WO2013063916A1 - 功率放大装置、多模射频收发装置和多模终端 - Google Patents

功率放大装置、多模射频收发装置和多模终端 Download PDF

Info

Publication number
WO2013063916A1
WO2013063916A1 PCT/CN2012/075644 CN2012075644W WO2013063916A1 WO 2013063916 A1 WO2013063916 A1 WO 2013063916A1 CN 2012075644 W CN2012075644 W CN 2012075644W WO 2013063916 A1 WO2013063916 A1 WO 2013063916A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
mode
amplitude
phase
radio frequency
Prior art date
Application number
PCT/CN2012/075644
Other languages
English (en)
French (fr)
Inventor
杜天波
孙井群
马凯
赖玉强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013063916A1 publication Critical patent/WO2013063916A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages

Definitions

  • the present invention relates to mobile communication technologies, and in particular, to a power amplification device, a multimode radio frequency transceiver device, a power amplification chip, a multimode terminal, and a method for transmitting signals by a multimode terminal.
  • FIG. 1 it is a schematic diagram of an existing GSM/WCDMA dual mode terminal architecture.
  • the multimode terminal includes a baseband chip 100, a GSM/WCDMA multimode radio transceiver chip 200, a GSM power amplifier 310, and at least one WCDMA linear power amplifier 320. And a duplexer 410 and an antenna switch module 420. Since the WCDMA frequency program includes dozens of frequency bands to meet the needs of different countries and regions, if a WCDMA terminal needs to support multiple frequency bands at the same time, it is necessary to set corresponding WCDMA power amplifiers and duplexers for each frequency band, and At this time, the antenna switch module also needs to be increased accordingly. When using the traditional architecture of multimode terminals such as GSM/WCDMA, it is found that the WCDMA modulation method causes the conventional WCDMA power amplifier to use linear amplifiers.
  • the disadvantage of the linear amplifier is that the power amplifier has low efficiency and large power consumption. Etc., this will cause short standby time and high heat output of the terminal. These shortcomings have affected the user's use and feeling. In order to improve the standby time of the terminal and the satisfaction of the user, a new high-efficiency power amplifier solution is needed.
  • the radio section requires at least one GSM power amplifier, one WCDMA linear power amplifier and one Diplexer. If you want to support WCDMA multi-band, you need to add multiple WCDMA power amplifiers and duplexers for the corresponding frequency bands and even add antenna switch modules.
  • Embodiments of the present invention provide a power amplifying device, a multi-mode radio frequency transceiver device, a power amplifying chip, a multi-mode terminal, and a multi-mode terminal to transmit signals, so as to solve the problem that the existing multi-mode terminal occupies a large PCB area.
  • An embodiment of the present invention provides a power amplifying device, which is applied to a transmitting channel of a multimode terminal, where the power amplifying device includes a power amplifier and a signal adder, wherein: the power amplifier is configured to receive a phase of the first mode signal.
  • the amplified phase signal is transmitted to the signal adder; the signal adder is configured to receive an amplitude signal of the first mode signal and the amplified phase signal, and the amplitude signal and the amplified The phase signals are superimposed and output.
  • the first mode signal is a Wideband Code Division Multiple Access (WCDMA) signal, a Code Division Multiple Access (CDMA) signal, a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) signal, or a Long Term Evolution (LTE) signal.
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • LTE Long Term Evolution
  • the embodiment of the invention provides a power amplifying device, which is applied to a transmitting channel of a multimode terminal, wherein the power amplifying device comprises a power amplifier, a selector and a signal adder connected in sequence, wherein: the power amplifier And receiving the phase signal of the first mode signal or receiving the second mode signal, amplifying the received signal, and transmitting the amplified signal to the selector; the selector is configured to receive the amplified a signal and a mode indication signal from the baseband chip, when the mode indication signal indicates that the current transmission signal is the first mode signal, transmitting the amplified signal to the signal adder, where the mode indication signal indicates the current transmission signal For the first When the mode signal is two, the amplified signal is directly output;
  • the signal adder is configured to receive an amplitude signal of the first mode signal and an amplified signal transmitted from the selector, and superimpose the amplitude signal and the amplified signal to output.
  • the first mode signal is a Wideband Code Division Multiple Access (WCDMA) signal, a Code Division Multiple Access (CDMA) signal, a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) signal, or a Long Term Evolution (LTE) signal;
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • LTE Long Term Evolution
  • the second mode signal is a Global System for Mobile Communications (GSM) signal.
  • the embodiment of the invention provides a multi-mode radio frequency transceiver device, which is applied to a transmission channel of a multi-mode terminal, wherein the multi-mode radio frequency transceiver device comprises a multi-mode radio frequency transceiver chip and a signal separator, wherein: the multi-mode radio frequency transceiver chip And configured to transmit the first mode signal to the signal separator; the signal separator is configured to divide the first mode signal into an amplitude signal and a phase signal, and output an amplitude signal and a first mode signal respectively The phase signal of a mode signal.
  • the multimode radio frequency transceiver further includes an amplitude controller and/or a phase controller, wherein:
  • the amplitude controller is configured to receive an amplitude signal of the first mode signal output by the signal separator, perform predistortion processing on the amplitude signal of the first mode signal according to a predistortion control signal from the baseband chip, and output An amplitude signal of the first mode signal after the predistortion processing;
  • the phase controller is configured to receive a phase signal of the first mode signal output by the signal separator, and according to the delay control signal from the baseband chip The phase signal of a mode signal is subjected to delay processing, and the phase signal of the first mode signal after the delay processing is output.
  • the first mode signal is a Wideband Code Division Multiple Access (WCDMA) signal, a Code Division Multiple Access (CDMA) signal, a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) signal, or a Long Term Evolution (LTE) signal.
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • LTE Long Term Evolution
  • the embodiment of the present invention provides a power amplifying chip, the chip includes the power amplifying device and the signal separator, and the signal separator is configured to divide the first mode signal sent by the multimode radio transceiver chip into a phase signal and An amplitude signal, and outputting a phase signal of the first mode signal to the power amplifier and outputting an amplitude signal of the first mode signal to the signal adder.
  • the chip further comprises an amplitude controller and/or a phase controller, wherein:
  • the amplitude controller is located between the signal separator and the signal adder, and is configured to receive an amplitude signal of the first mode signal output by the signal separator, according to a predistortion control signal from the baseband chip An amplitude signal of the first mode signal is subjected to predistortion processing, and an amplitude signal of the predistortion processed first mode signal is output to the signal adder;
  • the phase controller is located at the signal separator and the power Between the amplifiers, configured to receive a phase signal of the first mode signal output by the signal separator, delay processing a phase signal of the first mode signal according to a delay control signal from the baseband chip, and The power amplifier outputs a phase signal of the first mode signal after the delay processing.
  • the first mode signal is a Wideband Code Division Multiple Access (WCDMA) signal, a Code Division Multiple Access (CDMA) signal, a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) signal, or a Long Term Evolution (LTE) signal.
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • LTE Long Term Evolution
  • An embodiment of the present invention provides a multimode terminal, including a baseband chip, a multimode radio frequency transceiver module, a power amplifying module, and a radio frequency front end module, which are sequentially connected, wherein: the multimode radio frequency transceiver module includes the above multimode a radio frequency transceiver, the multimode radio transceiver device is further configured to output a second mode signal;
  • the power amplifying module comprises the above power amplifying device and a second mode signal power amplifier for amplifying a second mode signal output by the multimode radio frequency transceiver.
  • An embodiment of the present invention provides a multimode terminal, including a baseband chip, a multimode radio frequency transceiver module, a power amplifying module, and a radio frequency front end module, which are sequentially connected, wherein: the multimode radio frequency transceiver module includes the above multimode a radio frequency transceiver, the multimode radio transceiver device is further configured to output a second mode signal;
  • the power amplification module includes the above power amplification device.
  • the embodiment of the invention provides a multi-mode terminal, comprising a baseband chip, a multi-mode radio frequency transceiver module, a power amplification module and a radio frequency front-end module, which are sequentially connected, wherein: the power amplification module comprises the power amplification chip.
  • An embodiment of the present invention provides a method for transmitting a signal by a multimode terminal, where the method includes: The multimode radio transceiver device divides the received first mode signal into a phase signal and an amplitude signal according to a control signal sent by the baseband chip; the power amplifying device amplifies the phase signal, and performs the amplified phase signal and the amplitude signal Superimpose, and send the superimposed signal.
  • the method further includes: the multimode radio frequency transceiver device transmitting a second mode signal to the power amplifying device according to a control signal sent by the baseband chip;
  • the power amplifying device amplifies the second mode signal and transmits the amplified signal.
  • the first mode signal is a Wideband Code Division Multiple Access (WCDMA) signal, a Code Division Multiple Access (CDMA) signal, a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) signal, or a Long Term Evolution (LTE) signal.
  • the second mode signal is a Global System for Mobile Communications (GSM) signal.
  • GSM Global System for Mobile Communications
  • FIG. 1 is a schematic structural diagram of a conventional GSM/WCDMA dual-mode terminal
  • FIG. 2 is a schematic structural diagram of a dual-mode terminal according to Embodiment 1 of the present invention
  • FIG. 2b is a schematic structural diagram of Embodiment 2 of the dual-mode terminal of the present invention
  • 3 is a flow chart of an embodiment of the dual mode terminal receiving signal shown in FIG. 2 of the present invention
  • FIG. 4 is a flow chart of an embodiment of the dual mode terminal transmitting signal shown in FIG. 2 of the present invention
  • FIG. 5 is a dual mode of the present invention
  • the embodiment of the invention provides a power amplifying device, which is applied to a transmitting channel of a multimode terminal, wherein the power amplifying device comprises a power amplifier and a signal adder, wherein: the power amplifier is configured to: receive the first mode signal a phase signal, the amplified phase signal is transmitted to the signal adder; the signal adder is configured to: receive an amplitude signal of the first mode signal and the amplified phase signal, and the amplitude signal and the amplification The subsequent phase signals are superimposed and output.
  • the architecture of the multimode terminal including the above power amplifying device can be seen in FIG. 2a.
  • the first mode signal is a Wideband Code Division Multiple Access (WCDMA) signal, a Code Division Multiple Access (CDMA) signal, and a Time Division Synchronous Code Division Multiple Access. (TD-SCDMA) signal or Long Term Evolution (LTE) signal.
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • LTE Long Term Evolution
  • the embodiment of the invention further provides a power amplifying device, which is applied to a transmitting channel of a multimode terminal, wherein the power amplifying device comprises a power amplifier, a selector and a signal adder connected in sequence, wherein: the power amplifier is set to Receiving a phase signal of the first mode signal or receiving a second mode signal, amplifying the received signal, and transmitting the amplified signal to the selector; the selector is configured to: receive the amplified signal And a mode indication signal from the baseband chip, when the mode indication signal indicates that the current transmission signal is the first mode signal, transmitting the amplified signal to the signal adder, where the mode indication signal indicates that the current transmission signal is The second mode signal, the amplified signal is directly output; the signal adder is configured to: receive an amplitude signal of the first mode signal and an amplified signal transmitted from the selector, The amplitude signal and the amplified signal are superimposed and output.
  • the power amplifying device comprises a power amplifier, a selector
  • the architecture of the multimode terminal including the above power amplifying device can be seen in FIG. 2b.
  • the first mode signal is a Wideband Code Division Multiple Access (WCDMA) signal, a Code Division Multiple Access (CDMA) signal, and a Time Division Synchronous Code Division Multiple Access. (TD-SCDMA) signal or LTE signal;
  • the second mode signal is a Global System for Mobile Communications (GSM) signal.
  • the power amplifying device may be a GSM/WCDMA power amplifying device,
  • the GSM/WCDMA power amplifying device will work in two different modes of GSM or WCDMA respectively.
  • the GSM signal will be amplified in the conventional manner.
  • a voltage is used to control the amplification of the GSM signal.
  • the amplitude is superimposed on the phase amplified by the power amplifying device only when the phase is amplified, that is, the signal input port of the power amplifying device is divided into two signal input ports of phase and amplitude, because the amplifier is at this time.
  • the phase signal is amplified and the amplitude signal is only superimposed and not amplified, so that the phase signal can be separately amplified by the power amplifying device.
  • the WCDMA power amplifier needs to amplify both the phase signal and the amplitude signal, so the working frequency band of each WCDMA power amplifier is limited, that is, the power amplifier suitable for this frequency band is not necessarily suitable for another frequency band (only a single frequency band is supported);
  • the power amplifier only amplifies the phase signal, so the working frequency range of the power amplifier can be larger, so it can support multiple frequency bands of WCDMA.
  • the embodiment of the present invention further provides a multi-mode radio frequency transceiver device, which is applied to a transmitting channel of a multi-mode terminal, wherein the multi-mode radio frequency transceiver device comprises a multi-mode radio frequency transceiver chip and a signal separator, wherein: the multimode radio frequency transceiver chip is configured to: transmit a first mode signal to the signal separator; the signal separator is configured to: divide the first mode signal into an amplitude signal and a phase signal, and respectively outputting an amplitude signal of the first mode signal and a phase signal of the first mode signal.
  • the multimode radio frequency transceiver may further include an amplitude controller and/or a phase controller, where: the amplitude controller is configured to: receive the output of the signal separator An amplitude signal of the first mode signal, predistorting the amplitude signal of the first mode signal according to a predistortion control signal from the baseband chip, and outputting an amplitude signal of the first mode signal after the predistortion processing;
  • the controller is configured to: receive a phase signal of the first mode signal output by the signal separator, delay processing the phase signal of the first mode signal according to a delay control signal from the baseband chip, and output a delay The phase signal of the processed first mode signal.
  • the above multi-mode RF transceiver can be a GSM/WCDMA multimode RF transceiver, a GSM/WCDMA multimode RF transceiver (integrated amplitude controller and phase controller), which differs from the conventional RF transceiver in that it is added
  • the WCDMA transmission signal is divided into two different signals of amplitude and phase, and is respectively transmitted to the power amplifying device through the amplitude controller and the phase controller for processing, wherein the amplitude controller and the phase controller are used for calibrating the amplitude and phase information, so that The WCDMA signal after passing through the GSM/WCDMA power amplifying device is not distorted.
  • the amplitude controller may be an amplitude predistortion controller or the like.
  • the amplitude controller is controlled by the baseband chip to perform predistortion and the like, thereby achieving an amplitude meeting the standard requirement.
  • the phase controller can be a phase delay or the like, when the vector error of the output signal of the power amplifying device
  • the phase controller adjusts the phase information by delaying the phase information, so that the amplified signal reaches the EVM requirement or obtains better EVM information.
  • the multimode terminal includes: a baseband chip 100, the above multimode RF transceiver 200 (integrated with a multimode RF transceiver chip 210 and a signal separator)
  • the power amplifier device 300 integrated with a power amplifier and a signal adder
  • the GSM power amplifier 310 the RF front-end module 400
  • the multi-mode RF transceiver 200 is further configured to output a second mode signal.
  • the architecture of the multimode terminal in this embodiment differs from the architecture of the existing multimode terminal in that: processing of the first mode signal (WCDMA, CDMA, TD-SCDMA, LTE signal), that is, the multimode radio transceiver can
  • the first mode signal is divided into a phase signal and an amplitude signal, and is amplified by a power amplifier in the power amplifying device and then superimposed on the amplitude signal sent to the signal adder and then transmitted. Since the processing of the GSM signal in this embodiment is the same as the prior art, it will not be described in detail herein.
  • FIG. 2b is a schematic structural diagram of Embodiment 2 of the dual mode terminal of the present invention, the multimode terminal
  • the method includes: a baseband chip 100, the above multimode RF transceiver 200 (integrated with a multimode RF transceiver chip 210 and a signal separator 220), the above power amplification device 300 (integrated with a power amplifier, a selector and a signal adder), and an RF front end Module 400.
  • the multimode radio frequency transceiver device and the power amplifying device are both connected to the baseband chip; the baseband chip 100 is used for analyzing and processing radio frequency signals, and is directed to a multimode radio frequency transceiver device 210, a GSM/WCDMA power amplifying device such as GSM/WCDMA. 300.
  • the RF front end module 400 sends a control signal.
  • the RF front-end module 400 integrates an antenna switch module, a GSM receiving filter, and a WCDMA duplexer for selecting and processing signals such as GSM and WCDMA, and the functions performed are the same as those of the prior art, and are not detailed herein. . Since the power amplifying device in the above terminal only has the first mode signal (WCDMA, CDMA,
  • the phase signal of the TD-SCDMA and LTE signals is amplified. Therefore, the power amplifying device can operate in a linear working mode or a saturated working mode, and if it operates in a saturated working mode, the efficiency of the power amplifying device can be improved. , thereby reducing current consumption while also reducing heat generation.
  • the above multimode terminal is not limited to the two modes of GSM and WCDMA, and may be
  • the multimode terminal including the above power amplifying device overcomes the defect that the existing PCB area is large, and is advantageous for miniaturization of the terminal.
  • Step 301 The antenna receives the electromagnetic wave signal; Step 302, the GSM signal is still a WCDMA signal when the antenna switch determines the received signal, and if it is a GSM signal, performing step 303, if it is a WCDMA signal, performing step 304; After receiving the antenna, the antenna switch of the RF front-end module 400 is received.
  • the antenna switch module selects a corresponding receiving working frequency band;
  • the duplexer is then sent to a multimode RF transceiver 200 such as GSM/WCDMA.
  • the multi-mode radio frequency transceiver device 200 such as GSM/WCDMA processes the received radio frequency signal and converts it to a low-frequency I/Q signal, and sends it to the baseband chip 100 for demodulation and decoding.
  • the process of transmitting signals by using a multimode terminal such as GSM/WCDMA as shown in FIG. 2b is as shown in FIG. 4.
  • the process includes: Step 401: A baseband chip transmits a signal; in the multimode terminal architecture of the GSM/WCDMA and the like in the foregoing embodiment.
  • the baseband chip 100 performs processing such as encoding and modulation of the original signal, and obtains I/Q signals such as GSM or WCDMA, and sends them to the multimode RF transceiver 200 such as GSM/WCDMA, and multimode RF transceivers such as GSM/WCDMA.
  • the transmitting portion of the device 200 performs a change processing on the input I/Q signal to output a radio frequency modulated signal;
  • Step 402 The multimode radio transceiver device determines whether the signal sent by the baseband chip is a GSM signal or a WCDMA signal. If it is a GSM signal, perform step 403. If it is a WCDMA signal, perform step 404.
  • Step 403 directly input the demodulated radio frequency signal to The GSM/WCDMA power amplifying device 300 performs amplification processing, and proceeds to step 407.
  • Step 404 the signal needs to be decomposed into amplitude and phase signals, which are respectively adjusted by the amplitude controller and the phase controller and sent to the GSM/WCDMA.
  • the amplitude and phase signal input port of the power amplifying device 300 the step is described from the perspective of the multimode radio frequency transceiver device, and the multimode radio frequency transceiver device determines that the transmitted signal is a WCDMA signal, and then decomposes it into a phase signal and an amplitude signal.
  • Step 405 the baseband chip 100 sends a control signal to enable the GSM/WCDMA power amplifying device 300 works in the saturation region, and separately amplifies the phase signal to keep the amplitude signal unchanged, and superimposes the amplified phase signal and amplitude information; because the power amplifying device works in the saturation region, the efficiency of the power amplifying device is reduced.
  • Step 406 the power amplified WCDMA RF signal is first sent to the duplexer part of the RF front end module 400, and then to the antenna.
  • the switch part turns to step 408;
  • Step 407 the power amplified GSM radio frequency signal is directly sent to the antenna switch part of the RF front end module 400;
  • Step 408 the GSM/WCDMA radio frequency signal is sent to the main antenna of the terminal by the antenna switch.
  • the baseband chip 100 sends a control signal to control the RF front end module 400 to operate in the corresponding mode and frequency band.
  • the embodiment of the present invention further provides a power amplifying chip, which includes the power amplifying device and the signal separator shown in FIG. 2, the signal separator, and the first device for transmitting the multimode radio frequency transceiver chip
  • the mode signal is divided into a phase signal and an amplitude signal, and outputs a phase signal of the first mode signal to the power amplifier and an amplitude signal of the first mode signal to the signal adder.
  • the chip may further include an amplitude controller and/or a phase controller, wherein: the amplitude controller is located between the signal separator and the signal adder for receiving the output of the signal separator An amplitude signal of the first mode signal, predistorting the amplitude signal of the first mode signal according to a predistortion control signal from the baseband chip, and outputting the predistortion processed first mode signal to the signal adder An amplitude signal; the phase controller is located between the signal separator and the power amplifier, and is configured to receive a phase signal of a first mode signal output by the signal separator, according to a delay control signal from a baseband chip And delaying a phase signal of the first mode signal, and outputting a phase signal of the first mode signal after the delay processing to the power amplifier.
  • the amplitude controller is located between the signal separator and the signal adder for receiving the output of the signal separator An amplitude signal of the first mode signal, predistorting the amplitude signal of the first mode signal according to
  • the first mode signal is a Wideband Code Division Multiple Access (WCDMA) signal, a Code Division Multiple Access (CDMA) signal, a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) signal, or a Long Term Evolution (LTE) signal.
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • LTE Long Term Evolution
  • FIG. 5 it is a schematic structural diagram of Embodiment 3 of the dual mode terminal of the present invention.
  • the multimode terminal includes the above power amplification chip, baseband chip, multimode RF transceiver module, power amplification module and RF front end module.
  • the process of receiving signals by using the terminal can be seen in FIG. 3, and the process of transmitting signals can be seen in FIG. 4, and details are not described herein again.
  • the above multimode terminal only needs to use a power amplifying device for the WCDMA signal to realize the amplification of the WCDMA multi-band signal, thereby solving the problem of occupying a large PCB area and realizing the miniaturization of the multimode terminal.

Abstract

一种功率放大装置、多模射频收发装置、功率放大芯片、多模终端以及多模终端发送信号的方法,上述功率放大装置,应用于多模终端的发射通道,其包括功率放大器和信号叠加器,其中:所述功率放大器,用于接收第一模式信号的相位信号,将放大后的相位信号传送到所述信号叠加器;所述信号叠加器,用于接收第一模式信号的幅度信号和所述放大后的相位信号,将所述幅度信号和放大后的相位信号进行叠加后输出。对于WCDMA信号只需要使用一个功率放大装置即可实现WCDMA多频段信号的放大,较好地解决了占用PCB面积大的问题,实现了多模终端的小型化。

Description

功率放大装置、 多模射频收发装置和多模终端
技术领域 本发明涉及移动通信技术, 尤其涉及一种功率放大装置、 多模射频收发 装置、 功率放大芯片、 多模终端以及多模终端发送信号的方法。
背景技术 当前, 电信领域存在很多不同的无线通信系统, 分别釆用了各自的通信 标准, 而不同通信标准下各自的工作频率和工作模式均不同, 如已经在全世 界广泛应用的第二代通信标准全球移动通讯系统(Global System for Mobile Communication, GSM ) , 以及正在全球推广的第三代通信标准宽带码分多址 ( Wideband Code Division Multiple Access, WCDMA ) 系统。 为了使终端能 够在全世界范围使用, 其必须同时支持各种不同的通信标准, 目前最常用的 是同时支持 GSM和 WCDMA的终端。 如图 1所示, 是现有的 GSM/WCDMA双模终端架构示意图, 该多模终 端包括基带芯片 100、 GSM/WCDMA多模射频收发芯片 200、 GSM功率放大 器 310、 至少一个 WCDMA线性功率放大器 320和一个双工器 410、 天线开 关模组 420。 由于 WCDMA频语规划中包含了数十个频段以满足不同国家和 地区的需求, 所以 WCDMA终端如果要同时支持多个频段, 就需要对应每个 频段设置对应的 WCDMA功率放大器和双工器,并且此时天线开关模组也需 要相应的增加。 在 GSM/WCDMA等多模终端使用传统架构时发现, 由于 WCDMA的调 制方式造成了传统 WCDMA的功率放大器釆用的都是线性放大器,线性放大 器的不足之处是功放的效率低、 耗电量大等, 这会造成终端待机时间短、 终 端发热量大等不足, 这些不足已经影响到了用户的使用和感受。 为提高终端 的待机时间和用户的满意度需要新的高效率功放方案。 在 GSM/WCDMA等多模终端使用传统架构时还有另外一个现象: 射频 部分至少需要一个 GSM功率放大器、 一个 WCDMA线性功率放大器和一个 双工器。如果要支持 WCDMA多频段,就需要增加多个对应频段的 WCDMA 功率放大器和双工器甚至增加天线开关模组。 这样的传统架构中, 功率放大 器和双工器数量众多, 使得电路结构非常复杂, 占用了大量的印刷电路板 ( PCB ) 面积, 不利于降低成本, 更不利于提高终端的可靠性以及实现小型 化。
发明内容 本发明实施例提供了一种功率放大装置、 多模射频收发装置、 功率放大 芯片、 多模终端以及多模终端发送信号的方法, 以解决现有的多模终端占用 PCB面积大的问题。 本发明实施例提供了一种功率放大装置, 应用于多模终端的发射通道, 所述功率放大装置包括功率放大器和信号叠加器, 其中: 所述功率放大器, 设置为接收第一模式信号的相位信号, 将放大后的相 位信号传送到所述信号叠加器; 所述信号叠加器, 设置为接收第一模式信号的幅度信号和所述放大后的 相位信号, 将所述幅度信号和放大后的相位信号进行叠加后输出。 优选地, 所述第一模式信号为宽带码分多址(WCDMA )信号、 码分多 址( CDMA )信号、时分同步码分多址( TD-SCDMA )信号或长期演进( LTE ) 信号。 本发明实施例提供了一种功率放大装置, 应用于多模终端的发射通道, 其特征在于, 所述功率放大装置包括依次连接的功率放大器、 选择器和信号 叠加器, 其中: 所述功率放大器, 设置为接收第一模式信号的相位信号或者接收第二模 式信号, 对接收的信号进行放大, 将放大后的信号传送到所述选择器; 所述选择器, 设置为接收所述放大后的信号和来自基带芯片的模式指示 信号, 在该模式指示信号指示当前发射信号为第一模式信号时, 将所述放大 后的信号传送到所述信号叠加器, 在该模式指示信号指示当前发射信号为第 二模式信号时, 将所述放大后的信号直接输出;
所述信号叠加器, 设置为接收第一模式信号的幅度信号及从所述选择器 传送来的放大后的信号, 将所述幅度信号和所述放大后的信号叠加后输出。 优选地, 所述第一模式信号为宽带码分多址(WCDMA )信号、 码分多 址( CDMA )信号、时分同步码分多址( TD-SCDMA )信号或长期演进( LTE ) 信号; 所述第二模式信号为全球移动通讯系统(GSM )信号。 本发明实施例提供了一种多模射频收发装置, 应用于多模终端的发射通 道, 所述多模射频收发装置包括多模射频收发芯片和信号分离器, 其中: 所述多模射频收发芯片,设置为将第一模式信号传送到所述信号分离器; 所述信号分离器,设置为将所述第一模式信号分成幅度信号和相位信号, 并分别输出第一模式信号的幅度信号和第一模式信号的相位信号。 优选地, 所述多模射频收发装置还包括幅度控制器和 /或相位控制器, 其 中:
所述幅度控制器 , 设置为接收所述信号分离器输出的第一模式信号的幅 度信号, 根据来自基带芯片的预失真控制信号对所述第一模式信号的幅度信 号进行预失真处理, 并输出预失真处理后的第一模式信号的幅度信号; 所述相位控制器 , 设置为接收所述信号分离器输出的第一模式信号的相 位信号, 根据来自基带芯片的延时控制信号对所述第一模式信号的相位信号 进行延时处理, 并输出延时处理后的第一模式信号的相位信号。 优选地, 所述第一模式信号为宽带码分多址(WCDMA )信号、 码分多 址( CDMA )信号、时分同步码分多址( TD-SCDMA )信号或长期演进( LTE ) 信号。 本发明实施例提供了一种功率放大芯片, 该芯片包括上述功率放大装置 和信号分离器, 所述信号分离器, 设置为将多模射频收发芯片发送的所述第 一模式信号分成相位信号和幅度信号, 并向所述功率放大器输出第一模式信 号的相位信号和向所述信号叠加器输出第一模式信号的幅度信号。 优选地, 该芯片还包括幅度控制器和 /或相位控制器, 其中: 所述幅度控制器, 位于所述信号分离器和所述信号叠加器之间, 设置为 接收所述信号分离器输出的第一模式信号的幅度信号, 根据来自基带芯片的 预失真控制信号对所述第一模式信号的幅度信号进行预失真处理, 并向所述 信号叠加器输出预失真处理后的第一模式信号的幅度信号; 所述相位控制器, 位于所述信号分离器和所述功率放大器之间, 设置为 接收所述信号分离器输出的第一模式信号的相位信号, 根据来自基带芯片的 延时控制信号对所述第一模式信号的相位信号进行延时处理, 并向所述功率 放大器输出延时处理后的第一模式信号的相位信号。 优选地, 所述第一模式信号为宽带码分多址(WCDMA )信号、 码分多 址( CDMA )信号、时分同步码分多址( TD-SCDMA )信号或长期演进( LTE ) 信号。 本发明实施例提供了一种多模终端, 包括依次相连的基带芯片、 多模射 频收发模组、 功率放大模组和射频前端模组, 其中: 所述多模射频收发模组包括上述多模射频收发装置, 所述多模射频收发 装置还用于输出第二模式信号;
所述功率放大模组包括上述功率放大装置及用于放大所述多模射频收发 装置输出的第二模式信号的第二模式信号功率放大器。 本发明实施例提供了一种多模终端, 包括依次相连的基带芯片、 多模射 频收发模组、 功率放大模组和射频前端模组, 其中: 所述多模射频收发模组包括上述多模射频收发装置, 所述多模射频收发 装置还用于输出第二模式信号;
所述功率放大模组包括上述功率放大装置。 本发明实施例提供了一种多模终端, 包括依次相连的基带芯片、 多模射 频收发模组、 功率放大模组和射频前端模组, 其中: 所述功率放大模组包括上述功率放大芯片。 本发明实施例提供了一种多模终端发送信号的方法, 该方法包括: 多模射频收发装置根据基带芯片发送的控制信号将接收到的第一模式信 号分成相位信号和幅度信号; 功率放大装置对所述相位信号进行放大, 将放大后的相位信号与所述幅 度信号进行叠加, 并发送叠加后的信号。 优选地, 所述方法还包括: 所述多模射频收发装置根据基带芯片发送的控制信号向所述功率放大装 置发送第二模式信号;
所述功率放大装置对所述第二模式信号进行放大,并发送放大后的信号。 优选地, 所述第一模式信号为宽带码分多址(WCDMA )信号、 码分多 址( CDMA )信号、时分同步码分多址( TD-SCDMA )信号或长期演进( LTE ) 信号, 所述第二模式信号为全球移动通讯系统(GSM )信号。 上述多模终端,对于 WCDMA信号只需要使用一个功率放大装置即可实 现 WCDMA多频段信号的放大, 较好地解决了占用 PCB面积大的问题, 实 现了多模终端的小型化。
附图概述 图 1是现有的 GSM/WCDMA双模终端架构示意图; 图 2a是本发明的双模终端实施例一的架构示意图; 图 2b是本发明的双模终端实施例二的架构示意图; 图 3是本发明图 2所示的双模终端接收信号实施例的流程图; 图 4是本发明图 2所示的双模终端发送信号实施例的流程图; 图 5是本发明的双模终端实施例三的架构示意图。
本发明的较佳实施方式 下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。 本发明实施例提供了一种功率放大装置, 应用于多模终端的发射通道, 所述功率放大装置包括功率放大器和信号叠加器, 其中: 所述功率放大器, 设置为: 接收第一模式信号的相位信号, 将放大后的 相位信号传送到所述信号叠加器; 所述信号叠加器, 设置为: 接收第一模式信号的幅度信号和所述放大后 的相位信号, 将所述幅度信号和放大后的相位信号进行叠加后输出。 包含上述功率放大装置的多模终端的架构可参见图 2a; 其中, 所述第一 模式信号为宽带码分多址(WCDMA )信号、 码分多址(CDMA )信号、 时 分同步码分多址(TD-SCDMA )信号或长期演进(LTE )信号。 本发明实施例还提供了一种功率放大装置,应用于多模终端的发射通道, 所述功率放大装置包括依次连接的功率放大器、选择器和信号叠加器, 其中: 所述功率放大器, 设置为: 接收第一模式信号的相位信号或者接收第二 模式信号, 对接收的信号进行放大, 将放大后的信号传送到所述选择器; 所述选择器, 设置为: 接收所述放大后的信号和来自基带芯片的模式指 示信号, 在该模式指示信号指示当前发射信号为第一模式信号时, 将所述放 大后的信号传送到所述信号叠加器, 在该模式指示信号指示当前发射信号为 第二模式信号时, 将所述放大后的信号直接输出; 所述信号叠加器, 设置为: 接收第一模式信号的幅度信号及从所述选择 器传送来的放大后的信号,将所述幅度信号和所述放大后的信号叠加后输出。 包含上述功率放大装置的多模终端的架构可参见图 2b; 其中, 所述第一 模式信号为宽带码分多址(WCDMA )信号、 码分多址(CDMA )信号、 时 分同步码分多址(TD-SCDMA )信号或 LTE信号; 所述第二模式信号为全球 移动通讯系统(GSM )信号。 上述功率放大装置可以为 GSM/WCDMA 功率放大装置, 该
GSM/WCDMA功率放大装置将分别工作在 GSM或 WCDMA两种不同模式, 对于 GSM模式功率放大装置将按传统方式对 GSM信号进行放大处理, 也就 是用一个电压控制 GSM信号的放大幅度。 而对于 WCDMA模式则是只对相 位放大的同时将幅度叠加到经功率放大装置放大的相位上, 即该功率放大装 置的信号输入端口将分为相位和幅度两个信号输入端口, 因为此时放大器放 大的是相位信号而幅度信号只是叠加上去的没有进行放大, 故这样就可以利 用功率放大装置单独对相位信号进行放大。
WCDMA 功率放大器需要对相位信号和幅度信号都进行放大, 所以每个 WCDMA功率放大器的工作频段有限, 即适合这个频段的功放未必适合另一 频段(只支持单一频段) ; 而本发明实施例中的功率放大器只对相位信号进 行放大, 所以功放的工作频段范围可以大一些, 故可支持 WCDMA的多个频 段。
相应地, 为了实现上述功率放大装置的功能, 本发明实施例还提供了一 种多模射频收发装置, 应用于多模终端的发射通道, 所述多模射频收发装置 包括多模射频收发芯片和信号分离器, 其中: 所述多模射频收发芯片, 设置为: 将第一模式信号传送到所述信号分离 器; 所述信号分离器, 设置为: 将所述第一模式信号分成幅度信号和相位信 号, 并分别输出第一模式信号的幅度信号和第一模式信号的相位信号。 另外, 为了使第一模式信号不失真, 所述多模射频收发装置还可以包括 幅度控制器和 /或相位控制器, 其中: 所述幅度控制器, 设置为: 接收所述信号分离器输出的第一模式信号的 幅度信号, 根据来自基带芯片的预失真控制信号对所述第一模式信号的幅度 信号进行预失真处理, 并输出预失真处理后的第一模式信号的幅度信号; 所述相位控制器, 设置为: 接收所述信号分离器输出的第一模式信号的 相位信号, 根据来自基带芯片的延时控制信号对所述第一模式信号的相位信 号进行延时处理, 并输出延时处理后的第一模式信号的相位信号。 上述多模射频收发装置可以为 GSM/WCDMA 多模射频收发装置, GSM/WCDMA多模射频收发装置 (集成幅度控制器和相位控制器), 与传统 射频收发装置的不同之处在于:增加了将 WCDMA发射信号分成幅度和相位 两种不同信号, 并分别通过幅度控制器和相位控制器传输到功率放大装置中 进行处理, 其中, 幅度控制器和相位控制器是用于校准幅度和相位信息, 使 得经过 GSM/WCDMA功率放大装置后的 WCDMA信号不失真。 幅度控制器可以是幅度预失真控制器等, 当功率放大装置输出信号的幅 度有些失真的话, 通过基带芯片控制该幅度控制器进行预失真等处理, 从而 达到幅度满足标准要求。 相位控制器可以是相位延时器等, 当功率放大装置输出信号的矢量误差
(error vector magnitude, EVM)比较大时, 通过基带芯片调整相位控制器对相 位信息进行延时等处理, 从而使放大的信号达到 EVM要求或获得更好的 EVM信息。
如图 2a所示, 是本发明的双模终端实施例一的架构示意图, 该多模终端 包括: 基带芯片 100、 上述多模射频收发装置 200 (集成有多模射频收发芯片 210和信号分离器 220 ) 、 上述功率放大装置 300 (集成有功率放大器和信号 叠加器) 、 GSM功率放大器 310和射频前端模组 400; 上述多模射频收发装 置 200还用于输出第二模式信号。 该实施例中多模终端的架构与现有多模终端的架构的区别在于: 对第一 模式信号 (WCDMA、 CDMA, TD-SCDMA, LTE信号) 的处理上, 即多模 射频收发装置可以将第一模式信号分成相位信号和幅度信号, 并由功率放大 装置中的功率放大器对相位信号放大后与发送到信号叠加器中的幅度信号进 行叠加后发送出去。 由于该实施例中对 GSM信号的处理与现有技术相同, 此处不详述。
如图 2b所示, 是本发明的双模终端实施例二的架构示意图, 该多模终端 包括: 基带芯片 100、 上述多模射频收发装置 200 (集成有多模射频收发芯片 210和信号分离器 220 ) 、 上述功率放大装置 300 (集成有功率放大器、 选择 器和信号叠加器)和射频前端模组 400。 所述多模射频收发装置和所述功率放大装置均与所述基带芯片相连; 基 带芯片 100用于分析处理射频信号, 并向 GSM/WCDMA等多模射频收发装 置 210、 GSM/WCDMA功率放大装置 300、射频前端模组 400发送控制信号。 射频前端模组 400集成了天线开关模组、 GSM接收滤波器和 WCDMA 双工器等, 用于对 GSM和 WCDMA等信号进行选择处理, 其完成的功能与 现有技术相同, 此处不详述。 由于上述终端中的功率放大装置只对第一模式信号(WCDMA、 CDMA,
TD-SCDMA、 LTE信号) 的相位信号进行放大, 因此, 该功率放大装置既可 以工作在线性工作模式, 又可以工作在饱和工作模式, 若是工作在饱和工作 模式, 可以提高了功率放大装置的效率, 从而减少电流的消耗, 也同时减少 热量的产生。 上述多模终端不限于 GSM 和 WCDMA 这两种模式, 也可以是
GSM/CDMA, GSM/TD-SCDMA, GSM/LTE等其它多模制式。 包含上述功率放大装置的多模终端,克服了现有占用 PCB面积大的缺陷, 有利于实现终端的小型化。
使用图 2a或图 2b所示结构的 GSM/WCDMA等多模终端接收信号的过 程如图 3所示, 该过程从射频前端模组角度进行描述, 由于该过程与现有技 术相同, 所以此处简述该过程, 该过程包括: 步骤 301、 天线接收电磁波信号; 步骤 302、 天线开关判断接收的信号时 GSM信号还是 WCDMA信号, 若是 GSM信号, 执行步骤 303 , 若是 WCDMA信号, 执行步骤 304; 由天线接收后进入射频前端模组 400的天线开关, 在基带芯片 100的控 制下, 天线开关模组选择相应的接收工作频段; 步骤 303、天线开关将 GSM信号经 GSM接收滤波器送入 GSM/WCDMA 等双模射频收发装置 200中; 步骤 304、 在基带芯片 100的控制下, 天线开关将 WCDMA信号送入射 频前端模组 400中的双工器, 然后信号被送入 GSM/WCDMA等多模射频收 发装置 200。 所述 GSM/WCDMA等多模射频收发装置 200将接收到的射频信号经过 处理后变频到低频 I/Q信号, 送入基带芯片 100完成解调、 解码等处理。
使用图 2b所示结构的 GSM/WCDMA等多模终端发送信号的过程如图 4 所示, 该过程包括: 步骤 401、 基带芯片发送信号; 在上述实施例的 GSM/WCDMA等多模终端架构的发射电路中, 基带芯 片 100完成原始信号的编码、 调制等处理, 得到 GSM或 WCDMA等的 I/Q 信号, 送入 GSM/WCDMA等多模射频收发装置 200中, GSM/WCDMA等多 模射频收发装置 200中的发射部分对输入的 I/Q信号完成变化处理后输出射 频调制信号;
步骤 402、多模射频收发装置判断基带芯片发送的信号是 GSM信号还是 WCDMA信号, 若是 GSM信号, 执行步骤 403 , 若是 WCDMA信号, 执行 步骤 404; 步骤 403、直接将解调出来的射频信号输入到 GSM/WCDMA功率放大装 置 300中进行放大处理, 转向步骤 407; 步骤 404、 需要将该信号分解成幅度和相位两组信号, 分别经过幅度控 制器和相位控制器的调整后被送入 GSM/WCDMA功率放大装置 300的幅度 和相位信号输入端口; 该步骤是从多模射频收发装置角度进行描述的, 多模射频收发装置判断 出发送的信号为 WCDMA信号后, 将其分解成相位信号和幅度信号; 步骤 405、基带芯片 100送出控制信号,使 GSM/WCDMA功率放大装置 300 工作在饱和区域, 并单独对相位信号进行放大而保持幅度信号不变, 并 将放大后的相位信号与幅度信息进行叠加; 因功率放大装置工作在饱和区域, 提高了功率放大装置的效率减少了电 流的消耗, 也同时减少了热量的产生, 因此可以增加终端的待机时间; 步骤 406、 功率放大后的 WCDMA射频信号先被送入射频前端模块 400 中的双工器部分, 然后再到天线开关部分, 转向步骤 408; 步骤 407、功率放大后的 GSM射频信号被直接送入射频前端模块 400中 的天线开关部分; 步骤 408、 GSM/WCDMA射频信号都由天线开关送入终端的主天线。 同时, 基带芯片 100送出控制信号以控制射频前端模块 400工作在相应 的模式和频段。
本发明实施例还提供了一种功率放大芯片, 该芯片包括图 2中所示的功 率放大装置和信号分离器, 所述信号分离器, 用于将多模射频收发芯片发送 的所述第一模式信号分成相位信号和幅度信号, 并向所述功率放大器输出第 一模式信号的相位信号和向所述信号叠加器输出第一模式信号的幅度信号。 另外, 该芯片还可以包括幅度控制器和 /或相位控制器, 其中: 所述幅度 控制器, 位于所述信号分离器和所述信号叠加器之间, 用于接收所述信号分 离器输出的第一模式信号的幅度信号, 根据来自基带芯片的预失真控制信号 对所述第一模式信号的幅度信号进行预失真处理, 并向所述信号叠加器输出 预失真处理后的第一模式信号的幅度信号; 所述相位控制器, 位于所述信号 分离器和所述功率放大器之间 , 用于接收所述信号分离器输出的第一模式信 号的相位信号, 根据来自基带芯片的延时控制信号对所述第一模式信号的相 位信号进行延时处理, 并向所述功率放大器输出延时处理后的第一模式信号 的相位信号。 所述第一模式信号为宽带码分多址( WCDMA )信号、码分多址( CDMA ) 信号、 时分同步码分多址(TD-SCDMA )信号或长期演进(LTE )信号。 如图 5所示, 是本发明的双模终端实施例三的架构示意图, 该多模终端 包括上述功率放大芯片、 基带芯片、 多模射频收发模组、 功率放大模组和射 频前端模组。 利用该终端接收信号的过程可参见图 3 , 发射信号的过程可参见图 4, 此 处不再赘述。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 上述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。 以上实施例仅用以说明本发明的技术方案而非限制, 仅仅参照较佳实施 例对本发明进行了详细说明。 本领域的普通技术人员应当理解, 可以对本发 明的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的精神和范 围, 均应涵盖在本发明的权利要求范围当中。
工业实用性 上述多模终端,对于 WCDMA信号只需要使用一个功率放大装置即可实 现 WCDMA多频段信号的放大, 较好地解决了占用 PCB面积大的问题, 实 现了多模终端的小型化。

Claims

权 利 要 求 书
1、 一种功率放大装置, 应用于多模终端的发射通道, 所述功率放大装置 包括功率放大器和信号叠加器, 其中: 所述功率放大器设置为: 接收第一模式信号的相位信号, 将放大后的相 位信号传送到所述信号叠加器; 所述信号叠加器设置为: 接收第一模式信号的幅度信号和所述放大后的 相位信号, 将所述幅度信号和放大后的相位信号进行叠加后输出。
2、 根据权利要求 1所述的功率放大装置, 其中: 所述第一模式信号为宽带码分多址( WCDMA )信号、码分多址( CDMA ) 信号、 时分同步码分多址(TD-SCDMA )信号或长期演进(LTE )信号。
3、 一种功率放大装置, 应用于多模终端的发射通道, 所述功率放大装置 包括依次连接的功率放大器、 选择器和信号叠加器, 其中: 所述功率放大器设置为: 接收第一模式信号的相位信号或者接收第二模 式信号, 对接收的信号进行放大, 将放大后的信号传送到所述选择器; 所述选择器设置为: 接收所述放大后的信号和来自基带芯片的模式指示 信号, 在该模式指示信号指示当前发射信号为第一模式信号时, 将所述放大 后的信号传送到所述信号叠加器, 在该模式指示信号指示当前发射信号为第 二模式信号时, 将所述放大后的信号直接输出; 所述信号叠加器设置为: 接收第一模式信号的幅度信号及从所述选择器 传送来的放大后的信号, 将所述幅度信号和所述放大后的信号叠加后输出。
4、 根据权利要求 3所述的功率放大装置, 其中: 所述第一模式信号为宽带码分多址( WCDMA )信号、码分多址( CDMA ) 信号、 时分同步码分多址(TD-SCDMA )信号或长期演进(LTE )信号; 所 述第二模式信号为全球移动通讯系统(GSM )信号。
5、 一种多模射频收发装置, 应用于多模终端的发射通道, 所述多模射频 收发装置包括多模射频收发芯片和信号分离器, 其中: 所述多模射频收发芯片设置为:将第一模式信号传送到所述信号分离器; 所述信号分离器设置为:将所述第一模式信号分成幅度信号和相位信号, 并分别输出第一模式信号的幅度信号和第一模式信号的相位信号。
6、 根据权利要求 5所述的多模射频收发装置, 其中, 所述多模射频收发 装置还包括幅度控制器和 /或相位控制器, 其中: 所述幅度控制器设置为: 接收所述信号分离器输出的第一模式信号的幅 度信号, 根据来自基带芯片的预失真控制信号对所述第一模式信号的幅度信 号进行预失真处理, 并输出预失真处理后的第一模式信号的幅度信号; 所述相位控制器设置为: 接收所述信号分离器输出的第一模式信号的相 位信号, 根据来自基带芯片的延时控制信号对所述第一模式信号的相位信号 进行延时处理, 并输出延时处理后的第一模式信号的相位信号。
7、 根据权利要求 5或 6所述的多模射频收发装置, 其中: 所述第一模式信号为宽带码分多址( WCDMA )信号、码分多址( CDMA ) 信号、 时分同步码分多址(TD-SCDMA )信号或长期演进(LTE )信号。
8、 一种功率放大芯片, 其特征在于, 该芯片包括信号分离器和如权利要 求 3或 4所述的功率放大装置, 所述信号分离器, 设置为: 将多模射频收发 芯片发送的所述第一模式信号分成幅度信号和相位信号, 并向所述功率放大 器输出第一模式信号的相位信号和向所述信号叠加器输出第一模式信号的幅 度信号。
9、 根据权利要求 8所述的功率放大芯片, 其中, 该芯片还包括幅度控制 器和 /或相位控制器, 其中: 所述幅度控制器,位于所述信号分离器和所述信号叠加器之间,设置为: 接收所述信号分离器输出的第一模式信号的幅度信号, 根据来自基带芯片的 预失真控制信号对所述第一模式信号的幅度信号进行预失真处理, 并向所述 信号叠加器输出预失真处理后的第一模式信号的幅度信号; 所述相位控制器,位于所述信号分离器和所述功率放大器之间,设置为: 接收所述信号分离器输出的第一模式信号的相位信号, 根据来自基带芯片的 延时控制信号对所述第一模式信号的相位信号进行延时处理, 并向所述功率 放大器输出延时处理后的第一模式信号的相位信号。
10、 根据权利要求 8或 9所述的功率放大芯片, 其中: 所述第一模式信号为宽带码分多址( WCDMA )信号、码分多址( CDMA ) 信号、 时分同步码分多址(TD-SCDMA )信号或长期演进(LTE )信号。
11、 一种多模终端, 包括依次相连的基带芯片、 多模射频收发模组、 功 率放大模组和射频前端模组, 其特征在于: 所述多模射频收发模组包括如权利要求 5或 6或 7所述的多模射频收发 装置, 所述多模射频收发装置还设置为: 输出第二模式信号; 所述功率放大模组包括如权利要求 1或 2所述的功率放大装置及用于放 大所述多模射频收发装置输出的第二模式信号的第二模式信号功率放大器。
12、 一种多模终端, 包括依次相连的基带芯片、 多模射频收发模组、 功 率放大模组和射频前端模组, 其中: 所述多模射频收发模组包括如权利要求 5或 6或 7所述的多模射频收发 装置, 所述多模射频收发装置还设置为: 输出第二模式信号;
所述功率放大模组包括如权利要求 3或 4所述的功率放大装置。
13、 一种多模终端, 包括依次相连的基带芯片、 多模射频收发模组、 功 率放大模组和射频前端模组, 其中:
所述功率放大模组包括如权利要求 8或 9或 10所述的功率放大芯片。
14、 一种多模终端发送信号的方法, 该方法包括: 多模射频收发装置根据基带芯片发送的控制信号将接收到的第一模式信 号分成幅度信号和相位信号; 功率放大装置对所述相位信号进行放大, 将放大后的相位信号与所述幅 度信号进行叠加, 并发送叠加后的信号。
15、 根据权利要求 14所述的方法, 所述方法还包括: 所述多模射频收发装置根据基带芯片发送的控制信号向所述功率放大装 置发送第二模式信号;
所述功率放大装置对所述第二模式信号进行放大,并发送放大后的信号。
16、 根据权利要求 15所述的方法, 其中: 所述第一模式信号为宽带码分多址( WCDMA )信号、码分多址( CDMA ) 信号、 时分同步码分多址(TD-SCDMA )信号或长期演进(LTE )信号, 所 述第二模式信号为全球移动通讯系统(GSM )信号。
PCT/CN2012/075644 2011-11-04 2012-05-17 功率放大装置、多模射频收发装置和多模终端 WO2013063916A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110346088.9 2011-11-04
CN201110346088.9A CN102420631B (zh) 2011-11-04 2011-11-04 功率放大装置、多模射频收发装置和多模终端

Publications (1)

Publication Number Publication Date
WO2013063916A1 true WO2013063916A1 (zh) 2013-05-10

Family

ID=45944886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075644 WO2013063916A1 (zh) 2011-11-04 2012-05-17 功率放大装置、多模射频收发装置和多模终端

Country Status (2)

Country Link
CN (1) CN102420631B (zh)
WO (1) WO2013063916A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420631B (zh) * 2011-11-04 2016-03-30 中兴通讯股份有限公司 功率放大装置、多模射频收发装置和多模终端
CN103379670A (zh) * 2012-04-20 2013-10-30 中兴通讯股份有限公司 一种多模终端
CN103580708B (zh) * 2012-07-30 2016-01-27 京信通信系统(广州)有限公司 一种收发信机装置、阵列天线装置及室内和室外覆盖系统
CN104144527B (zh) * 2013-05-10 2019-02-26 深圳富泰宏精密工业有限公司 无线通信装置
CN104581920B (zh) * 2013-10-25 2019-07-23 展讯通信(上海)有限公司 一种多通道信号发射系统及发射方法
CN105517200B (zh) * 2014-09-26 2020-02-21 联想(北京)有限公司 一种发射信号处理方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1783732A (zh) * 2004-12-03 2006-06-07 松下电器产业株式会社 多模发送电路、多模收发电路和使用其的无线通信装置
US20080003960A1 (en) * 2006-06-29 2008-01-03 Alireza Zolfaghari Polar transmitter amplifier with variable output power
CN102420631A (zh) * 2011-11-04 2012-04-18 中兴通讯股份有限公司 功率放大装置、多模射频收发装置和多模终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4230238B2 (ja) * 2003-02-06 2009-02-25 パナソニック株式会社 送信装置及びその調整方法
CN1567770A (zh) * 2003-06-20 2005-01-19 华为技术有限公司 多模多载波射频接收机
JP3910167B2 (ja) * 2003-09-25 2007-04-25 松下電器産業株式会社 増幅回路
JP2006093873A (ja) * 2004-09-21 2006-04-06 Matsushita Electric Ind Co Ltd Eer変調増幅装置
GB2432982A (en) * 2005-11-30 2007-06-06 Toshiba Res Europ Ltd An EER RF amplifier with PWM signal switching

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1783732A (zh) * 2004-12-03 2006-06-07 松下电器产业株式会社 多模发送电路、多模收发电路和使用其的无线通信装置
US20080003960A1 (en) * 2006-06-29 2008-01-03 Alireza Zolfaghari Polar transmitter amplifier with variable output power
CN102420631A (zh) * 2011-11-04 2012-04-18 中兴通讯股份有限公司 功率放大装置、多模射频收发装置和多模终端

Also Published As

Publication number Publication date
CN102420631B (zh) 2016-03-30
CN102420631A (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
WO2013063938A1 (zh) 功率放大模块、多模射频收发器、双工器和多模终端
WO2013063924A1 (zh) 功率放大模块、射频前端模块和多模终端
US10015701B2 (en) Multimode dual-path terminal
JP4755258B2 (ja) マルチバンド無線モジュール
RU2658656C2 (ru) Многорежимный беспроводной терминал
WO2015154437A1 (zh) 一种支持载波聚合的方法及终端
WO2013063921A1 (zh) 多模射频接收处理芯片和多模终端
US10848105B2 (en) Power amplification module
WO2013063916A1 (zh) 功率放大装置、多模射频收发装置和多模终端
WO2013063926A1 (zh) 功率放大模块、多模射频收发器和多模终端
WO2006118055A1 (ja) 無線送信装置、ポーラ変調送信装置及び無線通信装置
WO2013063923A1 (zh) 射频前端模块、多模终端和多模终端发送信号的方法
CN102404021A (zh) 双工放大模块、射频前端模块和多模终端
WO2013063952A1 (zh) 滤波装置、天线开关模组和双模终端
JP2009094713A (ja) モジュール及びそれを用いた移動通信端末
WO2013063937A1 (zh) 双模射频收发装置、滤波装置和双模终端
CN102510582B (zh) 多模射频发射处理芯片和多模终端
US10135398B2 (en) Power amplification module
CN103944603A (zh) 半导体模块
US9628137B2 (en) Wireless communication device, wireless communication method, and recording medium
Liu et al. A new architecture design for WCDMA and GSM dual-mode mobile phones
JP2004289595A (ja) アンテナ回路
US9252820B2 (en) Circuit and mobile communication device
JP2001186069A (ja) 移動無線端末装置
JP2020205476A (ja) 通信回路及び通信回路の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846461

Country of ref document: EP

Kind code of ref document: A1