WO2013063926A1 - 功率放大模块、多模射频收发器和多模终端 - Google Patents

功率放大模块、多模射频收发器和多模终端 Download PDF

Info

Publication number
WO2013063926A1
WO2013063926A1 PCT/CN2012/076057 CN2012076057W WO2013063926A1 WO 2013063926 A1 WO2013063926 A1 WO 2013063926A1 CN 2012076057 W CN2012076057 W CN 2012076057W WO 2013063926 A1 WO2013063926 A1 WO 2013063926A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
mode
module
high frequency
low frequency
Prior art date
Application number
PCT/CN2012/076057
Other languages
English (en)
French (fr)
Inventor
徐杰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013063926A1 publication Critical patent/WO2013063926A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band

Definitions

  • the present invention relates to mobile communication technologies, and in particular, to a power amplification module, a multimode radio frequency transceiver, a radio frequency front end module, a multimode terminal, and a multimode terminal for transmitting signals.
  • FIG. Chip 100 antenna switch module 200, GSM radio frequency transceiver 300, GSM power amplifier 310, TD-SCDMA radio frequency transceiver 400, TD-SCDMA power amplifier 410, at least one GSM receive filter (RX SAW) 500 and at least one TD - SCDMA receive filter 510.
  • GSM time-division synchronous code division multiple access
  • GSM Global System for Mobile Communication
  • PCB printed circuit board
  • Embodiments of the present invention provide a method for transmitting signals by a power amplification module, a multi-mode RF transceiver, an RF front-end module, a multi-mode terminal, and a multi-mode terminal, so as to solve the problem that the existing multi-mode terminal occupies a large PCB area.
  • Embodiments of the present invention provide a power amplification module, which is applied to a transmission channel of a multimode terminal, and includes a control module and a low frequency amplifier and a high frequency amplifier connected to the control module, where:
  • the control module is configured to: send a working mode indication signal to the low frequency amplifier or the high frequency amplifier according to a control signal from a baseband chip;
  • the low frequency amplifier is configured to: receive a low frequency transmission signal and an operation mode indication signal sent by the control module, and send the low frequency to an operation mode indicated by the operation mode indication signal The signal is amplified and output;
  • the high frequency amplifier is configured to: receive a high frequency transmission signal and a working mode indication signal sent by the control module, and output the high frequency transmission signal after being amplified in an operation mode indicated by the operation mode indication signal.
  • control module is configured to: when the control signal indicates that the signal in the current transmission channel is a low frequency transmission signal of the first mode signal, send a saturated working mode indication signal to the low frequency amplifier;
  • the control signal indicates that the signal in the current transmission channel is the second mode signal, and sends a linear operation mode indication signal to the high frequency amplifier; or, when the control signal indicates that the signal in the current transmission channel is the high of the first mode signal
  • a saturated operation mode indication signal is sent to the high frequency amplifier.
  • the first mode signal is a Global System for Mobile Communications (GSM) signal
  • the second mode signal is a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) signal or a Personal Handyphone System (PHS) signal.
  • GSM Global System for Mobile Communications
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • PHS Personal Handyphone System
  • the embodiment of the present invention further provides a multimode radio frequency transceiver, which is applied to a multimode radio transceiver, and the multimode radio transceiver includes:
  • the frequency conversion module is configured to: convert the baseband transmit signal of the first mode signal sent by the baseband chip into a low frequency transmit signal or a high frequency transmit signal under control of the baseband chip, and transmit the baseband chip
  • the baseband transmit signal of the two-mode signal is converted into a high-frequency transmit signal
  • the output module is configured to: convert the low-frequency transmit signal converted into the frequency transform module into a low-band transmit port, and convert the frequency transform module into The high frequency transmit signal is output through a high frequency band transmit port.
  • the first mode signal is a Global System for Mobile Communications (GSM) signal
  • the second mode signal is a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) signal or a Personal Handyphone System (PHS) signal.
  • GSM Global System for Mobile Communications
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • PHS Personal Handyphone System
  • the embodiment of the present invention further provides a radio frequency front end module, which is applied to a multimode terminal, where the radio frequency front end module includes an antenna switch module, a first filter, and a second filter, where:
  • the first filter is configured to: receive a first mode received signal sent by the antenna switch module, and filter the first mode received signal to output;
  • the second filter is configured to: receive a second mode receiving signal sent by the antenna switch module, and filter the second mode receiving signal to output;
  • the antenna switch module is configured to: receive a low frequency transmission signal of the first mode signal or a high frequency transmission signal or a second mode signal of the first mode signal, and send the first mode reception to the first filter And transmitting the second mode receive signal to the second filter.
  • the first mode receiving signal is a Global System for Mobile Communications (GSM) receiving signal
  • the second mode receiving signal is a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) receiving signal or a personal handy phone system (PHS) Receiving a signal
  • GSM Global System for Mobile Communications
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • PHS personal handy phone system
  • the first mode signal is a Global System for Mobile Communications (GSM) signal
  • the second mode signal is a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) signal or a Personal Handyphone System (PHS) signal.
  • GSM Global System for Mobile Communications
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • PHS Personal Handyphone System
  • Embodiments of the present invention provide a multimode terminal, including a baseband chip, a multimode radio frequency transceiver, a power amplification module, and a radio frequency front end module, which are sequentially connected, where:
  • the multimode radio frequency transceiver uses the above multimode radio frequency transceiver;
  • the power amplification module uses the above power amplification module
  • the RF front-end module uses the above-mentioned RF front-end module.
  • the embodiment of the present invention further provides a multimode terminal, including a baseband chip, a multimode radio frequency transceiver, a power amplification module, and a radio frequency front end module, which are sequentially connected, and the multimode terminal further includes a multimode radio transceiver and a switching circuit between the power amplifying modules;
  • the power amplification module uses the above power amplification module
  • the radio frequency front end module uses the above radio frequency front end module
  • the switching circuit is configured to: switch a low frequency transmission signal of the first mode signal sent by the multimode radio frequency transceiver to a low frequency amplifier in the power amplification module, or send the multimode radio frequency transceiver
  • the high frequency transmit signal or the second mode signal of the first mode signal is switched to the high frequency amplifier in the power amplifying module.
  • the embodiment of the present invention further provides a method for transmitting a signal by a multimode terminal, the method comprising: the power amplification module under the control of a baseband chip, and the first mode of receiving in a saturated working mode
  • the low frequency transmission signal of the signal or the high frequency transmission signal of the first mode signal is amplified and output to the RF front end module; or, the power amplification module is amplified by the baseband chip in the linear operation mode after the second mode signal is received.
  • Output to the RF front-end module; the RF front-end module transmits the received signal.
  • the power amplification module outputs the second mode signal received in the linear working mode to the radio frequency front end module under the control of the baseband chip, and includes:
  • the high frequency amplifier in the power amplifying module outputs the second mode signal in a linear working mode to the RF front end module under the control of the baseband chip;
  • the power amplification module after being controlled by the baseband chip, amplifies the low frequency transmission signal of the received first mode signal or the high frequency transmission signal of the first mode signal in a saturated working mode, and outputs the high frequency transmission signal to the RF front end module, including:
  • the low frequency amplifier in the power amplifying module is amplified by the baseband chip, and the low frequency transmitting signal of the received first mode signal is amplified in a saturated working mode and output to the RF front end module; or
  • the high frequency amplifier in the power amplifying module is amplified by the baseband chip, and the high frequency transmitting signal of the received first mode signal is amplified in a saturated working mode and output to the RF front end module.
  • the method further includes: converting, by the multimode radio frequency transceiver, the first mode baseband transmission signal sent by the baseband chip into a corresponding low frequency transmission signal, and then outputting to The low frequency amplifier; or the switching circuit switches the low frequency transmission signal of the first mode signal sent by the multimode radio frequency transceiver to the low frequency amplifier; or the high frequency amplifier amplifies the received signal before the method further
  • the method includes: converting, by the multi-mode RF transceiver, the first mode baseband transmit signal or the second mode baseband transmit signal sent by the baseband chip into a corresponding high-frequency transmit signal, and then outputting to the high-frequency amplifier; or, the switch circuit The high frequency transmission signal or the second mode signal of the first mode signal transmitted by the multimode radio frequency transceiver is switched to the high frequency amplifier.
  • the first mode signal is a Global System for Mobile Communications (GSM) signal
  • the second mode signal is a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) signal or a Personal Handyphone System (PHS) signal.
  • GSM Global System for Mobile Communications
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • PHS Personal Handyphone System
  • the above power amplification module including a low frequency amplifier and a high frequency amplifier can effectively save power by dividing the radio frequency signals of various modes and various frequency bands into low frequency signals and high frequency signals, and amplifying them by corresponding amplifiers.
  • the number of amplifiers in turn, effectively reduces the area of the PCB occupied by the multimode terminal including the above power amplifying module.
  • FIG. 1 is a schematic diagram of an existing TD-SCDMA/GSM dual-mode mobile phone architecture
  • Embodiment 1 of a dual mode terminal according to the present invention is a schematic structural diagram of Embodiment 1 of a dual mode terminal according to the present invention
  • FIG. 3 is a schematic diagram of an internal architecture of a dual-mode power amplifying module and a radio frequency front-end module according to an embodiment of the present invention
  • Embodiment 4 is a schematic structural diagram of Embodiment 2 of a dual mode terminal according to the present invention.
  • Embodiments of the present invention provide a power amplification module, which is applied to a transmission channel of a multimode terminal, and includes a control module and a low frequency amplifier and a high frequency amplifier connected to the control module, where:
  • the control module is configured to: send a working mode indication signal to the low frequency amplifier or the high frequency amplifier according to a control signal from a baseband chip;
  • the low frequency amplifier is configured to: receive a low frequency transmission signal and a working mode indication signal sent by the control module, and output the low frequency transmission signal after being output in the working mode indicated by the working mode indication signal;
  • the high frequency amplifier is configured to: receive a high frequency transmission signal and a working mode indication signal sent by the control module, and output the high frequency transmission signal after being amplified in an operation mode indicated by the operation mode indication signal.
  • the control module is configured to: when the control signal indicates that the signal in the current transmission channel is a low frequency transmission signal of the first mode signal, send a saturation operation to the low frequency amplifier a mode indication signal; transmitting a linear operation mode indication signal to the high frequency amplifier when the control signal indicates that the signal in the current transmission channel is the second mode signal; or, when the control signal indicates a signal in the current transmission channel When the signal is transmitted at a high frequency of the first mode signal, a saturated operation mode indication signal is sent to the high frequency amplifier.
  • the low frequency amplifier is configured to receive a low frequency transmission signal of the first mode signal and a saturation operation mode indication signal sent by the control module, and amplify the low frequency transmission signal of the first mode signal in a saturated operation mode.
  • the high frequency amplifier is configured to receive a high frequency transmission signal of the first mode signal and a saturation operation mode indication signal sent by the control module, and amplify the high frequency transmission signal of the first mode signal in a saturated operation mode And outputting; or receiving the second mode signal and the linear operation mode indication signal sent by the control module, and the second mode signal is amplified and output in the linear operation mode.
  • the first mode signal is a Global System for Mobile Communications (GSM) signal
  • the second mode signal is a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) signal or a Personal Handyphone System (PHS) signal.
  • GSM Global System for Mobile Communications
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • PHS Personal Handyphone System
  • the first mode signal for example, the TD-SCDMA signal
  • the second mode signal such as the GSM signal
  • the GSM signal has both a high frequency signal and a low frequency signal, and the corresponding signal is amplified by the high frequency amplifier and the low frequency amplifier, respectively.
  • the low frequency transmission signal and the high frequency transmission signal mentioned in the embodiments of the present invention are a relative concept, that is, the frequency band covered by the low frequency transmission signal is lower than the frequency band covered by the high frequency transmission signal. Frequency.
  • the power amplifying module can be a GSM/TD-SCDMA power amplifying module.
  • the module does not simply integrate the traditional GSM and TD-SCDMA power amplifiers into one chip, but only includes two low-frequency and high-frequency power amplifiers.
  • a control module that is, the signal input port of the dual-mode power amplifying module is not allocated according to GSM and TD-SCDMA signals, but is divided into two signal ports of low frequency and high frequency; similarly, the output port is only divided into two signal ports of low frequency and high frequency. .
  • This power amplifier is controlled in a linear mode of operation when amplifying the TD-SCDMA signal; it is controlled to a saturated mode of operation when amplifying the GSM signal.
  • the above power amplification module including a low frequency amplifier and a high frequency amplifier, by adopting various modes and The radio frequency signals of various frequency bands are only divided into low frequency signals and high frequency signals, and are amplified by corresponding amplifiers, thereby effectively saving the number of power amplifiers and effectively reducing the occupation of power amplification modules.
  • the embodiment of the present invention further provides a multi-mode radio transceiver, which is applied to a multi-mode terminal, and the multi-mode radio transceiver includes:
  • the frequency conversion module is configured to: convert the baseband transmit signal of the first mode signal sent by the baseband chip into a low frequency transmit signal or a high frequency transmit signal under control of the baseband chip, and transmit the baseband chip
  • the baseband transmit signal of the two-mode signal is converted into a high-frequency transmit signal
  • the output module is configured to: convert the low-frequency transmit signal converted into the frequency transform module into a low-band transmit port, and convert the frequency transform module into The high frequency transmit signal is output through a high frequency band transmit port.
  • the first mode signal is a Global System for Mobile Communications (GSM) signal; and the second mode signal is a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) signal or a Personal Handyphone System (PHS) signal.
  • GSM Global System for Mobile Communications
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • PHS Personal Handyphone System
  • the embodiment of the present invention further provides a radio frequency front end module, which is applied to a multimode terminal, where the radio frequency front end module includes an antenna switch module, a first filter, and a second filter, where:
  • the first filter is configured to: receive a first mode receiving signal sent by the antenna switch module, and filter the first mode received signal to output;
  • the second filter is configured to: receive a second mode receiving signal sent by the antenna switch module, and filter the second mode receiving signal to output;
  • the antenna switch module is configured to: receive a low frequency transmission signal of the first mode signal or a high frequency transmission signal or a second mode signal of the first mode signal, and send the first mode reception to the first filter And transmitting the second mode receive signal to the second filter.
  • the first mode receiving signal is a Global System for Mobile Communications (GSM) receiving signal; the second mode receiving signal is a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) receiving signal or a personal handy phone system (PHS) Receiving a signal; the first mode signal is a global mobile communication system (GSM) signal; the second mode signal is a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) signal or a Personal Handyphone System (PHS) signal.
  • GSM Global System for Mobile Communications
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • PHS Personal Handyphone System
  • the dual mode terminal includes: a baseband chip 100, a TD-SCDMA/GSM dual mode RF transceiver 200, and a TD-SCDMA/GSM dual mode power amplification.
  • the dual-mode RF transceiver with this dual-mode power amplifier module is different from the prior art scheme.
  • the output port is divided according to the low-frequency LB and the high-frequency HB, and is no longer distinguished by the signal.
  • the internal architecture of the dual-mode power amplifying module and the RF front-end module and the signal connection diagram thereof are shown in FIG. 3 , wherein the RF front-end module 400 is mainly composed of three parts: an antenna switch module 401, GSM.
  • a surface acoustic wave filter (RX SAW) 402 and a TD-SCDMA RX SAW 403 are received.
  • the electromagnetic wave signal is received by the antenna and then enters the antenna switch module 401 in the RF front-end module 400.
  • the antenna switch module selects the corresponding receiving network.
  • the GSM radio frequency signal is sent to the GSM receiving filter (GSM RX SAW) 402;
  • the TD-SCDMA radio frequency signal is sent to the TD-SCDMA receiving filter (TD-SCDMA RX SAW) 403.
  • the filtered RF signal enters the dual mode RF transceiver 200.
  • the dual-mode RF transceiver 200 uses a zero-IF receiving scheme to directly convert the received RF signal to a baseband I/Q signal, and sends it to the baseband chip 100, and performs demodulation and decoding processing by the baseband chip 100.
  • the original signal The original signal.
  • the baseband chip 100 performs the encoding, modulation, and the like processing of the original signal, and obtains the I/Q signal of the GSM or TD-SCDMA, and sends it to the dual-mode RF transceiver 200, the dual mode.
  • the transmitting portion of the RF transceiver 200 uses a directly transformed upconversion scheme to perform a change processing on the input I/Q signal to obtain a radio frequency modulated signal.
  • the output port of the dual-mode RF transceiver 200 is not differentiated according to the GSM and TD-SCDMA signals, and is only divided into low frequency and high frequency. Two output ports.
  • the low band (LB) or high band (HB) RF modulated signal passes through the transmit filter and enters the low frequency or high frequency input of the dual mode power amplifier 300, respectively.
  • the frequency of the LB transmission signal ranges from 824MHz to 915MHz, and the frequency of the HB transmission signal ranges from 1710MHz to 2025MHz.
  • the baseband chip sends out the control signal.
  • the static working point of the power amplifier is adjusted to operate in the C class, and the RF output power of the RF transceiver is adjusted, and the power amplifier is driven into a saturated working state, which ensures The amplifier achieves high efficiency when amplifying the GSM signal; when amplifying the TD-SCDMA signal, the control signal adjusts the static working point of the power amplifier to operate in the class AB, and simultaneously adjusts the RF output power of the RF transceiver, and the power amplifier works at this time. In the linear state, it can ensure that various RF indicators of TD-SCDMA meet the requirements.
  • the method for transmitting signals by the multimode terminal includes:
  • Step 1 The power amplification module outputs the low frequency transmission signal of the received first mode signal or the high frequency transmission signal of the first mode signal to the RF front end module in a saturated working mode under the control of the baseband chip; or, the power is output
  • the amplification module is amplified by the baseband chip, and the received second mode signal is amplified in a linear working mode and output to the RF front end module;
  • the high frequency amplifier in the power amplifying module outputs the second mode signal in a linear working mode to the radio frequency front end module under the control of the baseband chip; or the low frequency in the power amplifying module
  • the amplifier under the control of the baseband chip, amplifies the low frequency transmission signal of the received first mode signal in a saturated working mode and outputs the low frequency transmission signal to the RF front end module; or the high frequency amplifier in the power amplification module is under the control of the baseband chip,
  • the high frequency transmission signal of the received first mode signal is amplified in a saturated working mode and output to the RF front end module.
  • the method further includes: converting, by the multimode radio frequency transceiver, the first mode baseband transmission signal sent by the baseband chip into a corresponding low frequency transmission signal, and then outputting to the Or a low frequency amplifier that switches the low frequency transmission signal of the first mode signal sent by the multimode radio frequency transceiver to the low frequency amplifier; or the method further includes: before the high frequency amplifier amplifies the received signal, the method further includes The multimode radio frequency transceiver converts the first mode baseband transmit signal or the second mode baseband transmit signal sent by the baseband chip into a corresponding high frequency transmit signal, and then outputs the same to the high frequency amplifier; Alternatively, the switching circuit switches the high frequency transmission signal or the second mode signal of the first mode signal transmitted by the multimode radio frequency transceiver to the high frequency amplifier.
  • Step 2 The radio frequency front end module sends the received signal, and the received signal is a low frequency transmission signal of the first mode signal, a high frequency transmission signal of the first mode
  • the power amplified RF signal is sent to the antenna switch module 401 in the RF front end module 400.
  • the antenna switch module 401 is controlled by the baseband chip 100, selects a corresponding transmission path, and sends the RF signal to the main body of the mobile phone. antenna.
  • the first mode signal is a Global System for Mobile Communications (GSM) signal
  • the second mode signal is a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) signal or a Personal Handyphone System (PHS) signal.
  • GSM Global System for Mobile Communications
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • PHS Personal Handyphone System
  • FIG. 4 is a schematic structural diagram of Embodiment 2 of a dual mode terminal according to the present invention, which is different from the dual mode terminal shown in FIG. 2 in that the TD-SCDMA/GSM dual mode RF transceiver 200 still uses the prior art.
  • the transceiver solution that is, the output port is still divided according to TD-SCDMA and GSM signals.
  • the RF output of the TD-SCDMA/GSM dual-mode RF transceiver 200 first passes through a switching circuit 500, which switches the transmitted signal to a low-frequency LB or high-frequency HB output to the TD-SCDMA/GSM dual-mode power.
  • Amplification module 300 is a schematic structural diagram of Embodiment 2 of a dual mode terminal according to the present invention, which is different from the dual mode terminal shown in FIG. 2 in that the TD-SCDMA/GSM dual mode RF transceiver 200 still uses the prior art.
  • the transceiver solution that is, the output port is
  • the multimode terminal including the above power amplifying module reduces at least two large chips compared to the architecture currently used, and the circuit connection is greatly simplified, thereby effectively reducing the area occupied by the PCB, and facilitating miniaturization of the terminal.
  • the above-described power amplifying module including a low frequency amplifier and a high frequency amplifier is effective in dividing a radio frequency signal of various modes and various frequency bands into a low frequency signal and a high frequency signal, and amplifying the same by an appropriate amplifier.
  • the number of power amplifiers is saved; thereby effectively reducing the area of the PCB occupied by the multimode terminal including the above power amplifying module.

Abstract

本发明公开了一种功率放大模块、多模射频收发器、射频前端模块、多模终端和多模终端发送信号的方法,该功率放大模块包括控制模块以及与该控制模块相连的低频放大器和高频放大器,该控制模块,用于根据来自基带芯片的控制信号向该低频放大器或该高频放大器发送工作模式指示信号;该低频放大器,用于接收低频发射信号和该控制模块发送的工作模式指示信号,在该工作模式指示信号的工作模式下对该低频发射信号进行放大后输出;该高频放大器,用于接收高频发射信号和该控制模块发送的工作模式指示信号,在该工作模式指示信号指示的工作模式下对该高频发射信号进行放大后输出。包含上述功率放大模块的多模终端,有效地减少了占用印刷电路板(PCB)的面积。

Description

功率放大模块、 多模射频收发器和多模终端
技术领域
本发明涉及移动通信技术, 尤其涉及一种功率放大模块、 多模射频收发 器、 射频前端模块、 多模终端和多模终端发送信号的方法。
背景技术
当前, 在时分同步码分多址(TD-SCDMA ) /全球移动通讯系统(Global System for Mobile Communication, GSM )双模手机的架构方案中, 普遍的实 现方法是, 如图 1所示, 需要基带芯片 100、 天线开关模组 200、 GSM射频 收发器 300、 GSM功率放大器 310、 TD-SCDMA射频收发器 400、 TD-SCDMA 功率放大器 410、 至少一个 GSM接收滤波器(RX SAW ) 500 和至少一个 TD-SCDMA接收滤波器 510。
以上架构方案需要使用八颗以上的芯片, 这使得电路结构复杂, 占用了 大量的印刷电路板(PCB ) 面积, 不利于降低成本, 也不利于实现终端的小 型化。
发明内容
本发明实施例提供了一种功率放大模块、 多模射频收发器、 射频前端模 块、 多模终端和多模终端发送信号的方法, 以解决现有的多模终端占用 PCB 面积大的问题。
本发明实施例提供了一种功率放大模块, 应用于多模终端的发射通道, 该功率放大模块包括控制模块以及与所述控制模块相连的低频放大器和高频 放大器, 其中:
所述控制模块, 设置为: 根据来自基带芯片的控制信号向所述低频放大 器或所述高频放大器发送工作模式指示信号;
所述低频放大器, 设置为: 接收低频发射信号和所述控制模块发送的工 作模式指示信号, 在所述工作模式指示信号指示的工作模式下对所述低频发 射信号进行放大后输出;
所述高频放大器, 设置为: 接收高频发射信号和所述控制模块发送的工 作模式指示信号, 在所述工作模式指示信号指示的工作模式下对所述高频发 射信号进行放大后输出。
优选地, 所述控制模块, 是设置为: 当所述控制信号指示当前发射通道 中的信号为第一模式信号的低频发射信号时, 向所述低频放大器发送饱和工 作模式指示信号; 当所述控制信号指示当前发射通道中的信号为第二模式信 号时, 向所述高频放大器发送线性工作模式指示信号; 或者, 当所述控制信 号指示当前发射通道中的信号为第一模式信号的高频发射信号时, 向所述高 频放大器发送饱和工作模式指示信号。
优选地, 所述第一模式信号为全球移动通讯系统(GSM )信号; 所述第二模式信号为时分同步码分多址(TD-SCDMA )信号或个人手持 式电话系统(PHS )信号。
本发明实施例还提供了一种多模射频收发器, 应用于多模终端, 该多模 射频收发器包括:
频率变换模块, 设置为: 在所述基带芯片的控制下, 将所述基带芯片发 送的第一模式信号的基带发射信号变换成低频发射信号或高频发射信号, 将 所述基带芯片发送的第二模式信号的基带发射信号变换成高频发射信号; 输出模块, 设置为: 将所述频率变换模块变换成的所述低频发射信号通 过低频段发射端口输出, 将所述频率变换模块变换成的所述高频发射信号通 过高频段发射端口输出。
优选地, 所述第一模式信号为全球移动通讯系统(GSM )信号; 所述第 二模式信号为时分同步码分多址(TD-SCDMA )信号或个人手持式电话系统 ( PHS )信号。
本发明实施例还提供了一种射频前端模块, 应用于多模终端, 所述射频 前端模块包括天线开关模组、 第一滤波器和第二滤波器, 其中:
所述第一滤波器, 设置为: 接收所述天线开关模组发送的第一模式接收 信号, 对所述第一模式接收信号进行滤波后输出; 所述第二滤波器, 设置为: 接收所述天线开关模组发送的第二模式接收 信号, 对所述第二模式接收信号进行滤波后输出;
所述天线开关模组, 设置为: 接收第一模式信号的低频发射信号或第一 模式信号的高频发射信号或第二模式信号, 以及向所述第一滤波器发送所述 第一模式接收信号和向所述第二滤波器发送所述第二模式接收信号。
优选地, 所述第一模式接收信号为全球移动通讯系统 ( GSM )接收信号; 所述第二模式接收信号为时分同步码分多址(TD-SCDMA )接收信号或个人 手持式电话系统(PHS )接收信号; 和 /或
所述第一模式信号为全球移动通讯系统(GSM )信号; 所述第二模式信 号为时分同步码分多址(TD-SCDMA )信号或个人手持式电话系统(PHS ) 信号。
本发明实施例提供了一种多模终端, 包括依次连接的基带芯片、 多模射 频收发器、 功率放大模块和射频前端模块, 其中:
所述多模射频收发器釆用的是上述的多模射频收发器;
所述功率放大模块釆用的是上述的功率放大模块;
所述射频前端模块釆用的是上述的射频前端模块。
本发明实施例还提供了一种多模终端, 包括依次连接的基带芯片、 多模 射频收发器、 功率放大模块和射频前端模块, 所述多模终端还包括位于所述 多模射频收发器和功率放大模块之间的开关电路;
所述功率放大模块釆用的是上述的功率放大模块;
所述射频前端模块釆用的是上述的射频前端模块;
所述开关电路, 设置为: 将所述多模射频收发器发送的第一模式信号的 低频发射信号切换至所述功率放大模块中的低频放大器, 或者, 将所述多模 射频收发器发送的第一模式信号的高频发射信号或第二模式信号切换至所述 功率放大模块中的高频放大器。
本发明实施例还提供了一种多模终端发送信号的方法, 该方法包括: 功率放大模块在基带芯片的控制下, 在饱和工作模式对接收的第一模式 信号的低频发射信号或第一模式信号的高频发射信号进行放大后输出至射频 前端模块; 或者, 功率放大模块在基带芯片的控制下, 在线性工作模式对接 收的第二模式信号进行放大后输出至射频前端模块; 所述射频前端模块发送接收到的信号。
优选地, 所述功率放大模块在基带芯片的控制下, 在线性工作模式对接 收的第二模式信号进行放大后输出至射频前端模块, 包括:
所述功率放大模块中的高频放大器在基带芯片的控制下, 在线性工作模 式对接收的第二模式信号进行放大后输出至射频前端模块; 或者,
所述功率放大模块在基带芯片的控制下, 在饱和工作模式对接收的第一 模式信号的低频发射信号或第一模式信号的高频发射信号进行放大后输出至 射频前端模块, 包括:
所述功率放大模块中的低频放大器在基带芯片的控制下, 在饱和工作模 式对接收的第一模式信号的低频发射信号进行放大后输出至射频前端模块; 或者
所述功率放大模块中的高频放大器在基带芯片的控制下, 在饱和工作模 式对接收的第一模式信号的高频发射信号进行放大后输出至射频前端模块。
优选地, 所述低频放大器对接收的信号进行放大之前, 所述方法还包括: 多模射频收发器将所述基带芯片发送的第一模式基带发射信号变换成对 应的低频发射信号, 然后输出至所述低频放大器; 或者, 开关电路将多模射 频收发器发送的第一模式信号的低频发射信号切换至所述低频放大器; 或者 所述高频放大器对接收的信号进行放大之前, 所述方法还包括: 多模射频收发器将所述基带芯片发送的第一模式基带发射信号或第二模 式基带发射信号变换成对应的高频发射信号, 然后输出至所述高频放大器; 或者, 开关电路将所述多模射频收发器发送的第一模式信号的高频发射信号 或第二模式信号切换至所述高频放大器。
优选地, 所述第一模式信号为全球移动通讯系统(GSM )信号; 所述第 二模式信号为时分同步码分多址(TD-SCDMA )信号或个人手持式电话系统 ( PHS )信号。 上述包含低频放大器和高频放大器的功率放大模块, 通过将各种模式和 各种频带的射频信号只分为低频信号和高频信号, 并由对应的放大器对其进 行放大, 有效地节省了功率放大器的数量; 进而有效地减少了包含上述功率 放大模块的多模终端所占用的 PCB的面积。
附图概述
图 1为现有的 TD-SCDMA/GSM双模手机架构示意图;
图 2为本发明双模终端实施例一的架构示意图;
图 3为本发明实施例的双模功率放大模块和射频前端模块的内部架构及 其信号连接示意图;
图 4为本发明双模终端实施例二的架构示意图。
本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例提供了一种功率放大模块, 应用于多模终端的发射通道, 该功率放大模块包括控制模块以及与所述控制模块相连的低频放大器和高频 放大器, 其中:
所述控制模块, 设置为: 根据来自基带芯片的控制信号向所述低频放大 器或所述高频放大器发送工作模式指示信号;
所述低频放大器, 设置为: 接收低频发射信号和所述控制模块发送的工 作模式指示信号, 在所述工作模式指示信号指示的工作模式下对所述低频发 射信号进行放大后输出;
所述高频放大器, 设置为: 接收高频发射信号和所述控制模块发送的工 作模式指示信号, 在所述工作模式指示信号指示的工作模式下对所述高频发 射信号进行放大后输出。
其中, 所述控制模块, 是设置为: 当所述控制信号指示当前发射通道中 的信号为第一模式信号的低频发射信号时, 向所述低频放大器发送饱和工作 模式指示信号; 当所述控制信号指示当前发射通道中的信号为第二模式信号 时, 向所述高频放大器发送线性工作模式指示信号; 或者, 当所述控制信号 指示当前发射通道中的信号为第一模式信号的高频发射信号时, 向所述高频 放大器发送饱和工作模式指示信号。 上述低频放大器, 是用于接收第一模式 信号的低频发射信号和所述控制模块发送的饱和工作模式指示信号, 在饱和 工作模式下对所述第一模式信号的低频发射信号进行放大后输出。 上述高频 放大器, 是用于接收第一模式信号的高频发射信号和所述控制模块发送的饱 和工作模式指示信号, 在饱和工作模式下对所述第一模式信号的高频发射信 号进行放大后输出; 或者, 接收第二模式信号和所述控制模块发送的线性工 作模式指示信号, 在线性工作模式下对所述第二模式信号进行放大后输出。
所述第一模式信号为全球移动通讯系统(GSM )信号; 所述第二模式信 号为时分同步码分多址(TD-SCDMA )信号或个人手持式电话系统(PHS ) 信号。
需要说明的是, 上述第一模式信号例如 TD-SCDMA信号只有高频信号 没有低频信号, 因此,对于 TD-SCDMA发射信号而言, 只能通过高频放大器 在线性工作模式下,对其进行放大; 而第二模式信号例如 GSM信号既有高频 信号, 又有低频信号, 则需分别通过高频放大器和低频放大器对对应的信号 进行放大。
另外, 本领域的技术人员均知道, 本发明实施例中提到的低频发射信号 和高频发射信号是一个相对的概念, 即低频发射信号覆盖的频段频点低于高 频发射信号覆盖的频段频点。
该功率放大模块可以为 GSM/TD-SCDMA功率放大模块, 该模块不是将 传统的 GSM和 TD-SCDMA功率放大器简单地集成封装在一个芯片中, 而是 只包括低频和高频两个功率放大器及一个控制模块。 即该双模功率放大模块 的信号输入端口不按照 GSM和 TD-SCDMA信号分配, 而是分为低频和高频 两个信号端口; 同样, 输出端口也只分为低频和高频两个信号端口。 此功率 放大器在放大 TD-SCDMA信号时, 被控制在线性工作模式; 在放大 GSM信 号时, 被控制在饱和工作模式。
上述包含低频放大器和高频放大器的功率放大模块, 通过将各种模式和 各种频带的射频信号只分为低频信号和高频信号, 并由对应的放大器对其进 行放大, 有效地节省了功率放大器的数量, 有效地减少了功率放大模块占用
PCB的面积。
为了实现上述功率放大器的功能, 本发明实施例还提供了一种多模射频 收发器, 应用于多模终端, 该多模射频收发器包括:
频率变换模块, 设置为: 在所述基带芯片的控制下, 将所述基带芯片发 送的第一模式信号的基带发射信号变换成低频发射信号或高频发射信号, 将 所述基带芯片发送的第二模式信号的基带发射信号变换成高频发射信号; 输出模块, 设置为: 将所述频率变换模块变换成的所述低频发射信号通 过低频段发射端口输出, 将所述频率变换模块变换成的所述高频发射信号通 过高频段发射端口输出。
其中, 所述第一模式信号为全球移动通讯系统(GSM )信号; 所述第二 模式信号为时分同步码分多址 (TD-SCDMA )信号或个人手持式电话系统 ( PHS )信号。
本发明实施例还提供了一种射频前端模块, 应用于多模终端, 所述射频 前端模块包括天线开关模组、 第一滤波器和第二滤波器, 其中:
所述第一滤波器, 设置为: 接收所述天线开关模组发送的第一模式接收 信号, 对所述第一模式接收信号进行滤波后输出;
所述第二滤波器, 设置为: 接收所述天线开关模组发送的第二模式接收 信号, 对所述第二模式接收信号进行滤波后输出;
所述天线开关模组, 设置为: 接收第一模式信号的低频发射信号或第一 模式信号的高频发射信号或第二模式信号, 以及向所述第一滤波器发送所述 第一模式接收信号和向所述第二滤波器发送所述第二模式接收信号。
其中, 所述第一模式接收信号为全球移动通讯系统(GSM )接收信号; 所述第二模式接收信号为时分同步码分多址(TD-SCDMA )接收信号或个人 手持式电话系统(PHS )接收信号; 所述第一模式信号为全球移动通讯系统 ( GSM )信号; 所述第二模式信号为时分同步码分多址(TD-SCDMA )信号 或个人手持式电话系统(PHS )信号。
如图 2所示, 为本发明双模终端实施例一的架构示意图, 该双模终端包 括:基带芯片 100、 TD-SCDMA/GSM双模射频收发器 200、 TD-SCDMA/GSM 双模功率放大模块 300和上述射频前端模块 400; 其中 TD-SCDMA/GSM双 模射频收发器 200和 TD-SCDMA/GSM双模功率放大模块 300的结构如图 3 所示。
与此双模功率放大模块搭配的双模射频收发器与现有技术方案也有不 同, 其输出端口按照低频 LB和高频 HB来划分, 不再因信号不同而区分。
如图 3所示, 为本发明实施例的双模功率放大模块和射频前端模块的内 部架构及其信号连接示意图, 其中, 射频前端模块 400主要由三个部分组成: 天线开关模组 401、GSM接收声表面波滤波器(RX SAW ) 402和 TD-SCDMA RX SAW 403。
在上述架构的双模终端的接收链路中, 电磁波信号由天线接收后进入射 频前端模块 400中的天线开关模组 401 , 在基带芯片 100的控制下, 天线开 关模组选择相应的接收通络, 将 GSM射频信号送入 GSM接收滤波器(GSM RX SAW ) 402 ; 将 TD-SCDMA射频信号送入 TD-SCDMA接收滤波器 ( TD-SCDMA RX SAW ) 403。 滤波后的射频信号进入双模射频收发器 200。 所述双模射频收发器 200釆用零中频接收方案, 将接收到的射频信号直接变 频到基带 I/Q信号, 送入基带芯片 100, 并由基带芯片 100完成解调、 解码等 处理, 还原出原始信号。
而在上述架构双模终端的发射链路中, 基带芯片 100完成原始信号的编 码、 调制等处理, 得到 GSM或 TD-SCDMA的 I/Q信号, 送入双模射频收发 器 200中, 双模射频收发器 200中的发射部分釆用直接变换的上变频方案, 对输入的 I/Q信号完成变化处理后得到射频调制信号。 双模射频收发器 200 的输出端口不按照 GSM和 TD-SCDMA信号不同而区分, 只分为低频和高频 两个输出端口。 低频( Low band, LB )或高频( high band, HB )射频调制信号 经过发射滤波器之后, 分别进入双模功率放大器 300的低频或高频输入端。 LB发射信号的频率范围从 824MHz到 915MHz , HB发射信号的频率范围从 1710MHz到 2025MHz。 同时,基带芯片送出控制信号, 在放大 GSM信号时, 调节功率放大器的静态工作点, 使其工作在 C类, 同时调节射频收发器的射 频输出功率, 驱动功率放大器进入饱和工作状态, 这样可以保证放大器在放 大 GSM信号时达到高效率; 在放大 TD-SCDMA信号时, 控制信号调节功率 放大器的静态工作点, 使其工作在 AB类, 同时调节射频收发器的射频输出 功率,此时功率放大器工作在线性状态,可以保证 TD-SCDMA各项射频指标 满足要求。
具体地, 上述多模终端发送信号的方法包括:
步骤一、 功率放大模块在基带芯片的控制下, 在饱和工作模式对接收的 第一模式信号的低频发射信号或第一模式信号的高频发射信号进行放大后输 出至射频前端模块; 或者, 功率放大模块在基带芯片的控制下, 在线性工作 模式对接收的第二模式信号进行放大后输出至射频前端模块;
具体地, 所述功率放大模块中的高频放大器在基带芯片的控制下, 在线 性工作模式对接收的第二模式信号进行放大后输出至射频前端模块; 或者, 所述功率放大模块中的低频放大器在基带芯片的控制下, 在饱和工作模式对 接收的第一模式信号的低频发射信号进行放大后输出至射频前端模块; 或者 所述功率放大模块中的高频放大器在基带芯片的控制下, 在饱和工作模式对 接收的第一模式信号的高频发射信号进行放大后输出至射频前端模块。
另外, 所述低频放大器对接收的信号进行放大之前, 所述方法还包括: 多模射频收发器将所述基带芯片发送的第一模式基带发射信号变换成对 应的低频发射信号, 然后输出至所述低频放大器; 或者, 开关电路将多模射 频收发器发送的第一模式信号的低频发射信号切换至所述低频放大器; 或者 所述高频放大器对接收的信号进行放大之前, 所述方法还包括: 多模射频收发器将所述基带芯片发送的第一模式基带发射信号或第二模 式基带发射信号变换成对应的高频发射信号, 然后输出至所述高频放大器; 或者, 开关电路将所述多模射频收发器发送的第一模式信号的高频发射信号 或第二模式信号切换至所述高频放大器。 步骤二、 所述射频前端模块发送接收的信号, 该接收到的信号为所述第 一模式信号的低频发射信号、 第一模式信号的高频发射信号、 或第二模式信 号。
具体地, 功率放大后的射频信号被送入射频前端模块 400中的天线开关 模组 401 , 天线开关模组 401受基带芯片 100的控制, 选择相应的发射通路, 将射频信号送入手机的主天线。
所述第一模式信号为全球移动通讯系统(GSM )信号; 所述第二模式信 号为时分同步码分多址(TD-SCDMA )信号或个人手持式电话系统(PHS ) 信号。
如图 4所示, 为本发明双模终端实施例二的架构示意图, 其与图 2所示 双模终端的不同之处在于, TD-SCDMA/GSM双模射频收发器 200仍沿用现 有技术的收发器方案,即输出端口依然按照 TD-SCDMA和 GSM信号来划分。 TD-SCDMA/GSM 双模射频收发器 200 的射频输出端先通过一个开关电路 500 , 该开关电路将发射信号切换到低频 LB 或高频 HB 两路输出, 送到 TD-SCDMA/GSM双模功率放大模块 300中。
包含上述功率放大模块的多模终端, 相比于现在使用的架构, 至少减少 了两个大芯片, 同时电路连接大为简化, 有效地减少了占用 PCB的面积, 有 利于实现终端的小型化。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 上述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。 以上实施例仅用以说明本发明的技术方案而非限制, 仅仅参照较佳实施 例对本发明进行了详细说明。 本领域的普通技术人员应当理解, 可以对本发 明的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的精神和范 围, 均应涵盖在本发明的权利要求范围当中。
工业实用性 上述包含低频放大器和高频放大器的功率放大模块, 通过将各种模式和 各种频带的射频信号只分为低频信号和高频信号, 并由对应的放大器对其进 行放大, 有效地节省了功率放大器的数量; 进而有效地减少了包含上述功率 放大模块的多模终端所占用的 PCB的面积。

Claims

权 利 要 求 书
1、 一种功率放大模块, 应用于多模终端的发射通道, 该功率放大模块包 括控制模块以及与所述控制模块相连的低频放大器和高频放大器, 其中: 所述控制模块设置为: 根据来自基带芯片的控制信号向所述低频放大器 或所述高频放大器发送工作模式指示信号;
所述低频放大器设置为: 接收低频发射信号和所述控制模块发送的工作 模式指示信号, 在所述工作模式指示信号指示的工作模式下对所述低频发射 信号进行放大后输出;
所述高频放大器设置为: 接收高频发射信号和所述控制模块发送的工作 模式指示信号, 在所述工作模式指示信号指示的工作模式下对所述高频发射 信号进行放大后输出。
2、 根据权利要求 1所述的功率放大模块, 其中:
所述控制模块是设置为:
当所述控制信号指示当前发射通道中的信号为第一模式低频发射信号 时, 向所述低频放大器发送饱和工作模式指示信号;
当所述控制信号指示当前发射通道中的信号为第二模式信号时, 向所述 高频放大器发送线性工作模式指示信号; 或者,
当所述控制信号指示当前发射通道中的信号为第一模式高频发射信号 时, 向所述高频放大器发送饱和工作模式指示信号。
3、 根据权利要求 2所述的功率放大模块, 其中:
所述第一模式为全球移动通讯系统(GSM ) ;
所述第二模式为时分同步码分多址(TD-SCDMA )或个人手持式电话系 统 ( PHS ) 。
4、 一种多模射频收发器, 应用于多模终端, 该多模射频收发器包括: 频率变换模块, 其设置为: 在所述基带芯片的控制下, 将所述基带芯片 发送的第一模式基带发射信号变换成低频发射信号或高频发射信号, 将所述 基带芯片发送的第二模式基带发射信号变换成高频发射信号; 以及 输出模块, 其设置为: 将所述频率变换模块变换成的所述低频发射信号 通过低频段发射端口输出, 将所述频率变换模块变换成的所述高频发射信号 通过高频段发射端口输出。
5、 根据权利要求 4所述的多模射频收发器, 其中:
所述第一模式为全球移动通讯系统(GSM ) ; 所述第二模式为时分同步 码分多址(TD-SCDMA )或个人手持式电话系统(PHS ) 。
6、 一种射频前端模块, 应用于多模终端, 所述射频前端模块包括天线开 关模组、 第一滤波器和第二滤波器, 其中:
所述第一滤波器设置为: 接收所述天线开关模组发送的第一模式接收信 号, 对所述第一模式接收信号进行滤波后输出;
所述第二滤波器设置为: 接收所述天线开关模组发送的第二模式接收信 号, 对所述第二模式接收信号进行滤波后输出;
所述天线开关模组设置为: 接收第一模式低频发射信号或第一模式高频 发射信号, 或第二模式信号, 以及向所述第一滤波器发送所述第一模式接收 信号和向所述第二滤波器发送所述第二模式接收信号。
7、 根据权利要求 6所述的射频前端模块, 其中:
所述第一模式为全球移动通讯系统(GSM ) ; 所述第二模式为时分同步 码分多址(TD-SCDMA )或个人手持式电话系统(PHS ) 。
8、 一种多模终端, 包括依次连接的基带芯片、 多模射频收发器、 功率放 大模块和射频前端模块, 其中:
所述多模射频收发器釆用的是如权利要求 4或 5所述的多模射频收发器; 所述功率放大模块釆用的是如权利要求 1或 2或 3所述的功率放大模块; 所述射频前端模块釆用的是如权利要求 6或 7所述的射频前端模块。
9、 一种多模终端, 包括依次连接的基带芯片、 多模射频收发器、 功率放 大模块和射频前端模块, 所述多模终端还包括位于所述多模射频收发器和功 率放大模块之间的开关电路;
所述功率放大模块釆用的是如权利要求 1或 2或 3所述的功率放大模块; 所述射频前端模块釆用的是如权利要求 6或 7所述的射频前端模块; 所述开关电路设置为: 将所述多模射频收发器发送的第一模式低频发射 信号切换至所述功率放大模块中的低频放大器, 或者, 将所述多模射频收发 器发送的第一模式高频发射信号或第二模式信号切换至所述功率放大模块中 的高频放大器。
10、 一种多模终端发送信号的方法, 该方法包括:
功率放大模块在基带芯片的控制下, 在饱和工作模式对接收的第一模式 低频发射信号或第一模式高频发射信号进行放大后输出至射频前端模块; 或 者, 功率放大模块在基带芯片的控制下, 在线性工作模式对接收的第二模式 信号进行放大后输出至射频前端模块;
所述射频前端模块发送接收到的信号。
11、 根据权利要求 10所述的方法, 其中:
所述功率放大模块在基带芯片的控制下, 在线性工作模式对接收的第二 模式信号进行放大后输出至射频前端模块, 包括:
所述功率放大模块中的高频放大器在基带芯片的控制下, 在线性工作模 式对接收的第二模式信号进行放大后输出至射频前端模块; 或者,
所述功率放大模块在基带芯片的控制下, 在饱和工作模式对接收的第一 模式低频发射信号或第一模式高频发射信号进行放大后输出至射频前端模 块, 包括:
所述功率放大模块中的低频放大器在基带芯片的控制下, 在饱和工作模 式对接收的第一模式低频发射信号进行放大后输出至射频前端模块; 或者 所述功率放大模块中的高频放大器在基带芯片的控制下, 在饱和工作模 式对接收的第一模式高频发射信号进行放大后输出至射频前端模块。
12、 根据权利要求 11所述的方法, 其中:
所述低频放大器对接收的信号进行放大之前, 所述方法还包括: 多模射频收发器将所述基带芯片发送的第一模式基带发射信号变换成对 应的低频发射信号, 然后输出至所述低频放大器; 或者, 开关电路将多模射 频收发器发送的第一模式低频发射信号切换至所述低频放大器; 或者 所述高频放大器对接收的信号进行放大之前, 所述方法还包括: 多模射频收发器将所述基带芯片发送的第一模式基带发射信号或第二模 式基带发射信号变换成对应的高频发射信号, 然后输出至所述高频放大器; 或者, 开关电路将所述多模射频收发器发送的第一模式高频发射信号或第二 模式信号切换至所述高频放大器。
13、 根据权利要求 10-12任一权利要求所述的方法, 其中:
所述第一模式为全球移动通讯系统(GSM ) ;
所述第二模式为时分同步码分多址(TD-SCDMA )或个人手持式电话系 统 ( PHS ) 。
PCT/CN2012/076057 2011-11-04 2012-05-25 功率放大模块、多模射频收发器和多模终端 WO2013063926A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110346135.X 2011-11-04
CN201110346135XA CN102404020A (zh) 2011-11-04 2011-11-04 功率放大模块、多模射频收发器和多模终端

Publications (1)

Publication Number Publication Date
WO2013063926A1 true WO2013063926A1 (zh) 2013-05-10

Family

ID=45885863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076057 WO2013063926A1 (zh) 2011-11-04 2012-05-25 功率放大模块、多模射频收发器和多模终端

Country Status (2)

Country Link
CN (1) CN102404020A (zh)
WO (1) WO2013063926A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115149953A (zh) * 2022-08-30 2022-10-04 青岛鼎信通讯股份有限公司 一种基于运算放大器的低频载波信号采样电路

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404020A (zh) * 2011-11-04 2012-04-04 中兴通讯股份有限公司 功率放大模块、多模射频收发器和多模终端
CN103633949B (zh) * 2012-08-21 2020-04-03 唯捷创芯(天津)电子技术股份有限公司 多模功率放大器、多模切换方法及其移动终端
CN105450249A (zh) * 2014-08-30 2016-03-30 展讯通信(上海)有限公司 移动终端中多种通信模式兼容的方法及移动终端
US10015744B2 (en) * 2015-01-05 2018-07-03 Qualcomm Incorporated Low power operations in a wireless tunneling transceiver
CN106208983B (zh) * 2016-06-30 2021-07-16 唯捷创芯(天津)电子技术股份有限公司 面向时分复用的多模功率放大器模组、芯片及通信终端
CN109150211B (zh) * 2017-06-19 2020-09-25 大唐移动通信设备有限公司 一种宽频发射装置
CN109905141B (zh) * 2019-03-29 2020-09-25 联想(北京)有限公司 一种电子设备及信号处理方法
WO2022160333A1 (zh) * 2021-02-01 2022-08-04 华为技术有限公司 一种通信电路和终端
CN113676207B (zh) * 2021-08-12 2022-12-27 Oppo广东移动通信有限公司 发射模组、射频系统及通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588159A (zh) * 2008-05-20 2009-11-25 株式会社瑞萨科技 射频(rf)功率放大器和rf功率放大器装置
US20100128775A1 (en) * 2008-11-24 2010-05-27 Electronics And Telecommunications Research Institute Apparatus and method for transmitting signal in wireless communication system
CN102404020A (zh) * 2011-11-04 2012-04-04 中兴通讯股份有限公司 功率放大模块、多模射频收发器和多模终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7212586B2 (en) * 2002-01-18 2007-05-01 Broadcom Corporation Direct conversion RF transceiver for wireless communications
CN101388648B (zh) * 2007-09-14 2011-08-10 财团法人工业技术研究院 多频多模式功率放大电路以及其操作方法
CN102055491B (zh) * 2010-04-14 2015-11-25 锐迪科创微电子(北京)有限公司 射频前端模块及具有该模块的移动通信装置
CN101902243B (zh) * 2010-07-28 2013-01-02 锐迪科创微电子(北京)有限公司 可配置多模式射频前端模块及具有该模块的移动终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588159A (zh) * 2008-05-20 2009-11-25 株式会社瑞萨科技 射频(rf)功率放大器和rf功率放大器装置
US20100128775A1 (en) * 2008-11-24 2010-05-27 Electronics And Telecommunications Research Institute Apparatus and method for transmitting signal in wireless communication system
CN102404020A (zh) * 2011-11-04 2012-04-04 中兴通讯股份有限公司 功率放大模块、多模射频收发器和多模终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115149953A (zh) * 2022-08-30 2022-10-04 青岛鼎信通讯股份有限公司 一种基于运算放大器的低频载波信号采样电路

Also Published As

Publication number Publication date
CN102404020A (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
WO2013063926A1 (zh) 功率放大模块、多模射频收发器和多模终端
WO2013063924A1 (zh) 功率放大模块、射频前端模块和多模终端
WO2021143877A1 (zh) 射频电路和电子设备
CN102055491B (zh) 射频前端模块及具有该模块的移动通信装置
US9172420B2 (en) Mobile communication terminal
US7512388B2 (en) Multiband or multimode front end antenna switch
WO2013063938A1 (zh) 功率放大模块、多模射频收发器、双工器和多模终端
WO2015131456A1 (zh) 多模双通终端
WO2013063923A1 (zh) 射频前端模块、多模终端和多模终端发送信号的方法
WO2013063921A1 (zh) 多模射频接收处理芯片和多模终端
EP1764924A2 (en) Dual mode front end module and mobile terminal having the same
CN102420634A (zh) 无线通信收发系统
WO2013063952A1 (zh) 滤波装置、天线开关模组和双模终端
JP2009094713A (ja) モジュール及びそれを用いた移動通信端末
US20150180531A1 (en) Radio-Frequency Front-End Circuit Of Multiband Terminal And Multiband Terminal
WO2013063937A1 (zh) 双模射频收发装置、滤波装置和双模终端
WO2013063917A1 (zh) 多模射频发射处理芯片和多模终端
WO2011131092A1 (zh) 射频信号环回方法及室外单元
WO2013063916A1 (zh) 功率放大装置、多模射频收发装置和多模终端
JP2013135473A (ja) パワー増幅器及びこれを備える無線通信装置
WO2012152034A1 (zh) 双模射频模块、双模射频发送、接收方法以及用户终端
WO2018209876A1 (zh) 一种射频放大处理电路及通信终端
WO2013185665A1 (zh) Tdd制式射频收发电路及方法、射频前端电路和终端
WO2023236530A1 (zh) 射频PA Mid器件、射频系统和通信设备
CN216490480U (zh) 射频前端器件和射频系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846654

Country of ref document: EP

Kind code of ref document: A1