WO2018209876A1 - 一种射频放大处理电路及通信终端 - Google Patents

一种射频放大处理电路及通信终端 Download PDF

Info

Publication number
WO2018209876A1
WO2018209876A1 PCT/CN2017/104491 CN2017104491W WO2018209876A1 WO 2018209876 A1 WO2018209876 A1 WO 2018209876A1 CN 2017104491 W CN2017104491 W CN 2017104491W WO 2018209876 A1 WO2018209876 A1 WO 2018209876A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
line
wireless communication
signal
power amplifier
Prior art date
Application number
PCT/CN2017/104491
Other languages
English (en)
French (fr)
Inventor
杨雪
徐柏鸣
苏强
奕江涛
李阳
Original Assignee
尚睿微电子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尚睿微电子(上海)有限公司 filed Critical 尚睿微电子(上海)有限公司
Publication of WO2018209876A1 publication Critical patent/WO2018209876A1/zh
Priority to US16/683,736 priority Critical patent/US20200083580A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/212Frequency-selective devices, e.g. filters suppressing or attenuating harmonic frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/12Resonant antennas
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B1/1036Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal with automatic suppression of narrow band noise or interference, e.g. by using tuneable notch filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1758Series LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0416Circuits with power amplifiers having gain or transmission power control

Definitions

  • the present invention relates to the field of wireless communication signal transceiving processing technologies, and in particular, to a radio frequency amplification processing circuit and a communication terminal.
  • the wireless communication public network used by the mobile communication terminal has been developed to the fourth generation mobile communication network, that is, the 4G network, but limited to the timeliness and phased construction of the wireless communication public network.
  • the second generation and the third generation Mobile communication networks ie 2G and 3G networks, are still in use. Therefore, the mobile communication terminal not only needs to transmit or receive the fourth generation mobile communication signal, but also needs to transmit or receive the second generation and third generation mobile communication signals.
  • the embodiments of the present invention are expected to provide a radio frequency amplifying processing circuit and a communication terminal, which can reduce the manufacturing cost of the radio frequency amplifying circuit and the debugging difficulty of the amplifier.
  • An embodiment of the present invention provides a radio frequency amplification processing circuit, where the circuit includes a radio frequency power amplifier, a transmitting antenna, and a filtering component;
  • the radio frequency power amplifier is configured to perform radio frequency amplification on the modulated first wireless communication signal, and transmit the amplified first wireless communication signal to the transmitting antenna via the first line for transmitting; or the modulated The power of the second wireless communication signal is radio frequency amplified, and the amplified second wireless communication signal is transmitted to the filtering component via the second line;
  • the filtering component is configured to perform filtering processing on the amplified second wireless communication signal, and continue to transmit the filtered second wireless communication signal to the transmitting antenna via the second line for transmission.
  • the circuit further includes a selection switch, the fixed end of the selection switch is connected to the output end of the radio frequency power amplifier, and the selection end of the selection switch is selected to connect the first line or the second line according to the control signal.
  • the circuit further includes an isolation filtering component for isolating and filtering the transmit signal and the receive signal, the isolation filter component being located on the first line between the radio frequency power amplifier and the transmit antenna.
  • the circuit further includes an impedance matching component configured to perform impedance matching on the RF power amplifier according to a load impedance of the transmitting antenna; and an input end of the impedance matching component is connected to the RF power amplifier.
  • the output of the impedance matching component is selectively connected to the first line or the second line according to a control signal.
  • the filtering component is a harmonic filter.
  • An embodiment of the present invention further provides a communication terminal, where the communication terminal includes a down conversion component, a low noise amplifier, a signal modulation component, an intermediate frequency amplifier, an upconversion component, and a radio frequency amplification processing circuit; the radio frequency amplification processing circuit includes radio frequency power An amplifier, a transmitting antenna, and a filtering component, wherein
  • the radio frequency power amplifier is configured to perform power of the modulated first wireless communication signal Radio frequency amplification, and transmitting the amplified first wireless communication signal to the transmitting antenna via the first line for transmitting; or performing radio frequency amplification on the modulated second wireless communication signal, and amplifying the second wireless communication signal Transmitting to the filtering component via the second line;
  • the filtering component is configured to perform filtering processing on the amplified second wireless communication signal, and continue to transmit the filtered second wireless communication signal to the transmitting antenna via the second line for transmission.
  • the radio frequency amplification processing circuit further includes a selection switch, a fixed end of the selection switch is connected to an output end of the radio frequency power amplifier, and a selection end of the selection switch is selected to be connected to the first line or the first according to the control signal. Two lines.
  • the radio frequency amplification processing circuit further includes an isolation filtering component for isolating and filtering the transmitting signal and the receiving signal, wherein the isolation filtering component is located at a first line between the radio frequency power amplifier and the transmitting antenna. On the road.
  • the radio frequency amplification processing circuit further includes an impedance matching component configured to perform impedance matching on the radio frequency power amplifier according to a load impedance of the transmitting antenna; and an input end of the impedance matching component is connected to the radio frequency power An amplifier, the output of the impedance matching component is selectively connected to the first line or the second line according to a control signal.
  • the communication terminal further includes a main control chip, and the main control chip is configured to issue a control signal for controlling the selection switch to connect the first line or the second line according to the determined type of the wireless communication signal.
  • the radio frequency amplification processing circuit and the communication terminal provided by the embodiment of the present invention perform radio frequency amplification on the modulated first wireless communication signal, and transmit the amplified first wireless communication signal to the transmitting antenna via the first line for transmission; Or performing radio frequency amplification on the modulated second wireless communication signal, and transmitting the amplified second wireless communication signal to the filtering component via the second line for filtering processing, and then continuing to pass the filtered second wireless communication signal.
  • the second line is transmitted to the transmitting antenna for transmission; it can be seen that the embodiment of the present invention would originally require two or two
  • the above-mentioned RF power amplifier can process a variety of network standards, multiple frequency bands of mobile communication signals, through the same RF power amplifier processing, and then add additional filtering components to the second generation of mobile communication signals for harmonic power suppression It is transmitted after the fundamental frequency impedance conversion process, avoiding the use of two RF power amplifiers, reducing the printed circuit board space required by the RF power amplifier, simplifying the circuit design of the circuit, reducing the manufacturing cost of the RF amplifier circuit and debugging of the amplifier. Difficulty.
  • FIG. 1 is a schematic diagram of a principle of a radio frequency amplification processing circuit of a wireless communication signal
  • FIG. 2 is a schematic diagram of a principle of a radio frequency amplification processing circuit according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an output matching network in FIG. 2;
  • FIG. 4 is a schematic structural view of the harmonic filter of FIG. 2.
  • the prior art radio frequency amplification processing circuit includes radio frequency power amplifiers 11, 12, output matching networks 111, 121, duplexer 112, and antenna 13.
  • the two RF power amplifiers need to occupy more PCB space, the manufacturing cost increases; the two RF power amplifiers need to be connected by wires during the layout, and there are always parasitic effects in the RF range. And it is easy to couple with surrounding components; parasitic effects and coupling affect the output power, load impedance and harmonic power of the RF power amplifier; therefore, two RF power amplifiers are used, which occupies more printed boards. Space, increase production costs, and increase the difficulty of debugging the amplifier.
  • a radio frequency amplification processing circuit including a radio frequency power amplifier, a transmitting antenna, and a filtering component;
  • the radio frequency power amplifier is configured to perform radio frequency amplification on the modulated first wireless communication signal, and transmit the amplified first wireless communication signal to the transmitting antenna via the first line for transmitting; or the modulated The power of the second wireless communication signal is radio frequency amplified, and the amplified second wireless communication signal is transmitted to the filtering component via the second line;
  • the filtering component is configured to perform filtering processing on the amplified second wireless communication signal, and continue to transmit the filtered second wireless communication signal to the transmitting antenna via the second line for transmission.
  • the radio frequency amplification processing circuit processes a plurality of wireless communication signals through the same radio frequency power amplifier, and then adds additional filtering components to the second generation mobile communication signals to perform harmonic power suppression and fundamental frequency impedance. Transmitting and transmitting, avoiding the use of two or more RF power amplifiers, reducing the printed circuit board space required by the RF power amplifier, simplifying the circuit design of the circuit, reducing the manufacturing cost and amplifier of the RF amplifying circuit The difficulty of debugging.
  • the plurality of wireless communication signals may include various wireless communication signals requiring radio frequency amplification, and may include signals of various existing mobile communication network standards including the second generation, the third generation, and the fourth generation, and may also include Wireless Wi-Fi (Wireless-Fidelity) and Worldwide Interoperability for Microwave Access (WiMAX) signals, and other wireless communication signals that require RF amplification, not to mention an example;
  • Wireless Wi-Fi Wireless-Fidelity
  • WiMAX Worldwide Interoperability for Microwave Access
  • the signals of the mobile communication network standard may include a second generation (2G) Global System for Mobile Communication (GSM)/Code Division Multiple Access (CDMA), third generation (3G) mobile communication time division-synchronous code division multiple access (TD-SCDMA, Time Division-Synchronous Code Division Multiple Access)/CDMA2000 (Code Division Multiple Access 2000)/Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple) Access) and fourth generation (4G) mobile communication time division - Long Term Evolution (TD-LTE, Time Division Long Term Evolution) /Frequency Division Duplexing Long Term Evolution (FDD-LTE);
  • 2G Global System for Mobile Communication
  • CDMA Code Division Multiple Access
  • 3G mobile communication time division-synchronous code division multiple access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000
  • WCDMA Wideband Code Division Multiple Access
  • 4G mobile communication time division - Long Term Evolution
  • FDD-LTE Frequency Division Duplexing Long
  • the signal of each mobile communication network standard may also include multiple frequency bands.
  • the GSM mobile communication network standard can support multiple frequency bands such as 850M, 900M, 1800M, and 1900M.
  • the second wireless communication signal is a wireless communication signal that requires a larger power output, a lower load impedance, and a more stringent harmonic suppression requirement
  • the first wireless communication signal is Other wireless communication signals
  • the first wireless communication signal may be a wireless communication signal of a third generation mobile communication network system or higher in a mobile communication network standard signal, including an existing third generation mobile communication network standard and a fourth generation mobile
  • the communication network system may also be a WiFi signal or a WiMAX signal
  • the second wireless communication signal may be a communication signal of a second generation mobile communication network system.
  • the RF power amplifier may be a Bipolar Junction Transistor or a Field Effect Transistor (FET) or a MOS transistor (metal oxide semiconductor);
  • the radio frequency power amplifier is preferably a triode, which may be a triode that processes 2G wireless communication signals in the prior art, or a triode that processes wireless communication signals of more than 3G.
  • the parameters of the radio frequency power amplifier need to be adjusted for various signals
  • the radio frequency power amplifier is adjusted based on a transmission requirement of a communication signal of the third generation mobile communication network system or higher;
  • the radio frequency power amplifier is adjusted based on a transmission requirement of the WiFi signal or the WiMAX signal;
  • the signal is a communication signal of a second generation mobile communication network standard, based on the second generation Adjusting the radio frequency power amplifier by transmitting a communication signal of a mobile communication network standard;
  • the parameters of the radio frequency power amplifier may be adjusted in terms of power and bandwidth; generally, the radio frequency power amplifier is adjusted by a terminal device where the radio frequency amplification processing circuit is located.
  • the second line is for transmitting a wireless communication signal that requires a greater power output, a lower load impedance, and a more stringent harmonic rejection requirement, the first line being used to transmit other wireless communication signals;
  • the first line is used to transmit a communication signal, a WiFi signal, and a WiMAX signal of a third generation mobile communication network system
  • the second line is used to transmit a communication signal of a second generation mobile communication network standard.
  • the second line is also provided with harmonic power suppression and fundamental impedance transformation for the signal.
  • the filtering component may be a harmonic filter.
  • the radio frequency amplification processing circuit further includes a selection switch, a fixed end of the selection switch is connected to an output end of the radio frequency power amplifier, and a selection end of the selection switch is selected to be connected to the first line according to the control signal. Or the second line.
  • the terminal where the radio frequency amplification processing circuit is located The device controls the selection switch.
  • the radio frequency amplification processing circuit further includes an isolation component for isolating the transmit signal from the receive signal, the isolation component being located on the first line between the radio frequency power amplifier and the transmit antenna ;
  • the uplink and downlink signals of the communication signals, the WiFi signal, and the WiMAX signal of the third generation mobile communication network system are transmitted and received through the same transmitting antenna, so Use isolation components to isolate the upstream and downstream signals so that they do not affect each other;
  • the isolation component can be a duplexer.
  • the radio frequency amplification processing circuit further includes an impedance matching component configured to perform impedance matching on the radio frequency power amplifier according to a load impedance of the transmitting antenna; an input end of the impedance matching component is connected to the An RF power amplifier, the output of the impedance matching component is selectively connected to the first line or the second line according to a control signal.
  • the RF power amplifier In order to improve the transmission power of the signal, the RF power amplifier needs to perform output impedance matching processing in accordance with the requirements of the third generation mobile communication network system and above communication signal transmission requirements.
  • the RF power amplifier Since the power requirements of the second generation mobile communication network standard communication signal are higher, the RF power amplifier is first matched with the output impedance matching the communication requirements of the third generation mobile communication network system; if it is the second generation mobile communication network The standard communication signal is further processed on the basis of this, that is, it enters the second line for further processing;
  • the impedance matching component may be an output matching network (OMN).
  • OPN output matching network
  • An embodiment of the present invention further provides a communication terminal, where the communication terminal includes a down conversion component, a low noise amplifier, a signal modulation component, an intermediate frequency amplifier, an upconversion component, and a radio frequency amplification processing circuit; the radio frequency amplification processing circuit includes radio frequency power An amplifier, a transmitting antenna, and a filtering component, wherein
  • the radio frequency power amplifier is configured to perform radio frequency amplification on the modulated first wireless communication signal, and transmit the amplified first wireless communication signal to the transmitting antenna via the first line for transmitting; or the modulated The power of the second wireless communication signal is radio frequency amplified, and the amplified second wireless communication signal is transmitted to the filtering component via the second line;
  • the filtering component is configured to perform filtering processing on the amplified second wireless communication signal, and continue to transmit the filtered second wireless communication signal to the transmitting antenna via the second line for transmission.
  • the radio frequency amplification processing circuit further includes a selection switch, a fixed end of the selection switch is connected to an output end of the radio frequency power amplifier, and a selection end of the selection switch is selected to be connected to the first line according to the control signal. Or the second line.
  • the radio frequency amplification processing circuit further includes an isolation component for isolating the transmit signal from the receive signal, the isolation component being located on the first line between the radio frequency power amplifier and the transmit antenna .
  • the radio frequency amplification processing circuit further includes an impedance matching component configured to perform impedance matching on the radio frequency power amplifier according to a load impedance of the transmitting antenna; an input end of the impedance matching component is connected to the An RF power amplifier, the output of the impedance matching component is selectively connected to the first line or the second line according to a control signal.
  • the communication terminal further includes a main control chip, configured to send a control signal for controlling the selection switch to connect the first line or the second line according to the determined type of the wireless communication signal;
  • the main control chip is further configured to adjust parameters of the radio frequency power amplifier according to the determined type of wireless communication signal.
  • the radio frequency amplification processing circuit includes a radio frequency power amplifier 21, an output matching network 22, a first selection switch 23, and a duplexer 24, a harmonic filter 25, a second selection switch 26 and a transmitting antenna 27;
  • An output of the RF power amplifier 21 is coupled to the output matching network 22, the output An output of the matching network 22 is coupled to the first selection switch 23, and the first selection switch 23 can be selectively coupled to the duplexer 24 or the harmonic filter 25, the duplexer 24 or the harmonic
  • the wave filter 25 can be connected to the transmitting antenna 27;
  • the radio frequency power amplifier 21 is configured to amplify a wireless communication signal including various required radio frequency amplification
  • wireless communication signals requiring radio frequency amplification may include mobile communication network standard signals including 2G/3G/4G, and may also include WiFi and WiMAX signals.
  • the output matching network 22 is configured to perform impedance matching on the radio frequency power amplifier 21 according to a load impedance of the transmitting antenna 27;
  • the impedance matching of the RF amplifier is performed on any of the signals below the third-generation mobile communication network system with lower requirements;
  • the output matching network 22 adopts an output matching network in which a plurality of LC resonant circuits are connected in parallel, and the structure is as shown in FIG. 3.
  • the first selection switch 23 is configured to select a line direction of an output end of the output matching network 22 according to a network standard of signals;
  • the signal is a signal of a third generation mobile communication network system, a WiFi signal or a WiMAX signal
  • the first selection switch 23 is placed above, and the output matching network 22 is connected to the duplexer 24;
  • the first selection switch 23 When the signal is a signal of the second generation mobile communication network system, the first selection switch 23 is placed below, and the output matching network 22 is connected to the harmonic filter 25;
  • the first selection switch 23 can be controlled by a main control chip in the terminal device where the radio frequency amplification processing circuit is located.
  • the duplexer 24 is configured to isolate the signal from a signal received by the transmitting antenna 27 when the signal is a communication signal of a third generation mobile communication network system or higher;
  • the duplexer 24 is mainly used for isolating the uplink and downlink signals without affecting each other.
  • the harmonic filter 25 is configured to perform harmonic power suppression and baseband impedance conversion on the signal when the signal is a communication signal of a second generation mobile communication network standard;
  • the harmonic filter 25 can perform harmonic power suppression, and can also be used as a fundamental frequency impedance conversion to improve signal power and meet the emission requirements of the second generation mobile communication network standard communication signal;
  • the structure of the harmonic filter 25 is as shown in FIG. 4;
  • the second selection switch 26 is configured to determine, according to a network standard of the signal, one of the duplexer 24 or the harmonic filter 25 to be connected to the transmitting antenna 27;
  • the main control chip in the terminal device where the radio frequency amplification processing circuit is located controls the second selection switch 26 and the first selection switch 23 in linkage.
  • a communication terminal including a main control chip, a down conversion component, a low noise amplifier, a signal modulation component, an intermediate frequency amplifier, an upconversion component, and a radio frequency amplification processing circuit;
  • the components of the radio frequency amplification processing circuit, the connection relationship between the components, and the functional principles of the components are the same as those described in the first embodiment, and details are not described herein.
  • the main control chip is configured to control the selection switch to connect to the first line or the second line according to the determined type of the wireless communication signal.
  • the main control chip determines a type of the wireless communication signal to be transmitted according to the network in which the communication terminal is located, and issues a control to connect the first switch to the first line according to the determined type of the wireless communication signal or a control signal of the second line;
  • the main control chip is further configured to adjust parameters of the radio frequency power amplifier according to the determined type of the wireless communication signal.
  • the radio frequency amplification processing circuit of the embodiment of the present invention includes a radio frequency power amplifier, a transmitting antenna, and a filtering component.
  • the radio frequency power amplifier is configured to perform radio frequency amplification on the modulated first wireless communication signal, and the amplified Transmitting, by the first line, the transmit power of the second wireless communication signal to the transmit antenna; and transmitting the amplified second wireless communication signal to the filter component via the second line
  • the filtering component is configured to perform filtering processing on the amplified second wireless communication signal, and continue to transmit the filtered second wireless communication signal to the transmitting antenna via the second line for transmitting.
  • the application of the RF amplification processing circuit can reduce the manufacturing cost of the RF amplification circuit and the debugging difficulty of the amplifier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种射频放大处理电路及通信终端,所述射频放大处理电路包括:射频功率放大器、发射天线和滤波部件;所述射频功率放大器,用于将调制后的第一无线通信信号的功率进行射频放大,并将放大后的第一无线通信信号经由第一线路传输至发射天线进行发射;或将调制后的第二无线通信信号的功率进行射频放大,并将放大后的第二无线通信信号经由第二线路传输至滤波部件;所述滤波部件,用于对放大后的第二无线通信信号进行滤波处理,并将滤波后的第二无线通信信号继续经由第二线路传输至发射天线进行发射。

Description

一种射频放大处理电路及通信终端
相关申请的交叉引用
本申请基于申请号为201710339100.0、申请日为2017年05月15日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及无线通信信号收发处理技术领域,尤其涉及一种射频放大处理电路及通信终端。
背景技术
移动通信终端使用的无线通信公众网络已发展到第四代移动通信网络,即4G网络,但限于无线通信公众网络建设的时间性和阶段性,在实际使用中,第二代、第三代的移动通信网络,即2G、3G网络还在使用。因此,移动通信终端不仅需要发射或接收第四代移动通信信号,也需要发射或接收第二代、第三代的移动通信信号。
由于第二代移动通信信号需要更大的功率输出、更低的负载阻抗、更严格的谐波抑制要求,因此,在目前的无线通信信号发射前的射频功率放大中,通常使用一个以上的射频功率放大器,然而,这必然会占用较多的印制板空间,增加制作成本,且增加放大器的调试难度。
发明内容
有鉴于此,本发明实施例期望提供一种射频放大处理电路及通信终端,能降低射频放大电路的制作成本和放大器的调试难度。
为达到上述目的,本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种射频放大处理电路,所述电路包括射频功率放大器、发射天线和滤波部件;其中,
所述射频功率放大器,用于将调制后的第一无线通信信号的功率进行射频放大,并将放大后的第一无线通信信号经由第一线路传输至发射天线进行发射;或将调制后的第二无线通信信号的功率进行射频放大,并将放大后的第二无线通信信号经由第二线路传输至滤波部件;
所述滤波部件,用于对放大后的第二无线通信信号进行滤波处理,并将滤波后的第二无线通信信号继续经由第二线路传输至发射天线进行发射。
上述方案中,所述电路还包括选择开关,所述选择开关的固定端与所述射频功率放大器的输出端连接,所述选择开关的选择端根据控制信号选择连接第一线路或第二线路。
上述方案中,所述电路还包括隔离滤波部件,用于将发射信号和接收信号进行隔离滤波,所述隔离滤波部件位于所述射频功率放大器和所述发射天线之间的第一线路上。
上述方案中,所述电路还包括阻抗匹配部件,用于根据所述发射天线的负载阻抗,对所述射频功率放大器进行阻抗匹配;所述阻抗匹配部件的输入端连接所述射频功率放大器,所述阻抗匹配部件的输出端根据控制信号选择连接所述第一线路或第二线路。
上述方案中,所述滤波部件为谐波滤波器。
本发明实施例还提供了一种通信终端,所述通信终端包括下变频部件、低噪声放大器、信号调制部件、中频放大器、上变频部件和射频放大处理电路;所述射频放大处理电路包括射频功率放大器、发射天线和滤波部件,其中,
所述射频功率放大器,用于将调制后的第一无线通信信号的功率进行 射频放大,并将放大后的第一无线通信信号经由第一线路传输至发射天线进行发射;或将调制后的第二无线通信信号的功率进行射频放大,并将放大后的第二无线通信信号经由第二线路传输至滤波部件;
所述滤波部件,用于对放大后的第二无线通信信号进行滤波处理,并将滤波后的第二无线通信信号继续经由第二线路传输至发射天线进行发射。
上述方案中,所述射频放大处理电路还包括选择开关,所述选择开关的固定端与所述射频功率放大器的输出端连接,所述选择开关的选择端根据控制信号选择连接第一线路或第二线路。
上述方案中,所述射频放大处理电路还包括隔离滤波部件,用于将发射信号和接收信号进行隔离滤波,所述隔离滤波部件位于所述射频功率放大器和所述发射天线之间的第一线路上。
上述方案中,所述射频放大处理电路还包括阻抗匹配部件,用于根据所述发射天线的负载阻抗,对所述射频功率放大器进行阻抗匹配;所述阻抗匹配部件的输入端连接所述射频功率放大器,所述阻抗匹配部件的输出端根据控制信号选择连接所述第一线路或第二线路。
上述方案中,所述通信终端还包括主控芯片,所述主控芯片用于根据确定的无线通信信号类型,发出控制所述选择开关连接第一线路或第二线路的控制信号。
本发明实施例提供的射频放大处理电路及通信终端,将调制后的第一无线通信信号的功率进行射频放大,并将放大后的第一无线通信信号经由第一线路传输至发射天线进行发射;或将调制后的第二无线通信信号的功率进行射频放大,并将放大后的第二无线通信信号经由第二线路传输至滤波部件进行滤波处理,然后将滤波后的第二无线通信信号继续经由第二线路传输至发射天线进行发射;可见,本发明实施例将原来需要两个或两个 以上射频功率放大器才能处理的多种网络制式、多种频段的移动通信信号,通过同一个射频功率放大器进行处理,然后再对其中的第二代移动通信信号增加额外的滤波部件进行谐波功率抑制和基频阻抗变换处理后发射,避免使用两个射频功率放大器,减小了射频功率放大器需要占用的印制板空间,简化了电路的布线设计,降低了射频放大电路的制作成本和放大器的调试难度。
附图说明
图1为无线通信信号射频放大处理电路的原理示意图;
图2为本发明实施例一射频放大处理电路的原理示意图;
图3为图2中的输出匹配网络的结构示意图;
图4为图2中的谐波滤波器的结构示意图。
具体实施方式
发明人在研究中发现,为了适应移动通信网络的发展,可以使用两个射频功率放大器分别对第三代、第四代移动通信信号和第二代移动通信信号进行放大;如图1所示,现有技术中的射频放大处理电路包括射频功率放大器11、12,输出匹配网络111、121,双工器112、天线13。
但是,因为两个射频功率放大器需要占用较多的印制板空间,使制作成本增加;两个射频功率放大器在布板时需要通过走线相连,在射频范围内,走线总是存在寄生效应,并很容易与周围的元器件产生耦合;寄生效应和耦合会影响射频功率放大器的输出功率、负载阻抗和谐波功率等指标;因此,采用两个射频功率放大器,占用较多的印制板空间,增加制作成本,且增加放大器的调试难度。
在本发明实施例中,提供一种射频放大处理电路,包括射频功率放大器、发射天线和滤波部件;其中,
所述射频功率放大器,用于将调制后的第一无线通信信号的功率进行射频放大,并将放大后的第一无线通信信号经由第一线路传输至发射天线进行发射;或将调制后的第二无线通信信号的功率进行射频放大,并将放大后的第二无线通信信号经由第二线路传输至滤波部件;
所述滤波部件,用于对放大后的第二无线通信信号进行滤波处理,并将滤波后的第二无线通信信号继续经由第二线路传输至发射天线进行发射。
应用本发明实施例提供的射频放大处理电路,通过同一个射频功率放大器处理多种无线通信信号,然后再对其中的第二代移动通信信号增加额外的滤波部件进行谐波功率抑制和基频阻抗变换处理后发射,避免使使用两个或两个以上的射频功率放大器,减小了射频功率放大器需要占用的印制板空间,简化了电路的布线设计,降低了射频放大电路的制作成本和放大器的调试难度。
这里,多种无线通信信号可以包括各种需要射频放大的无线通信信号,既可以包括第二代、第三代和第四代在内的各种已有移动通信网络制式的信号,也可以包括无线保真(WiFi,WIreless-Fidelity)和全球微波互联接入(WiMAX,Worldwide Interoperability for Microwave Access)信号,还可以是其它需要射频放大的无线通信信号,不作一一例举;
在实际应用中,移动通信网络制式的信号可以包括第二代(2G)的全球移动通信系统(GSM,Global System for Mobile Communication)/码分多址(CDMA,Code Division Multiple Access)、第三代(3G)的移动通信的时分-同步码分多址(TD-SCDMA,Time Division-Synchronous Code Division Multiple Access)/CDMA2000(Code Division Multiple Access 2000)/宽带码分多址(WCDMA,Wideband Code Division Multiple Access)和第四代(4G)的移动通信的时分-长期演进(TD-LTE,Time Division Long Term Evolution) /频分双工-长期演进(FDD-LTE,Frequency Division Duplexing Long Term Evolution)等多种;
其中,每一种移动通信网络制式的信号还可以包括多个频段,例如GSM的移动通信网络制式可以支持850M、900M、1800M、1900M等多个频段。
本发明实施例中,所述第二无线通信信号是相对需要更大的功率输出、更低的负载阻抗、更严格的谐波抑制要求的无线通信信号,所述第一无线通信信号是除此之外的其它无线通信信号;
在一实施例中,所述第一无线通信信号可以是移动通信网络制式信号中第三代移动通信网络制式以上的无线通信信号,包括已有的第三代移动通信网络制式和第四代移动通信网络制式,也可以是WiFi信号或WiMAX信号;所述第二无线通信信号可以是第二代移动通信网络制式的通信信号。
所述射频功率放大器可以是三极管(Bipolar Junction Transistor),也可以是场效应管(FET,Field Effect Transistor)或MOS管(metal oxide semiconductor);
在实际使用中,所述射频功率放大器优选三极管,所述三极管可以是现有技术中处理2G无线通信信号的三极管,也可以是处理3G以上的无线通信信号的三极管。
在实际应用中,针对各种不同的信号,需要调整所述射频功率放大器的参数;
所述信号为第三代移动通信网络制式以上的通信信号时,基于所述第三代移动通信网络制式以上的通信信号的发射要求,调整所述射频功率放大器;
所述信号为WiFi信号或WiMAX信号时,基于WiFi信号或WiMAX信号的发射要求,调整所述射频功率放大器;
所述信号为第二代移动通信网络制式的通信信号时,基于所述第二代 移动通信网络制式的通信信号的发射要求,调整所述射频功率放大器;
这里,所述射频功率放大器的参数可以在功率和带宽方面进行调整;一般地,由所述射频放大处理电路所在的终端设备对所述射频功率放大器进行调整。
所述第二线路用于传输相对需要更大的功率输出、更低的负载阻抗、更严格的谐波抑制要求的无线通信信号,所述第一线路用于传输其它的无线通信信号;
在一实施例中,所述第一线路用于传输第三代移动通信网络制式以上的通信信号、WiFi信号和WiMAX信号,所述第二线路用于传输第二代移动通信网络制式的通信信号;
由于第二代无线通信信号需要更大的功率输出、更低的负载阻抗、更严格的谐波抑制要求,因此所述第二线路还设有能对信号进行谐波功率抑制和基频阻抗变换的滤波部件;
在一实施例中,所述滤波部件可以是谐波滤波器(harmonic filter)。
在一实施例中,所述射频放大处理电路还包括选择开关,所述选择开关的固定端与所述射频功率放大器的输出端连接,所述选择开关的选择端根据控制信号选择连接第一线路或第二线路。
这样,可以通过所述选择开关对所述射频功率放大器的输出是经由所述第一线路,还是所述第二线路传输至发射天线进行发射作出选择;一般地,由射频放大处理电路所在的终端设备对所述选择开关进行控制。
在一实施例中,所述射频放大处理电路还包括隔离部件,用于将发射信号和接收信号进行隔离,所述隔离部件位于所述射频功率放大器和所述发射天线之间的第一线路上;
一般地,第三代移动通信网络制式以上的通信信号、WiFi信号和WiMAX信号的上、下行信号都是通过同一个发射天线进行收发的,所以需 要使用隔离部件对上下行信号进行隔离,使之互不影响;
在实际应用中,所述隔离部件可以是双工器(Duplexer)。
在一实施例中,所述射频放大处理电路还包括阻抗匹配部件,用于根据所述发射天线的负载阻抗,对所述射频功率放大器进行阻抗匹配;所述阻抗匹配部件的输入端连接所述射频功率放大器,所述阻抗匹配部件的输出端根据控制信号选择连接所述第一线路或第二线路。
为提高信号的发射功率,需要对射频功率放大器进行符合第三代移动通信网络制式以上通信信号发射要求的输出阻抗匹配处理。
由于第二代移动通信网络制式的通信信号的功率要求更高,因此先把射频功率放大器进行符合第三代移动通信网络制式以上通信信号发射要求的输出阻抗匹配;如果是第二代移动通信网络制式的通信信号,则在此基础上另作进一步处理,也就是进入第二线路进行进一步处理;
在实际应用中,所述阻抗匹配部件可以是输出匹配网络(OMN,output matching network)。
本发明实施例还提供了一种通信终端,所述通信终端包括下变频部件、低噪声放大器、信号调制部件、中频放大器、上变频部件和射频放大处理电路;所述射频放大处理电路包括射频功率放大器、发射天线和滤波部件,其中,
所述射频功率放大器,用于将调制后的第一无线通信信号的功率进行射频放大,并将放大后的第一无线通信信号经由第一线路传输至发射天线进行发射;或将调制后的第二无线通信信号的功率进行射频放大,并将放大后的第二无线通信信号经由第二线路传输至滤波部件;
所述滤波部件,用于对放大后的第二无线通信信号进行滤波处理,并将滤波后的第二无线通信信号继续经由第二线路传输至发射天线进行发射。
在一实施例中,所述射频放大处理电路还包括选择开关,所述选择开关的固定端与所述射频功率放大器的输出端连接,所述选择开关的选择端根据控制信号选择连接第一线路或第二线路。
在一实施例中,所述射频放大处理电路还包括隔离部件,用于将发射信号和接收信号进行隔离,所述隔离部件位于所述射频功率放大器和所述发射天线之间的第一线路上。
在一实施例中,所述射频放大处理电路还包括阻抗匹配部件,用于根据所述发射天线的负载阻抗,对所述射频功率放大器进行阻抗匹配;所述阻抗匹配部件的输入端连接所述射频功率放大器,所述阻抗匹配部件的输出端根据控制信号选择连接所述第一线路或第二线路。
在一实施例中,所述通信终端还包括主控芯片,用于根据确定的无线通信信号类型,发出控制所述选择开关连接第一线路或第二线路的控制信号;
在一实施例中,所述主控芯片还用于根据确定的无线通信信号类型,对所述射频功率放大器的参数进行调整。
以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所提供的实施例仅仅用以解释本发明,并不用于限定本发明。另外,以下所提供的实施例是用于实施本发明的部分实施例,而非提供实施本发明的全部实施例,在不冲突的情况下,本发明实施例记载的技术方案可以任意组合的方式实施。
实施例一
图2为本发明实施例一射频放大处理电路的原理示意图;如图2所示,所述射频放大处理电路包括射频功率放大器21、输出匹配网络22、第一选择开关23、双工器24、谐波滤波器25、第二选择开关26和发射天线27;
所述射频功率放大器21的输出端连接所述输出匹配网络22,所述输出 匹配网络22的输出端连接所述第一选择开关23,所述第一选择开关23可以选择连接所述双工器24或所述谐波滤波器25,所述双工器24或所述谐波滤波器25均可以连接所述发射天线27;
所述射频功率放大器21,用于将包括各种需要射频放大的无线通信信号进行放大;
在实际应用中,需要射频放大的无线通信信号既可以包括2G/3G/4G在内的移动通信网络制式信号,也可以包括WiFi和WiMAX信号。
所述输出匹配网络22,用于根据所述发射天线27的负载阻抗,对所述射频功率放大器21进行阻抗匹配;
也就是说,先对任意一种信号按较低要求的第三代移动通信网络制式以上的通信信号,对所述射频放大器进行阻抗匹配;
本实施例中,所述输出匹配网络22采用多个LC谐振电路并联的输出匹配网络,结构如图3所示。
所述第一选择开关23,用于根据信号的网络制式,选择所述输出匹配网络22的输出端的线路走向;
所述信号为第三代移动通信网络制式以上的信号、WiFi信号或WiMAX信号时,所述第一选择开关23置于上方,所述输出匹配网络22与所述双工器24连接;
所述信号为第二代移动通信网络制式的信号时,所述第一选择开关23置于下方,所述输出匹配网络22与所述谐波滤波器25连接;
所述第一选择开关23可以由射频放大处理电路所在的终端设备中的主控芯片进行控制。
所述双工器24,用于所述信号为第三代移动通信网络制式以上的通信信号时,将所述信号与发射天线27接收的信号进行隔离;
因为第三代移动通信网络制式以上的通信信号的上、下行信号都是通 过同一个发射天线27进行收发的,双工器24主要是用于将上下行信号进行隔离,互不影响。
所述谐波滤波器25,用于所述信号为第二代移动通信网络制式的通信信号时,对所述信号进行谐波功率抑制和基频阻抗变换;
所述谐波滤波器25除了可以进行谐波功率抑制,也可以作基频阻抗变换,提高信号功率,符合第二代移动通信网络制式通信信号的发射要求;
所述谐波滤波器25的结构如图4所示;
所述第二选择开关26,用于根据信号的网络制式,决定所述双工器24或所述谐波滤波器25中的一个与所述发射天线27连接;
所述射频放大处理电路所在的终端设备中的主控芯片对所述第二选择开关26与所述第一选择开关23进行联动控制。
实施例二
本实施例中提供了一种通信终端,包括主控芯片、下变频部件、低噪声放大器、信号调制部件、中频放大器、上变频部件和射频放大处理电路;其中,
所述射频放大处理电路的组成结构、各组成部分之间的连接关系、以及各组成部分的功能原理均与实施例一中描述相同,不再赘述。
所述主控芯片,用于根据确定的无线通信信号类型,控制所述选择开关连接第一线路或第二线路。
在一实施例中,所述主控芯片根据所述通信终端所处的网络,确定待发射的无线通信信号类型,并根据确定的无线通信信号类型,发出控制所述选择开关连接第一线路或第二线路的控制信号;
所述主控芯片,还用于根据确定的无线通信信号类型,对所述射频功率放大器的参数进行调整。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保 护范围,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例的射频放大处理电路包括射频功率放大器、发射天线和滤波部件;其中,所述射频功率放大器,用于将调制后的第一无线通信信号的功率进行射频放大,并将放大后的第一无线通信信号经由第一线路传输至发射天线进行发射;或将调制后的第二无线通信信号的功率进行射频放大,并将放大后的第二无线通信信号经由第二线路传输至滤波部件;所述滤波部件,用于对放大后的第二无线通信信号进行滤波处理,并将滤波后的第二无线通信信号继续经由第二线路传输至发射天线进行发射。应用该射频放大处理电路,能降低射频放大电路的制作成本和放大器的调试难度。

Claims (10)

  1. 一种射频放大处理电路,所述电路包括射频功率放大器、发射天线和滤波部件;其中,
    所述射频功率放大器,用于将调制后的第一无线通信信号的功率进行射频放大,并将放大后的第一无线通信信号经由第一线路传输至发射天线进行发射;或将调制后的第二无线通信信号的功率进行射频放大,并将放大后的第二无线通信信号经由第二线路传输至滤波部件;
    所述滤波部件,用于对放大后的第二无线通信信号进行滤波处理,并将滤波后的第二无线通信信号继续经由第二线路传输至发射天线进行发射。
  2. 根据权利要求1所述的电路,其中,所述电路还包括选择开关,所述选择开关的固定端与所述射频功率放大器的输出端连接,所述选择开关的选择端根据控制信号选择连接第一线路或第二线路。
  3. 根据权利要求1或2所述的电路,其中,所述电路还包括隔离滤波部件,用于将发射信号和接收信号进行隔离滤波,所述隔离滤波部件位于所述射频功率放大器和所述发射天线之间的第一线路上。
  4. 根据权利要求1或2所述的电路,其中,所述电路还包括阻抗匹配部件,用于根据所述发射天线的负载阻抗,对所述射频功率放大器进行阻抗匹配;所述阻抗匹配部件的输入端连接所述射频功率放大器,所述阻抗匹配部件的输出端根据控制信号选择连接所述第一线路或第二线路。
  5. 根据权利要求1或2所述的电路,其中,所述滤波部件为谐波滤波器。
  6. 一种通信终端,所述通信终端包括下变频部件、低噪声放大器、信号调制部件、中频放大器、上变频部件和射频放大处理电路;所述射频放 大处理电路包括射频功率放大器、发射天线和滤波部件,其中,
    所述射频功率放大器,用于将调制后的第一无线通信信号的功率进行射频放大,并将放大后的第一无线通信信号经由第一线路传输至发射天线进行发射;或将调制后的第二无线通信信号的功率进行射频放大,并将放大后的第二无线通信信号经由第二线路传输至滤波部件;
    所述滤波部件,用于对放大后的第二无线通信信号进行滤波处理,并将滤波后的第二无线通信信号继续经由第二线路传输至发射天线进行发射。
  7. 根据权利要求6所述的通信终端,其中,所述射频放大处理电路还包括选择开关,所述选择开关的固定端与所述射频功率放大器的输出端连接,所述选择开关的选择端根据控制信号选择连接第一线路或第二线路。
  8. 根据权利要求6或7所述的通信终端,其中,所述射频放大处理电路还包括隔离滤波部件,用于将发射信号和接收信号进行隔离滤波,所述隔离滤波部件位于所述射频功率放大器和所述发射天线之间的第一线路上。
  9. 根据权利要求6或7所述的通信终端,其中,所述射频放大处理电路还包括阻抗匹配部件,用于根据所述发射天线的负载阻抗,对所述射频功率放大器进行阻抗匹配;所述阻抗匹配部件的输入端连接所述射频功率放大器,所述阻抗匹配部件的输出端根据控制信号选择连接所述第一线路或第二线路。
  10. 根据权利要求7所述的通信终端,其中,所述通信终端还包括主控芯片,所述主控芯片用于根据确定的无线通信信号类型,发出控制所述选择开关连接第一线路或第二线路的控制信号。
PCT/CN2017/104491 2017-05-15 2017-09-29 一种射频放大处理电路及通信终端 WO2018209876A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/683,736 US20200083580A1 (en) 2017-05-15 2019-11-14 Radio frequency amplification processing circuit and communication terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710339100.0 2017-05-15
CN201710339100.0A CN107104684A (zh) 2017-05-15 2017-05-15 一种射频放大处理电路及通信终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/683,736 Continuation US20200083580A1 (en) 2017-05-15 2019-11-14 Radio frequency amplification processing circuit and communication terminal

Publications (1)

Publication Number Publication Date
WO2018209876A1 true WO2018209876A1 (zh) 2018-11-22

Family

ID=59669799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104491 WO2018209876A1 (zh) 2017-05-15 2017-09-29 一种射频放大处理电路及通信终端

Country Status (3)

Country Link
US (1) US20200083580A1 (zh)
CN (1) CN107104684A (zh)
WO (1) WO2018209876A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104684A (zh) * 2017-05-15 2017-08-29 尚睿微电子(上海)有限公司 一种射频放大处理电路及通信终端
CN109714011A (zh) * 2018-12-20 2019-05-03 佛山臻智微芯科技有限公司 一种应用在第五代移动通信28GHz的GaAs射频功率放大器
CN109560832A (zh) * 2019-01-24 2019-04-02 广西芯百特微电子有限公司 一种用于5g通信的射频电路及终端
CN110730024A (zh) * 2019-09-25 2020-01-24 恒大智慧科技有限公司 一种无线信号中继系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050107115A1 (en) * 2002-02-20 2005-05-19 Koninklijke Philips Electronics N.V. Mobile multimode terminal with joint power amplifier
CN102355221A (zh) * 2011-06-17 2012-02-15 雷良军 多频带功率放大器及输出匹配电路
CN102510582A (zh) * 2011-11-04 2012-06-20 中兴通讯股份有限公司 多模射频发射处理芯片和多模终端
CN103475386A (zh) * 2013-09-25 2013-12-25 小米科技有限责任公司 一种射频前端模块和终端设备
CN103546184A (zh) * 2012-07-16 2014-01-29 中兴通讯股份有限公司 一种适应多模多频宽频的功放方法及系统
CN106253865A (zh) * 2016-08-01 2016-12-21 上海华虹宏力半导体制造有限公司 多频段射频功率放大器
CN106301462A (zh) * 2016-08-02 2017-01-04 广东欧珀移动通信有限公司 射频控制电路及移动终端
CN107104684A (zh) * 2017-05-15 2017-08-29 尚睿微电子(上海)有限公司 一种射频放大处理电路及通信终端

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3680794B2 (ja) * 1999-07-29 2005-08-10 Tdk株式会社 パワーアンプ内蔵型アイソレータ装置
US7468636B2 (en) * 2005-12-22 2008-12-23 Panasonic Corporation Radio frequency power amplifier
CN101714852A (zh) * 2009-09-22 2010-05-26 锐迪科微电子(上海)有限公司 双频射频功率放大器电路芯片
CN101826884B (zh) * 2010-04-16 2013-01-30 华为终端有限公司 多模终端电路及多模终端
CN102510297A (zh) * 2011-11-04 2012-06-20 中兴通讯股份有限公司 功率放大模块、多模射频收发器、双工器和多模终端
WO2015047237A1 (en) * 2013-09-25 2015-04-02 Intel Corporation End-to-end (e2e) tunneling for multi-radio access technology (multi-rat)
US9992722B2 (en) * 2015-12-14 2018-06-05 Huawei Technologies Canada Co., Ltd. Reconfigurable multi-mode and multi-bands radio architecture and transceiver
US9837972B2 (en) * 2015-12-30 2017-12-05 Skyworks Solutions, Inc. Multi-mode power amplifier module
CN106230471B (zh) * 2016-07-29 2019-02-26 Oppo广东移动通信有限公司 一种载波聚合的射频电路及移动终端
JP6721114B2 (ja) * 2017-03-30 2020-07-08 株式会社村田製作所 高周波モジュール
CN206948290U (zh) * 2017-05-15 2018-01-30 尚睿微电子(上海)有限公司 一种射频放大处理电路及通信终端

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050107115A1 (en) * 2002-02-20 2005-05-19 Koninklijke Philips Electronics N.V. Mobile multimode terminal with joint power amplifier
CN102355221A (zh) * 2011-06-17 2012-02-15 雷良军 多频带功率放大器及输出匹配电路
CN102510582A (zh) * 2011-11-04 2012-06-20 中兴通讯股份有限公司 多模射频发射处理芯片和多模终端
CN103546184A (zh) * 2012-07-16 2014-01-29 中兴通讯股份有限公司 一种适应多模多频宽频的功放方法及系统
CN103475386A (zh) * 2013-09-25 2013-12-25 小米科技有限责任公司 一种射频前端模块和终端设备
CN106253865A (zh) * 2016-08-01 2016-12-21 上海华虹宏力半导体制造有限公司 多频段射频功率放大器
CN106301462A (zh) * 2016-08-02 2017-01-04 广东欧珀移动通信有限公司 射频控制电路及移动终端
CN107104684A (zh) * 2017-05-15 2017-08-29 尚睿微电子(上海)有限公司 一种射频放大处理电路及通信终端

Also Published As

Publication number Publication date
US20200083580A1 (en) 2020-03-12
CN107104684A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
US11863134B2 (en) Balanced radio frequency power amplifier, chip and communication terminal
JP6224293B1 (ja) マルチバンド受信機のための2段低雑音増幅器
CN106559048B (zh) 一种多模射频功率放大器
US20200083580A1 (en) Radio frequency amplification processing circuit and communication terminal
CN101667810B (zh) 双频射频功率放大器电路芯片
US10483928B2 (en) Power amplification module
TWI652913B (zh) 多模多頻之收發器、射頻前端電路及應用其之射頻系統
US20140327483A1 (en) Complementary metal oxide semiconductor power amplifier
US10469033B2 (en) Power amplification module
US20080207256A1 (en) Concurrent impedance matching of a wireless transceiver
US9209769B2 (en) Power amplifier and communication device
US20190222238A1 (en) Radio frequency front-end transmission method and transmission module, chip, and communications terminal
US20210159925A1 (en) Radio frequency circuit and communication device
CN102404020A (zh) 功率放大模块、多模射频收发器和多模终端
US20170181108A1 (en) Power amplification module for multiple bands and multiple standards
CN107148749A (zh) 变压器反馈放大器
US11888510B2 (en) Transmission/reception separation circuit, transceiver, and wireless communications device
US10135398B2 (en) Power amplification module
CN101860380A (zh) 射频收发器及其相关无线通信装置
US11177780B2 (en) Front-end circuit and communication device
US20230163796A1 (en) High-frequency circuit and communication device
CN103944603A (zh) 半导体模块
CN112491434A (zh) 一种射频前端电路、射频信号接收方法、通信方法及设备
US20210314010A1 (en) Radio-frequency module and communication device
CN206948290U (zh) 一种射频放大处理电路及通信终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910368

Country of ref document: EP

Kind code of ref document: A1