开关13与第五滤波器连接,且双刀双掷开关4的第五活动端与其第四定端和第五定端中的一者连接时,第一射频电路7通过相连接的第二目标天线发射信号。
这里,由于第四定端与第三天线5连接,第五定端与第四天线6连接,所以,与第一射频电路7相连接的第二目标天线为第三天线5或者第四天线 6。
在本实施例中,第一射频电路7包括信号接收电路和信号发射电路。
具体的,第五低噪声放大器通过第三切换开关13与第五滤波器连接时,第五低噪声放大器与第五滤波器形成信号接收电路,即通过相连接的天线接收信号。
第三功率放大器通过第三切换开关13与第五滤波器连接时,第三功率放大器与第五滤波器形成信号发射电路,即通过相连接的天线发射信号。
这里,第一射频电路7可通过双刀双掷开关4与第三天线5或第四天线6连接时,由于双刀双掷开关本身元件差损小且隔离度好,从而达到提升第一射频电路7的发射性能和/或接收性能。
在另一可选实施例中,如图3~图4所示,第一射频电路7包括:第六低噪声放大器;分别与第六低噪声放大器以及双刀双掷开关4的第五活动端连接的第六滤波器;
其中,双刀双掷开关4的第五活动端与其第四定端和第五定端中的一者连接时,第一射频电路7通过相连接的第二目标天线接收信号。
需要说明的是,由于第四定端与第三天线5连接,第五定端与第四天线6连接,所以,与第一射频电路7相连接的第二目标天线为第三天线5或者第四天线6。
这里,可选地,第三切换开关13为单刀双掷开关,包括一活动端和两个定端。其中,其活动端与第五滤波器连接,其中一定端与第五低噪声放大器的输入端连接,另一定端与第三功率放大器的输出端连接。
本实施例中,第一射频电路7为信号接收电路,即通过相连接的天线接收信号。需要说明的是,第五射频电路通过双刀双掷开关4与第三天线5或第四天线6连接,由于双刀双掷开关本身元件差损小且隔离度好,进而能够提升第一射频电路7的接收性能。
在一示例中,若第二射频电路8通过选通开关1与第一天线2连接,则第三射频电路9可通过选通开关1与第二天线3连接,或者,第三射频电路9可通过选通开关1以及双刀双掷开关4与第三天线5连接;若此时,第三射频电路9通过选通开关1与第二天线3连接,则第四射频电路10通过双刀 双掷开关4与第三天线5或者第四天线6连接,若此时,第四射频电路10通过双刀双掷开关4与第三天线5连接,则第一射频电路7通过双刀双掷开关4与第四天线6连接。
进一步地,本公开实施例的射频前端电路,还包括:射频收发器(图中未显示),该射频收发器分别与射频电路模组以及第一射频电路7连接。
需要说明的是,上述如图2所示的射频前端电路以及如图4所示的射频前端电路能够实现5G NR系统的1T4R/2T4R功能,保证1路发射,4路接收功能;或者,2路发射,4路接收功能。
而上述如图3所示的射频前端电路能够实现5G NR系统的1T4R功能,保证1路发射,4路接收功能。
下面结合图2简要说明信号在本公开的射频前端电路中的传输过程。
对于发射通路:
一、例如,第一路发射信号由射频收发器(图中未显示)发出后可通过第二功率放大器将信号放大后,经第二切换开关12后,经过第四滤波器进行滤波后,再经选通开关1后:
1)可选择经由第一天线2或者第二天线3发射出去;
2)可选经由双刀双掷开关4后,再经由第三天线5和第四天线6发射出去。
二、例如,第二路发射信号由射频收发器(图中未显示)发出后可通过第三功率放大器将信号放大后,经第三切换开关13后,经过第五滤波器进行滤波后,再经双刀双掷开关4后:
1)可选择经由第三天线5和第四天线6发射出去。
需要说明的是,若第一路发射信号经由第三天线5和第四天线6中的一者发射出去,则第二路发射信号经由第三天线5和第四天线6除用于发射第一路发射信号的天线之外的另一天线发射出去。
对于接收通路:
由于5G NR系统需支持4路同时接收,第一接收信号可通过第一天线2接收后,经过选通开关1再由第四滤波器滤波后,经过第二切换开关12切换至第四低噪声放大器通路,将信号放大后传送至射频收发器进行后续处理。
第二接收信号可通过第二天线3接收后,经过选通开关1再由第一滤波器滤波后,进入第一低噪声放大器通路,将信号放大后传送至射频收发器进行后续处理。
应当理解的是,上述第一接收信号的信号传输路径以及第二接收信号的信号传输路径仅为一示例而已,也就是说,接收信号通过第一天线2或者第二天线3接收后,经过选通开关1可根据实际情况选择进入包括第一低噪声放大器的接收通络,或者包括第三低噪声放大器的接收通络,又或者包括第四低噪声放大器的接收通路,这里不做具体限定。
同理,第三接收信号通过第三天线5接收后,经过双刀双掷开关4后,再经过选通开关1,由第三滤波器滤波后,进入第三低噪声放大器通路,将信号放大后传送至射频收发器进行后续处理。
第四接收信号通过第三天线5或者第四天线6接收后,由双刀双掷开关4至第五滤波器通路进行滤波后,通过第五低噪声放大器将信号放大后传送至射频收发器进行后续处理。
应当理解的是,上述第三接收信号的信号传输路径以及第四接收信号的信号传输路径也仅为一示例而已,也就是说,接收信号通过第三天线5或者第四天线6接收后,可由双刀双掷开关4切换进入包括第五低噪声放大器的接收通路,或者由双刀双掷开关4,再经选通开关1,根据实际情况选择进入包括第一低噪声放大器的接收通络,或者包括第三低噪声放大器的接收通络,又或者包括第四低噪声放大器的接收通路,这里不做具体限定。
本公开实施例的射频前端电路,通过与选通开关连接的双刀双掷开关,其中选通开关还分别连接第一天线、第二天线以及三路射频电路,即第二射频电路、第三射频电路及第四射频电路,双刀双掷开关还分别连接第三天线、第四天线以及一路射频电路,即第一射频电路,使得分别与选通开关连接的三路射频电路能够灵活地通过任一天线接收和/或发射信号,与双刀双掷开关连接的一路射频电路能够灵活地通过第三天线或第四天线接收和/或发射信号,此电路设计简单,在实现信号发射和/或接收的基础上,能够缩短射频布局走线,从而降低路径差损。
另外,还需要说明的是,为了缩短生产商的电路设计时间,同时降低成 本,本公开的射频前端电路还可整合成一个集成电路芯片。
本公开实施例还提供一种移动终端,包括:控制器;以及,如上述实施例所述的射频前端电路;其中,控制器用于控制选通开关的开闭和/或双刀双掷开关的开闭。
还有,控制器还用于控制第一切换开关的关闭、第二切换开关的开闭和/或第三切换开关的开闭。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护范围之内。

Claims (16)

  1. 一种射频前端电路,包括:
    选通开关,分别连接第一天线、第二天线以及射频电路模组;
    双刀双掷开关,分别连接所述选通开关、第三天线、第四天线以及第一射频电路;
    其中,所述射频电路模组通过所述选通开关,与所述第一天线和所述第二天线中的第一目标天线连接,并通过所述第一目标天线接收和/或发射信号;或者,所述射频电路模组通过所述选通开关、所述双刀双掷开关,与所述第三天线和所述第四天线中的第二目标天线连接,并通过所述第二目标天线接收和/或发射信号;
    在所述射频电路模组与所述第一天线和所述第二天线中的第一目标天线连接的情况下,所述第一射频电路通过所述双刀双掷开关,与所述第三天线和所述第四天线中的第二目标天线连接,并通过所述第二目标天线接收和/或发射信号;
    在所述射频电路模块与所述第三天线和所述第四天线中的第二目标天线连接的情况下,所述第一射频电路通过所述双刀双掷开关,与所述第三天线和所述第四天线中除所述第二目标天线之外的第三目标天线连接,并通过所述第三目标天线接收和/或发射信号。
  2. 根据权利要求1所述的射频前端电路,其中,所述射频电路模组包括:第二射频电路、第三射频电路和第四射频电路;所述选通开关包括:第一活动端、第二活动端、第三活动端、第一定端、第二定端和第三定端;
    其中,所述第一活动端连接所述第二射频电路;所述第二活动端连接所述第三射频电路;所述第三活动端连接所述第四射频电路;
    所述第一定端连接所述第一天线;所述第二定端连接所述第二天线;所述第三定端连接所述双刀双掷开关的一活动端。
  3. 根据权利要求1所述的射频前端电路,其中,所述双刀双掷开关包括:第四活动端、第五活动端、第四定端和第五定端;
    其中,所述第四活动端连接所述选通开关;所述第五活动端连接所述第 一射频电路;
    所述第四定端连接所述第三天线;所述第五定端连接所述第四天线。
  4. 根据权利要求2所述的射频前端电路,其中,所述第二射频电路包括:
    第一低噪声放大器;
    分别与所述第一低噪声放大器以及所述第一活动端连接的第一滤波器;
    其中,所述第一活动端与所述第一定端和所述第二定端中的一者连接时,所述第二射频电路通过相连接的第一目标天线接收信号;
    或者,所述第一活动端与所述第三定端连接,且连接所述第三定端的所述双刀双掷开关的一活动端与所述双刀双掷开关的两个定端中的一者连接时,所述第二射频电路通过相连接的第二目标天线接收信号。
  5. 根据权利要求2所述的射频前端电路,其中,所述第二射频电路包括:第二低噪声放大器、第一功率放大器、第一切换开关以及分别与所述第一活动端和所述第一切换开关连接的第二滤波器。
  6. 根据权利要求5所述的射频前端电路,其中,所述第二低噪声放大器通过所述第一切换开关与所述第二滤波器连接,且所述第一活动端与所述第一定端和所述第二定端中的一者连接时,所述第二射频电路通过相连接的第一目标天线接收信号;
    或者,所述第二低噪声放大器通过所述第一切换开关与所述第二滤波器连接,且所述第一活动端与所述第三定端连接,且连接所述第三定端的所述双刀双掷开关的一活动端与所述双刀双掷开关的两个定端中的一者连接时,所述第二射频电路通过相连接的第二目标天线接收信号。
  7. 根据权利要求5所述的射频前端电路,其中,所述第一功率放大器通过所述第一切换开关与所述第二滤波器连接,且所述第一活动端与所述第一定端和所述第二定端中的一者连接时,所述第二射频电路通过相连接的第一目标天线发射信号;
    或者,所述第一功率放大器通过所述第一切换开关与所述第二滤波器连接,且所述第一活动端与所述第三定端连接,且连接所述第三定端的所述双刀双掷开关的一活动端与所述双刀双掷开关的两个定端中的一者连接时,所述第二射频电路通过相连接的第二目标天线发射信号。
  8. 根据权利要求2所述的射频前端电路,其中,所述第三射频电路包括:
    第三低噪声放大器;
    分别与所述第三低噪声放大器以及所述第二活动端连接的第三滤波器;
    其中,所述第二活动端与所述第一定端和所述第二定端中的一者连接时,所述第三射频电路通过相连接的第一目标天线接收信号;
    或者,所述第二活动端与所述第三定端连接,且连接所述第三定端的所述双刀双掷开关的一活动端与所述双刀双掷开关的两个定端中的一者连接时,所述第三射频电路通过相连接的第二目标天线接收信号。
  9. 根据权利要求2所述的射频前端电路,其中,所述第四射频电路包括:第四低噪声放大器、第二功率放大器、第二切换开关以及分别与所述第三活动端和所述第二切换开关连接的第四滤波器。
  10. 根据权利要求9所述的射频前端电路,其中,所述第四低噪声放大器通过所述第二切换开关与所述第四滤波器连接,且所述第三活动端与所述第一定端和所述第二定端中的一者连接时,所述第四射频电路通过相连接的第一目标天线接收信号;
    或者,所述第四低噪声放大器通过所述第二切换开关与所述第四滤波器连接,且所述第三活动端与所述第三定端连接,且连接所述第三定端的所述双刀双掷开关的一活动端与所述双刀双掷开关的两个定端中的一者连接时,所述第四射频电路通过相连接的第二目标天线接收信号。
  11. 根据权利要求9所述的射频前端电路,其中,所述第二功率放大器通过所述第二切换开关与所述第四滤波器连接,且所述第三活动端与所述第一定端和所述第二定端中的一者连接时,所述第四射频电路通过相连接的第一目标天线发射信号;
    或者,所述第二功率放大器通过所述第二切换开关与所述第四滤波器连接,且所述第三活动端与所述第三定端连接,且连接所述第三定端的所述双刀双掷开关的一活动端与所述双刀双掷开关的两个定端中的一者连接时,所述第四射频电路通过相连接的第二目标天线发射信号。
  12. 根据权利要求3所述的射频前端电路,其中,所述第一射频电路包括:第五低噪声放大器、第三功率放大器、第三切换开关以及分别与所述第 五活动端和所述第三切换开关连接的第五滤波器。
  13. 根据权利要求12所述的射频前端电路,其中,所述第五低噪声放大器通过所述第三切换开关与所述第五滤波器连接,且所述第五活动端与所述第四定端和所述第五定端中的一者连接时,所述第一射频电路通过相连接的第二目标天线接收信号;
    或者,所述第三功率放大器通过所述第三切换开关与所述第五滤波器连接,且所述第五活动端与所述第四定端和所述第五定端中的一者连接时,所述第一射频电路通过相连接的第二目标天线发射信号。
  14. 根据权利要求3所述的射频前端电路,其中,所述第一射频电路包括:
    第六低噪声放大器;
    分别与所述第六低噪声放大器以及所述第五活动端连接的第六滤波器;
    其中,所述第五活动端与所述第四定端和所述第五定端中的一者连接时,所述第一射频电路通过相连接的第二目标天线接收信号。
  15. 根据权利要求1所述的射频前端电路,还包括:
    射频收发器,所述射频收发器分别与所述射频电路模组以及所述第一射频电路连接。
  16. 一种移动终端,包括:
    控制器;以及,
    如权利要求1~15中任一项所述的射频前端电路;
    其中,所述控制器用于控制选通开关的开闭和/或双刀双掷开关的开闭。
PCT/CN2020/080003 2019-03-22 2020-03-18 射频前端电路及移动终端 WO2020192527A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20776630.4A EP3944510A4 (en) 2019-03-22 2020-03-18 RADIO FREQUENCY FRONT CIRCUIT AND MOBILE TERMINAL
AU2020248826A AU2020248826B2 (en) 2019-03-22 2020-03-18 Radio frequency front end circuit and mobile terminal
CA3133982A CA3133982A1 (en) 2019-03-22 2020-03-18 Radio frequency front-end circuit and mobile terminal
KR1020217033806A KR102552627B1 (ko) 2019-03-22 2020-03-18 무선 주파수 프론트 엔드 회로 및 이동 단말
JP2021556822A JP7270763B2 (ja) 2019-03-22 2020-03-18 無線周波数フロントエンド回路及び移動端末
US17/481,409 US11757484B2 (en) 2019-03-22 2021-09-22 Radio frequency front-end circuit and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910222617.0 2019-03-22
CN201910222617.0A CN109873664B (zh) 2019-03-22 2019-03-22 一种射频前端电路及移动终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/481,409 Continuation US11757484B2 (en) 2019-03-22 2021-09-22 Radio frequency front-end circuit and mobile terminal

Publications (1)

Publication Number Publication Date
WO2020192527A1 true WO2020192527A1 (zh) 2020-10-01

Family

ID=66921103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080003 WO2020192527A1 (zh) 2019-03-22 2020-03-18 射频前端电路及移动终端

Country Status (8)

Country Link
US (1) US11757484B2 (zh)
EP (1) EP3944510A4 (zh)
JP (1) JP7270763B2 (zh)
KR (1) KR102552627B1 (zh)
CN (1) CN109873664B (zh)
AU (1) AU2020248826B2 (zh)
CA (1) CA3133982A1 (zh)
WO (1) WO2020192527A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055042A (zh) * 2021-03-09 2021-06-29 维沃移动通信有限公司 射频电路和电子设备
WO2022127394A1 (zh) * 2020-12-16 2022-06-23 Oppo广东移动通信有限公司 射频收发系统及通信设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109873664B (zh) * 2019-03-22 2021-01-08 维沃移动通信有限公司 一种射频前端电路及移动终端
CN110504982B (zh) 2019-08-16 2022-01-28 维沃移动通信有限公司 一种射频前端电路及移动终端
CN110518932B (zh) * 2019-08-16 2022-06-07 维沃移动通信有限公司 一种射频前端电路及移动终端
CN110943757B (zh) * 2019-11-29 2021-08-27 维沃移动通信有限公司 射频电路及电子设备
CN110890900A (zh) * 2019-11-29 2020-03-17 维沃移动通信有限公司 射频电路及电子设备
CN111525933B (zh) * 2020-04-30 2021-12-17 维沃移动通信有限公司 一种射频电路及电子设备
CN111600625A (zh) * 2020-05-14 2020-08-28 锐石创芯(深圳)科技有限公司 射频前端电路和射频前端装置
CN111756388B (zh) * 2020-06-28 2022-06-07 维沃移动通信有限公司 一种射频电路及电子设备
CN111600616B (zh) * 2020-07-10 2020-12-04 锐石创芯(深圳)科技有限公司 一种射频前端架构、天线装置及通信终端
CN115529849A (zh) * 2021-04-25 2022-12-27 华为技术有限公司 开关电路、通信装置和终端设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150280752A1 (en) * 2012-04-09 2015-10-01 Regents Of The University Of Minnesota Pseudo true time delay for multi-antenna systems
CN106487415A (zh) * 2016-09-22 2017-03-08 宇龙计算机通信科技(深圳)有限公司 一种射频前端电路及通信终端
CN107094032A (zh) * 2017-05-10 2017-08-25 广州慧智微电子有限公司 一种射频前端模块及射频信号处理方法
CN107733450A (zh) * 2017-11-15 2018-02-23 珠海市魅族科技有限公司 射频前端电路和移动终端设备
CN107733451A (zh) * 2017-11-15 2018-02-23 珠海市魅族科技有限公司 射频前端电路和移动终端设备
CN109873664A (zh) * 2019-03-22 2019-06-11 维沃移动通信有限公司 一种射频前端电路及移动终端

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280637A (en) 1991-09-18 1994-01-18 Motorola, Inc. Phase combining method and apparatus for use in a diversity receiver
US5926751A (en) 1997-02-19 1999-07-20 Motorola, Inc. Method and apparatus for receiving communication signals
JP2005094714A (ja) * 2003-09-22 2005-04-07 Nec Kansai Ltd デュアルバンド送受信装置
US20060025171A1 (en) * 2004-07-27 2006-02-02 Dell Products L.P. Information handling system capable of switching among multiple wireless radio architectures
US20060063494A1 (en) * 2004-10-04 2006-03-23 Xiangdon Zhang Remote front-end for a multi-antenna station
RU65319U1 (ru) 2007-03-14 2007-07-27 Федеральное государственное унитарное предприятие "Калужский научно-исследовательский институт телемеханических устройств" Блок антенных малошумящих усилителей многоканального широкополосного приемника радиосигналов
US9231680B2 (en) * 2009-03-03 2016-01-05 Rfaxis, Inc. Multi-channel radio frequency front end circuit
TWI519083B (zh) * 2009-11-20 2016-01-21 日立金屬股份有限公司 高頻電路、高頻電路元件及通信裝置
EP2421171B1 (en) 2010-08-17 2015-10-14 Broadcom Corporation WiMAX/WiFi coexistence
RU2479919C1 (ru) 2011-11-01 2013-04-20 Открытое акционерное общество научно-внедренческое предприятие "ПРОТЕК" Многоканальный передатчик радиопомех
JP6329273B2 (ja) * 2014-03-26 2018-05-23 華為終端(東莞)有限公司 無線周波数フロントエンドシステム、信号伝送制御方法、およびモバイル端末
CN109905132B (zh) 2015-04-13 2021-01-26 中国移动通信集团公司 一种射频通路及终端
CN106911350B (zh) * 2015-12-22 2019-06-25 华硕电脑股份有限公司 无线通信装置
WO2017203918A1 (ja) * 2016-05-27 2017-11-30 株式会社村田製作所 誘電体導波管フィルタ、高周波フロントエンド回路およびMassive MIMOシステム
CN106209120A (zh) * 2016-06-30 2016-12-07 维沃移动通信有限公司 一种射频电路及移动终端
CN106301462B (zh) * 2016-08-02 2017-08-25 广东欧珀移动通信有限公司 射频控制电路及移动终端
CN106656248A (zh) * 2016-11-28 2017-05-10 维沃移动通信有限公司 一种天线切换装置和移动终端
CN108199727A (zh) * 2018-03-16 2018-06-22 广东欧珀移动通信有限公司 多路选择开关及相关产品
CN108808265A (zh) 2018-05-02 2018-11-13 珠海市魅族科技有限公司 天线系统和天线切换方法
KR102578003B1 (ko) * 2018-10-18 2023-09-13 삼성전자주식회사 상향링크 기준 신호를 송신하기 위한 전자 장치 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150280752A1 (en) * 2012-04-09 2015-10-01 Regents Of The University Of Minnesota Pseudo true time delay for multi-antenna systems
CN106487415A (zh) * 2016-09-22 2017-03-08 宇龙计算机通信科技(深圳)有限公司 一种射频前端电路及通信终端
CN107094032A (zh) * 2017-05-10 2017-08-25 广州慧智微电子有限公司 一种射频前端模块及射频信号处理方法
CN107733450A (zh) * 2017-11-15 2018-02-23 珠海市魅族科技有限公司 射频前端电路和移动终端设备
CN107733451A (zh) * 2017-11-15 2018-02-23 珠海市魅族科技有限公司 射频前端电路和移动终端设备
CN109873664A (zh) * 2019-03-22 2019-06-11 维沃移动通信有限公司 一种射频前端电路及移动终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127394A1 (zh) * 2020-12-16 2022-06-23 Oppo广东移动通信有限公司 射频收发系统及通信设备
CN113055042A (zh) * 2021-03-09 2021-06-29 维沃移动通信有限公司 射频电路和电子设备

Also Published As

Publication number Publication date
CN109873664A (zh) 2019-06-11
CN109873664B (zh) 2021-01-08
EP3944510A4 (en) 2022-06-01
KR102552627B1 (ko) 2023-07-05
JP7270763B2 (ja) 2023-05-10
AU2020248826B2 (en) 2023-01-05
EP3944510A1 (en) 2022-01-26
KR20210138733A (ko) 2021-11-19
JP2022528039A (ja) 2022-06-08
US11757484B2 (en) 2023-09-12
AU2020248826A1 (en) 2021-11-18
CA3133982A1 (en) 2020-10-01
US20220014229A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
WO2020192527A1 (zh) 射频前端电路及移动终端
WO2020192426A1 (zh) 射频前端电路及移动终端
WO2020192427A1 (zh) 射频前端电路及移动终端
WO2017113583A1 (zh) 实现载波聚合和wifi双频mimo的控制电路、终端
WO2021031771A1 (zh) 射频前端电路及移动终端
WO2016023309A1 (zh) 一种载波聚合装置
WO2021104429A1 (zh) 射频电路及电子设备
WO2021104456A1 (zh) 射频电路及电子设备
CN101640562B (zh) 多输入多输出系统和方法
WO2021031713A1 (zh) 射频前端电路及移动终端
WO2016184271A1 (zh) 一种天线切换装置
WO2022028303A1 (zh) 射频电路和电子设备
WO2022127402A1 (zh) 射频PA Mid器件、射频收发系统和通信设备
WO2022166653A1 (zh) 一种射频前端模块及天线装置
WO2022143453A1 (zh) 射频电路及电子设备
WO2023236530A1 (zh) 射频PA Mid器件、射频系统和通信设备
WO2023098244A1 (zh) 射频前端器件和射频系统
RU2784458C1 (ru) Радиочастотная входная схема и мобильный терминал
RU2791910C1 (ru) Высокочастотная схема входного каскада и мобильный терминал
US20240048172A1 (en) Signal communication terminal and signal communication system
CN116388793A (zh) 射频前端电路和电子设备
CN114124141A (zh) 射频系统和通信设备
CN114665903A (zh) 毫米波前端处理电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3133982

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021556822

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021018709

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217033806

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020776630

Country of ref document: EP

Effective date: 20211022

ENP Entry into the national phase

Ref document number: 2020248826

Country of ref document: AU

Date of ref document: 20200318

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021018709

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210920