WO2013185665A1 - Tdd制式射频收发电路及方法、射频前端电路和终端 - Google Patents

Tdd制式射频收发电路及方法、射频前端电路和终端 Download PDF

Info

Publication number
WO2013185665A1
WO2013185665A1 PCT/CN2013/079133 CN2013079133W WO2013185665A1 WO 2013185665 A1 WO2013185665 A1 WO 2013185665A1 CN 2013079133 W CN2013079133 W CN 2013079133W WO 2013185665 A1 WO2013185665 A1 WO 2013185665A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
circulator
signal
radio frequency
amplifier
Prior art date
Application number
PCT/CN2013/079133
Other languages
English (en)
French (fr)
Inventor
陈新锋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013185665A1 publication Critical patent/WO2013185665A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band

Definitions

  • the present invention relates to the field of communications, and in particular, to a TDD (Time Division Duplexing) radio frequency transceiver circuit and method, a radio frequency front end circuit and a terminal.
  • TDD Time Division Duplexing
  • multiple wireless frequency bands that work by itself may be close to or superimposed due to the needs of multi-mode and multi-standard systems.
  • mobile phones support many standards, GSM900 and GSM1800, WCDMA, and other standards.
  • Each system has a different operating frequency band.
  • CPE Customer Premise Equipment
  • WLAN Wireless Local Area Networks
  • E-UTRA Band 40 Evolved Universal Terrestrial Radio Access Band 40
  • TDD-LTE Time Division Duplexing - Long Term Evolution
  • the RF front-end circuit has the components in the dotted line frame and the antenna switch, and each dotted line
  • the box represents a frequency band, comprising: an amplifier, two filters and two RF traces; when the signal is in a transmitting state, the RF transceiver chip is connected to the input end of the amplifier, and the signal passes through the receiving TX filter and is output to the antenna switch; When the signal is in the receiving state, the antenna switch is connected to the input end of the transmitting RX filter, and is transmitted to the RF transceiver chip through the transmitting RX filter.
  • Embodiments of the present invention provide a TDD radio frequency transceiver device and method, a radio frequency front end circuit and a terminal, to simplify an RF front end circuit, reduce terminal cost, limit transmission spurs, and reduce near-band modules on the same device. The impact of the work.
  • an embodiment of the present invention provides a TDD radio frequency transceiver circuit, including: an amplifier, a circulator, and a bidirectional filter connected in sequence, wherein: the first port of the circulator is connected to an output end of the amplifier a second port of the circulator is connected to one end of the bidirectional filter, a third port of the circulator is connected to the radio frequency transceiver chip, and the other end of the bidirectional filter is connected to the antenna switch; a first port and a second port of the circulator are strobed; when receiving a signal, the second port and the third port of the circulator are strobed.
  • the embodiment of the present invention further provides a TDD standard radio frequency front-end circuit, including: an antenna switch and one or more radio frequency transceiver circuits as described above, wherein: the antenna switch and one or more of the radio frequency transceiver circuits One end of the bidirectional filter is connected, and the other end of the bidirectional filter is connected to the second port of the circulator; when transmitting a signal, the first port and the second port of the circulator are strobed, and the signal is a bidirectional filter is output to the antenna switch; when receiving a signal, a second port and a third port of the circulator are gated, and the signal is input to the bidirectional filter by the antenna switch.
  • a TDD standard radio frequency front-end circuit including: an antenna switch and one or more radio frequency transceiver circuits as described above, wherein: the antenna switch and one or more of the radio frequency transceiver circuits One end of the bidirectional filter is connected, and the other end of the bidirectional filter is connected to the second port of the circulator; when transmit
  • an embodiment of the present invention further provides a TDD standard terminal, including: a radio frequency transceiver chip and the radio frequency front end circuit as described above, wherein: the radio frequency transceiver chip and the input of the amplifier of the radio frequency front end circuit Connected to the end, the radio frequency transceiver chip is connected to the third port of the circulator of the radio frequency front end circuit; when transmitting the signal, the first port and the second port of the circulator are strobed, and the signal is sent by the radio frequency transceiver chip Outputting to the amplifier; when receiving the signal, stroking the second port and the third port of the circulator, the signal being output to the radio frequency transceiver chip by a third port of the circulator of the radio frequency front end circuit.
  • the embodiment of the present invention further provides a TDD time division duplex system radio frequency transceiver method, including: when transmitting a signal, the signal is input from an RF transceiver chip to an amplifier, amplified by an amplifier, and output to a first port of the circulator, and then Outputting from the second port of the circulator to the bidirectional filter via the circulator, filtering out various out-of-band spurious signals of the signal through the filter, and outputting to the antenna switch; when receiving the signal, Transmitting the signal from the antenna switch to the bidirectional filter, filtering out various out-of-band spurious and interference signals of the signal through the bidirectional filter, and outputting to the second port of the circulator, and then outputting Through the circulator, the third port of the circulator is outputted to the radio frequency transceiver chip to complete the receiving operation of the radio frequency front end.
  • the frequency of the signal input by the bidirectional filter remains the same when the signal is transmitted and the signal is received.
  • the TDD standard radio frequency transceiver device and method, the radio frequency front end circuit and the terminal provided by the embodiments of the invention have the following advantages: 1.
  • the high-power radio frequency signal transmitted by the terminal is filtered by the filter to meet the requirements of the new specification;
  • the transmitted signal affects the operation of the near-band module on the same device as little as possible;
  • the transceiver filter is combined into one, which shortens the RF front-end circuit and reduces the terminal cost; 4. Reduces the number of antenna switch ports, the original TDD
  • the RF front-end structure is connected to the antenna switch when transmitting and receiving signals.
  • the original structure uses a separate circuit for transmitting and receiving. There are two independent RF traces on the terminal circuit board. With the structure of the present invention, there is only one RF trace behind the circulator, which reduces the RF. The difficulty of wiring.
  • FIG. 1 is a structural diagram of a related art radio frequency front end circuit
  • Fig. 2 is a structural diagram of a terminal in the embodiment. Preferred embodiment of the invention
  • this embodiment provides a TDD standard terminal, including:
  • An RF transceiver chip and a TDD time division duplex RF front-end circuit wherein: the RF transceiver chip is connected to an input end of an amplifier of the TDD time division duplex RF front-end circuit, and the RF transceiver chip and the RF front-end circuit a third port RX of the circulator is connected; when transmitting a signal, a signal is outputted by the radio frequency transceiver chip to the amplifier; when receiving a signal, the signal is output to a third port of the circulator of the radio frequency front end circuit to The radio frequency transceiver chip.
  • the TDD time division duplex system RF front end circuit includes an antenna switch and one or more
  • the TDD time division duplex radio frequency transceiver circuit wherein: the antenna switch is connected to one end of one or more bidirectional filters of the radio frequency transceiver circuit, and the other end of the bidirectional filter and the second port of the circulator A is connected; when transmitting a signal, a signal is outputted by the bidirectional filter to the antenna switch; when receiving a signal, a signal is input to the bidirectional filter by the antenna switch.
  • the TDD time division duplex radio frequency transceiver circuit comprises: an amplifier, a circulator and a bidirectional filter connected in sequence, the circuit is suitable for a TDD-based communication structure, wherein: the first port of the circulator is TX and an amplifier The second port A of the circulator is connected to one end of the bidirectional filter, the third port RX of the circulator is connected to the radio frequency transceiver chip, and the other end of the bidirectional filter is connected to the antenna switch.
  • the first port TX and the second port A of the circulator are gated; when receiving the signal, the second port A and the third port RX of the circulator are gated.
  • the circulator controls the output direction of the signal, and as shown, the ports TX, ⁇ , and RX are sequentially clockwise.
  • the embodiment provides a TDD time division duplex system radio frequency transceiver method, including: when transmitting a signal, the signal is input from an RF transceiver chip to an input end of an amplifier, and an output signal of the amplifier enters a first port TX of the circulator. Due to the device characteristics of the circulator, the signal will be output from the second port A of the circulator to the bidirectional filter, and then the various out-of-band spurious signals of the signal are filtered out through the filter and output to the antenna switch;
  • the input signal is amplified by the amplifier and becomes a high-power RF signal. Due to the nonlinear characteristics of the amplifier, the signal emission at the output of the amplifier is large, mainly reflected in the harmonic signal of the output signal and the spectrum rise of the near end. If it is not filtered, it will affect the work of other near-band modules.
  • the circulator on the transmitting link controls the transmitting direction of the transmitted signal, and the filter filters out various out-of-band spurious signals of the transmitted signal to ensure that the output signal meets the requirements of the new specification, and simultaneously reduces interference to other near-band modules on the same device. Avoid affecting its receiving performance.
  • the signal When receiving a signal, the signal is input from the antenna switch to the bidirectional filter to avoid out-of-band interference from entering the device, ensuring normal operation of the receiver, and filtering out various out-of-band spurs of the signal through the bidirectional filter.
  • the interference signal After the interference signal enters the second port A of the circulator, the device characteristics of the circulator are output from the third port RX to the RF transceiver chip to complete the reception of the RF front end.
  • the frequency of the signal input by the bidirectional filter should be consistent when transmitting and receiving signals.
  • the TDD standard radio frequency transceiver device and method, the radio frequency front end circuit and the terminal provided in the above embodiments combine the transceiver filters into one, simplifying the RF front end circuit and reducing the terminal cost; only one RF line needs to be connected to one frequency band to
  • the antenna switch reduces the number of antenna switch ports and simplifies the circuit structure of the multimode multi-band terminal device.
  • the circulator is used to transmit and receive the combined circuit. Only one RF trace is arranged behind the circulator, which reduces The difficulty of RF wiring; at the same time, it limits the spur of the transmitted signal and reduces the impact on the operation of the near-band module on the same device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本发明实施例公开了一种TDD制式射频收发电路及方法、射频前端电路和终端,该射频收发电路包括:依次相连的放大器、环形器和双向滤波器,其中:环形器的第一端口与放大器的输出端相连,环形器的第二端口与双向滤波器的一端相连,环形器的第三端口与射频收发芯片相连,双向滤波器的另一端与天线开关相连;在发射信号时,选通环形器的第一端口和第二端口;在接收信号时,选通环形器的第二端口和第三端口;该射频前端电路包括:天线开关和一个或多个所述射频收发电路;该终端包括:射频收发芯片和所述射频前端电路。

Description

TDD制式射频收发电路及方法、 射频前端电路和终端 技术领域
本发明涉及通信领域, 具体涉及一种 TDD ( Time Division Duplexing, 时 分双工 )制式射频收发电路及方法、 射频前端电路和终端。
背景技术 对于一个无线设备来说, 因多模多制式的需要, 其本身工作的多个无线 频段可能存在靠近或叠加的情况, 例如, 手机支持很多制式, GSM900 和 GSM1800、 WCDMA以及别的制式, 每种制式具有不同的工作频段。 在支持 多种制式同时工作的情况下, 就需要约束其中一个频段的工作尽可能少的影 响另外一个频段。 例如 CPE ( Customer Premise Equipment客户终端设备) 中 同时存在 WLAN ( Wireless Local Area Networks无线局域网络)和 E-UTRA Band40 ( Evolved Universal Terrestrial Radio Access Band40 , 演进 陆面无线 接入 40频段 ) , 两者工作频段仅有 2MHz的间隔, 两者同时工作时, 对双方 的性能均有影响。 目前此类设备通常是釆用在 PA ( Power Amplifier功率放大器)后面加滤 波器解决对别的频段模块的影响。 相关技术的 TDD-LTE ( Time Division Duplexing -Long Term Evolution, 时分双工长期演进)射频前端电路的结构如 图示 1 , 射频前端电路有所示虚线框内的器件以及天线开关组成, 每一个虚 线框代表一个频段, 包括: 一个放大器、 两个滤波器和两条射频走线; 在信 号处于发射状态时,射频收发芯片与放大器的输入端相连,信号经过接收 TX 滤波器, 输出至天线开关; 在信号处于接收状态时, 天线开关与发射 RX滤 波器的输入端相连, 经过发射 RX滤波器, 输出至射频收发芯片。
其缺陷为: 1 )射频前端较复杂, 需要两个滤波器; 2 )发射和接收均连 接至天线开关, 天线开关的刀数比较多, 控制逻辑较多; 3 )釆用发射和接收 分开的电路方式, 在终端电路板上有两根独立的射频走线, 前端的射频线较 复杂, 具体设计时需要考虑具体的射频走线约束。 发明内容 本发明实施例是提供一种 TDD制式射频收发装置及方法、射频前端电路 和终端, 以精简射频前端电路, 降低终端成本, 同时限制发射信号的杂散, 减少对同一设备上近频段模块的工作的影响。 为了解决上述技术问题,本发明实施例提供了一种 TDD制式射频收发电 路, 包括: 依次相连的放大器、 环形器和双向滤波器, 其中: 所述环形器的第一端口与放大器的输出端相连, 所述环形器的第二端口 与所述双向滤波器的一端相连,所述环形器的第三端口与射频收发芯片相连, 所述双向滤波器的另一端与天线开关相连; 在发射信号时, 选通所述环形器的第一端口和第二端口; 在接收信号时, 选通所述环形器的第二端口和第三端口。 为本发明实施例还提供了一种 TDD制式射频前端电路, 包括: 天线开关 和一个或多个如上所述的射频收发电路, 其中: 所述天线开关与一个或多个所述射频收发电路的双向滤波器的一端相 连, 所述双向滤波器的另一端与所述环形器的第二端口相连; 在发射信号时, 选通所述环形器的第一端口和第二端口, 信号由所述双 向滤波器输出至所述天线开关; 在接收信号时, 选通所述环形器的第二端口 和第三端口, 所述信号由所述天线开关输入至所述双向滤波器。 为了解决上述技术问题,本发明实施例还提供了一种 TDD制式终端, 包 括: 射频收发芯片和如上所述的射频前端电路, 其中: 所述射频收发芯片与所述射频前端电路的放大器的输入端相连, 所述射 频收发芯片与所述射频前端电路的环形器的第三端口相连; 在发射信号时, 选通所述环形器的第一端口和第二端口, 信号由所述射 频收发芯片输出至所述放大器; 在接收信号时, 选通所述环形器的第二端口 和第三端口, 所述信号由所述射频前端电路的环形器的第三端口输出至所述 射频收发芯片。 本发明实施例还提供了一种 TDD时分双工制式射频收发方法, 包括: 在发射信号时, 所述信号从射频收发芯片输入至放大器, 经过放大器放 大后输出至环形器的第一端口, 然后经由所述环形器从所述环形器的第二端 口输出至双向滤波器, 再经由所述滤波器滤除所述信号的各类带外杂散信号 后输出至天线开关; 在接收信号时, 所述信号从所述天线开关输入至所述双向滤波器, 经过 所述双向滤波器滤除所述信号的各类带外杂散和干扰信号后输出至所述环形 器的第二端口, 再经由所述环形器, 从所述环形器的第三端口输出至射频收 发芯片, 完成射频前端的接收工作。 较佳地, 在发射信号和接收信号时, 所述双向滤波器输入的信号频率保 持一致。 本发明实施例提供的 TDD制式射频收发装置及方法、射频前端电路和终 端, 具有以下优点: 一、 终端发射的高功率射频信号经过滤波器的滤除, 满足新规范的指标 要求; 二、 终端发射的信号尽可能少的影响同一设备上近频段模块的工作; 三、 收发滤波器合二为一, 精简了射频前端电路, 降低了终端成本; 四、减少了天线开关端口的数量,原 TDD射频前端结构在发射和接收信 号时均连接至天线开关, 釆用本发明的结构, 一个频段仅需要连接一根射频 线至天线开关, 简化了多模多频段终端设备的电路结构。 五、 原有结构釆用发射和接收分开的电路方式, 在终端电路板上有两根 独立的射频走线, 釆用本发明的结构, 在环形器后仅有一根射频走线, 减少 了射频布线的难度。
附图概述 图 1 是相关技术的射频前端电路的结构图; 图 2 是实施例中终端的结构图。 本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
实施例:
如图 2所示, 本实施例提供了一种 TDD制式终端, 包括:
射频收发芯片和 TDD时分双工制式射频前端电路, 其中: 所述射频收发芯片与所述 TDD 时分双工制式射频前端电路的放大器的 输入端相连,所述射频收发芯片与所述射频前端电路的环形器的第三端口 RX 相连; 在发射信号时, 信号由所述射频收发芯片输出至所述放大器; 在接收信 号时, 所述信号由所述射频前端电路的环形器的第三端口输出至所述射频收 发芯片。
其中,所述 TDD时分双工制式射频前端电路包括天线开关和一个或多个
TDD时分双工制式射频收发电路, 其中: 所述天线开关与一个或多个所述射频收发电路的双向滤波器的一端相 连, 所述双向滤波器的另一端与所述环形器的第二端口 A相连; 在发射信号时, 信号由所述双向滤波器输出至所述天线开关; 在接收信 号时, 信号由所述天线开关输入至所述双向滤波器。
其中, TDD时分双工制式射频收发电路, 包括: 依次相连的放大器、 环 形器和双向滤波器, 此电路适用于基于 TDD制式的通信结构, 其中: 所述环形器的第一端口 TX与放大器的输出端相连, 所述环形器的第二 端口 A与所述双向滤波器的一端相连, 所述环形器的第三端口 RX与射频收 发芯片相连, 所述双向滤波器的另一端与天线开关相连; 在发射信号时, 选通所述环形器的第一端口 TX和第二端口 A; 在接收 信号时, 选通所述环形器的第二端口 A和第三端口 RX。 其中, 所述环形器控制所述信号的输出方向, 如图所示, 端口 TX、 Α和 RX依次顺时针排列。
本实施例提供了一种 TDD时分双工制式射频收发方法, 包括: 在发射信号时, 所述信号从射频收发芯片输入至放大器的输入端, 放大 器的输出信号进入环形器的第一端口 TX, 因环形器的器件特性, 此信号将由 环形器第二端口 A输出至双向滤波器, 再经由所述滤波器滤除所述信号的各 类带外杂散信号后输出至天线开关;
输入信号经过放大器放大后变为高功率射频信号, 因放大器的非线性特 性, 放大器输出端的信号发射杂散较大, 主要体现在输出信号的谐波信号和 近端的频谱抬升, 此信号的杂散如果不滤除, 将会影响其他近频段模块的工 作。 发射链路上环形器控制发射信号的发射方向, 滤波器滤除发射信号的各 类带外杂散信号, 保证输出信号满足新规范的要求, 同时对同一设备上其他 近频段模块也减少干扰, 避免其接收性能受到影响。
在接收信号时, 所述信号从天线开关输入至双向滤波器, 避免带外的干 扰不进入设备, 保证接收机的正常工作, 信号经过双向滤波器滤除所述信号 的各类带外杂散和干扰信号后进入环形器的第二端口 A, 因环形器的器件特 性再由第三端口 RX输出至射频收发芯片, 完成射频前端的接收工作。
其中, 由于本实施例仅釆用了一个双向滤波器, 在发射信号和接收信号 时, 所述双向滤波器输入的信号频率应保持一致。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述仅为本发明的优选实施例而已, 并非用于限定本发明的保护范 围。 根据本发明的发明内容, 还可有其他多种实施例, 在不背离本发明精神 改变和变形, 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
工业实用性
上述实施例中提供的 TDD制式射频收发装置及方法、射频前端电路和终 端, 将收发滤波器合二为一, 精简了射频前端电路, 降低了终端成本; 一个 频段仅需要连接一根射频线至天线开关, 减少了天线开关端口的数量, 简化 了多模多频段终端设备的电路结构; 釆用环形器, 以发射和接收合并的电路 方式, 在环形器后仅有一根射频走线, 减少了射频布线的难度; 同时, 限制 了发射信号的杂散, 减少了对同一设备上近频段模块的工作的影响。

Claims

权 利 要 求 书
1、 一种时分双工 TDD制式射频收发电路, 包括: 依次相连的放大器、 环形器和双向滤波器, 其中: 所述环形器的第一端口与放大器的输出端相连, 所述环形器的第二端口 与所述双向滤波器的一端相连, 所述环形器的第三端口设置为与射频收发芯 片相连, 所述双向滤波器的另一端设置为与天线开关相连; 在发射信号时, 选通所述环形器的第一端口和第二端口; 在接收信号时, 选通所述环形器的第二端口和第三端口。
2、 一种时分双工 TDD制式射频前端电路, 包括: 天线开关和一个或多 个射频收发电路, 其中: 所述射频收发电路包括依次相连的放大器、 环形器和双向滤波器; 所述环形器的第一端口与放大器的输出端相连, 所述环形器的第二端口 与所述双向滤波器的一端相连, 所述环形器的第三端口设置为与射频收发芯 片相连, 所述双向滤波器的另一端设置为与所述天线开关相连; 在发射信号 时, 选通所述环形器的第一端口和第二端口, 信号由所述双向滤波器输出至 所述天线开关; 在接收信号时, 选通所述环形器的第二端口和第三端口, 所 述信号由所述天线开关输入至所述双向滤波器。
3、 一种时分双工 TDD制式终端, 包括: 射频收发芯片和射频前端电路, 其中: 所述射频前端电路包括天线开关和一个或多个射频收发电路, 所述射频 收发电路包括依次相连的放大器、 环形器和双向滤波器;
所述环形器的第一端口与放大器的输出端相连, 所述环形器的第二端口 与所述双向滤波器的一端相连, 所述双向滤波器的另一端与所述天线开关相 连;
所述射频收发芯片与所述放大器的输入端相连, 所述射频收发芯片与所 述射频前端电路的环形器的第三端口相连; 在发射信号时, 选通所述环形器的第一端口和第二端口, 信号由所述射 频收发芯片输出至所述放大器; 在接收信号时, 选通所述环形器的第二端口 和第三端口, 所述信号由所述射频前端电路的环形器的第三端口输出至所述 射频收发芯片。
4、 一种时分双工 TDD制式射频收发方法, 包括: 在发射信号时, 所述信号从射频收发芯片输入至放大器, 经过放大器放 大后输出至环形器的第一端口, 然后经由所述环形器从所述环形器的第二端 口输出至双向滤波器, 再经由所述滤波器滤除所述信号的各类带外杂散信号 后输出至天线开关; 在接收信号时, 所述信号从所述天线开关输入至所述双向滤波器, 经过 所述双向滤波器滤除所述信号的各类带外杂散和干扰信号后输出至所述环形 器的第二端口, 再经由所述环形器, 从所述环形器的第三端口输出至射频收 发芯片, 完成射频前端的接收工作。
5、 如权利要求 4所述方法, 其中: 在发射信号和接收信号时, 所述双向滤波器输入的信号频率保持一致。
PCT/CN2013/079133 2012-07-18 2013-07-10 Tdd制式射频收发电路及方法、射频前端电路和终端 WO2013185665A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210248591.5 2012-07-18
CN201210248591.5A CN103580710A (zh) 2012-07-18 2012-07-18 Tdd制式射频收发电路及方法、射频前端电路和终端

Publications (1)

Publication Number Publication Date
WO2013185665A1 true WO2013185665A1 (zh) 2013-12-19

Family

ID=49757565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079133 WO2013185665A1 (zh) 2012-07-18 2013-07-10 Tdd制式射频收发电路及方法、射频前端电路和终端

Country Status (2)

Country Link
CN (1) CN103580710A (zh)
WO (1) WO2013185665A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105450271B (zh) * 2014-08-30 2018-08-10 展讯通信(上海)有限公司 一种基于mimo的通信方法及mimo系统
CN104682992B (zh) * 2015-01-22 2017-06-20 络达科技股份有限公司 无线收发芯片的电路
CN106230469A (zh) * 2016-09-27 2016-12-14 广州安波通信科技有限公司 一种射频架构
WO2021131223A1 (ja) * 2019-12-24 2021-07-01 株式会社村田製作所 高周波モジュール及び通信装置
CN115694544B (zh) * 2022-06-14 2023-11-14 荣耀终端有限公司 射频前端模块和控制射频前端模块的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1492606A (zh) * 2003-09-28 2004-04-28 中兴通讯股份有限公司 一种大功率线性收发开关电路
WO2012018213A2 (en) * 2010-08-03 2012-02-09 Samsung Electronics Co., Ltd. Communication terminal having tdd switch with isolating function and driving method thereof
CN102457992A (zh) * 2010-10-19 2012-05-16 中国移动通信集团公司 一种基站设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1492606A (zh) * 2003-09-28 2004-04-28 中兴通讯股份有限公司 一种大功率线性收发开关电路
WO2012018213A2 (en) * 2010-08-03 2012-02-09 Samsung Electronics Co., Ltd. Communication terminal having tdd switch with isolating function and driving method thereof
CN102457992A (zh) * 2010-10-19 2012-05-16 中国移动通信集团公司 一种基站设备

Also Published As

Publication number Publication date
CN103580710A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
US7512388B2 (en) Multiband or multimode front end antenna switch
US11095359B2 (en) Multiple antenna repeater architecture
US9608688B2 (en) High linearity RF diplexer
US9413416B2 (en) Transmit and receive RF multiplexer
US11223384B2 (en) Low noise signal chain architecture
US9287918B2 (en) High-frequency front-end circuit
CN103236868B (zh) 信号收发模组及移动通信终端
WO2013189404A1 (zh) 一种多工器
JP2009523340A (ja) マルチバンドアンテナスイッチ
KR20170073725A (ko) 안테나 및 rf 프론트 엔드 장치
WO2020192427A1 (zh) 射频前端电路及移动终端
US10424822B2 (en) Multi-common port multiband filters
WO2013185665A1 (zh) Tdd制式射频收发电路及方法、射频前端电路和终端
US9735854B2 (en) Systems for antenna swapping switching and methods of operation thereof
CN211606532U (zh) 高频信号收发电路
TWI407761B (zh) 可同時於複數個行動通訊系統下待機之通訊裝置
KR20120077695A (ko) 다중모드 무선모뎀
US20160254828A1 (en) High-frequency front end circuit
CN103236870A (zh) 一种具有lna的高隔离度电路及其提高隔离度方法
WO2023236530A1 (zh) 射频PA Mid器件、射频系统和通信设备
WO2022143453A1 (zh) 射频电路及电子设备
KR102196752B1 (ko) 캐리어 통합 신호를 송수신하는 장치
WO2012079308A1 (zh) 四频段gsm收发装置及无线终端
TWI423599B (zh) 減少射頻電路面積的方法及其通訊裝置
KR100513374B1 (ko) 매트릭스 구조를 갖는 듀얼듀플렉서 및 그 구성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804714

Country of ref document: EP

Kind code of ref document: A1