WO2017113583A1 - 实现载波聚合和wifi双频mimo的控制电路、终端 - Google Patents

实现载波聚合和wifi双频mimo的控制电路、终端 Download PDF

Info

Publication number
WO2017113583A1
WO2017113583A1 PCT/CN2016/084097 CN2016084097W WO2017113583A1 WO 2017113583 A1 WO2017113583 A1 WO 2017113583A1 CN 2016084097 W CN2016084097 W CN 2016084097W WO 2017113583 A1 WO2017113583 A1 WO 2017113583A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
switch
frequency
band signal
antenna
Prior art date
Application number
PCT/CN2016/084097
Other languages
English (en)
French (fr)
Inventor
王伟
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Publication of WO2017113583A1 publication Critical patent/WO2017113583A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of antenna technologies, and in particular, to a control circuit and a terminal for implementing carrier aggregation and WIFI dual-frequency MIMO.
  • China Mobile, China Unicom and China Telecom are actively upgrading their networks and deploying CA (Carrier Aggregation).
  • China Mobile CA requires carrier aggregation of B39 (Band39) and B41 (Band41).
  • Carrier aggregation is implemented using a duplex filter scheme.
  • China Unicom and China Telecom belong to FDD-LTE (Frequency Division Duplexing-Long Term Evolution) and require B1 (Band1)+B3 (Band3).
  • Carrier aggregation, and the FDD-LTE scheme is currently a four-worker scheme, which implements both downlink B1 and B3 FDD-LTE signals.
  • a terminal that implements carrier aggregation such as a mobile phone
  • WIFI MIMO Multiple Input Multiple Out
  • the number of incoming and outgoing is relatively small, mainly due to the limited terminal space, which increases the number of antennas and makes the terminal design more difficult.
  • the above-mentioned prior art solution has a very high cost and a large insertion loss, so that the PA (Power Amplifier) outputs more power to compensate for the insertion loss caused by the four-worker, and the AC's ACLR. (Adjacent Channel Leakage Ratio)
  • the higher the transmission power the larger the current and the lower the efficiency.
  • the transmit power of the PA is still transmitted at a larger power value, resulting in unnecessary current consumption.
  • the invention is based on the above technical problem, and proposes a new technical solution, which can realize the carrier aggregation function and the WIFI dual-frequency MIMO function without increasing the total number of antennas of the system, and does not additionally increase the PA. Output power to reduce terminal power consumption.
  • a control circuit for implementing carrier aggregation and WIFI dual-frequency MIMO including: a first antenna, a second antenna, a third antenna, a fourth antenna, a first switch, and a first a second switch, a third switch, a fourth switch, a transceiver, a WIFI transceiver, a first filter component, a second filter component, a first frequency divider, and a second frequency divider; wherein the first switch One end is connected to the first antenna, and the other end is connected to the transceiver through the first filtering component, and the first antenna is used to implement transmission and main set reception of the first frequency band signal and the second frequency band signal; One end of the second switch is connected to the second antenna, and the other end is connected to the transceiver through the second filtering component, and the second antenna is used to implement transmission of a third frequency band signal and a fourth frequency band signal.
  • the third antenna is respectively connected to the third switch and the WIFI transceiver, and is configured to implement diversity of the first frequency band signal and the second frequency band signal Receiving; the fourth antenna Connecting to the fourth switch and the WIFI transceiver by the second frequency divider, respectively, for implementing diversity reception of the third frequency band signal and the fourth frequency band signal; and the third antenna and The fourth antenna is also used to implement WIFI dual-frequency MIMO function.
  • the first antenna can realize the transmission and the main set reception of the first frequency band signal and the second frequency band signal by the gating of the first switch and the filtering process of the first filter component, and the second antenna passes the second
  • the gating of the switch and the filtering process of the second filter component may effect transmission and main set reception of the third band signal and the fourth band signal, wherein the first filter component and the second filter component are preferably duplex
  • the control circuit ensures that the transceiver can simultaneously receive the first frequency band signal and the third frequency band signal and can simultaneously receive the second frequency band signal and the fourth frequency band signal to achieve carrier aggregation; and the third antenna connection To the first frequency divider to transmit the first frequency band signal, the second frequency band signal, and the first frequency band WIFI signal (eg, 2.4G low)
  • the frequency band is separated from the second frequency band WIFI signal (for example, 5.8G high frequency), and further transmits the first frequency band signal, the second frequency band signal, and the low frequency WIFI signal to the third switch and the high frequency WIFI
  • the carrier aggregation function and the WIFI dual-frequency MIMO function are simultaneously realized, and the cost of the four-worker and the addition of new CA components are eliminated, and the production cost is reduced.
  • the output power of the PA is not additionally increased, thereby reducing the power consumption of the terminal.
  • the first switch is respectively connected to the first transmitting port, the first main set receiving port, and the second main set receiving port of the transceiver through the first filter component;
  • the second switch is respectively connected to the second transmitting port, the first main set receiving port and the second main set receiving port of the transceiver through the second filter component;
  • the third antenna passing through The first frequency divider is coupled to the first port of the WIFI transceiver;
  • the fourth antenna is coupled to the second port of the WIFI transceiver by the second frequency divider.
  • the first antenna is connected to the first transmit port, the first main set receive port, and the second main set receive port of the transceiver via the first switch and the first filter component, respectively, and
  • the two antennas are respectively connected to the second transmitting port, the first main set receiving port and the second main set receiving port of the transceiver via the second switch and the second filter component, so that the transceiver can be ensured by the first antenna
  • the transmission of the first frequency band signal and the second frequency band signal and the transmission of the third frequency band signal and the fourth frequency band signal by the second antenna can ensure that the transceiver can receive the first frequency band signal simultaneously through the first main set receiving port.
  • the third frequency band signal and the second frequency band signal and the fourth frequency band signal can be simultaneously received by the second main set receiving port to implement carrier aggregation; and the third antenna is connected to the WIFI transceiver by using the first frequency divider a port, connecting the fourth antenna to the second port of the WIFI transceiver through the second frequency divider, so that the high frequency WIFI signal enters the WIFI through the corresponding port Hair dryer.
  • the method further includes: a first power amplifier and a second power And a first filter component coupled to the first transmit port by the first power amplifier; the second filter component coupled to the second transmit port by the second power amplifier.
  • the transceiver when the transceiver transmits the first frequency band signal and the second frequency band signal, the third frequency band signal, and the fourth frequency band signal through the filter components, the switch, and the antenna of the corresponding link through different transmitting ports, respectively.
  • the first frequency band signal and the second frequency band signal, the third frequency band signal, and the fourth frequency band signal may be power amplified by a power amplifier and then transmitted through a filter component, a switch, and an antenna.
  • the first frequency divider is respectively connected to the first diversity receiving port, the second diversity receiving port, and the WIFI transceiver of the transceiver through the third switch.
  • a third port; the second frequency divider is respectively connected to the third diversity receiving port, the fourth diversity receiving port, and the fourth port of the WIFI transceiver by the fourth switch.
  • the first frequency band signal, the second frequency band signal and the WIFI signal received by the third antenna are divided by the frequency divider, the first frequency band signal, the second frequency band signal and the first frequency band WIFI signal (for example , 2.4G low frequency) through the strobe of the third switch to enter the corresponding transceiver through the corresponding port, respectively, the third frequency band signal, the fourth frequency band signal and the WIFI signal received by the fourth antenna are then passed through the frequency divider After the frequency division, the third frequency band signal, the fourth frequency band signal, and the first frequency band WIFI signal (for example, the 2.4G low frequency) pass through the strobe of the fourth switch to enter the corresponding transceiver through the corresponding port, respectively, to realize the first frequency band.
  • any one of the above aspects preferably, further comprising: a first filter, a second filter, a third filter, and a fourth filter; and the third switch passes the first filter and the a second filter is respectively connected to the first diversity receiving port and the second diversity receiving port; the fourth switch is respectively connected to the third diversity by the third filter and the fourth filter a receiving port and the fourth diversity receiving port.
  • the first frequency band signal and the second frequency band signal are strobed by the third switch, respectively, they may be filtered by different filters and then enter the transceiver through respective diversity receiving ports.
  • the third frequency band signal and the fourth frequency band signal are strobed by the fourth switch, After being filtered by different filters, they respectively enter the transceiver through their respective diversity receiving ports.
  • carrier aggregation of the first frequency band signal and the third frequency band signal, the second frequency band signal, and the fourth frequency band signal can also be realized while achieving diversity reception of signals in different frequency bands.
  • the first frequency band signal is a B3 frequency band signal
  • the second frequency band signal is a B39 frequency band signal
  • the third frequency band signal is a B1 frequency band signal
  • the fourth frequency band signal is a B41 frequency band signal.
  • the method further includes: a third frequency divider; one end of the third frequency divider is connected to the fourth antenna, and the other end is connected to the second frequency divider and The GPS port of the transceiver.
  • the method further includes: a fifth filter and a low noise amplifier; wherein the fifth filter has one end connected to the third frequency divider and the other end connected to the low Noise amplifier.
  • the method further includes: a sixth filter, one end of the sixth filter is connected to the low noise amplifier, and the other end is connected to the GPS port.
  • the signal received by the fourth antenna may be first divided to extract a GPS (Global Positioning System) signal, and then sequentially passed through a filter and a low noise amplifier (LNA, Low Noise Amplifier). Filtering and amplifying to realize the extraction and reception of GPS signals, thereby realizing the positioning function.
  • GPS Global Positioning System
  • LNA Low Noise Amplifier
  • the first switch, the second switch, the third switch, and the fourth switch are single-pole multi-throw switches.
  • the first switch to the fourth switch may preferably be a single-pole multi-throw switch to realize different channel selection through one switch, for example, when the first antenna is used for transmitting and receiving a B3 band signal and a B39 band signal, and When the two antennas are used for transmitting and receiving the B1 band signal and the B41 band signal, the signals of different frequency bands can be transmitted and received through the opening and closing states of the first switch and the second switch, so as to further realize carrier aggregation of the B3 band signal and the B1 band signal, B39 The carrier signal of the frequency band signal and the B41 frequency band signal; when the third antenna is used for diversity receiving the B3 frequency band signal, the B39 frequency band signal and the WIFI signal, and the fourth antenna is used for diversity receiving the B1 frequency band signal, the B41 frequency band signal and the WIFI signal,
  • the opening and closing states of the three switches and the fourth switch can realize different frequency band signals and WIFI signals (such as low frequency WIFI signals of 2.4G frequency band) after frequency divider frequency division
  • a second aspect of the present invention provides a terminal, including the control circuit for implementing carrier aggregation and WIFI dual-frequency MIMO according to any one of the foregoing technical solutions, and therefore, the terminal has any one of the foregoing technical solutions.
  • the same technical effects of the control circuit for implementing carrier aggregation and WIFI dual-frequency MIMO are not described herein.
  • the carrier aggregation function and the WIFI dual-frequency MIMO function can be simultaneously implemented without increasing the total number of antennas of the system, and the output power of the PA is not additionally increased, thereby reducing the power consumption of the terminal.
  • FIG. 1 shows a connection diagram of a control circuit implementing carrier aggregation and WIFI dual frequency MIMO according to an embodiment of the present invention
  • Figure 2 shows a block diagram of a terminal in accordance with one embodiment of the present invention.
  • FIG. 1 shows a connection diagram of a control circuit implementing carrier aggregation and WIFI dual frequency MIMO, in accordance with one embodiment of the present invention.
  • a control circuit 100 for implementing carrier aggregation and WIFI dual-frequency MIMO includes: a first antenna 102, a second antenna 110, a third antenna 116, a fourth antenna 124, and a first a switch 104, a second switch 112, a third switch 120, a fourth switch 128, a transceiver 108, a WIFI transceiver 122, a first filter component 106, a second filter component 114, a first frequency divider 118, and a The second frequency divider 142.
  • the first switch 104 is connected to the first antenna 102, and the other end is connected.
  • the first filter component 106 is coupled to the transceiver 108, the first antenna is configured to implement transmission and primary set reception of a first frequency band signal and a second frequency band signal; and one end of the second switch 112 is connected To the second antenna 110, the other end is connected to the transceiver 108 through the second filter component 114, and the second antenna is configured to implement transmission and main set reception of the third frequency band signal and the fourth frequency band signal.
  • the third antenna 116 is connected to the third switch 120 and the WIFI transceiver 122 through the first frequency divider 118, respectively, for implementing the first frequency band signal and the second frequency band signal.
  • the fourth antenna 124 is connected to the fourth switch 128 and the WIFI transceiver 122 by the second frequency divider 142, respectively, for implementing the third frequency band signal and the fourth frequency band
  • the diversity reception of the signals; and the third antenna 116 and the fourth antenna 124 are also used to implement the WIFI dual-frequency MIMO function.
  • the first antenna 102 can implement transmission and primary set reception of the first frequency band signal and the second frequency band signal by the gating of the first switch 104 and the filtering process of the first filter component 106, the second antenna
  • the transmission and primary set reception of the third frequency band signal and the fourth frequency band signal may be achieved by the gating of the second switch 112 and the filtering process of the second filter component 114, wherein the first filter component 106 and the second filter
  • the device component 114 is preferably a duplexer, and through the control circuit 100, it can be ensured that the transceiver 108 can receive the first frequency band signal and the third frequency band signal simultaneously through the first main set receiving port 1083 and receive through the second main set.
  • the port 1084 can receive the second frequency band signal and the fourth frequency band signal simultaneously to implement carrier aggregation; and the third antenna 116 is connected to the first frequency divider 118 to transmit the first frequency band signal, the second frequency band signal, and the first frequency band.
  • the WIFI signal (for example, 2.4G low frequency) is separated from the second frequency band WIFI signal (for example, 5.8G high frequency), and further transmits the first frequency band signal, the second frequency band signal, and the low frequency WIFI signal to The third switch 120 causes the high frequency WIFI signal to enter the WIFI transceiver 122.
  • the fourth antenna 124 is coupled to the second frequency divider 126 to transmit the third frequency band signal, the fourth frequency band signal, and the first frequency band WIFI signal (eg , 2.4G low frequency) is separated from the second frequency band WIFI signal (for example, 5.8G high frequency), and further transmits the third frequency band signal, the fourth frequency band signal and the low frequency WIFI signal to the fourth switch 128 and the high frequency WIFI signal enters the WIFI
  • the transceiver 122 further implements diversity reception of the first frequency band signal and the second frequency band signal, the third frequency band signal and the fourth frequency band signal, and the MIMO function of the WIFI signal of different frequency bands.
  • the carrier aggregation function and the WIFI dual-frequency MIMO function are simultaneously implemented without increasing the total number of antennas of the system, and The need to use the higher cost of the four-worker and the addition of new CA components, reducing production costs, while not increasing the output power of the PA, thereby reducing terminal power consumption.
  • the first switch 104 is respectively connected to the first transmitting port 1081, the first main set receiving port 1083 and the second main body of the transceiver 108 through the first filter component 106.
  • the second switch 112 is respectively connected to the second transmitting port 1082 of the transceiver 108, the first main set receiving port 1083, and the second main by the second filter component 114 a receiving port 1084;
  • the third antenna 116 is connected to the first port 1222 of the WIFI transceiver 108 by the first frequency divider 118;
  • the fourth antenna 124 is connected by the second frequency divider 126 To the second port 1224 of the WIFI transceiver 108.
  • the first antenna 102 is connected to the first transmit port 1081, the first primary set receive port 1083, and the second primary set of the transceiver 108 via the first switch 104 and the first filter component 106, respectively.
  • the transceiver 108 realizes the transmission of the first frequency band signal and the second frequency band signal through the first antenna 102 and can transmit the third frequency band signal and the fourth frequency band signal through the second antenna 110, and can ensure
  • the transceiver 108 can receive the first frequency band signal and the third frequency band signal simultaneously through the first main set receiving port 1083 and can simultaneously receive the second frequency band signal and the fourth frequency band signal through the second main set receiving port 1084 to implement the carrier.
  • the second port 1224 to the WIFI transceiver 108 is such that the high frequency WIFI signal enters the WIFI transceiver 108 through the corresponding port.
  • a first power amplifier 130 and a second power amplifier 132 further comprising: a first power amplifier 130 and a second power amplifier 132; and the first filter component 106 is connected to the first transmission by the first power amplifier 130 Port 1081; the second filter component 114 is coupled to the second transmit port 1082 by the second power amplifier 132.
  • the transceiver 108 transmits the first frequency band signal and the second frequency band signal, the third frequency band signal and the fourth frequency band signal respectively through the corresponding link through different transmitting ports
  • the first frequency band signal and the second frequency band signal, the third frequency band signal and the fourth frequency band signal are respectively power amplified by the power amplifier and then transmitted through the filter component, the switch and the antenna.
  • the first frequency divider 118 is respectively connected to the first diversity receiving port 1085, the second diversity receiving port 1086, and the transceiver of the transceiver 108 through the third switch 120.
  • the third port 1226 of the WIFI transceiver 122; the second frequency divider 126 is respectively connected to the third diversity receiving port 1087, the fourth diversity receiving port 1088 and the The fourth port 1228 of the WIFI transceiver 122 is described.
  • the first frequency band signal, the second frequency band signal, and the WIFI signal received by the third antenna 116 are divided by the frequency divider, the first frequency band signal, the second frequency band signal, and the first frequency band WIFI signal ( For example, the 2.4G low frequency is passed through the strobe of the third switch 116 to enter the corresponding transceiver through the corresponding port, and likewise, the third frequency band signal, the fourth frequency band signal and the WIFI signal received by the fourth antenna 124 are passed through.
  • the third frequency band signal, the fourth frequency band signal, and the first frequency band WIFI signal pass through the strobe of the fourth switch 128 to enter the corresponding transceiver through the corresponding port, respectively.
  • the diversity reception of the first frequency band signal and the second frequency band signal, the third frequency band signal and the fourth frequency band signal, and the WIFI dual frequency MIMO function are implemented.
  • the first filter 134, the second filter 136, the third filter 138, and the fourth filter 140 are further included.
  • the third switch 116 is connected to the first diversity receiving port 1085 and the second diversity receiving port 1086 through the first filter 134 and the second filter 136 respectively; the fourth switch 128 is connected to the third diversity receiving port 1087 and the fourth diversity receiving port 1088 through the third filter 138 and the fourth filter 140, respectively.
  • the first frequency band signal and the second frequency band signal are gated by the third switch 120, they may be separately filtered by different filters and then enter the transceiver through respective diversity receiving ports.
  • the third frequency band signal and the fourth frequency band signal are strobed by the fourth switch 128, they may be separately filtered by different filters and then passed through the respective diversity receiving ports to enter the transceiver.
  • the first frequency band signal and the third frequency band signal, the second frequency band signal and the fourth frequency band signal can also be realized while realizing the diversity reception of signals of different frequency bands. Carrier aggregation.
  • the first frequency band signal is a B3 frequency band signal
  • the second frequency band signal is a B39 frequency band signal
  • the third frequency band signal is a B1 frequency band signal
  • the fourth frequency band signal is a B41 frequency band signal.
  • the method further includes: a third frequency divider 142; one end of the third frequency divider 142 is connected to the fourth antenna 124, and the other end is connected to the second branch respectively The frequency converter 126 and the GPS port 1089 of the transceiver 108.
  • the method further includes: a fifth filter 144 and a low noise amplifier 146; wherein one end of the fifth filter 144 is connected to the third frequency divider 142, and the other end is connected To the low noise amplifier 146.
  • the method further includes: a sixth filter 148 having one end connected to the low noise amplifier 146 and the other end connected to the GPS port 1089.
  • the signal received by the fourth antenna 124 may be first divided to extract a GPS (Global Positioning System) signal, and then sequentially passed through a filter and a low noise amplifier 146 (LNA, Low Noise Amplifier). The filtering and amplification are performed to realize the extraction and reception of the GPS signal, thereby realizing the positioning function.
  • GPS Global Positioning System
  • LNA Low Noise Amplifier
  • the first switch 104, the second switch 112, the third switch 120, and the fourth switch 128 are single-pole multi-throw switches.
  • the first switch 104 to the fourth switch 128 may preferably be single-pole multi-throw switches to realize different channel selection through one switch, for example, when the first antenna 102 is used for transmitting and receiving the B3 band signal and the B39 band.
  • the signal and the second antenna 110 are used for transmitting and receiving the B1 frequency band signal and the B41 frequency band signal
  • the signals of different frequency bands can be transmitted and received through the opening and closing states of the first switch 104 and the second switch 112, so as to further realize the B3 frequency band signal and the B1 frequency band.
  • the diversity of the signal of the different frequency bands and the WIFI signal (such as the low frequency WIFI signal of the 2.4G frequency band) after the frequency divider is divided can be realized by the opening and closing states of the third switch 120 and the fourth switch 128. To further realize WIFI dual-frequency MIMO function.
  • Figure 2 shows a block diagram of a terminal in accordance with one embodiment of the present invention.
  • the terminal 200 includes the control circuit 100 for implementing carrier aggregation and WIFI dual-frequency MIMO according to any one of the foregoing technical solutions. Therefore, the terminal 200 has the above technology.
  • the same technical effects of the control circuit 100 for implementing carrier aggregation and WIFI dual-frequency MIMO according to any of the aspects are not described herein.
  • the reflected power of the terminal (for example, a mobile phone, a tablet computer, etc.) can be reduced in the carrier aggregation state, thereby reducing the power consumption of the terminal, thereby prolonging the standby time and improving the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Transceivers (AREA)

Abstract

本发明提供了一种实现载波聚合和WIFI双频MIMO的控制电路和一种终端,其中控制电路包括:通过第一开关、第一滤波器组件连接至收发器的第一天线;通过第二开关、第二滤波器组件连接至所述收发器的第二天线;通过第一分频器连接至第三开关和WIFI收发器的第三天线;通过第二分频器连接至第四开关和所述WIFI收发器的第四天线。通过本发明的技术方案,可以在不增加系统整体天线个数的情况下,同时实现了载波聚合功能和WIFI双频MIMO功能,且不额外增加PA的输出功率,从而降低终端功耗。

Description

实现载波聚合和WIFI双频MIMO的控制电路、终端
本申请要求于2015年12月31日提交中国专利局,申请号为201511029064.5、发明名称为“实现载波聚合和WIFI双频MIMO的控制电路、终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及天线技术领域,具体而言,涉及一种实现载波聚合和WIFI双频MIMO的控制电路和一种终端。
背景技术
目前,中国移动、中国联通、中国电信三大运营商都在积极升级网络,部署CA(Carrier Aggregation,载波聚合),目前由于中国移动CA要求是B39(Band39)和B41(Band41)的载波聚合,所以采用双工滤波器的方案进行载波聚合,而中国联通和中国电信属于FDD-LTE(Frequency Division Duplexing-Long Term Evolution,频分双工-长期演进),要求B1(Band1)+B3(Band3)的载波聚合,而FDD-LTE的方案目前是采用四工器的方案,实现下行同时接受B1和B3两种FDD-LTE信号。
另外,目前实现载波聚合的终端(比如手机)实现WIFI(Wireless Fidelity,无线宽带)双频的SISO(Single Input Single Out,单入单出)的方式居多,实现WIFI MIMO(Multiple Input Multiple Out,多入多出)的比较少,主要是由于终端空间有限,导致增加天线数使得终端设计难度增加。
上述现有的技术方案,采用四工器器件成本非常高,而且插损过大,使得PA(Power Amplifier,功率放大器)输出更多的功率弥补四工器带来的插损,而且PA的ACLR(Adjacent Channel Leakage Ratio,相邻频道泄漏比)发射功率越大,电流偏大,效率低下。且当终端处于在非CA状态下,PA的发射功率仍然按照更大的功率值发射,造成不必要电流消耗。
因此,如何在不增加系统整体天线个数的情况下,同时实现载波聚合 功能和WIFI双频MIMO功能,且不额外增加PA的输出功率,从而降低终端功耗成为亟待解决的技术问题。
发明内容
本发明正是基于上述技术问题,提出了一种新的技术方案,可以在不增加系统整体天线个数的情况下,同时实现了载波聚合功能和WIFI双频MIMO功能,且不额外增加PA的输出功率,从而降低终端功耗。
有鉴于此,本发明的第一方面,提出了一种实现载波聚合和WIFI双频MIMO的控制电路,包括:第一天线、第二天线、第三天线、第四天线、第一开关、第二开关、第三开关、第四开关、收发器、WIFI收发器、第一滤波器组件、第二滤波器组件、第一分频器和第二分频器;其中,所述第一开关的一端连接至所述第一天线、另一端通过所述第一滤波组件连接至所述收发器,所述第一天线用于实现第一频段信号和第二频段信号的发射和主集接收;所述第二开关的一端连接至所述第二天线、另一端通过所述第二滤波组件连接至所述收发器,所述第二天线用于实现第三频段信号和第四频段信号的发射和主集接收;所述第三天线通过所述第一分频器分别连接至所述第三开关和所述WIFI收发器,用于实现所述第一频段信号和所述第二频段信号的分集接收;所述第四天线通过所述第二分频器分别连接至所述第四开关和所述WIFI收发器,用于实现所述第三频段信号和所述第四频段信号的分集接收;以及所述第三天线和第四天线还用于实现WIFI双频MIMO功能。
在该技术方案中,第一天线通过第一开关的选通以及第一滤波器组件的滤波处理可以实现对第一频段信号和第二频段信号的发射和主集接收,第二天线通过第二开关的选通以及第二滤波器组件的滤波处理可以实现对第三频段信号和第四频段信号的发射和主集接收,其中,第一滤波器组件和第二滤波器组件优选地为双工器,且通过该控制电路,可以确保收发器可以同时接收到第一频段信号和第三频段信号以及可以同时接收到第二频段信号和第四频段信号,以实现载波聚合;而第三天线连接至第一分频器,以将第一频段信号、第二频段信号、第一频段WIFI信号(比如,2.4G低 频)与第二频段WIFI信号(比如,5.8G高频)分开,进一步将第一频段信号、第二频段信号和低频WIFI信号传送至第三开关并使高频WIFI信号进入WIFI收发器,同样地,第四天线连接至第二分频器,以将第三频段信号、第四频段信号、第一频段WIFI信号(比如,2.4G低频)与第二频段WIFI信号(比如,5.8G高频)分开,进一步将第三频段信号、第四频段信号和低频WIFI信号传送至第四开关并使高频WIFI信号进入WIFI收发器,进而实现第一频段信号和第二频段信号、第三频段信号和第四频段信号的分集接收,以及不同频段的WIFI信号的MIMO功能。如此,在不增加系统整体天线个数的情况下,同时实现了载波聚合功能和WIFI双频MIMO功能,而且无需使用成本较高的四工器以及增加新的CA元器件,降低了生产成本,同时不额外增加PA的输出功率,从而降低终端功耗。
在上述技术方案中,优选地,所述第一开关通过所述第一滤波器组件分别连接至所述收发器的第一发射端口、第一主集接收端口和第二主集接收端口;所述第二开关通过所述第二滤波器组件分别连接至所述收发器的第二发射端口、所述第一主集接收端口和所述第二主集接收端口;所述第三天线通过所述第一分频器连接至所述WIFI收发器的第一端口;所述第四天线通过所述第二分频器连接至所述WIFI收发器的第二端口。
在该技术方案中,通过将第一天线经第一开关和第一滤波器组件分别连接至收发器的第一发射端口、第一主集接收端口和第二主集接收端口,以及通过将第二天线经第二开关和第二滤波器组件分别连接至收发器的第二发射端口、第一主集接收端口和第二主集接收端口,如此,可以确保收发器通过第一天线实现对第一频段信号和第二频段信号的发射以及通过第二天线可以实现对第三频段信号和第四频段信号的发射,同时可以确保收发器通过第一主集接收端口可以同时接收到第一频段信号和第三频段信号以及通过第二主集接收端口可以同时接收到第二频段信号和第四频段信号,以实现载波聚合;通过将第三天线通过第一分频器连接至WIFI收发器的第一端口、将第四天线通过第二分频器连接至WIFI收发器的第二端口,以使高频WIFI信号通过对应端口进入WIFI收发器。
在上述任一技术方案中,优选地,还包括:第一功率放大器和第二功 率放大器;以及所述第一滤波器组件通过所述第一功率放大器连接至所述第一发射端口;所述第二滤波器组件通过所述第二功率放大器连接至所述第二发射端口。
在该技术方案中,当收发器通过不同的发射端口将第一频段信号和第二频段信号、第三频段信号和第四频段信号分别经由对应链路的滤波器组件、开关和天线发出时,可以先分别通过功率放大器将第一频段信号和第二频段信号、第三频段信号和第四频段信号进行功率放大后在经由滤波器组件、开关和天线发出。
在上述任一技术方案中,优选地,所述第一分频器通过所述第三开关分别连接至所述收发器的第一分集接收端口、第二分集接收端口和所述WIFI收发器的第三端口;所述第二分频器通过所述第四开关分别连接至所述收发器的第三分集接收端口、第四分集接收端口和所述WIFI收发器的第四端口。
在该技术方案中,经第三天线接收的第一频段信号、第二频段信号和WIFI信号再经分频器分频后,第一频段信号、第二频段信号和第一频段WIFI信号(比如,2.4G低频)通过第三开关的选通以分别通过对应的端口进入对应的收发器,同样地,经第四天线接收的第三频段信号、第四频段信号和WIFI信号再经分频器分频后,第三频段信号、第四频段信号和第一频段WIFI信号(比如,2.4G低频)通过第四开关的选通以分别通过对应的端口进入对应的收发器,以实现第一频段信号和第二频段信号、第三频段信号和第四频段信号的分集接收以及WIFI双频MIMO功能。
在上述任一技术方案中,优选地,还包括:第一滤波器、第二滤波器、第三滤波器和第四滤波器;以及所述第三开关通过所述第一滤波器和所述第二滤波器分别连接至所述第一分集接收端口和所述第二分集接收端口;所述第四开关通过所述第三滤波器和所述第四滤波器分别连接至所述第三分集接收端口和所述第四分集接收端口。
在该技术方案中,第一频段信号和第二频段信号经过第三开关选通后,可以分别经过不同的滤波器的滤波处理后再分别经过各自的分集接收端口进入收发器。而第三频段信号和第四频段信号经过第四开关选通后,可以 分别经过不同的滤波器的滤波处理后再分别经过各自的分集接收端口进入收发器。如此,在实现对不同的频段信号的分集接收的同时,还可以实现第一频段信号和第三频段信号、第二频段信号和第四频段信号的载波聚合。
在上述任一技术方案中,优选地,第一频段信号为B3频段信号,第二频段信号为B39频段信号,第三频段信号为B1频段信号以及第四频段信号为B41频段信号。
在上述任一技术方案中,优选地,还包括:第三分频器;所述第三分频器的一端连接至所述第四天线,另一端分别连接至所述第二分频器和所述收发器的GPS端口。
在上述任一技术方案中,优选地,还包括:第五滤波器和低噪声放大器;其中,所述第五滤波器的一端连接至所述第三分频器,另一端连接至所述低噪声放大器。
在上述任一技术方案中,优选地,还包括:第六滤波器,所述第六滤波器的一端连接至所述低噪声放大器,另一端连接至所述GPS端口。
在该技术方案中,还可以首先对第四天线接收的信号进行分频以提取GPS(Global Positioning System,全球定位系统)信号,然后依次经过滤波器和低噪声放大器(LNA,Low Noise Amplifier)的滤波和放大,以实现GPS信号的提取接收,进而实现定位功能。
在上述任一技术方案中,优选地,所述第一开关、所述第二开关、所述第三开关和所述第四开关为单刀多掷开关。
在该技术方案中,第一开关至第四开关优选地可以为单刀多掷开关,以通过一个开关实现不同的信道选择,比如:当第一天线用于收发B3频段信号和B39频段信号以及第二天线用于收发B1频段信号和B41频段信号时,通过第一开关和第二开关的开合状态即可实现不同频段信号的收发,以进一步实现B3频段信号和B1频段信号的载波聚合、B39频段信号和B41频段信号的载波信号;当第三天线用于分集接收B3频段信号、B39频段信号和WIFI信号以及第四天线用于分集接收B1频段信号、B41频段信号和WIFI信号时,通过第三开关和第四开关的开合状态即可实现不同频段信号和经过分频器分频后的WIFI信号(比如2.4G频段的低频WIFI信号)的 分集接收,以进一步实现WIFI双频MIMO功能。
本发明的第二方面,提出了一种终端,包括上述技术方案中任一项所述的实现载波聚合和WIFI双频MIMO的控制电路,因此,该终端具有和上述技术方案中任一项所述的实现载波聚合和WIFI双频MIMO的控制电路相同的技术效果,在此不再赘述。
通过以上技术方案,可以在不增加系统整体天线个数的情况下,同时实现了载波聚合功能和WIFI双频MIMO功能,且不额外增加PA的输出功率,从而降低终端功耗。
附图说明
图1示出了根据本发明的一个实施例的实现载波聚合和WIFI双频MIMO的控制电路的连接图;
图2示出了根据本发明的一个实施例的终端的框图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
图1示出了根据本发明的一个实施例的实现载波聚合和WIFI双频MIMO的控制电路的连接图。
如图1所示,根据本发明的一个实施例的实现载波聚合和WIFI双频MIMO的控制电路100,包括:第一天线102、第二天线110、第三天线116、第四天线124、第一开关104、第二开关112、第三开关120、第四开关128、收发器108、WIFI收发器122、第一滤波器组件106、第二滤波器组件114、第一分频器118和第二分频器142。
其中,所述第一开关104的一端连接至所述第一天线102、另一端通 过所述第一滤波器组件106连接至所述收发器108,所述第一天线用于实现第一频段信号和第二频段信号的发射和主集接收;所述第二开关112的一端连接至所述第二天线110、另一端通过所述第二滤波器组件114连接至所述收发器108,所述第二天线用于实现第三频段信号和第四频段信号的发射和主集接收;所述第三天线116通过所述第一分频器118分别连接至所述第三开关120和所述WIFI收发器122,用于实现所述第一频段信号和所述第二频段信号的分集接收;所述第四天线124通过所述第二分频器142分别连接至所述第四开关128和所述WIFI收发器122,用于实现所述第三频段信号和所述第四频段信号的分集接收;以及所述第三天线116和第四天线124还用于实现WIFI双频MIMO功能。
在该技术方案中,第一天线102通过第一开关104的选通以及第一滤波器组件106的滤波处理可以实现对第一频段信号和第二频段信号的发射和主集接收,第二天线110通过第二开关112的选通以及第二滤波器组件114的滤波处理可以实现对第三频段信号和第四频段信号的发射和主集接收,其中,第一滤波器组件106和第二滤波器组件114优选地为双工器,且通过该控制电路100,可以确保收发器108通过第一主集接收端口1083可以同时接收到第一频段信号和第三频段信号以及通过第二主集接收端口1084可以同时接收到第二频段信号和第四频段信号,以实现载波聚合;而第三天线116连接至第一分频器118,以将第一频段信号、第二频段信号、第一频段WIFI信号(比如,2.4G低频)与第二频段WIFI信号(比如,5.8G高频)分开,进一步将第一频段信号、第二频段信号和低频WIFI信号传送至第三开关120并使高频WIFI信号进入WIFI收发器122,同样地,第四天线124连接至第二分频器126,以将第三频段信号、第四频段信号、第一频段WIFI信号(比如,2.4G低频)与第二频段WIFI信号(比如,5.8G高频)分开,进一步将第三频段信号、第四频段信号和低频WIFI信号传送至第四开关128并使高频WIFI信号进入WIFI收发器122,进而实现第一频段信号和第二频段信号、第三频段信号和第四频段信号的分集接收,以及不同频段的WIFI信号的MIMO功能。如此,在不增加系统整体天线个数的情况下,同时实现了载波聚合功能和WIFI双频MIMO功能,而且无 需使用成本较高的四工器以及增加新的CA元器件,降低了生产成本,同时不额外增加PA的输出功率,从而降低终端功耗。
在上述技术方案中,优选地,所述第一开关104通过所述第一滤波器组件106分别连接至所述收发器108的第一发射端口1081、第一主集接收端口1083和第二主集接收端口1084;所述第二开关112通过所述第二滤波器组件114分别连接至所述收发器108的第二发射端口1082、所述第一主集接收端口1083和所述第二主集接收端口1084;所述第三天线116通过所述第一分频器118连接至所述WIFI收发器108的第一端口1222;所述第四天线124通过所述第二分频器126连接至所述WIFI收发器108的第二端口1224。
在该技术方案中,通过将第一天线102经第一开关104和第一滤波器组件106分别连接至收发器108的第一发射端口1081、第一主集接收端口1083和第二主集接收端口1084,以及通过将第二天线110经第二开关112和第二滤波器组件114分别连接至收发器108的第二发射端口1082、第一主集接收端口1083和第二主集接收端口1084,如此,可以确保收发器108通过第一天线102实现对第一频段信号和第二频段信号的发射以及通过第二天线110可以实现对第三频段信号和第四频段信号的发射,同时可以确保收发器108通过第一主集接收端口1083可以同时接收到第一频段信号和第三频段信号以及通过第二主集接收端口1084可以同时接收到第二频段信号和第四频段信号,以实现载波聚合;通过将第三天线116通过第一分频器118连接至WIFI收发器108的第一端口1222、将第四天线124通过第二分频器126连接至WIFI收发器108的第二端口1224,以使高频WIFI信号通过对应端口进入WIFI收发器108。
在上述任一技术方案中,优选地,还包括:第一功率放大器130和第二功率放大器132;以及所述第一滤波器组件106通过所述第一功率放大器130连接至所述第一发射端口1081;所述第二滤波器组件114通过所述第二功率放大器132连接至所述第二发射端口1082。
在该技术方案中,当收发器108通过不同的发射端口将第一频段信号和第二频段信号、第三频段信号和第四频段信号分别经由对应链路的滤波 器组件、开关和天线发出时,可以先分别通过功率放大器将第一频段信号和第二频段信号、第三频段信号和第四频段信号进行功率放大后在经由滤波器组件、开关和天线发出。
在上述任一技术方案中,优选地,所述第一分频器118通过所述第三开关120分别连接至所述收发器108的第一分集接收端口1085、第二分集接收端口1086和所述WIFI收发器122的第三端口1226;所述第二分频器126通过所述第四开关128分别连接至所述收发器108的第三分集接收端口1087、第四分集接收端口1088和所述WIFI收发器122的第四端口1228。
在该技术方案中,经第三天线116接收的第一频段信号、第二频段信号和WIFI信号再经分频器分频后,第一频段信号、第二频段信号和第一频段WIFI信号(比如,2.4G低频)通过第三开关116的选通以分别通过对应的端口进入对应的收发器,同样地,经第四天线124接收的第三频段信号、第四频段信号和WIFI信号再经分频器分频后,第三频段信号、第四频段信号和第一频段WIFI信号(比如,2.4G低频)通过第四开关128的选通以分别通过对应的端口进入对应的收发器,以实现第一频段信号和第二频段信号、第三频段信号和第四频段信号的分集接收以及WIFI双频MIMO功能。
在上述任一技术方案中,优选地,还包括:第一滤波器134、第二滤波器136、第三滤波器138和第四滤波器140。
其中,所述第三开关116通过所述第一滤波器134和所述第二滤波器136分别连接至所述第一分集接收端口1085和所述第二分集接收端口1086;所述第四开关128通过所述第三滤波器138和所述第四滤波器140分别连接至所述第三分集接收端口1087和所述第四分集接收端口1088。
在该技术方案中,第一频段信号和第二频段信号经过第三开关120选通后,可以分别经过不同的滤波器的滤波处理后再分别经过各自的分集接收端口进入收发器。而第三频段信号和第四频段信号经过第四开关128选通后,可以分别经过不同的滤波器的滤波处理后再分别经过各自的分集接收端口进入收发器。如此,在实现对不同的频段信号的分集接收的同时,还可以实现第一频段信号和第三频段信号、第二频段信号和第四频段信号 的载波聚合。
在上述任一技术方案中,优选地,第一频段信号为B3频段信号,第二频段信号为B39频段信号,第三频段信号为B1频段信号以及第四频段信号为B41频段信号。
在上述任一技术方案中,优选地,还包括:第三分频器142;所述第三分频器142的一端连接至所述第四天线124,另一端分别连接至所述第二分频器126和所述收发器108的GPS端口1089。
在上述任一技术方案中,优选地,还包括:第五滤波器144和低噪声放大器146;其中,所述第五滤波器144的一端连接至所述第三分频器142,另一端连接至所述低噪声放大器146。
在上述任一技术方案中,优选地,还包括:第六滤波器148,所述第六滤波器148的一端连接至所述低噪声放大器146,另一端连接至所述GPS端口1089。
在该技术方案中,还可以首先对第四天线124接收的信号进行分频以提取GPS(Global Positioning System,全球定位系统)信号,然后依次经过滤波器和低噪声放大器146(LNA,Low Noise Amplifier)的滤波和放大,以实现GPS信号的提取接收,进而实现定位功能。
在上述任一技术方案中,优选地,所述第一开关104、所述第二开关112、所述第三开关120和所述第四开关128为单刀多掷开关。
在该技术方案中,第一开关104至第四开关128优选地可以为单刀多掷开关,以通过一个开关实现不同的信道选择,比如:当第一天线102用于收发B3频段信号和B39频段信号以及第二天线110用于收发B1频段信号和B41频段信号时,通过第一开关104和第二开关112的开合状态即可实现不同频段信号的收发,以进一步实现B3频段信号和B1频段信号的载波聚合、B39频段信号和B41频段信号的载波信号;当第三天线116用于分集接收B3频段信号、B39频段信号和WIFI信号以及第四天线124用于分集接收B1频段信号、B41频段信号和WIFI信号时,通过第三开关120和第四开关128的开合状态即可实现不同频段信号和经过分频器分频后的WIFI信号(比如2.4G频段的低频WIFI信号)的分集接收,以进一步实现 WIFI双频MIMO功能。
图2示出了根据本发明的一个实施例的终端的框图。
如图2所示,根据本发明的一个实施例的终端200,包括上述技术方案中任一项所述的实现载波聚合和WIFI双频MIMO的控制电路100,因此,该终端200具有和上述技术方案中任一项所述的实现载波聚合和WIFI双频MIMO的控制电路100相同的技术效果,在此不再赘述。
综上,通过本发明的技术方案,还可以在载波聚合状态下,降低终端(比如,手机、平板电脑等)的反射功率,进而降低终端功耗,以延长待机时间,提升用户的使用体验。
以上结合附图详细说明了本发明的技术方案,可以在不增加系统整体天线个数的情况下,同时实现了载波聚合功能和WIFI双频MIMO功能,且不额外增加PA的输出功率,从而降低终端功耗。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种实现载波聚合和WIFI双频MIMO的控制电路,其特征在于,包括:第一天线、第二天线、第三天线、第四天线、第一开关、第二开关、第三开关、第四开关、收发器、WIFI收发器、第一滤波器组件、第二滤波器组件、第一分频器和第二分频器;其中,
    所述第一开关的一端连接至所述第一天线、另一端通过所述第一滤波组件连接至所述收发器,所述第一天线用于实现第一频段信号和第二频段信号的发射和主集接收;
    所述第二开关的一端连接至所述第二天线、另一端通过所述第二滤波组件连接至所述收发器,所述第二天线用于实现第三频段信号和第四频段信号的发射和主集接收;
    所述第三天线通过所述第一分频器分别连接至所述第三开关和所述WIFI收发器,用于实现所述第一频段信号和所述第二频段信号的分集接收;
    所述第四天线通过所述第二分频器分别连接至所述第四开关和所述WIFI收发器,用于实现所述第三频段信号和所述第四频段信号的分集接收;以及
    所述第三天线和第四天线还用于实现WIFI双频MIMO功能。
  2. 根据权利要求1所述的实现载波聚合和WIFI双频MIMO的控制电路,其特征在于,
    所述第一开关通过所述第一滤波器组件分别连接至所述收发器的第一发射端口、第一主集接收端口和第二主集接收端口;
    所述第二开关通过所述第二滤波器组件分别连接至所述收发器的第二发射端口、所述第一主集接收端口和所述第二主集接收端口;
    所述第三天线通过所述第一分频器连接至所述WIFI收发器的第一端口;
    所述第四天线通过所述第二分频器连接至所述WIFI收发器的第二端口。
  3. 根据权利要求2所述的实现载波聚合和WIFI双频MIMO的控制电 路,其特征在于,还包括:第一功率放大器和第二功率放大器;以及
    所述第一滤波器组件通过所述第一功率放大器连接至所述第一发射端口;
    所述第二滤波器组件通过所述第二功率放大器连接至所述第二发射端口。
  4. 根据权利要求3所述的实现载波聚合和WIFI双频MIMO的控制电路,其特征在于,
    所述第一分频器通过所述第三开关分别连接至所述收发器的第一分集接收端口、第二分集接收端口和所述WIFI收发器的第三端口;
    所述第二分频器通过所述第四开关分别连接至所述收发器的第三分集接收端口、第四分集接收端口和所述WIFI收发器的第四端口。
  5. 根据权利要求3所述的实现载波聚合和WIFI双频MIMO的控制电路,其特征在于,还包括:第一滤波器、第二滤波器、第三滤波器和第四滤波器;以及
    所述第三开关通过所述第一滤波器和所述第二滤波器分别连接至所述第一分集接收端口和所述第二分集接收端口;
    所述第四开关通过所述第三滤波器和所述第四滤波器分别连接至所述第三分集接收端口和所述第四分集接收端口。
  6. 根据权利要求1至5中任一项所述的实现载波聚合和WIFI双频MIMO的控制电路,其特征在于,还包括:第三分频器;
    所述第三分频器的一端连接至所述第四天线,另一端分别连接至所述第二分频器和所述收发器的GPS端口。
  7. 根据权利要求6所述的实现载波聚合和WIFI双频MIMO的控制电路,其特征在于,还包括:第五滤波器和低噪声放大器;其中,
    所述第五滤波器的一端连接至所述第三分频器,另一端连接至所述低噪声放大器。
  8. 根据权利要求7所述的实现载波聚合和WIFI双频MIMO的控制电路,其特征在于,还包括:第六滤波器,所述第六滤波器的一端连接至所述低噪声放大器,另一端连接至所述GPS端口。
  9. 根据权利要求1至5中任一项所述的实现载波聚合和WIFI双频MIMO的控制电路,其特征在于,所述第一开关、所述第二开关、所述第三开关和所述第四开关为单刀多掷开关。
  10. 一种终端,其特征在于,包括如权利要求1至9中任一项所述的实现载波聚合和WIFI双频MIMO的控制电路。
PCT/CN2016/084097 2015-12-31 2016-05-31 实现载波聚合和wifi双频mimo的控制电路、终端 WO2017113583A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511029064.5A CN105634569B (zh) 2015-12-31 2015-12-31 实现载波聚合和wifi双频mimo的控制电路、终端
CN201511029064.5 2015-12-31

Publications (1)

Publication Number Publication Date
WO2017113583A1 true WO2017113583A1 (zh) 2017-07-06

Family

ID=56049169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084097 WO2017113583A1 (zh) 2015-12-31 2016-05-31 实现载波聚合和wifi双频mimo的控制电路、终端

Country Status (2)

Country Link
CN (1) CN105634569B (zh)
WO (1) WO2017113583A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2574086A (en) * 2018-05-24 2019-11-27 Motorola Mobility Llc A method and apparatus for coupling one or more transceivers to a plurality of antennas
CN112751584A (zh) * 2020-12-29 2021-05-04 深圳市锐尔觅移动通信有限公司 开关、射频电路以及终端设备
CN113271113A (zh) * 2021-06-03 2021-08-17 Oppo广东移动通信有限公司 射频系统、射频组件和通信设备
CN113922828A (zh) * 2021-10-18 2022-01-11 Oppo广东移动通信有限公司 一种接收器件、射频系统及通信设备
CN114124140A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频系统和通信设备
CN115395974A (zh) * 2022-08-18 2022-11-25 Oppo广东移动通信有限公司 射频前端模组、射频系统、通信设备及通信方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106357293B (zh) * 2016-08-30 2019-03-22 宇龙计算机通信科技(深圳)有限公司 射频电路及具有该射频电路的无线通信装置
CN106656250B (zh) * 2017-01-10 2019-02-12 Oppo广东移动通信有限公司 射频电路、终端及射频电路控制方法
CN107124190B (zh) * 2017-05-10 2021-05-25 Oppo广东移动通信有限公司 射频电路开关芯片、射频电路、天线装置及电子设备
CN107171675B (zh) * 2017-06-19 2020-10-09 Oppo广东移动通信有限公司 射频电路开关芯片、射频电路、天线装置及电子设备
CN107171674B (zh) * 2017-06-19 2020-06-16 Oppo广东移动通信有限公司 射频电路开关芯片、射频电路、天线装置及电子设备
CN107302374A (zh) * 2017-06-19 2017-10-27 广东欧珀移动通信有限公司 射频电路开关芯片、射频电路、天线装置及电子设备
CN107317590A (zh) * 2017-06-20 2017-11-03 广东欧珀移动通信有限公司 射频电路开关芯片、射频电路、天线装置及电子设备
CN107483060B (zh) * 2017-07-25 2020-01-14 Oppo广东移动通信有限公司 射频电路、天线装置及电子设备
CN107611579A (zh) * 2017-08-16 2018-01-19 维沃移动通信有限公司 一种天线系统及移动终端
CN108039892B (zh) 2017-12-04 2020-11-13 Tcl移动通信科技(宁波)有限公司 扩展lte b42频段带宽的移动终端及其实现方法
CN108282182B (zh) * 2017-12-25 2020-08-21 惠州Tcl移动通信有限公司 一种天线的射频前端电路及其电路板、终端
CN108390162B (zh) * 2018-01-10 2021-05-04 捷开通讯(深圳)有限公司 一种天线装置及终端
CN108199729B (zh) * 2018-03-16 2020-09-04 Oppo广东移动通信有限公司 多路选择开关、射频系统和无线通信设备
CN108512556B (zh) 2018-03-16 2020-06-16 Oppo广东移动通信有限公司 多路选择开关、射频系统和无线通信设备
CN108768420B (zh) * 2018-06-12 2020-10-27 联想(北京)有限公司 一种天线处理方法、系统及天线组件
CN109687889A (zh) * 2018-12-14 2019-04-26 惠州Tcl移动通信有限公司 射频电路及终端
TWI761669B (zh) 2019-03-29 2022-04-21 緯創資通股份有限公司 行動裝置和天線結構
CN110995372B (zh) * 2019-11-30 2022-03-25 惠州Tcl移动通信有限公司 无线通信终端、功率检测电路和功率校准方法
CN111092628A (zh) * 2019-12-11 2020-05-01 惠州Tcl移动通信有限公司 射频电路和电子设备
CN111294081B (zh) * 2020-01-22 2022-01-11 Oppo广东移动通信有限公司 射频系统和电子设备
CN114640368B (zh) * 2020-12-16 2023-04-11 Oppo广东移动通信有限公司 射频收发系统及通信设备
CN113992229B (zh) * 2021-11-30 2023-03-17 Oppo广东移动通信有限公司 射频系统及通信设备
CN115102557B (zh) * 2022-06-07 2024-05-24 Oppo广东移动通信有限公司 射频前端器件和射频系统
CN115149975B (zh) * 2022-06-27 2023-12-26 Oppo广东移动通信有限公司 射频前端模组、射频系统和通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404879A (zh) * 2011-11-04 2012-04-04 惠州Tcl移动通信有限公司 一种移动通讯终端
CN102448191A (zh) * 2011-11-16 2012-05-09 上海大亚科技有限公司 实现wifi功能的eoc终端设备
US20130242939A1 (en) * 2012-03-16 2013-09-19 Intel Mobile Communications GmbH Internal interference signaling

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110159823A1 (en) * 2009-12-25 2011-06-30 Shao-Chin Lo RF Front-end Circuit and Wireless Communication Device Using the Same
CN102545946A (zh) * 2010-12-14 2012-07-04 深圳富泰宏精密工业有限公司 射频前端电路
CN105207709B (zh) * 2015-08-27 2018-11-02 宇龙计算机通信科技(深圳)有限公司 分集接收共天线的控制电路、控制方法及控制装置和终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404879A (zh) * 2011-11-04 2012-04-04 惠州Tcl移动通信有限公司 一种移动通讯终端
CN102448191A (zh) * 2011-11-16 2012-05-09 上海大亚科技有限公司 实现wifi功能的eoc终端设备
US20130242939A1 (en) * 2012-03-16 2013-09-19 Intel Mobile Communications GmbH Internal interference signaling

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2574086A (en) * 2018-05-24 2019-11-27 Motorola Mobility Llc A method and apparatus for coupling one or more transceivers to a plurality of antennas
GB2574086B (en) * 2018-05-24 2021-01-06 Motorola Mobility Llc A method and apparatus for coupling one or more transceivers to a plurality of antennas
CN112751584A (zh) * 2020-12-29 2021-05-04 深圳市锐尔觅移动通信有限公司 开关、射频电路以及终端设备
CN112751584B (zh) * 2020-12-29 2023-07-25 深圳市锐尔觅移动通信有限公司 开关、射频电路以及终端设备
CN113271113A (zh) * 2021-06-03 2021-08-17 Oppo广东移动通信有限公司 射频系统、射频组件和通信设备
CN113271113B (zh) * 2021-06-03 2022-08-09 Oppo广东移动通信有限公司 射频系统、射频组件和通信设备
CN113922828A (zh) * 2021-10-18 2022-01-11 Oppo广东移动通信有限公司 一种接收器件、射频系统及通信设备
CN114124140A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频系统和通信设备
CN115395974A (zh) * 2022-08-18 2022-11-25 Oppo广东移动通信有限公司 射频前端模组、射频系统、通信设备及通信方法
CN115395974B (zh) * 2022-08-18 2023-07-04 Oppo广东移动通信有限公司 射频前端模组、射频系统、通信设备及通信方法

Also Published As

Publication number Publication date
CN105634569B (zh) 2019-03-08
CN105634569A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2017113583A1 (zh) 实现载波聚合和wifi双频mimo的控制电路、终端
WO2022007821A1 (zh) 一种射频前端架构、天线装置及通信终端
WO2020192527A1 (zh) 射频前端电路及移动终端
US9935670B2 (en) Carrier aggregation using multiple antennas
CN105827269B (zh) 一种射频信号收发装置及电子设备
WO2022017404A1 (zh) 一种射频前端架构、天线装置及通信终端
CN106160775B (zh) 一种射频通路及终端
CN107210775B (zh) 高频功率放大模块以及通信装置
WO2016023309A1 (zh) 一种载波聚合装置
US10862529B2 (en) Separate uplink and downlink antenna repeater architecture
US10673517B2 (en) Desktop signal booster
WO2015124090A1 (zh) 射频电路及终端设备
WO2020192427A1 (zh) 射频前端电路及移动终端
US9154289B2 (en) Electrical balance duplexer for co-existence and concurrent operation of more than one wireless transceivers
WO2016119384A1 (zh) 天线和三载波天线
TW201743573A (zh) 行動裝置
CN108347251B (zh) 射频前端电路
WO2015131456A1 (zh) 多模双通终端
WO2023061090A1 (zh) 一种覆盖多频段的射频前端模块及无线通信设备
WO2017080222A1 (zh) 一种支持载波聚合的处理器及移动终端
WO2019059085A1 (ja) フィルタ回路および高周波モジュール
WO2023098153A1 (zh) 射频前端模块、终端设备以及射频前端模块的控制方法
WO2022143453A1 (zh) 射频电路及电子设备
CN103972629B (zh) 一种合路器、基站、信号合路系统及信号传输方法
WO2024067406A1 (zh) 射频电路和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880391

Country of ref document: EP

Kind code of ref document: A1