WO2013063917A1 - 多模射频发射处理芯片和多模终端 - Google Patents

多模射频发射处理芯片和多模终端 Download PDF

Info

Publication number
WO2013063917A1
WO2013063917A1 PCT/CN2012/075645 CN2012075645W WO2013063917A1 WO 2013063917 A1 WO2013063917 A1 WO 2013063917A1 CN 2012075645 W CN2012075645 W CN 2012075645W WO 2013063917 A1 WO2013063917 A1 WO 2013063917A1
Authority
WO
WIPO (PCT)
Prior art keywords
signals
signal
frequency
frequency conversion
conversion processing
Prior art date
Application number
PCT/CN2012/075645
Other languages
English (en)
French (fr)
Inventor
杜天波
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013063917A1 publication Critical patent/WO2013063917A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/336A I/Q, i.e. phase quadrature, modulator or demodulator being used in an amplifying circuit

Definitions

  • the present invention relates to mobile communication technologies, and in particular, to a multimode radio frequency transmission processing chip, a multimode terminal, and a method of transmitting signals by a multimode terminal.
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • FIG. 1 it is a schematic diagram of an existing GSM/WCDMA dual mode terminal architecture, which includes a baseband chip 100, a GSM/WCDMA multimode RF transceiver chip 200, at least one WCDMA linear power amplifier 300, and a GSM power amplifier 400.
  • a duplexer 500 and an antenna switch module 600 Since the WCDMA frequency program includes dozens of frequency bands to meet the needs of different countries and regions, if a WCDMA terminal needs to support multiple frequency bands at the same time, it is necessary to set corresponding WCDMA power amplifiers and duplexers for each frequency band, and At this time, the antenna switch module also needs to be increased accordingly. As shown in FIG.
  • FIG. 2 it is a schematic diagram of a signal transmitted by the terminal radio transceiver chip shown in FIG. 1.
  • the IQ signal is first converted to a corresponding GSM or WCDMA signal by a corresponding low-pass filter and then through a corresponding mixer, and then After being amplified by the corresponding low noise amplifier (LNA), it is input to the corresponding power amplifier for amplification.
  • LNA low noise amplifier
  • the radio section requires at least one GSM power amplifier, one WCDMA linear power amplifier and one duplexer. If you want to support WCDMA multi-band, you need to add multiple WCDMA power amplifiers for the corresponding frequency bands. The duplexer even adds an antenna switch module.
  • Embodiments of the present invention provide a method for transmitting signals by a multi-mode radio frequency transmitting processing chip, a multi-mode terminal, and a multi-mode terminal, so as to solve the defect that the existing multi-mode terminal occupies a large PCB area.
  • the embodiment of the present invention provides a multi-mode radio frequency transmitting processing chip, which is applied to a transmitting channel of a multi-mode terminal, where the multi-mode radio frequency transmitting processing chip includes a first transmitting processing module and a second transmitting processing module, where: the first a transmitting processing module is configured to filter out the out-of-band noise of the received signals of the plurality of modes, obtain an intermediate frequency signal by mixing frequency conversion processing, filter the intermediate frequency signal, and output the signal to the linear power amplifier; The module is configured to receive the amplified intermediate frequency signal from the linear power amplifier, perform frequency mixing conversion processing on the amplified intermediate frequency signal to obtain signals of multiple modes, and output the signals.
  • the first transmission processing module includes a low pass filter and a frequency conversion processing unit, wherein: the low pass filter is configured to filter outband noise of the received multiple mode signals; the frequency conversion processing unit And connecting to the low-pass filter, configured to perform a frequency conversion frequency conversion process on the signal filtered by the low-pass filter to remove the out-of-band noise according to a control signal sent by the baseband chip, to obtain an intermediate frequency signal, and the intermediate frequency signal Filtered output.
  • the low pass filter is configured to filter outband noise of the received multiple mode signals
  • the frequency conversion processing unit And connecting to the low-pass filter, configured to perform a frequency conversion frequency conversion process on the signal filtered by the low-pass filter to remove the out-of-band noise according to a control signal sent by the baseband chip, to obtain an intermediate frequency signal, and the intermediate frequency signal Filtered output.
  • the frequency conversion processing unit includes a local oscillator circuit, a mixer, and a band pass filter that are sequentially connected, wherein: the local oscillator circuit is configured to adjust a center frequency according to a control signal sent by the baseband chip, and Transmitting the center frequency to the mixer; the mixer is configured to send a signal after filtering out-of-band noise and the local oscillator circuit The center frequency of the signal is mixed to obtain an intermediate frequency signal; the band pass filter is configured to filter out the out-of-band noise of the intermediate frequency signal obtained by the mixer and output the signal.
  • the mixer in the frequency conversion processing unit is connected to the low pass filter, the band pass filter and the linear
  • the mixer in the first frequency conversion processing unit is connected to the low pass filter, and the last frequency conversion processing unit is A band pass filter is coupled to the linear amplifier.
  • the band pass filter in each of the other variable frequency processing units is coupled to the mixer in the latter variable frequency processing unit.
  • the mixer in the frequency conversion processing unit is connected to the linear amplifier; or the second transmission processing module includes a plurality of When the frequency conversion processing unit is connected, the mixer in the first frequency conversion processing unit is connected to the linear amplifier, and the band pass filter in each of the other frequency conversion processing units is followed by the last frequency conversion processing unit. A mixer in an inverter processing unit is connected.
  • the signals of the multiple modes include Global System for Mobile Communications (GSM) signals, Wideband Code Division Multiple Access (WCDMA) signals, Code Division Multiple Access (CDMA) signals, Time Division Synchronous Code Division Multiple Access (TD-SCDMA) Signal, Long Term Evolution (LTE) signals and Enhanced Data Rate GSM Evolution Technology (EDGE) signals.
  • GSM Global System for Mobile Communications
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • LTE Long Term Evolution
  • EDGE Enhanced Data Rate GSM Evolution Technology
  • the embodiment of the invention further provides a multimode terminal, comprising a baseband chip, a multimode radio transceiver, a duplexer and an antenna switch module, the multimode terminal further comprising a linear power amplifier, the multimode radio transceiver
  • the multimode RF emission processing chip used in the above is the multimode RF emission processing chip described above.
  • An embodiment of the present invention provides a method for transmitting a signal by a multimode terminal, where the method includes: a multimode radio frequency transmitting processing chip according to a control signal sent by a baseband chip, and receiving multiple modes After the signal is filtered out of the out-of-band noise, the intermediate frequency signal is obtained by the mixing frequency conversion process, and the intermediate frequency signal is filtered and output to the linear power amplifier; the multi-mode RF transmitting processing chip receives the amplification from the linear power amplifier. After the intermediate frequency signal, the amplified intermediate frequency signal is subjected to mixing and frequency conversion processing to obtain signals of a plurality of modes and then output.
  • the multi-mode radio frequency transmitting processing chip filters out the out-of-band noise of the received multi-mode signal, and obtains an intermediate frequency signal by the mixing frequency conversion processing, including: the multi-mode radio frequency transmitting processing chip receives more After filtering out-of-band noise, the signal of the mode is subjected to direct mixing and frequency conversion processing to obtain an intermediate frequency signal; or, the multi-mode RF transmission processing chip filters out the out-of-band noise after receiving the signals of multiple modes, and then passes through multiple stages.
  • the multi-mode RF transmission processing chip obtains an intermediate frequency signal, and the multi-mode RF transmission processing chip performs mixed frequency conversion processing on the amplified intermediate frequency signal to obtain signals of multiple modes, and the output includes: the multi-mode RF emission processing chip pair
  • the amplified intermediate frequency signal is subjected to direct mixing frequency conversion processing to obtain signals of multiple modes, and then outputted; or, the multi-mode RF transmission processing chip performs multi-stage mixing frequency conversion processing on the amplified intermediate frequency signal to obtain multiple types.
  • the signal of the mode is output.
  • the signals of the multiple modes include Global System for Mobile Communications (GSM) signals, Wideband Code Division Multiple Access (WCDMA) signals, Code Division Multiple Access (CDMA) signals, Time Division Synchronous Code Division Multiple Access (TD-SCDMA) Signal, Long Term Evolution (LTE) signals and Enhanced Data Rate GSM Evolution Technology (EDGE) signals.
  • GSM Global System for Mobile Communications
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • LTE Long Term Evolution
  • EDGE Enhanced Data Rate GSM Evolution Technology
  • FIG. 1 is a schematic diagram of a conventional GSM/WCDMA dual mode terminal architecture
  • FIG. 2 is a schematic diagram of a terminal RF transceiver chip transmitting signal shown in FIG. 1
  • FIG. 3a is a structure of a first embodiment of the multimode RF transmitting processing chip of the present invention
  • schematic diagram is a schematic structural diagram of Embodiment 2 of a multimode radio frequency transmitting processing chip according to the present invention
  • FIG. 4 is a schematic structural diagram of an embodiment of a dual mode terminal according to the present invention.
  • the embodiment of the present invention provides a multi-mode radio frequency transmitting processing chip, which is applied to a transmitting channel of a multi-mode terminal, where the multi-mode radio frequency transmitting processing chip includes a first transmitting processing module and a second transmitting processing module, where: the first a transmitting processing module, configured to filter out the out-of-band noise of the received signals of various modes, obtain an intermediate frequency signal by mixing frequency conversion processing, filter the intermediate frequency signal, and output the signal to the linear power amplifier;
  • the module is configured to receive the amplified intermediate frequency signal from the linear power amplifier, perform mixing and frequency conversion processing on the amplified intermediate frequency signal to obtain signals of various modes, and output the signals.
  • the first transmit processing module may include a low pass filter and a frequency conversion processing unit, where: the low pass filter is configured to filter outband noise for signals received in various modes; a unit, connected to the low-pass filter, configured to perform a frequency conversion frequency conversion process on the signal filtered by the low-pass filter to remove an out-of-band noise according to a control signal sent by the baseband chip, to obtain an intermediate frequency signal, and to the intermediate frequency The signal is filtered and output.
  • the low pass filter is configured to filter outband noise for signals received in various modes
  • a unit connected to the low-pass filter, configured to perform a frequency conversion frequency conversion process on the signal filtered by the low-pass filter to remove an out-of-band noise according to a control signal sent by the baseband chip, to obtain an intermediate frequency signal, and to the intermediate frequency The signal is filtered and output.
  • the frequency conversion processing unit may include a local oscillator circuit, a mixer, and a band pass filter connected in sequence, wherein: the local oscillator circuit is configured to adjust a center frequency according to a control signal sent by the baseband chip, and to The mixer transmits the center frequency; the mixer is configured to mix the received signal after filtering out-of-band noise and the center frequency sent by the local oscillator circuit to obtain an intermediate frequency signal; the band pass filtering And configured to filter out the out-of-band noise of the intermediate frequency signal obtained by the mixer and output the signal.
  • the first transmission processing module includes one of the frequency conversion processing units, the frequency conversion processing The mixer in the unit is connected to the low pass filter, and the band pass filter is connected to the linear amplifier.
  • the structure of the first transmit processing module can be seen in the first transmit processing module in FIG. 3a;
  • the mixer in the first frequency conversion processing unit is connected to the low pass filter, and the band pass filtering in the last frequency conversion processing unit Connected to the linear amplifier, except for the last inverter processing unit, the band pass filter in each of the other variable frequency processing units is connected to the mixer in the latter variable frequency processing unit; for example, when the first transmit processing module
  • the structure when two inverter processing units are connected in series can be referred to the first transmission processing module in FIG. 3b.
  • the mixer in the frequency conversion processing unit is connected to the linear amplifier, and the structure of the second transmission processing module can be referred to the first in FIG. 3a.
  • a second transmission processing module when the second transmission processing module includes a plurality of the frequency conversion processing units sequentially connected, the mixer in the first frequency conversion processing unit is connected to the linear amplifier, except for the last frequency conversion processing unit
  • the band pass filter in each of the other inverter processing units is connected to the mixer in the latter inverter processing unit; for example, when the second transmission processing module includes two frequency conversion processing units connected in series, see the structure.
  • the second transmit processing module of Figure 3b Of course, the structure of the second transmission processing module in FIG.
  • GSM Global System for Mobile Communications
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • LTE Long term evolution
  • EDGE Enhanced Data Rate GSM Evolution Technology
  • FIG. 4 is a schematic structural diagram of an embodiment of a dual mode terminal according to the present invention.
  • the terminal includes: a baseband chip 100, a GSM/WCDMA dual mode radio frequency transceiver 200, and is integrated in a multimode RF transceiver 200 such as GSM/WCDMA.
  • the above-mentioned architecture of the GSM/WCDMA multi-mode terminal receiving circuit and the conventional receiving circuit are basically one To: The electromagnetic wave signal is received by the antenna and then enters the antenna switch module 600.
  • the antenna switch selects the corresponding receiving working frequency band, and sends the GSM signal to the multi-mode RF transceiver 200 such as GSM/WCDMA, or
  • the WCDMA signal is sent to the corresponding duplexer 500, and then the signal is sent to a multimode RF transceiver 200 such as GSM/WCDMA.
  • the multi-mode RF transceiver 200 such as GSM/WCDMA processes the received RF signal and converts it to a low-frequency I/Q signal, and sends it to the baseband chip 100 for demodulation and decoding.
  • the process of transmitting signals by the multimode terminal using the above architecture is as follows:
  • the baseband chip 100 performs processing such as encoding, modulation, and the like of the original signal, obtains an I/Q signal, and sends it to the multimode RF transmission in the multimode RF transceiver 200 such as GSM/WCDMA.
  • the processing chip 300 first filters the out-of-band noise through a low-pass filter, and then converts the IQ signal to a single-frequency intermediate frequency signal through a direct zero-IF conversion (Fig. 3a) or multiple conversions (Fig. 3b), and then enters the linear power.
  • the amplifier is amplified and then subjected to direct zero-IF conversion (Fig. 3a) or multiple conversions (Fig.
  • the required local oscillator frequency is different according to different GSM or WCDMA signals.
  • the amplified signal is converted to the corresponding GSM or WCDMA.
  • the signal, the GSM RF signal after the frequency conversion processing is directly sent to the GSM antenna switch portion of the antenna switch module 600, and the power amplified WCDMA RF signal is first sent to the corresponding duplexer 500, and then sent to the antenna switch.
  • the GSM/WCDMA radio frequency signals are sent by the antenna switch module 600 to the main antenna of the terminal.
  • the multimode RF transmit processing chip 300 (integrated in the multimode RF transceiver 200 such as GSM/WCDMA) does not separately process the RF signals transmitted in each GSM or WCDMA band (as shown in FIG. 2).
  • the IQ signal is first subjected to frequency conversion processing to the intermediate frequency signal as shown in FIG. 3a or FIG. 3b, and then input to the linear power amplifier 400 for power amplification of the signal, and then the amplified signal is re-inputted to a multimode RF such as GSM/WCDMA.
  • the transceiver 200 performs frequency conversion processing to the corresponding GSM or WCDMA signals, and finally outputs the signals to the antenna switch module 600 or the duplexer 500.
  • the linear power amplifier 300 in the above embodiment is different from the conventional GSM power amplifier or
  • WCDMA power amplifiers operate in the corresponding single GSM or WCDMA frequency band, but operate in a single fixed frequency mode. Since the linear power amplifier 300 operates at a single frequency, the power amplifier can be well designed to improve its efficiency, thereby improving the efficiency of the power amplifier, reducing the current consumption, increasing the standby time of the terminal, and simultaneously reducing the heat. produce.
  • the above multimode terminal is not limited to the two modes of GSM and WCDMA, and may be other multi-modes such as GSM/CDMA, GSM/TD-SCDMA, GSM ⁇ LTE, GSM/EDGE.
  • the multimode terminal including the above multimode RF emission processing chip and linear power amplifier can greatly reduce the number of power amplifiers compared with the existing multimode terminal, thereby effectively reducing the area occupied by the PCB by the multimode terminal, and facilitating multimode implementation. Miniaturization of the terminal.
  • the multimode terminal including the above multimode RF emission processing chip can greatly reduce the number of power amplifiers compared with the existing multimode terminal, thereby effectively reducing the area occupied by the PCB by the multimode terminal, and facilitating the implementation of the multimode terminal. Miniaturization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

一种多模射频发射处理芯片、多模终端和多模终端发射信号的方法,其中,该多模射频发射处理芯片包括第一发射处理模块和第二发射处理模块,所述第一发射处理模块,设置为对接收的多种模式的信号滤除带外噪声后,经过混频变频处理得到一路中频信号,对所述中频信号滤波后输出至线性功率放大器;所述第二发射处理模块,设置为接收来自所述线性功率放大器的放大后的中频信号,对所述放大后的中频信号进行混频变频处理得到多种模式的信号后输出。上述多模终端,相对于现有的多模终端,可以大大减少功率放大器的数量,从而有效减少多模终端占用PCB的面积,有利于实现多模终端的小型化。

Description

多模射频发射处理芯片和多模终端
技术领域 本发明涉及移动通信技术, 尤其涉及一种多模射频发射处理芯片、 多模 终端和多模终端发射信号的方法。
背景技术 当前, 电信领域存在很多不同的无线通信系统, 分别釆用了各自的通信 标准, 而不同通信标准下各自的工作频率和工作模式均不同, 如已经在全世 界广泛应用的第二代通信标准全球移动通信系统(Global System for Mobile Communication, GSM )系统, 以及正在全球推广的第三代通信标准宽带码分 多址(Wideband Code Division Multiple Access, WCDMA ) 系统。 为了使终 端能够在全世界范围使用, 其必须同时支持多种不同的通信标准, 目前最常 用的是同时支持 GSM和 WCDMA的终端。 如图 1所示, 是现有的 GSM/WCDMA双模终端架构示意图, 该多模终 端包括基带芯片 100、 GSM/WCDMA 多模射频收发芯片 200、 至少一个 WCDMA线性功率放大器 300、 GSM功率放大器 400、 一个双工器 500和天 线开关模组 600。 由于 WCDMA频语规划中包含了数十个频段以满足不同国 家和地区的需求, 所以 WCDMA终端如果要同时支持多个频段, 就需要对应 每个频段设置对应的 WCDMA功率放大器和双工器,并且此时天线开关模组 也需要相应的增加。 如图 2所示, 是图 1所示终端射频收发芯片发射信号的示意图, 它先将 IQ信号通过各自的低通滤波器后再经过对应的混频器转变成对应的 GSM或 WCDMA信号, 然后经过对应的低噪声放大器(LNA )放大后输入到相应的 功率放大器中进行放大。 在 GSM/WCDMA等多模终端的传统架构方案中, 射频部分至少需要一 个 GSM功率放大器、 一个 WCDMA线性功率放大器和一个双工器。 如果要 支持 WCDMA多频段, 就需要增加多个对应频段的 WCDMA功率放大器和 双工器甚至增加天线开关模组。 这样的传统架构中, WCDMA功率放大器和 双工器的芯片数量太多, 使得电路结构非常复杂, 占用了大量的印刷电路板 ( PCB ) 面积, 不利于降低成本, 更不利于提高终端的可靠性以及实现小型 化。
发明内容 本发明实施例提供了一种多模射频发射处理芯片、 多模终端和多模终端 发射信号的方法, 以解决现有多模终端占用 PCB面积大的缺陷。 本发明实施例提供了一种多模射频发射处理芯片, 应用于多模终端的发 射通道, 该多模射频发射处理芯片包括第一发射处理模块和第二发射处理模 块, 其中: 所述第一发射处理模块, 设置为对接收的多种模式的信号滤除带外噪声 后, 经过混频变频处理得到一路中频信号, 对所述中频信号滤波后输出至线 性功率放大器; 所述第二发射处理模块, 设置为接收来自所述线性功率放大器的放大后 的中频信号, 对所述放大后的中频信号进行混频变频处理得到多种模式的信 号后输出。 优选地, 所述第一发射处理模块包括低通滤波器和变频处理单元, 其中: 所述低通滤波器, 设置为对接收的多种模式的信号滤除带外噪声; 所述变频处理单元, 与所述低通滤波器相连, 设置为根据基带芯片发送 的控制信号, 对所述低通滤波器滤除带外噪声后的信号进行混频变频处理得 到一路中频信号, 对所述中频信号滤波后输出。 优选地, 所述变频处理单元包括依次连接的本振电路、 混频器和带通滤 波器, 其中: 所述本振电路, 设置为根据基带芯片发送的控制信号, 调整自己的中心 频率, 并向所述混频器发送所述中心频率; 所述混频器, 设置为对接收的滤除带外噪声后的信号和所述本振电路发 送的中心频率混频得到一路中频信号; 所述带通滤波器, 设置为对所述混频器得到的所述中频信号滤除带外噪 声后输出。 优选地, 所述第一发射处理模块包括一个所述变频处理单元时, 所述变 频处理单元中的所述混频器与所述低通滤波器相连, 所述带通滤波器与所述 线性放大器相连; 或者 所述第一发射处理模块包括多个依次连接的所述变频处理单元时, 第一 个变频处理单元中的混频器与所述低通滤波器相连, 最后一个变频处理单元 中的带通滤波器与所述线性放大器相连, 除最后一个变频处理单元之外, 其 余每个变频处理单元中的带通滤波器与后一个变频处理单元中的混频器相 连。 优选地, 所述第二发射处理模块包括一个所述变频处理单元时, 所述变 频处理单元中的所述混频器与所述线性放大器相连; 或者 所述第二发射处理模块包括多个依次连接的所述变频处理单元时, 第一 个变频处理单元中的混频器与所述线性放大器相连, 除最后一个变频处理单 元之外, 其余每个变频处理单元中的带通滤波器与后一个变频处理单元中的 混频器相连。 优选地, 所述多种模式的信号包括全球移动通讯系统(GSM )信号、 宽 带码分多址(WCDMA )信号、 码分多址(CDMA )信号、 时分同步码分多 址 ( TD-SCDMA )信号、 长期演进 ( LTE )信号和增强型数据速率 GSM演进 技术(EDGE )信号。 本发明实施例还提供了一种多模终端, 包括基带芯片、 多模射频收发器、 双工器和天线开关模组, 所述多模终端还包括线性功率放大器, 所述多模射 频收发器中的多模射频发射处理芯片釆用的是上述的多模射频发射处理芯 片。 本发明实施例提供了一种多模终端发射信号的方法, 该方法包括: 多模射频发射处理芯片根据基带芯片发送的控制信号, 对接收的多种模 式的信号滤除带外噪声后, 经过混频变频处理得到一路中频信号, 对所述中 频信号滤波后输出至线性功率放大器; 所述多模射频发射处理芯片接收来自所述线性功率放大器的放大后的中 频信号, 对所述放大后的中频信号进行混频变频处理得到多种模式的信号后 输出。 优选地, 所述多模射频发射处理芯片对接收的多种模式的信号滤除带外 噪声后, 经过混频变频处理得到一路中频信号, 包括: 所述多模射频发射处理芯片对接收的多种模式的信号滤除带外噪声后, 经过直接混频变频处理得到一路中频信号; 或者, 所述多模射频发射处理芯 片对接收的多种模式的信号滤除带外噪声后, 经过多级混频变频处理得到一 路中频信号; 所述多模射频发射处理芯片对所述放大后的中频信号进行混频 变频处理得到多种模式的信号后输出, 包括: 所述多模射频发射处理芯片对所述放大后的中频信号进行直接混频变频 处理得到多种模式的信号后输出; 或者, 所述多模射频发射处理芯片对所述 放大后的中频信号进行多级混频变频处理得到多种模式的信号后输出。 优选地, 所述多种模式的信号包括全球移动通讯系统(GSM )信号、 宽 带码分多址(WCDMA )信号、 码分多址(CDMA )信号、 时分同步码分多 址 ( TD-SCDMA )信号、 长期演进 ( LTE )信号和增强型数据速率 GSM演进 技术(EDGE )信号。 包含上述多模射频发射处理芯片的多模终端, 相对于现有的多模终端, 可以大大减少功率放大器的数量, 从而有效减少多模终端占用 PCB的面积, 有利于实现多模终端的小型化。
附图概述 图 1是现有的 GSM/WCDMA双模终端架构示意图; 图 2是图 1所示终端射频收发芯片发射信号的示意图; 图 3a是本发明多模射频发射处理芯片实施例一的结构示意图; 图 3b是本发明多模射频发射处理芯片实施例二的结构示意图; 图 4是本发明双模终端实施例的架构示意图。
本发明的较佳实施方式 下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。 本发明实施例提供了一种多模射频发射处理芯片, 应用于多模终端的发 射通道, 该多模射频发射处理芯片包括第一发射处理模块和第二发射处理模 块, 其中: 所述第一发射处理模块, 设置为对接收的各种模式的信号滤除带外噪声 后, 经过混频变频处理得到一路中频信号, 对所述中频信号滤波后输出至线 性功率放大器; 所述第二发射处理模块, 设置为接收来自所述线性功率放大器的放大后 的中频信号, 对所述放大后的中频信号进行混频变频处理得到各种模式的信 号后输出。 具体地, 所述第一发射处理模块可以包括低通滤波器和变频处理单元, 其中: 所述低通滤波器, 设置为对接收的各种模式的信号滤除带外噪声; 所 述变频处理单元, 与所述低通滤波器相连, 设置为根据基带芯片发送的控制 信号, 对所述低通滤波器滤除带外噪声后的信号进行混频变频处理得到一路 中频信号, 对所述中频信号滤波后输出。 上述变频处理单元可以包括依次连接的本振电路、混频器和带通滤波器, 其中: 所述本振电路, 设置为根据基带芯片发送的控制信号, 调整自己的中 心频率, 并向所述混频器发送所述中心频率; 所述混频器, 设置为对接收的 滤除带外噪声后的信号和所述本振电路发送的中心频率混频得到一路中频信 号; 所述带通滤波器, 设置为对所述混频器得到的所述中频信号滤除带外噪 声后输出。 当所述第一发射处理模块包括一个所述变频处理单元时, 所述变频处理 单元中的所述混频器与所述低通滤波器相连, 所述带通滤波器与所述线性放 大器相连, 第一发射处理模块的结构可参见图 3a中的第一发射处理模块; 当 所述第一发射处理模块包括多个依次连接的所述变频处理单元时, 第一个变 频处理单元中的混频器与所述低通滤波器相连, 最后一个变频处理单元中的 带通滤波器与所述线性放大器相连, 除最后一个变频处理单元之外, 其余每 个变频处理单元中的带通滤波器与后一个变频处理单元中的混频器相连; 例 如, 当第一发射处理模块包括两个依次连接的变频处理单元时的结构可参见 图 3b中的第一发射处理模块。 当所述第二发射处理模块包括一个所述变频处理单元时, 所述变频处理 单元中的所述混频器与所述线性放大器相连, 第二发射处理模块的结构可参 见图 3a中的第二发射处理模块; 当所述第二发射处理模块包括多个依次连接 的所述变频处理单元时, 第一个变频处理单元中的混频器与所述线性放大器 相连, 除最后一个变频处理单元之外, 其余每个变频处理单元中的带通滤波 器与后一个变频处理单元中的混频器相连; 例如, 当第二发射处理模块包括 两个依次连接的变频处理单元时的结构可参见图 3b中的第二发射处理模块。 当然, 图 3a中的第二发射处理模块的结构可以和图 3b中的第二发射处 理模块的结构相同, 同样, 图 3b中的第二发射处理模块的结构可以和图 3a 中的第二发射处理模块的结构相同。 上述各种模式的信号包括全球移动通讯系统(GSM )信号、 宽带码分多 址( WCDMA )信号、码分多址( CDMA )信号、时分同步码分多址( TD-SCDMA ) 信号、 长期演进(LTE )信号和增强型数据速率 GSM演进技术(EDGE )信 号。
如图 4所示, 是本发明双模终端实施例的架构示意图, 该终端包括: 基 带芯片 100、 GSM/WCDMA双模射频收发器 200、 集成在 GSM/WCDMA等 多模射频收发器 200中的多模射频发射处理芯片 300、 线性功率放大器 400、 双工器 500和天线开关模组 600。 上述架构的 GSM/WCDMA等多模终端接收电路与传统接收电路基本一 致: 电磁波信号由天线接收后进入天线开关模块 600, 在基带芯片 100的控 制下, 天线开关选择相应的接收工作频段, 将 GSM信号送入 GSM/WCDMA 等多模射频收发器 200中, 或将 WCDMA信号送入对应的双工器 500, 然后 信号被送入 GSM/WCDMA等多模射频收发器 200。所述 GSM/WCDMA等多 模射频收发器 200将接收到的射频信号经过处理后变频到低频 I/Q信号, 送 入基带芯片 100完成解调、 解码等处理。 应用上述架构的多模终端发射信号的过程为: 基带芯片 100完成原始信 号的编码、调制等处理,得到 I/Q信号, 送入 GSM/WCDMA等多模射频收发 器 200中的多模射频发射处理芯片 300, 首先经过低通滤波器滤除带外噪声 , 然后经过直接零中频变换(图 3a )或多次变频(图 3b )将 IQ信号变频到单 一频率的中频信号, 然后进过线性功率放大器放大后再经过直接零中频变换 (图 3a )或多次变频(图 3b ) (根据不同 GSM或 WCDMA信号, 所需的本 振频率是不同 )将放大后的信号变频成对应的 GSM或 WCDMA信号, 变频 处理后的 GSM射频信号被直接送入天线开关模块 600中的 GSM天线开关部 分, 而功率放大后的 WCDMA射频信号先被送入到相应的双工器 500中, 然 后再送到天线开关模块中 GSM与 WCDMA的开关部分。最终, GSM/WCDMA 射频信号都由天线开关模块 600送入终端的主天线。 由此可见, 多模射频发射处理芯片 300 (集成在 GSM/WCDMA等多模射 频收发器 200中) 不是对每一个 GSM或 WCDMA频段发射的射频信号进行 分别处理(如图 2所示), 而是像图 3a或图 3b所示那样先对 IQ信号进行变 频处理到中频信号, 然后输入到线性功率放大器 400对信号进行功率放大, 然后将放大后的信号再输入到 GSM/WCDMA等多模射频收发器 200中进行 变频处理到相应的 GSM或 WCDMA信号, 最后将这些信号输出到天线开关 模组 600或双工器 500中。 上述实施例中的线性功率放大器 300 不同于传统 GSM功率放大器或
WCDMA功率放大器那样工作在相应的单一 GSM或 WCDMA频段上, 而是 工作在单一固定频率模式。 由于该线性功率放大器 300工作在单一频率, 故 可以很好的设计功率放大器, 提高其效率, 从而提高了功率放大器的效率减 少了电流的消耗, 增加了终端的待机时间, 也同时减少了热量的产生。 上述多模终端不限于 GSM 和 WCDMA 这两种模式, 也可以是 GSM/CDMA, GSM/TD-SCDMA, GSM\LTE、 GSM/EDGE等其它多模制式。 包含上述多模射频发射处理芯片和线性功率放大器的多模终端, 相对于 现有的多模终端, 可以大大减少功率放大器的数量, 从而有效减少多模终端 占用 PCB的面积, 有利于实现多模终端的小型化。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 上述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。 以上实施例仅用以说明本发明的技术方案而非限制, 仅仅参照较佳实施 例对本发明进行了详细说明。 本领域的普通技术人员应当理解, 可以对本发 明的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的精神和范 围, 均应涵盖在本发明的权利要求范围当中。
工业实用性 包含上述多模射频发射处理芯片的多模终端, 相对于现有的多模终端, 可以大大减少功率放大器的数量, 从而有效减少多模终端占用 PCB的面积, 有利于实现多模终端的小型化。

Claims

权 利 要 求 书
1、 一种多模射频发射处理芯片, 应用于多模终端的发射通道, 该多模射 频发射处理芯片包括第一发射处理模块和第二发射处理模块, 其中: 所述第一发射处理模块设置为: 对接收的多种模式的信号滤除带外噪声 后, 经过混频变频处理得到一路中频信号, 对所述中频信号滤波后输出至线 性功率放大器;
所述第二发射处理模块设置为: 接收来自所述线性功率放大器的放大后 的中频信号, 对所述放大后的中频信号进行混频变频处理得到多种模式的信 号后输出。
2、 根据权利要求 1所述的多模射频发射处理芯片, 其中, 所述第一发射 处理模块包括 ^通滤波器和变频处理单元, 所述低通滤波器设置为: 对接收的多种模式的信号滤除带外噪声; 所述变频处理单元, 与所述低通滤波器相连, 设置为: 根据基带芯片发 送的控制信号, 对所述低通滤波器滤除带外噪声后的信号进行混频变频处理 得到一路中频信号, 对所述中频信号滤波后输出。
3、 根据权利要求 2所述的多模射频发射处理芯片, 其中: 所述变频处理单元包括依次连接的本振电路、 混频器和带通滤波器, 其 中:
所述本振电路设置为: 根据基带芯片发送的控制信号, 调整自己的中心 频率, 并向所述混频器发送所述中心频率; 所述混频器设置为: 对接收的滤除带外噪声后的信号和所述本振电路发 送的中心频率混频得到一路中频信号; 所述带通滤波器设置为: 对所述混频器得到的所述中频信号滤除带外噪 声后输出。
4、 根据权利要求 3所述的多模射频发射处理芯片, 其中: 所述第一发射处理模块包括一个所述变频处理单元时, 所述变频处理单 元中的所述混频器与所述低通滤波器相连, 所述带通滤波器与所述线性放大 器相连; 或者 所述第一发射处理模块包括多个依次连接的所述变频处理单元时, 第一 个变频处理单元中的混频器与所述低通滤波器相连, 最后一个变频处理单元 中的带通滤波器与所述线性放大器相连, 除最后一个变频处理单元之外, 其 余每个变频处理单元中的带通滤波器与后一个变频处理单元中的混频器相 连。
5、 根据权利要求 4所述的多模射频发射处理芯片, 其中:
所述第二发射处理模块包括一个所述变频处理单元时, 所述变频处理单 元中的所述混频器与所述线性放大器相连; 或者 所述第二发射处理模块包括多个依次连接的所述变频处理单元时, 第一 个变频处理单元中的混频器与所述线性放大器相连, 除最后一个变频处理单 元之外, 其余每个变频处理单元中的带通滤波器与后一个变频处理单元中的 混频器相连。
6、根据权利要求 1-5任一权利要求所述的多模射频发射处理芯片,其中: 所述多种模式的信号包括全球移动通讯系统(GSM )信号、 宽带码分多 址( WCDMA )信号、码分多址( CDMA )信号、时分同步码分多址( TD-SCDMA ) 信号、 长期演进(LTE )信号和增强型数据速率 GSM演进技术(EDGE )信 号。
7、 一种多模终端, 包括基带芯片、 多模射频收发器、 双工器和天线开关 模组, 其中, 所述多模终端包括线性功率放大器, 所述多模射频收发器中的 多模射频发射处理芯片釆用的是如权利要求 1-6任一权利要求所述的多模射 频发射处理芯片。
8、 一种多模终端发射信号的方法, 该方法包括: 多模射频发射处理芯片根据基带芯片发送的控制信号, 对接收的多种模 式的信号滤除带外噪声后, 经过混频变频处理得到一路中频信号, 对所述中 频信号滤波后输出至线性功率放大器; 以及 所述多模射频发射处理芯片接收来自所述线性功率放大器的放大后的中 频信号, 对所述放大后的中频信号进行混频变频处理得到多种模式的信号后 输出。
9、 根据权利要求 8所述的方法, 其中: 所述多模射频发射处理芯片对接收的多种模式的信号滤除带外噪声后, 经过混频变频处理得到一路中频信号, 包括: 所述多模射频发射处理芯片对接收的多种模式的信号滤除带外噪声后, 经过直接混频变频处理得到一路中频信号; 或者, 所述多模射频发射处理芯 片对接收的多种模式的信号滤除带外噪声后, 经过多级混频变频处理得到一 路中频信号; 所述多模射频发射处理芯片对所述放大后的中频信号进行混频变频处理 得到多种模式的信号后输出, 包括: 所述多模射频发射处理芯片对所述放大后的中频信号进行直接混频变频 处理得到多种模式的信号后输出; 或者, 所述多模射频发射处理芯片对所述 放大后的中频信号进行多级混频变频处理得到多种模式的信号后输出。
10、 根据权利要求 8或 9所述的方法, 其中: 所述多种模式的信号包括全球移动通讯系统(GSM )信号、 宽带码分多 址( WCDMA )信号、码分多址( CDMA )信号、时分同步码分多址( TD-SCDMA ) 信号、 长期演进(LTE )信号和增强型数据速率 GSM演进技术(EDGE )信 号。
PCT/CN2012/075645 2011-11-04 2012-05-17 多模射频发射处理芯片和多模终端 WO2013063917A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110347771.4A CN102510582B (zh) 2011-11-04 2011-11-04 多模射频发射处理芯片和多模终端
CN201110347771.4 2011-11-04

Publications (1)

Publication Number Publication Date
WO2013063917A1 true WO2013063917A1 (zh) 2013-05-10

Family

ID=46222625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075645 WO2013063917A1 (zh) 2011-11-04 2012-05-17 多模射频发射处理芯片和多模终端

Country Status (2)

Country Link
CN (1) CN102510582B (zh)
WO (1) WO2013063917A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099480B (zh) * 2014-04-24 2019-04-12 深圳富泰宏精密工业有限公司 无线通信装置
CN104469991B (zh) * 2014-11-21 2018-01-16 北京佰才邦技术有限公司 无线通讯的方法及装置
CN107018583B (zh) * 2017-05-08 2023-12-29 武汉中元通信股份有限公司 集cdma/lte两种通信体制于一体的数据传输模件
CN107104684A (zh) * 2017-05-15 2017-08-29 尚睿微电子(上海)有限公司 一种射频放大处理电路及通信终端
CN113225092B (zh) * 2021-04-14 2022-11-08 荣耀终端有限公司 射频放大电路和方法
CN113260096B (zh) * 2021-04-30 2022-10-28 上海守正通信技术有限公司 一种4g/5g双模分布式基站射频单元系统架构及信号处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367597A (zh) * 2001-01-25 2002-09-04 株式会社东芝 能适应多个无线通信系统的移动无线通信装置
CN101184297A (zh) * 2007-11-19 2008-05-21 华为技术有限公司 双模收发信机及双模信号处理方法
CN102076120A (zh) * 2010-12-03 2011-05-25 东南大学 基于软件无线电的多模多频带射频机载微微蜂窝通信系统
CN102130697A (zh) * 2010-01-20 2011-07-20 华为技术有限公司 接收机、发射机及反馈装置、收发信机和信号处理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6029052A (en) * 1997-07-01 2000-02-22 Telefonaktiebolaget Lm Ericsson Multiple-mode direct conversion receiver
JP2000124829A (ja) * 1998-10-12 2000-04-28 Toshiba Corp 無線通信装置及びこれに用いる集積回路
US6678503B1 (en) * 2000-05-17 2004-01-13 Intersil Americas Inc. Apparatus for radio frequency processing with dual modulus synthesizer
CN2572696Y (zh) * 2002-08-08 2003-09-10 宋荣宗 一种三合一手机装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367597A (zh) * 2001-01-25 2002-09-04 株式会社东芝 能适应多个无线通信系统的移动无线通信装置
CN101184297A (zh) * 2007-11-19 2008-05-21 华为技术有限公司 双模收发信机及双模信号处理方法
CN102130697A (zh) * 2010-01-20 2011-07-20 华为技术有限公司 接收机、发射机及反馈装置、收发信机和信号处理方法
CN102076120A (zh) * 2010-12-03 2011-05-25 东南大学 基于软件无线电的多模多频带射频机载微微蜂窝通信系统

Also Published As

Publication number Publication date
CN102510582B (zh) 2018-08-07
CN102510582A (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
WO2013063921A1 (zh) 多模射频接收处理芯片和多模终端
WO2013063938A1 (zh) 功率放大模块、多模射频收发器、双工器和多模终端
WO2013063924A1 (zh) 功率放大模块、射频前端模块和多模终端
KR100976644B1 (ko) 수신기 프론트 엔드를 위한 아키텍쳐
WO2013063917A1 (zh) 多模射频发射处理芯片和多模终端
WO2013063926A1 (zh) 功率放大模块、多模射频收发器和多模终端
US10015701B2 (en) Multimode dual-path terminal
KR101836199B1 (ko) 다중모드 무선 단말기
KR20170031756A (ko) 무선 주파수 수신기 및 수신 방법
WO2013063923A1 (zh) 射频前端模块、多模终端和多模终端发送信号的方法
WO2013075404A1 (zh) 一种匹配电路、匹配电路网络及信号收发装置
JP2009094713A (ja) モジュール及びそれを用いた移動通信端末
WO2013063937A1 (zh) 双模射频收发装置、滤波装置和双模终端
CN104242975A (zh) 通信终端及降低通信终端干扰的方法
WO2013063916A1 (zh) 功率放大装置、多模射频收发装置和多模终端
CN103379670A (zh) 一种多模终端
WO2012152034A1 (zh) 双模射频模块、双模射频发送、接收方法以及用户终端
CN102137513B (zh) Gsm/edge/td-scdma收发机和接收机
CN201639571U (zh) 一种带移动电视功能的移动通信终端
JP6250688B2 (ja) マルチモード受信機及びその受信方法
CN102201799A (zh) 多载频/多频带选频的实现方法及电路
WO2023147749A1 (zh) 信号发射装置及射频前端模块、设备
CN103944603A (zh) 半导体模块
CN216490480U (zh) 射频前端器件和射频系统
US20030058891A1 (en) Low noise transmitter architecture using foldover selective band filtering and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12845305

Country of ref document: EP

Kind code of ref document: A1