WO2018103469A1 - 一种分布式无线信号覆盖系统 - Google Patents

一种分布式无线信号覆盖系统 Download PDF

Info

Publication number
WO2018103469A1
WO2018103469A1 PCT/CN2017/107744 CN2017107744W WO2018103469A1 WO 2018103469 A1 WO2018103469 A1 WO 2018103469A1 CN 2017107744 W CN2017107744 W CN 2017107744W WO 2018103469 A1 WO2018103469 A1 WO 2018103469A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
radio frequency
digital
analog
processing unit
Prior art date
Application number
PCT/CN2017/107744
Other languages
English (en)
French (fr)
Inventor
刘永飘
江鹏
李栋
白天
陈俊涛
Original Assignee
武汉虹信通信技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉虹信通信技术有限责任公司 filed Critical 武汉虹信通信技术有限责任公司
Publication of WO2018103469A1 publication Critical patent/WO2018103469A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a distributed wireless signal coverage system.
  • the traditional distributed coverage system has a very large difference in transmission loss for different frequency signals, and it is difficult to meet the unified platform requirements for simultaneous access of multiple wireless communication networks.
  • the transmission loss is so large that the signal source is connected to the power, the high-power RF signal is transmitted in the distributed system, the electromagnetic radiation is large, the user terminal has large transmission power, and the investment control and implementation coordination are difficult.
  • the present invention provides a distributed wireless signal coverage system.
  • the technical solution of the present invention provides a distributed wireless signal coverage system, comprising a baseband signal processing unit, a radio frequency extension unit and a radio frequency remote unit.
  • the digital optical transmission is adopted between the baseband signal processing unit and the radio frequency extension unit, and the radio frequency extension unit and the radio frequency extension are far away.
  • the end unit directly uses analog optical radio transmission;
  • a baseband signal processing unit configured to perform modulation and demodulation of service data to a digital modulated signal
  • the RF expansion unit is configured to perform mutual conversion between the digital modulated signal and the RF signal, and convert the RF signal to the analog light;
  • the radio frequency remote unit is used for performing mutual conversion of analog light to radio frequency signals, and power amplification and transceiving duplex of radio frequency signals.
  • the baseband signal processing unit includes a service interface unit 101, a baseband processing unit 102, a digital laser 103, and a monitoring unit 104.
  • the service interface unit 101 is connected to the baseband processing unit 102
  • the baseband processing unit 102 is connected to the digital laser 103
  • the monitoring unit 104 is connected.
  • Baseband processing unit 102 is configured to perform various functions to process signals.
  • the radio frequency extension unit includes a digital laser 201, a digital processing unit 202, and an analog/digital to analog conversion unit.
  • the radio frequency remote unit includes an analog laser 301, a shunt unit 302, a power amplifier 303, a duplexer 304, a low noise amplifier 305, a gain control unit 306, and a monitoring unit 307, and the analog laser 301 is connected to the shunt unit.
  • the combining unit 302 is connected to the duplexer 304 via the power amplifier 303.
  • the duplexer 304 is connected to the combining unit 302 via the low noise amplifier 305 and the gain control unit 306, and the monitoring unit 307 is connected to the combining unit 302.
  • the baseband signal processing unit is coupled to a plurality of radio frequency extension units.
  • the radio frequency extension unit is connected to a plurality of radio frequency remote units.
  • the RF expansion unit cascades other RF expansion units via an extended digital optical interface.
  • the radio remote unit cascades other radio remote units via an extended analog optical interface.
  • the distributed coverage system of the present invention realizes indoor coverage of wireless signals based on micro base stations, and has the following advantages compared with the traditional indoor distribution system:
  • RF remote unit of the system can independently control the transmission power, which can achieve fine coverage of each floor and each area.
  • the traditional light distribution system is digitally processed at the near end, and the remote power consumption and volume are large, which is not conducive to installation; and the digital processing part of the system mainly focuses on the baseband signal processing.
  • the unit as the most used RF remote unit in the room division system, directly performs power amplification, eliminating the need for high-cost digital processing hardware, which not only saves equipment cost and maintenance cost, but also has a smaller remote unit and does not require debugging. It is more suitable for indoor deployment and ease the difficulty of property coordination.
  • the system's RF expansion unit and RF remote unit use analog optical transmission, which can easily realize multi-standard signal transmission, is not limited by the rate of digital optical transmission, and expands the spirit. The activity is also superior to all conventional light distribution systems that employ digital light transmission.
  • the RF remote unit of this system is small in size, low in cost, low in power consumption, easy to deploy, and easier to achieve fine coverage.
  • the system adopts multi-level distributed architecture, which can provide access capacity and extend extended coverage. It includes source and distribution systems, and the coverage power is highly efficient. It can be refined to the floor, and the coverage power of different floors can be optimized separately.
  • the utility model has the advantages of small volume, convenient indoor deployment, more uniform coverage power, simple scheme design, and maximum compatibility with the existing coverage system, and protects the previous investment.
  • the system of the invention can be widely used in mobile signal coverage application scenarios of various large buildings, airports, stations, etc. The total equipment cost and installation and maintenance cost are greatly reduced, and has great market value, and will be a key development in the future communication field. direction.
  • FIG. 1 is an overall schematic diagram of an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of networking in an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of a baseband signal processing unit according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of a radio frequency extension unit according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a radio frequency remote unit according to an embodiment of the present invention.
  • the distributed wireless signal coverage system of the embodiment of the invention comprises three parts: a baseband signal processing unit BU, a radio frequency extension unit REU, and a radio frequency remote unit RU.
  • the baseband signal processing unit BU performs modulation and demodulation of the service data to the digital modulated signal.
  • the RF extension unit REU performs mutual conversion between the digital modulation signal and the RF signal, and mutual conversion of the RF signal to the analog light.
  • the RF remote unit RU completes the mutual conversion of the analog light to the RF signal, and the power amplification and transceiver duplex of the RF signal. Therefore, the present invention divides the base station in the prior art into three parts for distributed implementation, and the baseband signal processing unit performs only the baseband part processing, which can be regarded as a micro base station.
  • the baseband signal processing unit can be connected to multiple radio frequency extension units, and the radio frequency extension unit can also be connected to multiple radio frequency remote units.
  • the radio frequency extension unit can also extend the digital optical interface to cascade the radio frequency extension unit, and the radio frequency remote unit.
  • the analog optical interface can also be extended to cascade the RF remote unit to realize various forms of networking such as star and chain to expand the coverage.
  • a typical distributed wireless signal coverage system is composed of a baseband signal processing unit 100, a radio frequency extension unit 200, and a radio frequency remote unit 300.
  • the baseband signal processing unit may also extend and connect the plurality of radio frequency extension units and the radio frequency remote unit, such as the radio frequency extension unit 400 and the radio frequency remote unit 500 in FIG. 2, to form a star topology network.
  • the invention proposes that the baseband signal processing unit and the respective radio frequency extension units of the subordinates are connected by optical fibers, and the digital optical signals are transmitted thereon, and the digitized service data and monitoring information are carried.
  • the radio frequency extension unit and the subordinate radio remote units are connected by optical fibers, and transmit analog optical signals thereon, and carry service data in the form of radio frequency carriers and monitoring information in the form of carrier of specific modulation (such as frequency shift keying FSK modulation).
  • the analog radio-borne radio transmission is used between the radio frequency extension unit and the radio frequency remote unit, and the radio frequency remote unit only needs to perform photoelectric conversion to recover the radio frequency signal without digital processing and spectrum shifting, thereby reducing the unit complexity.
  • the RF remote unit usage is the largest, which can reduce the overall system investment cost and maintenance cost.
  • the analog optical transceiver has a very wide modulation bandwidth, generally reaching 0 to 3 GHz, covering all current mobile communication standard frequency bands, so that the system can easily realize wireless signal transmission of various standards and can be inserted into the monitoring in the non-occupied frequency band. Custom carriers such as auxiliary services can be filtered and separated at the receiving end.
  • the downlink of the system refers to the processing of the signal from the baseband signal processing unit to the radio remote unit
  • the uplink refers to the processing of the signal from the radio remote unit to the baseband signal processing unit
  • the baseband signal processing unit accesses the service data and performs parsing, framing, encoding, and modulation, and is received by the digital optical fiber.
  • the transmitter is sent to the RF extension unit through the optical fiber.
  • the digital optical transceiver of the radio frequency extension unit receives the signal, completes demodulation and processing, and is divided by the power dividing unit.
  • Each signal is digital-to-analog converted and then up-converted into an RF signal, which is converted into an analog optical signal by the analog optical transceiver, and passes through the optical fiber. Pull away to the corresponding RF remote unit.
  • the RF remote unit photoelectrically converts and recovers the RF signal, and after power amplification, it is transmitted through the built-in or external antenna.
  • the uplink description is as follows:
  • the RF remote unit receives the uplink signal sent by the terminal. After power amplification and gain control, the analog laser directly converts the analog signal into an analog RF signal and transmits it to the connected RF expansion unit.
  • the RF extension unit receives the signals uploaded by each RF remote unit, and sequentially performs photoelectric conversion, down conversion, and analog-to-digital conversion, and then obtains the digital signals of each channel in a certain format and is uploaded by the digital laser to the baseband signal processing unit. After receiving and demodulating the digital optical signal, the baseband signal processing unit restores the service data and performs backhaul through the interface unit.
  • Baseband signal processing unit BU Baseband signal processing unit
  • the baseband signal processing unit of the system is composed of a service interface unit 101, a baseband processing unit 102, a digital laser 103, a monitoring unit 104, and a power supply unit 105.
  • the service interface unit 101 is connected to the baseband processing unit 102
  • the baseband processing unit 102 is connected to the digital laser 103
  • the monitoring unit 104 is connected to the baseband processing unit 102.
  • the service interface unit 101, the baseband processing unit 102, and the digital laser 103 are sequentially connected to form a downlink; the digital laser 103, the baseband processing unit 102, and the service interface unit 101 are sequentially connected to form an uplink.
  • the same link can be used for the uplink and downlink, and different optical wavelengths are used.
  • a plurality of digital lasers 103 can be provided to provide a plurality of links to implement networking. Each digital laser 103 is connected to a baseband processing unit 102, respectively.
  • the monitoring unit 104 implements monitoring of each module unit and its subordinate REUs and RUs.
  • the power supply unit 105 realizes energy supply to each of the active module units.
  • the corresponding modules may be connected according to the chips used by the units.
  • the service interface unit 101 accesses the service data, and the digital data is parsed and transmitted to the baseband processing unit 102.
  • the monitoring unit 104 sends remote monitoring information to the radio frequency extension unit and the radio frequency remote unit, and also sends the same to the baseband processing unit 102.
  • the baseband processing unit 102 performs processing such as framing, encoding, and digital modulation on the combined signals of the service and the monitoring, and then sends them to the respective radio frequency extension units REU by the digital laser 103.
  • the digital laser 103 receives the uplink data from each radio frequency extension unit REU, recovers the digital signal to the baseband processing unit 103, performs demodulation, decoding, and deframing, and then separates the monitoring and return information to the monitoring unit 104 to generate the main data.
  • the service interface unit 101 restores the service data backhaul.
  • the power supply unit 105 completes the input power conversion to provide the required operating voltage for each active module unit.
  • the RF expansion unit of the system is powered by digital laser 201, digital processing unit 202, analog/digital to analog conversion unit 203, frequency conversion unit 204, combined branch unit 205, analog laser 206, monitoring unit 207, and power supply.
  • Unit 208 is formed.
  • the digital laser 201 is connected to the digital processing unit 202, and the digital processing unit 202 is connected to the analog/digital-to-analog conversion unit 203.
  • the analog/digital-to-analog conversion unit 203, the frequency conversion unit 204, the combined branch unit 205, and the analog laser 206 are sequentially connected, and the monitoring unit is connected.
  • 207 connects the digital processing unit 202 and the splitter unit 205.
  • the digital laser 201, the digital processing unit 202, the analog/digital-to-analog conversion unit 203, the frequency conversion unit 204, the splitting unit 205, and the analog laser 206 are sequentially connected to form a downlink; the analog laser 206, the splitter unit 205, and the frequency conversion unit 204.
  • the analog/digital-to-analog conversion unit 203, the digital processing unit 202, and the digital laser 201 are sequentially connected to form an uplink.
  • the same link can be used for the uplink and downlink, and different optical wavelengths are used.
  • a multi-channel analog-to-digital/digital-to-analog conversion unit 203, an inverter unit 204, a split-splitting unit 205, and an analog laser 206 may be provided to provide a plurality of links.
  • Each of the analog-to-digital/digital-to-analog conversion units 203 is connected to the digital processing unit 202, respectively.
  • the monitoring unit 207 implements monitoring of each module unit and subordinate RUs.
  • the power supply unit 208 realizes energy supply to each of the active module units.
  • the corresponding modules may be connected according to the chips used by the units.
  • the digital laser 201 receives the digital optical signal from the baseband processing unit BU and converts it into a digital signal.
  • the number is passed to the digital processing unit 202.
  • the digital processing unit 202 distributes the service information of each radio remote unit RU, and separates the monitoring information delivered by the BU, and transmits the monitoring information to the monitoring unit 207 for processing.
  • the analog/digital-to-analog conversion unit 203 of each channel completes the simulation of the digital signal, and is frequency-converted to the RF frequency by the frequency conversion unit 204 and amplified, and then transmitted to the combining branch unit 205.
  • the monitoring information of the associated radio remote unit RU is modulated by the monitoring unit 207 into a narrowband carrier whose frequency is different from the main signal by using a suitable modulation method (such as FSK modulation), and is also sent to the combining branch unit 205.
  • a suitable modulation method such as FSK modulation
  • the analog laser 206 directly modulates the analog optical signal to the radio remote unit RU.
  • each analog laser 206 receives the uplink signal and converts it into an electrical signal, which is filtered and separated by the combining branch unit 205.
  • the monitoring carrier returned by the separated radio remote unit RU is parsed by the monitoring unit 207.
  • the separated RF carrier is amplified by the variable frequency amplifying unit 204 and down-converted to a digital intermediate frequency.
  • the analog/digital to analog conversion unit 203 performs digitization of the analog signal and passes it to the digital processing unit 202.
  • the digital processing unit 202 sends each of the uplink digital signals and the monitoring unit 206 to monitor the backhaul signal group frame, and then modulated by the digital laser 201 to transmit the light to the baseband signal processing unit BU.
  • the power supply unit 208 performs input power conversion to provide the required operating voltage for each active module unit.
  • the radio frequency remote unit of the system is composed of an analog laser 301, a shunt unit 302, a power amplifier 303, a duplexer 304, a low noise amplifier 305, a gain control unit 306, a monitoring unit 307, and a power supply unit 308.
  • composition The analog laser 301 is connected to the splitter unit 302.
  • the splitter unit 302 is connected to the duplexer 304 via the power amplifier 303.
  • the duplexer 304 is connected to the splitter unit 302 via the low noise amplifier 305 and the gain control unit 306.
  • the monitoring unit 307 is connected.
  • the analog laser 301, the combiner unit 302, the power amplifier 303, and the duplexer 304 are sequentially connected to form a downlink; the duplexer 304, the low noise amplifier 305, the gain control unit 306, the splitter unit 302, and the analog laser 301 are sequentially The connection constitutes the uplink.
  • the monitoring unit 307 implements monitoring of its own module units.
  • the power supply unit 308 realizes energy supply to each of the active module units.
  • the corresponding modules may be connected according to the chips used by the units.
  • the analog laser 301 restores the downlink signal to a radio frequency carrier, and the combined branching unit 302 filters and separates the service carrier and the monitoring carrier.
  • the monitoring carrier is distributed to the monitoring unit 307 for parsing processing, and the service carrier is passed through the power amplifier 303.
  • the power amplifier 303 boosts the service carrier signal level, and its output power level can be adjusted by the monitoring unit 307 to achieve different coverage requirements.
  • the downlink signal passes through the duplexer 304 and is transmitted by an external or internal antenna.
  • the antenna receives the uplink signal sent by each terminal, and is amplified by the duplexer 304 to the low noise amplifier 305.
  • the gain control unit 306 implements automatic gain control of the uplink signal to avoid the level difference caused by the different distances of the user terminals, and to ensure that the carrier power entering the laser is constant.
  • the combining branch unit 302 combines the uplink main signal and the monitoring return signal sent from the monitoring unit 307, and the hybrid carrier is directly modulated into analog light by the analog laser 301, and is transmitted back to the radio frequency extension unit REU through the optical fiber.
  • the monitoring unit 307 can communicate with the near-end monitoring, control the remote power and the RF gain, and acquire the monitoring return signal.
  • the power supply unit 208 performs input power conversion to provide the required operating voltage for each active module unit.

Abstract

本发明提供一种分布式无线信号覆盖系统,包括基带信号处理单元、射频扩展单元和射频远端单元,基带信号处理单元与射频扩展单元之间采用数字光传输,射频扩展单元与射频远端单元直接采用模拟光载无线电传输。相比传统分布式覆盖系统,此系统射频远端单元体积小、成本低、功耗低,易于布放,更容易实现精细化覆盖。本发明所述系统可广泛使用于各种大型楼宇、机场、车站等移动信号覆盖应用场景,设备总成本和安装维护成本都大为降低。

Description

一种分布式无线信号覆盖系统 技术领域
本发明涉及无线通信技术领域,特别是涉及一种分布式无线信号覆盖系统。
背景技术
随着中国移动通信市场进入4G(第四代移动通信)时代,传统分布覆盖系统由于对不同频率信号的传输损耗差异性非常大,难以满足多种无线通信网络同时接入的统一平台要求。其传输损耗大使得信号源引接功率大、高功率的射频信号在分布系统中传输时的电磁辐射大、用户终端发射功率大、投资控制与实施协调难度大等问题突出。
发明内容
针对以上所述当前无线信号室内覆盖的难题,本发明提供了一种分布式无线信号覆盖系统。
本发明技术方案提供一种分布式无线信号覆盖系统,包括基带信号处理单元、射频扩展单元和射频远端单元,基带信号处理单元与射频扩展单元之间采用数字光传输,射频扩展单元与射频远端单元直接采用模拟光载无线电传输;
基带信号处理单元,用于完成业务数据到数字调制信号的调制解调;
射频扩展单元,用于完成数字调制信号与射频信号之间的相互转换,及射频信号到模拟光的相互转换;
射频远端单元,用于完成模拟光到射频信号的相互转换,及射频信号的功率放大和收发双工。
而且,所述基带信号处理单元包括业务接口单元101、基带处理单元102、数字激光器103和监控单元104,业务接口单元101连接基带处理单元102,基带处理单元102连接数字激光器103,监控单元104连接基带处理单元102。
而且,所述射频扩展单元包括数字激光器201、数字处理单元202、模数/数模转换单 元203、变频单元204、合分路单元205、模拟激光器206和监控单元207,数字激光器201连接数字处理单元202,数字处理单元202连接模数/数模转换单元203,模数/数模转换单元203、变频单元204、合分路单元205和模拟激光器206依次连接,监控单元207连接数字处理单元202和合分路单元205。
而且,所述射频远端单元包括模拟激光器301、合分路单元302、功率放大器303、双工器304、低噪声放大器305、增益控制单元306和监控单元307,模拟激光器301连接合分路单元302,合分路单元302经功率放大器303连接双工器304,双工器304经低噪声放大器305、增益控制单元306连接合分路单元302,监控单元307连接合分路单元302。
而且,基带信号处理单元连接多个射频扩展单元。
而且,射频扩展单元连接多个射频远端单元。
而且,射频扩展单元经扩展数字光接口级联其他射频扩展单元。
而且,射频远端单元经扩展模拟光接口级联其他射频远端单元。
本发明所述分布式覆盖系统,实现基于微基站的无线信号室内覆盖,与传统室内分布系统相比,具有以下优点:
1、与无源室分系统相比:无源设备不取电,没办法控制功率,靠链路加固定衰减器调试;本系统各单元之间采用光纤传输,没有馈线传输引入的功率损耗和电磁辐射问题。本系统每个射频远端单元可独立控制发射功率,可实现各楼层、各区域的精细化覆盖。
2、与传统光分布系统相比:传统光分布系统在近远端都是用数字处理,远端功耗和体积较大,不利于安装;而本系统的数字处理部分主要集中在基带信号处理单元,作为室分系统中用量最多的射频远端单元中直接进行功率放大,无需实现高成本的数字处理部分硬件,不但节省了设备成本和维护成本,而且远端单元体积更小,不需要调试,更适合室内布放,缓解物业协调难度。另外,本系统的射频扩展单元和射频远端单元采用模拟光传输,可轻松实现多制式信号传输,不受数字光传输的速率限制,并且扩展灵 活性也优于全部采用数字光传输的传统光分布系统。
相比传统分布式覆盖系统,此系统射频远端单元体积小、成本低、功耗低,易于布放,更容易实现精细化覆盖。本系统采用多级分布式架构,可提供接入容量,扩展延伸覆盖;包括信源与分布系统,覆盖功率的利用效率高;可以细化到楼层,不同楼层的覆盖功率可单独优化;远端体积小,便于室内布放;覆盖功率更均匀,方案设计简单,并最大限度的与现有覆盖系统兼容,保护了前期的投入。本发明所述系统可广泛使用于各种大型楼宇、机场、车站等移动信号覆盖应用场景,设备总成本和安装维护成本都大为降低,具有重大的市场价值,将是未来通信领域的关键发展方向。
附图说明
图1为本发明实施例的整体原理图。
图2为本发明实施例的组网示意图。
图3为本发明实施例的基带信号处理单元结构框图。
图4为本发明实施例的射频扩展单元结构框图。
图5为本发明实施例的射频远端单元结构框图。
具体实施方式
下面通过实施例结合实施例,对本发明的技术方案作进一步具体的说明。
本发明实施例的分布式无线信号覆盖系统由三部分组成:基带信号处理单元BU、射频扩展单元REU、射频远端单元RU。其中,基带信号处理单元BU完成业务数据到数字调制信号的调制解调。射频扩展单元REU完成数字调制信号与射频信号之间的相互转换,及射频信号到模拟光的相互转换。射频远端单元RU完成模拟光到射频信号的相互转换,及射频信号的功率放大和收发双工。因此,本发明将现有技术中的基站分为三个部分进行分布式实现,基带信号处理单元只执行基带部分处理,可视为微基站。
基带信号处理单元可以连接多个射频扩展单元,其射频扩展单元也可以连接多个射频远端单元,射频扩展单元还可以扩展数字光接口以级联射频扩展单元,射频远端单元 也可以扩展模拟光接口以级联射频远端单元,实现星型、链型等多种形态的组网,以扩展覆盖范围。
如图1所示,典型的分布式无线信号覆盖系统由基带信号处理单元100、射频扩展单元200、射频远端单元300组成。其中,基带信号处理单元也可以扩展连接多个射频扩展单元和射频远端单元,如图2中的射频扩展单元400、射频远端单元500,构成星型拓扑网络。
本发明提出,基带信号处理单元与下属各个射频扩展单元之间,采用光纤连接,其上传输数字光信号,承载数字化的业务数据和监控信息。
射频扩展单元与下属各个射频远端单元之间,采用光纤连接,其上传输模拟光信号,承载射频载波形式的业务数据和特定调制(如频移键控FSK调制)载波形式的监控信息。
其中,射频扩展单元与射频远端单元之间采用模拟光载无线电传输,射频远端单元只需进行光电转换即可恢复射频信号,无需进行数字处理和频谱搬移,降低了单元复杂度。在整个系统中,射频远端单元用量是最大的,这样可以降低整个系统投资成本和维护成本。另外,模拟光收发器的调制带宽非常宽,一般都可达到0~3GHz,覆盖了当前所有移动通信制式频段,因而系统可轻松实现各种制式的无线信号传输,并且可以在非占用频段插入监控、辅助业务等自定义载波,只需在接收端进行滤波分离即可。相对而言,采用数字光传输多种制式信号时,受采样率限制需要很高的传输速率,传输当前所有制式信号需要高达10Gbps的速率,这对数字激光器提出了极高的要求,直接提升了系统成本和复杂度。并且数字光传输的扩展灵活性较差,如需增加制式就需要调整帧格式,整个系统各个单元都需要升级。
系统的下行链路是指信号从基带信号处理单元到射频远端单元的处理过程,上行链路是指信号从射频远端单元到基带信号处理单元的处理过程。
系统的下行链路说明如下:
基带信号处理单元接入业务数据,进行解析、成帧、编码、调制后,由数字光纤收 发器通过光纤发送给射频扩展单元。射频扩展单元的数字光纤收发器接收信号,完成解调及处理后经功分单元分路,每路信号数模变换后上变频为射频信号,由模拟光收发器转换成模拟光信号,通过光纤拉远至对应的射频远端单元。射频远端单元光电转换恢复射频信号,经功率放大后通过内置或外置的天线发射出去。
上行链路说明如下:
射频远端单元接收终端发来的上行信号,经功率放大和增益控制后,由模拟激光器直接转换成模拟光信号,传递到所连接的射频扩展单元。射频扩展单元接收各路射频远端单元上传的信号,依次完成光电转换、下变频、模数转换后,将得到的各路数字信号按一定格式组帧,由数字激光器上传至基带信号处理单元。基带信号处理单元接收并解调数字光信号后,还原成业务数据,通过接口单元完成回传。
实施例中各单元具体说明如下:
1.基带信号处理单元BU
系统的基带信号处理单元,如图3所示,由业务接口单元101、基带处理单元102、数字激光器103、监控单元104和供电单元105组成。业务接口单元101连接基带处理单元102,基带处理单元102连接数字激光器103,监控单元104连接基带处理单元102。
其链路连接关系是:
业务接口单元101、基带处理单元102、数字激光器103依次连接构成下行链路;数字激光器103、基带处理单元102、业务接口单元101依次连接构成上行链路。具体实施时,上下行可采用同一条链路,采用不同的光波长。进一步地,可以设置多个数字激光器103,提供多条链路实现组网。各数字激光器103分别与基带处理单元102连接。
监控单元104实现对自身各模块单元及下属REU和RU的监控。供电单元105实现对各有源模块单元的能量供给,具体实施时根据各单元采用的芯片进行相应连接即可。
其工作原理是:
下行方向,业务接口单元101接入业务数据,解析数字化后传递给基带处理单元102。 同时监控单元104发出对射频扩展单元和射频远端单元的远程监控信息,同样送给基带处理单元102。基带处理单元102对业务、监控的组合信号进行组帧、编码及数字调制等处理,再由数字激光器103发出给各个射频扩展单元REU。
上行方向,数字激光器103接收来自各个射频扩展单元REU的上行数据,恢复数字信号给基带处理单元103,进行解调、解码、解帧后,分离出监控回传信息给监控单元104,将主数据通过业务接口单元101还原成业务数据回传。
供电单元105完成输入电源转换,为各有源模块单元提供所需工作电压。
2.射频扩展单元REU
系统的射频扩展单元,如图4所示,由数字激光器201、数字处理单元202、模数/数模转换单元203、变频单元204、合分路单元205、模拟激光器206、监控单元207、供电单元208组成。数字激光器201连接数字处理单元202,数字处理单元202连接模数/数模转换单元203,模数/数模转换单元203、变频单元204、合分路单元205和模拟激光器206依次连接,监控单元207连接数字处理单元202和合分路单元205。
其链路连接关系是:
数字激光器201、数字处理单元202、模数/数模转换单元203、变频单元204、合分路单元205和模拟激光器206依次连接构成下行链路;模拟激光器206、合分路单元205、变频单元204、模数/数模转换单元203、数字处理单元202和数字激光器201依次连接构成上行链路。具体实施时,上下行可采用同一条链路,采用不同的光波长。进一步地,可以设置多路模数/数模转换单元203、变频单元204、合分路单元205和模拟激光器206,提供多条链路。每路模数/数模转换单元203分别与数字处理单元202连接。
监控单元207实现对自身各模块单元、下属RU的监控。供电单元208实现对各有源模块单元的能量供给,具体实施时根据各单元采用的芯片进行相应连接即可。
其工作原理是:
下行方向,数字激光器201接收来自基带处理单元BU的数字光信号,转换成数字信 号传递给数字处理单元202。数字处理单元202分发各路射频远端单元RU的业务信息,同时分离出BU下发的监控信息,传给监控单元207处理。各路的模数/数模转换单元203完成数字信号的模拟化,经变频单元204上变频至射频频率并放大后,传递给合分路单元205。同时,对所属射频远端单元RU的监控信息,由监控单元207采用适合的调制方式(如FSK调制),调制成频率与主信号不同的窄带载波,也发送给合分路单元205。合分路单元205将载波合路后,由模拟激光器206直接调制成模拟光信号发送至射频远端单元RU。
上行方向,各个模拟激光器206接收上行信号并转换成电信号,经合分路单元205滤波分离。分离出的射频远端单元RU回传的监控载波,由监控单元207进行解析。分离出的射频载波经变频放大单元204放大后,下变频至数字中频。模数/数模转换单元203完成模拟信号的数字化,并传递给数字处理单元202。数字处理单元202将各路上行数字信号及监控单元206发来监控回传信号组帧后,由数字激光器201调制成光发送至基带信号处理单元BU。
供电单元208完成输入电源转换,为各有源模块单元提供所需工作电压。
3.射频远端单元RU
系统的射频远端单元,如图5所示,由模拟激光器301、合分路单元302、功率放大器303、双工器304、低噪声放大器305、增益控制单元306、监控单元307、供电单元308组成。模拟激光器301连接合分路单元302,合分路单元302经功率放大器303连接双工器304,双工器304经低噪声放大器305、增益控制单元306连接合分路单元302,监控单元307连接合分路单元302。
其链路连接关系是:
模拟激光器301、合分路单元302、功率放大器303、双工器304依次连接构成下行链路;双工器304、低噪声放大器305、增益控制单元306、合分路单元302、模拟激光器301依次连接构成上行链路。
监控单元307实现对自身各模块单元的监控。供电单元308实现对各有源模块单元的能量供给,具体实施时根据各单元采用的芯片进行相应连接即可。
其工作原理是:
下行方向,模拟激光器301将下行信号恢复成射频载波,并由合分路单元302滤波分离出业务载波和监控载波。其中监控载波分给监控单元307进行解析处理,业务载波经功率放大器303。功率放大器303提升业务载波信号电平,其输出功率等级可由监控单元307调节,实现不同的覆盖需求。放大后下行信号经过双工器304,由外置或内置天线发射出去。
上行方向,天线接收各个终端发来的上行信号,经双工器304至低噪声放大器305进行放大。增益控制单元306实现上行信号的自动增益控制,以避免各用户终端距离远近不一造成的电平差异,保证进入激光器的载波功率恒定。合分路单元302将上行主信号和监控单元307发来的监控回传信号合路,混合载波由模拟激光器301直接调制成模拟光,通过光纤回传至射频扩展单元REU。具体实施时,监控单元307可以与近端监控通信,控制远端功率及射频增益,获取监控回传信号。
供电单元208完成输入电源转换,为各有源模块单元提供所需工作电压。
需要强调的是,本发明所述的实施例是说明性的,而不是限定性的。因此本发明包括并不限于具体实施方式中所述的实施例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。

Claims (8)

  1. 一种分布式无线信号覆盖系统,其特征在于:包括基带信号处理单元、射频扩展单元和射频远端单元,基带信号处理单元与射频扩展单元之间采用数字光传输,射频扩展单元与射频远端单元直接采用模拟光载无线电传输;
    基带信号处理单元,用于完成业务数据到数字调制信号的调制解调;
    射频扩展单元,用于完成数字调制信号与射频信号之间的相互转换,及射频信号到模拟光的相互转换;
    射频远端单元,用于完成模拟光到射频信号的相互转换,及射频信号的功率放大和收发双工。
  2. 根据权利要求1所述分布式无线信号覆盖系统,其特征在于:所述基带信号处理单元包括业务接口单元101、基带处理单元102、数字激光器103和监控单元104,业务接口单元101连接基带处理单元102,基带处理单元102连接数字激光器103,监控单元104连接基带处理单元102。
  3. 根据权利要求1所述分布式无线信号覆盖系统,其特征在于:所述射频扩展单元包括数字激光器201、数字处理单元202、模数/数模转换单元203、变频单元204、合分路单元205、模拟激光器206和监控单元207,数字激光器201连接数字处理单元202,数字处理单元202连接模数/数模转换单元203,模数/数模转换单元203、变频单元204、合分路单元205和模拟激光器206依次连接,监控单元207连接数字处理单元202和合分路单元205。
  4. 根据权利要求1所述分布式无线信号覆盖系统,其特征在于:所述射频远端单元包括模拟激光器301、合分路单元302、功率放大器303、双工器304、低噪声放大器305、增益控制单元306和监控单元307,模拟激光器301连接合分路单元302,合分路单元302经功率放大器303连接双工器304,双工器304经低噪声放大器305、增益控制单元306连接合分路单元302,监控单元307连接合分路单元302。
  5. 根据权利要求1或2或3或4所述分布式无线信号覆盖系统,其特征在于:基带信号处理单元连接多个射频扩展单元。
  6. 根据权利要求1或2或3或4所述分布式无线信号覆盖系统,其特征在于:射频扩展单元连接多个射频远端单元。
  7. 根据权利要求1或2或3或4所述分布式无线信号覆盖系统,其特征在于:射频扩展单元经扩展数字光接口级联其他射频扩展单元。
  8. 根据权利要求1或2或3或4所述分布式无线信号覆盖系统,其特征在于:射频远端单元经扩展模拟光接口级联其他射频远端单元。
PCT/CN2017/107744 2016-12-08 2017-10-26 一种分布式无线信号覆盖系统 WO2018103469A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611122495.0A CN106712851B (zh) 2016-12-08 2016-12-08 一种分布式无线信号覆盖系统
CN201611122495.0 2016-12-08

Publications (1)

Publication Number Publication Date
WO2018103469A1 true WO2018103469A1 (zh) 2018-06-14

Family

ID=58936401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107744 WO2018103469A1 (zh) 2016-12-08 2017-10-26 一种分布式无线信号覆盖系统

Country Status (2)

Country Link
CN (1) CN106712851B (zh)
WO (1) WO2018103469A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109547086A (zh) * 2019-01-04 2019-03-29 浙江柏烙尼电子有限公司 一种通信有源宽带分布系统
CN110445543A (zh) * 2019-08-22 2019-11-12 和源通信(上海)股份有限公司 一种光纤中继拉远设备
CN111770506A (zh) * 2020-07-08 2020-10-13 展讯通信(上海)有限公司 近端及远端控制合路单元、近端及远端子系统和室分系统
CN111935730A (zh) * 2020-08-12 2020-11-13 深圳国人无线通信有限公司 实现分布式基站信号覆盖的方法、装置及基站网络
CN112867134A (zh) * 2020-12-31 2021-05-28 京信网络系统股份有限公司 时延配置管理系统、方法和基站
CN113727361A (zh) * 2021-08-20 2021-11-30 深圳国人无线通信有限公司 一种移动网络室内信号覆盖系统
CN114915341A (zh) * 2021-02-10 2022-08-16 中国电信股份有限公司 用于基站前传的装置、方法和介质
CN115021819A (zh) * 2022-06-06 2022-09-06 中邮科通信技术股份有限公司 一种支持mimo功能的5g光纤拉远系统及方法
WO2022227654A1 (zh) * 2021-04-29 2022-11-03 展讯通信(上海)有限公司 近端合路单元、远端合路单元及室内分布系统
WO2023202154A1 (zh) * 2022-04-22 2023-10-26 东南大学 以无线激光通信为载体的射频信号动态覆盖系统及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106712851B (zh) * 2016-12-08 2020-03-10 武汉虹信通信技术有限责任公司 一种分布式无线信号覆盖系统
CN107395283A (zh) * 2017-08-11 2017-11-24 武汉虹信通信技术有限责任公司 一种数字光纤多业务分布式基站系统
CN108847891B (zh) * 2018-05-30 2020-10-13 武汉虹信通信技术有限责任公司 一种光载无线电分布式小基站系统
CN111478731A (zh) * 2019-01-23 2020-07-31 广州开信通讯系统有限公司 通信系统和通信方法
CN110072243A (zh) * 2019-04-26 2019-07-30 嘉兴思睿通信科技有限公司 一种增强5g移动宽带覆盖场景的方法及系统
CN114172579A (zh) * 2021-12-31 2022-03-11 京信网络系统股份有限公司 基站及通信系统
CN114389657B (zh) * 2022-02-15 2023-02-28 赛特斯信息科技股份有限公司 基于多基带合并宏分集的多rru小区无线网络
CN114463869B (zh) * 2022-02-16 2024-03-22 深圳市金溢科技股份有限公司 一种电子不停车多制式系统及其工作方法
CN115882921B (zh) * 2023-02-23 2023-06-13 深圳国人无线通信有限公司 一种基站移频系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101321010A (zh) * 2008-03-07 2008-12-10 深圳国人通信有限公司 一种数字覆盖方法及系统
CN101868054A (zh) * 2010-05-07 2010-10-20 武汉邮电科学研究院 一种改进型分布式基站架构及实现方法
CN103475613A (zh) * 2012-06-06 2013-12-25 中兴通讯股份有限公司 一种信号发送和接收方法及相关设备
JP2014090240A (ja) * 2012-10-29 2014-05-15 Nippon Telegr & Teleph Corp <Ntt> 分散型無線通信基地局システム、信号処理装置、無線装置、及び分散型無線通信基地局システムの動作方法
CN105490743A (zh) * 2014-09-16 2016-04-13 中国移动通信集团公司 链路信号的处理方法、基带处理装置和射频拉远装置
CN106712851A (zh) * 2016-12-08 2017-05-24 武汉虹信通信技术有限责任公司 一种分布式无线信号覆盖系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101539914B1 (ko) * 2013-10-25 2015-07-28 주식회사 에이디알에프코리아 멀티밴드, 멀티캐리어를 지원하는 Optic DAS
CN104716997B (zh) * 2013-12-12 2018-11-23 上海诺基亚贝尔股份有限公司 分布式天线系统及其信号处理方法
CN104486771B (zh) * 2014-12-16 2017-12-08 福建师范大学 一种lte双通道数字光纤拉远入户覆盖方法
CN105743582A (zh) * 2016-01-28 2016-07-06 武汉虹信通信技术有限责任公司 一种多业务接入的数模混合组网全光分布式系统
CN105933066B (zh) * 2016-06-14 2018-11-02 中邮科通信技术股份有限公司 一种数字光纤拉远多介质传输入户覆盖系统
CN106209240B (zh) * 2016-07-08 2019-01-18 武汉虹信通信技术有限责任公司 一种新型多模光纤分布系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101321010A (zh) * 2008-03-07 2008-12-10 深圳国人通信有限公司 一种数字覆盖方法及系统
CN101868054A (zh) * 2010-05-07 2010-10-20 武汉邮电科学研究院 一种改进型分布式基站架构及实现方法
CN103475613A (zh) * 2012-06-06 2013-12-25 中兴通讯股份有限公司 一种信号发送和接收方法及相关设备
JP2014090240A (ja) * 2012-10-29 2014-05-15 Nippon Telegr & Teleph Corp <Ntt> 分散型無線通信基地局システム、信号処理装置、無線装置、及び分散型無線通信基地局システムの動作方法
CN105490743A (zh) * 2014-09-16 2016-04-13 中国移动通信集团公司 链路信号的处理方法、基带处理装置和射频拉远装置
CN106712851A (zh) * 2016-12-08 2017-05-24 武汉虹信通信技术有限责任公司 一种分布式无线信号覆盖系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109547086A (zh) * 2019-01-04 2019-03-29 浙江柏烙尼电子有限公司 一种通信有源宽带分布系统
CN110445543A (zh) * 2019-08-22 2019-11-12 和源通信(上海)股份有限公司 一种光纤中继拉远设备
CN111770506A (zh) * 2020-07-08 2020-10-13 展讯通信(上海)有限公司 近端及远端控制合路单元、近端及远端子系统和室分系统
CN111935730A (zh) * 2020-08-12 2020-11-13 深圳国人无线通信有限公司 实现分布式基站信号覆盖的方法、装置及基站网络
CN112867134A (zh) * 2020-12-31 2021-05-28 京信网络系统股份有限公司 时延配置管理系统、方法和基站
CN114915341A (zh) * 2021-02-10 2022-08-16 中国电信股份有限公司 用于基站前传的装置、方法和介质
WO2022227654A1 (zh) * 2021-04-29 2022-11-03 展讯通信(上海)有限公司 近端合路单元、远端合路单元及室内分布系统
CN113727361A (zh) * 2021-08-20 2021-11-30 深圳国人无线通信有限公司 一种移动网络室内信号覆盖系统
WO2023202154A1 (zh) * 2022-04-22 2023-10-26 东南大学 以无线激光通信为载体的射频信号动态覆盖系统及方法
CN115021819A (zh) * 2022-06-06 2022-09-06 中邮科通信技术股份有限公司 一种支持mimo功能的5g光纤拉远系统及方法
CN115021819B (zh) * 2022-06-06 2024-02-23 中邮科通信技术股份有限公司 一种支持mimo功能的5g光纤拉远系统及方法

Also Published As

Publication number Publication date
CN106712851B (zh) 2020-03-10
CN106712851A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2018103469A1 (zh) 一种分布式无线信号覆盖系统
CN108847891B (zh) 一种光载无线电分布式小基站系统
EP2953283B1 (en) Method, apparatus, and radio remote unit for transmitting wireless base band data
CN103379674B (zh) 一种支持多信源接入的多模数字das系统
US20070019959A1 (en) Apparatus and method for transferring signals between a fiber network and a wireless network antenna
CN211830769U (zh) 一种5g变频光分布系统
CN103401612B (zh) 基于ftth网络的光纤和无线混合接入系统及混合接入方法
WO2012092810A1 (zh) 多模数字射频拉远系统
WO2022218030A1 (zh) 一种远端装置及5g分布式系统
KR102116539B1 (ko) 원격 무선 장비
CN103401598A (zh) 一种新型的多网融合室内分布系统
CN105406925B (zh) 多频段数字光纤分布式天线系统
WO2021109203A1 (zh) 一种5g信号射频分布系统
CN203387508U (zh) 新型的多网融合室内分布系统
CN102307064A (zh) 一种基于移频的多制式模拟光纤宽带接入系统及其传输方法
CN102281109A (zh) 一种多系统光端机光纤接入系统
KR101575036B1 (ko) 분리형 기지국 간의 전송 효율이 개선된 프론트홀 시스템 및 그 장비
CN203387690U (zh) 支持多信源接入的多模数字das系统
CN107343328B (zh) 一种分布式基站系统
CN102523049A (zh) 一种基于ftth的综合宽带入户系统及其信号传输方法
CN103647846A (zh) 数字多点分布系统及其传输处理方法
WO2017049829A1 (zh) 一种多信源接入方法及系统
CN110875777A (zh) 一种多频多制式分布式接入系统
WO2021115234A1 (zh) 中心单元和拉远单元
CN203608230U (zh) 数字多点分布系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/11/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17878623

Country of ref document: EP

Kind code of ref document: A1