WO2013060209A1 - 一种测试系统和移动通讯终端的天线调试方法 - Google Patents

一种测试系统和移动通讯终端的天线调试方法 Download PDF

Info

Publication number
WO2013060209A1
WO2013060209A1 PCT/CN2012/081609 CN2012081609W WO2013060209A1 WO 2013060209 A1 WO2013060209 A1 WO 2013060209A1 CN 2012081609 W CN2012081609 W CN 2012081609W WO 2013060209 A1 WO2013060209 A1 WO 2013060209A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
matching
matching network
load characteristic
source
Prior art date
Application number
PCT/CN2012/081609
Other languages
English (en)
French (fr)
Inventor
白剑
Original Assignee
惠州Tcl移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州Tcl移动通信有限公司 filed Critical 惠州Tcl移动通信有限公司
Publication of WO2013060209A1 publication Critical patent/WO2013060209A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • H04B17/0085Monitoring; Testing using service channels; using auxiliary channels using test signal generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase

Definitions

  • the present invention relates to the field of mobile communication terminals, and in particular to a test system and an antenna debugging method for a mobile communication terminal.
  • mobile communication terminals are developing in the direction of small size, lightness and multi-mode, and more and more frequency bands are used.
  • it is necessary to debug the antennas of mobile communication terminals. It can operate at a preferred power output position corresponding to multiple frequency bands, respectively.
  • 2G corresponds to GSM (Global System of Mobile communication, Global System for Mobile Communications (CDMA) technology or CDMA (Code Division Multiple) Access, code division multiple access) technology
  • 3G corresponds to WCDMA (Wideband Code Division Multiple Access, Wideband Code Division Multiple Access () technology
  • 2G (2rd-generation, second-generation mobile communication technology) and 3G/4G transmission sources ie, power amplifiers
  • GSM850 And WCDMA BC5 its wireless signal transmission frequency is 824MHz ⁇ 849MHz
  • the same antenna is used, but the antenna index TRP (Total Radiated) Power) is not the same.
  • FIG. 1 is a schematic diagram of a debugging point of an antenna debugging method of a mobile communication terminal in the prior art.
  • the radio frame of a typical WCDMA+GSM dual-mode terminal is as shown in FIG. 1 , which mainly includes an antenna 95 and an antenna switch.
  • ASM Antenna
  • the module 30 is a two signal receiving branch for receiving the radio frequency signal acquired by the antenna 95 and gated by the antenna switch module 90, and the transceiver 10 acquires the GSM980/850 RX through the port 1011 and the port 1012.
  • the RF signal processed by the SAW module 20 acquires the RF signal processed by the DCS/PCS RX SAW module 30 through the port 1013 and the port 1014.
  • GSM HB PA GSM High Band Power Amplifier, GSM high band power amplifier
  • HB MN High Band Match Network, high-band matching network 41
  • the transceiver 10 transmits the GSM high-band signal sent through the port 1015 to the GSM HB PA 40 and the HB MN.
  • the GSM high-band signal is subjected to power amplification and network matching processing, and the processed GSM high-band signal is gated by the antenna switch module 90 and then transmitted by the antenna 95.
  • GSM LB PA GSM Low Band Power Amplifier, GSM Low Band Power Amplifier
  • LB MN Low Band Match
  • Low-band matching network 51 is another GSM signal transmission branch, and the transceiver 10 transmits the GSM low-band signal sent through the port 1016 to the GSM LB PA 50 and the LB MN.
  • 51, GSM HB PA 50 and HB MN 51 respectively performs power amplification and network matching processing on the GSM low-band signal, and the processed GSM low-band signal is gated by the antenna switch module 90 and then transmitted by the antenna 95.
  • WCDMA BC1 PA WCDMA Band 1 Power Amplifier 60, W MN1 (WCDMA Matching Network) 61, Duplexer 62 and DPX MN (Duplexer Match) Network, duplexer matching network) 63 is a WCDMA signal transmitting/receiving branch for transmitting or receiving the WCDMA band 1 signal, wherein the transceiver 10 transmits the band 1 signal through the port 1019, WCDMA.
  • BC1 PA 60, W MN1 61 and DPX MN 63 respectively performs power amplification and network matching processing on the frequency band 1 signal, and the processed frequency band 1 signal is gated by the antenna switch module 90 and then transmitted by the antenna 95.
  • the duplexer 62 can be used to select a path such that the band 1 signal that the transceiver 10 can transmit through the port 1019 is transmitted via the antenna 95, or the corresponding WCDMA signal can be acquired from the antenna 95 through the port 1017.
  • the transceiver 10 generates the WCDMA band 2 signal and the band 5 signal through the port 1022 and the port 1023, respectively, and obtains the band 2 signal and the band 5 signal received by the antenna 95 from the outside through the port 1017 and the port 1018, respectively, therefore, the port 1022 And the port 1023 respectively correspond to two WCDMA signal transmission branches, and respectively correspond to two WCDMA signal receiving branches through the port 1017 and the port 1018, wherein the WCDMA signal transmission/reception branch and the above-mentioned frequency band 1 signal correspond to the WCDMA signal transmission.
  • the architecture of the receiving branch is exactly the same and will not be described here.
  • an RF signal connector is further disposed between the antenna and the antenna switch module 90.
  • the RF frames of other dual-mode or multi-mode terminals such as CDMA2000+GSM or LTE+WCDMA+GSM are similar. As long as they are the same frequency band, but the system is different, the RF signal will be transmitted from different sources and merged to the antenna through the antenna switch.
  • the prior art antenna debugging method is generally divided into two steps. First, passive debugging is performed, that is, an optional position (such as the end point 93) and an RF between the antenna switch module 90 and the antenna matching network 94. One end of the cable (RF line) is soldered, and then the other end of the RF line is connected to a vector network analyzer (VNA, Vector Network Analyzer). The shape of the antenna 95 and the antenna matching network 94 are debugged according to the load characteristics measured by the vector network analyzer, so that the resonant frequency band and bandwidth of the antenna 95 meet the requirements. Generally, under the premise of passive, the parameters measured by the vector network analyzer include the reflection coefficient of the antenna (S11), and the voltage standing wave ratio (VSWR, Voltage). Standing Wave Ratio), antenna efficiency, antenna load, and more.
  • VNA Vector Network Analyzer
  • FIG. 2 is a load characteristic diagram of the WCDMA BC5 PA 80 of the mobile communication terminal in FIG. 1, as shown in FIG. 2, based on WCDMA BC5 PA. 80 inherent characteristics, when the antenna load measured at the output of WCDMA BC5 PA 80 is in the third quadrant of the Smith chart, WCDMA BC5 PA 80 can output the best power
  • FIG. 3 is a WCDMA BC5 PA of the mobile communication terminal after the antenna debugging method of the prior art mobile communication terminal.
  • the antenna impedance characteristic curve of 80 since the prior art only tests on the end point 93, the adjustment according to the test result does not make the WCDMA BC5 PA 80 works in the best position, so the antenna impedance characteristic curve shown in Figure 3 is not in the optimal position shown in Figure 2, so the TRP in the test result (Total Radiated Power, antenna indicator) parameters can not meet the requirements.
  • FIG. 4 is a VSWR of the antenna 95 after using the antenna debugging method of the mobile communication terminal of the prior art.
  • Standing Wave Ratio voltage standing wave ratio
  • the terminal shown in Figure 1 supports both GSM850 (corresponding to the branch where GSM LB PA50 is located) and WCDMA BC5 (corresponds to WCDMA BC5 PA 60 branches are in the two systems, the working frequency band is 824MHz-849MHz, as shown in Table 1, in the case of using the same antenna 95, GSM850 TRP performance is very good, and WCDMA performance is poor.
  • the existing method can only improve the performance of the antenna 95 (such as pulling the antenna 95 to the low frequency) to forcibly increase the TRP of the Band 5. But in this way, the GSM850 TRP will be very high, bringing Specific Absorption Rate (SAR, Specific Absorption Rate) and Bearing Aids Compatibility (HAC, hearing aid compatibility) issue. At the same time, the antenna is biased to the low frequency, and its high frequency performance will decrease. This is a contradiction.
  • the present invention provides a test system and an antenna debugging method of a mobile communication terminal to obtain antenna performance matched with each system and each frequency band.
  • a technical solution adopted by the present invention is to provide an antenna debugging method for a mobile communication terminal, wherein in the mobile communication terminal, the first transmitting source is connected to the antenna switch via the first matching network, and the second transmitting The source is connected to the antenna switch via the second matching network, and the antenna switch is connected to the antenna via the antenna matching network.
  • the antenna debugging method comprises: connecting the output end of the first transmitting source to the vector network analyzer, and testing the first transmitting source by using the vector network analyzer.
  • a first load characteristic between the output end and the antenna acquiring a load characteristic map of the first transmission source, and determining an optimal power output position on the load characteristic map, adjusting a matching value of the first matching network to make the first transmitting source work At an optimal power output position; connecting the output of the second source to the vector network analyzer, testing the second load characteristic of the output of the second source to the antenna using a vector network analyzer; acquiring the second emission The load characteristic map of the source, and determine the optimal power output position on the load characteristic map, and adjust the second matching network With values such that the second transmission source in the optimum power output the working position.
  • a technical solution adopted by the present invention is to provide an antenna debugging method for a mobile communication terminal, wherein in the mobile communication terminal, the first transmitting source is connected to the antenna switch via the first matching network, and the second transmitting The source is connected to the antenna switch via the second matching network, and the antenna switch is connected to the antenna via the antenna matching network.
  • the antenna debugging method comprises: connecting the output end of the first transmitting source to the vector network analyzer, and testing the first transmitting source by using the vector network analyzer. The first load characteristic between the output end and the antenna; adjusting the matching value of the first matching network according to the first load characteristic.
  • the step of adjusting the matching value of the first matching network according to the first load characteristic acquiring a load characteristic map of the first transmitting source, determining an optimal power output position on the load characteristic map, and adjusting a matching of the first matching network
  • the value is such that the first source operates at the optimal power output position.
  • the method of adjusting the matching value of the first matching network in the step of adjusting the matching value of the first matching network according to the first load characteristic is performing series inductance, series capacitance, parallel inductance or parallel capacitance processing on the first matching network.
  • the antenna debugging method further includes: connecting the output end of the second transmitting source to the vector network analyzer, and testing the second load characteristic between the output end of the second transmitting source and the antenna by using the vector network analyzer; according to the second load The feature adjusts the matching value of the second matching network.
  • step of adjusting the matching value of the second matching network according to the second load characteristic acquiring a load characteristic map of the second transmitting source, determining an optimal power output position on the load characteristic map, and adjusting a matching of the second matching network The value is such that the second source operates at the optimal power output position.
  • the method for adjusting the matching value of the second matching network is to perform series inductance, series capacitance, parallel inductance or parallel capacitance processing on the second matching network.
  • the first source is a first power amplifier and the second source is a second power amplifier.
  • the signal output by the first transmitting source is a WCDMA signal
  • the signal output by the second transmitting source is a GSM signal.
  • the present invention further provides a test system, including:
  • a mobile communication terminal comprising: a first transmitting source, a first matching network, a second transmitting source, a second matching network, an antenna matching network, an antenna switch, and an antenna, wherein the first transmitting source is connected to the antenna switch via the first matching network, and the second transmitting The source is connected to the antenna switch via the second matching network, and the antenna switch is connected to the antenna via the antenna matching network;
  • the output of the first transmission source is connected to a vector network analyzer, and the vector network analyzer tests the first load characteristic between the output end of the first transmission source and the antenna, wherein the matching value of the first matching network Adjust according to the first load characteristics.
  • the output end of the second transmitting source is connected to the vector network analyzer, and the second load characteristic between the output end of the second transmitting source and the antenna is tested by using a vector network analyzer, wherein the matching value of the second matching network is according to the Two load characteristics are adjusted.
  • the technical solution provided by the present invention connects the output end of the first transmitting source to the vector network analyzer, and uses the vector network analyzer to correspond to a single frequency band or mode.
  • the antenna performs a load characteristic test to obtain a load characteristic between the output end of the first transmission source and the antenna for a single frequency band or mode, and adjusts the first matching network corresponding to the first transmission source according to the load characteristic, so that the first The source is matched to the antenna to obtain the antenna performance that best matches the first source, thereby optimizing the performance of the antenna.
  • FIG. 1 is a schematic diagram of a debugging point of an antenna debugging method of a mobile communication terminal of the prior art
  • FIG. 2 is a load characteristic diagram of a WCDMA BC5 PA 80 of the mobile communication terminal of FIG. 1;
  • 3 is a VSWR curve of the antenna 95 after the antenna debugging method of the mobile communication terminal of the prior art
  • FIG. 5 is a schematic diagram of a debugging point of an antenna debugging method of a mobile communication terminal according to a preferred embodiment of the present invention.
  • FIG. 6 is a flowchart of an antenna debugging method of a mobile communication terminal according to a preferred embodiment of the present invention.
  • FIG. 7 is a WCDMA BC5 PA of a mobile communication terminal using an antenna debugging method of a mobile communication terminal according to a preferred embodiment of the present invention. 80 antenna impedance characteristic curve;
  • Figure 8 is a VSWR curve of the antenna 95 after the antenna debugging method of the mobile communication terminal according to a preferred embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a debugging point of an antenna debugging method of a mobile communication terminal according to a preferred embodiment of the present invention.
  • a mobile communication terminal structure and a diagram are used. The same is true, which is a radio frequency frame of a typical WCDMA+GSM dual mode terminal.
  • GSM HB PA 40 GSM LB PA 50, WCDMA BC1 PA, respectively.
  • 60 WCDMA BC2 PA 70 or WCDMA BC5 PA
  • the end point 43, the end point 53, the end point 64, the end point 74 or the end point 84 of the power amplifier output of the 80 is used as a solder joint to one end of the RF line, and the other end of the RF line is connected to the vector network analyzer, thereby utilizing the vector network Analyzer directly obtains GSM HB PA 40, GSM LB PA 50, WCDMA BC1 PA 60, WCDMA BC2 PA 70 or WCDMA BC5 PA
  • Corresponding parameters of the output of the power amplifier such as 80 including: reflection coefficient of the antenna (S11), voltage standing wave ratio (VSWR, Voltage Standing Wave) Ratio), antenna efficiency, etc.
  • the vector network analyzer tests the reflection coefficient (S11) of the antenna between the output end of the first transmission source and the antenna 95, and the voltage standing wave ratio (VSWR, Voltage) Standing Wave Ratio), antenna efficiency, antenna load and other parameters, wherein the antenna load is the first load characteristic of the antenna between the output of the first source and the antenna 95.
  • HB MN 41 can be used as GSM HB PA.
  • WNM1 61, duplexer 62 and DPX MN 63 can be used as a matching network between WCDMA BC1 PA 60 and antenna 95;
  • WNM1 71, duplexer 72 and DPX MN 73 can be used as a matching network between WCDMA BC2 PA 70 and antenna 95;
  • the WNM1 81, the duplexer 82, and the DPX MN 83 can serve as a matching network between the WCDMA BC5 PA 80 and the antenna 95.
  • the matching value of the first matching network is adjusted according to the measured first load characteristic, where the first matching network is a matching network corresponding to the first transmitting source, for example, the first transmitting source is WCDMA.
  • the first matching network is WNM1 81, duplexer 82, and DPX MN 83.
  • the adjustment method is as follows: after obtaining the first load characteristic, obtaining a load characteristic diagram of the first transmission source (as shown in FIG. 2, which is a WCDMA BC5 PA).
  • the load characteristic map of 80 determine the optimal power output position of the first source on the load characteristic map, where, in the case of WCDMA BC5 PA 80, when in WCDMA BC5 PA
  • the antenna load measured at the output of 80 is in the third quadrant of the Smith chart, WCDMA BC5 PA 80 can output the best power.
  • the matching value of the first matching network can be adjusted such that the first transmitting source operates at the optimal power output position (ie, the third quadrant of the Smith chart).
  • the method for adjusting the matching value of the first matching network is to perform series inductance, series capacitance, parallel inductance or parallel capacitance processing on the first matching network, wherein the series capacitance can cause the antenna load to move downward along the equal resistance circle.
  • the shunt inductance allows the antenna load to move up the equal conductance circle, which allows the antenna load to move down the equal conductance circle.
  • WCDMA BC5 PA 80 is used as the first source, and its corresponding first matching network is WNM1 81, duplexer 82 and DPX MN 83, and one end of the RF line is connected to WCDMA BC5 PA.
  • the output of 80 is connected (endpoint 94), the other end of the RF line is connected to the vector network analyzer, and the WCDMA BC5 PA can be obtained from the vector network analyzer.
  • the antenna load between the 80 and the antenna 95 that is, the first load characteristic, obtains the load characteristic diagram of the WCDMA BC5 PA 80 (ie, FIG. 2), and judges the WCDMA BC5 PA on the load characteristic map.
  • the best power output position for 80 where the WCDMA BC5 PA is measured when the antenna load measured at the output of the WCDMA BC5 PA 80 is in the third quadrant of the Smith chart.
  • the 80 can output the best power.
  • the antenna load measured by the vector network analyzer can be adjusted by adjusting the first matching network.
  • the adjustment method is: in W MN3 81 or DPX MN 83 series inductance causes the antenna load to move up the equal resistance circle shown in Figure 2; at W MN3 81 or DPX MN The series capacitor of 83 causes the antenna load to move downward along the equal resistance circle shown in Figure 2; the shunt inductance at W MN3 81 or DPX MN 83 causes the antenna load to move up the equal conductance circle shown in Figure 2; at W MN3 The 81 or DPX MN 83 shunt capacitor causes the antenna load to move down the equal conductance circle shown in Figure 2.
  • series inductance, series capacitance, shunt inductance and parallel capacitance can be performed in HB MN 41, LB MN 51, W MN1 61.
  • DPX MN 63, W MN1 71, DPX MN 73, W MN1 81 or DPX MN83 are performed to adjust the matching value of the corresponding matching network.
  • FIG. 6 is a flowchart of a method for debugging an antenna of a mobile communication terminal according to a preferred embodiment of the present invention.
  • the antenna debugging method of the mobile communication terminal of the present invention includes the following steps:
  • Step 101 Connect the output end of the first transmission source to the vector network analyzer, and test the first load characteristic between the output end of the first transmission source and the antenna by using a vector network analyzer.
  • the first source is the first power amplifier.
  • the signal output by the first transmission source may be a WCDMA signal or a GSM signal.
  • the first transmission source described herein may be GSM HB PA 40, GSM LB PA 50, WCDMA BC1 PA 60, WCDMA BC2 PA 70 or WCDMA BC5 PA 80, which can be selected according to the actual frequency band to be tested.
  • Vector network analyzer directly obtains GSM HB PA 40, GSM LB PA 50, WCDMA BC1 PA 60, WCDMA BC2 PA 70 or WCDMA BC5 PA The first load characteristic between the output of 80 and the antenna.
  • Step 102 Adjust a matching value of the first matching network according to the first load characteristic.
  • the load characteristic map of the first transmission source may be further acquired (where the load characteristic map of the first transmission source may be provided by the manufacturer of the first transmission source, or may pass Obtained by many experiments, which is a prior art, which is not described herein, and determines the optimal power output position of the first transmitting source on the load characteristic map, and adjusts the matching value of the first matching network to make the first transmitting source work. At the best power output position.
  • the method for adjusting the matching value of the first matching network is to perform series inductance, series capacitance, parallel inductance or parallel capacitance processing on the first matching network, wherein the series capacitance can cause the antenna load to move downward along the equal resistance circle.
  • the shunt inductance allows the antenna load to move up the equal conductance circle, which allows the antenna load to move down the equal conductance circle.
  • FIG. 7 is a WCDMA mobile communication terminal after using an antenna debugging method of a mobile communication terminal according to a preferred embodiment of the present invention.
  • BC5 PA The antenna impedance characteristic curve of 80 can be seen from Fig. 7.
  • the antenna load converges to the third quadrant, which satisfies the load characteristic requirements of the power amplifier.
  • this debugging method and GSM and other WCDMA The band has no relationship and does not affect the antenna performance of these bands.
  • Table 2 The actual test results are shown in Table 2:
  • FIG. 8 is a VSWR curve of the antenna 95 after the antenna debugging method of the mobile communication terminal according to a preferred embodiment of the present invention. As can be seen from FIG. 8, it is compared with the prior art shown in FIG. In the VSWR curve, after the antenna debugging method of the present invention, the jitter of the VSWR curve of the antenna 95 is significantly suppressed.
  • another power amplifier may be selected as the second transmission source.
  • the first transmission source is connected to the antenna switch via the first matching network
  • the second transmission source is connected to the antenna switch via the second matching network.
  • the antenna switch is connected to the antenna via the antenna matching network
  • the output end of the second transmitting source is connected to the vector network analyzer, and the second load characteristic between the output end of the second transmitting source and the antenna is tested by the vector network analyzer, and according to the The second load characteristic adjusts the matching value of the second matching network.
  • the second transmitting source may be a second power amplifier, and specifically may be a GSM other than the first transmitting source.
  • the signal output by the first transmission source may be a WCDMA signal or a GSM signal.
  • a plurality of transmitting sources such as a third transmitting source, a fourth transmitting source, and the like may be used (the number of transmitting sources depends on the setting mode of the mobile communication terminal, which corresponds to GSM HB PA 40, GSM LB PA 50, WCDMA BC1 PA 60, WCDMA BC2 PA 70 and WCDMA BC5 PA
  • the 80 power amplifiers are sequentially connected to the vector network analyzer to adjust the matching values of the matching networks between each of the transmitting sources and the antennas, respectively.
  • the load characteristic map of the second transmitting source may be acquired, and the optimal power output position on the load characteristic map is determined, and the matching value of the second matching network is adjusted.
  • the method of adjusting the matching value of the second matching network is to perform series inductance, series capacitance, parallel inductance or parallel capacitance processing on the second matching network.
  • the step of adjusting the matching value of the matching network according to the load characteristics obtained from the output ends of the plurality of transmitting sources, such as the third transmitting source and the fourth transmitting source is the same as the above, and is not described herein.
  • the mobile communication terminal in this embodiment supports both GSM850 and WCDMA.
  • the BC5 is available in two modes with a working frequency range of 824MHz-849MHz.
  • the TRP performance of the GSM850 is very good, and the performance of the WCDMA is poor. Therefore, the antenna is debugged in the branch where the WCDMA is located, so as to improve the TRP performance corresponding to WCDMA without affecting the TRP performance corresponding to the GSM850.
  • the matching network and device between the power amplifier and the antenna switch (which may be, but not limited to, a duplexer) are also included in the debugging process, and will include but not limited to 2G, 3G and 4G standards.
  • the antennas of the signal transmitting branches are passively debugged separately, each starting from the output of the power amplifier of each transmitting branch.
  • the antenna performance debugging tools can be obtained by using the RF matching of these branches.
  • the RF and antenna performance of the branch is optimized without affecting the RF and antenna performance of other paths.
  • the matching network originally used for conduction debugs the antenna.
  • the antenna is passively debugged and the welding point of the RF line is changed from the existing antenna switch to the output of the power amplifier.
  • the technical solution provided by the present invention can also be applied to other similar dual-mode or multi-mode terminals, such as a radio frequency frame of terminals such as CDMA2000+GSM or LTE+WCDMA+GSM.
  • the present invention further provides a test system including a mobile communication terminal and a vector network analyzer (not shown), wherein the mobile communication terminal includes a first transmission source (not labeled), first a matching network (not labeled), a second source (not labeled), a second matching network (not labeled), an antenna matching network 94, an antenna switch 90, and an antenna 95, the first source connecting the antenna switch 90 via the first matching network
  • the second transmitting source is connected to the antenna switch 90 via the second matching network
  • the antenna switch 90 is connected to the antenna 95 via the antenna matching network 94.
  • the output of the first transmission source is coupled to a vector network analyzer that tests a first load characteristic between the output of the first transmission source and the antenna 95, wherein the matching value of the first matching network is based on the first load Feature adjustment.
  • the output end of the second transmitting source is connected to the vector network analyzer, and the second load characteristic between the output end of the second transmitting source and the antenna 95 is tested by using a vector network analyzer, wherein the matching value of the second matching network is based on The second load characteristic is adjusted.
  • the power amplifiers of different standards can be matched with the antennas by adjusting the antenna loads of the branches of the power amplifiers of different standards.
  • the technical solution provided by the present invention connects the output end of the first transmitting source to the vector network analyzer, and performs a load characteristic test on the antenna corresponding to the single frequency band or the mode by using the vector network analyzer to obtain a single frequency band or mode.
  • the present invention proposes an antenna debugging method suitable for a multi-mode multi-band wireless communication terminal, by which the antenna performance optimal for each system and each frequency band can be more easily obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Transceivers (AREA)

Abstract

本发明公开了一种移动通讯终端的天线调试方法,其中,在该移动通讯终端中,第一发射源经第一匹配网络连接天线开关,第二发射源经第二匹配网络连接该天线开关,天线开关经天线匹配网络连接天线,该天线调试方法包括:将第一发射源的输出端连接至矢量网络分析仪,利用矢量网络分析仪测试第一发射源的输出端至天线之间的第一负载特性,根据该第一负载特性调整该第一匹配网络的匹配值。本发明进一步公开一种测试系统。通过上述公开内容,本发明所提供的技术方案可获得与各个制式和各个频段均匹配的天线性能。

Description

一种测试系统和移动通讯终端的天线调试方法
【技术领域】
本发明涉及移动通讯终端领域,特别是涉及一种测试系统和移动通讯终端的天线调试方法。
【背景技术】
随着技术的发展,移动通讯终端往小巧轻薄及多模化方向发展,其所使用的频段越来越多,而在设计移动通讯终端的过程中,需要对移动通讯终端的天线进行调试,使其能分别对应于多个频段工作在较佳功率输出位置上。
现在的移动通讯终端支持的频段越来越多,同时也向着小巧轻薄方向发展,给天线设计带来更大的挑战。与此同时,为了提升用户体验,增大网络容量和效率,运营商和用户对移动通讯终端的天线性能要求也越来越高。在上述两方面的要求的夹击下,移动通讯终端的天线设计日益艰难。
现有的移动通讯终端的天线调试方法,做无源调试往往选择在天线控制开关输出口作为网络分析仪的连接接口进行调试。这种方法对于4G/3G(3rd-generation/4rd-generation,第三代移动通信技术/第四代移动通信技术)通路来说,略过了功率放大器(PA,Power Amplifier)以及双工器(Duplexer)等器件的匹配过程,是一个不准确的方法。一般而言2G对应于GSM(Global System of Mobile communication,全球移动通讯系统)技术或CDMA(Code Division Multiple Access,码分多址)技术,3G对应于WCDMA(Wideband Code Division Multiple Access,宽带码分多址)技术,由于2G(2rd-generation,第二代移动通信技术)和3G/4G的发射源(即功率放大器)是不同的,因此很容易出现相同的工作频段例如GSM850和WCDMA BC5(其无线信号发射频率都是824MHz~849MHz),所采用的天线相同,但是天线指标TRP(Total Radiated Power)却不一样的情况。
请参考图1,图1为现有技术的移动通讯终端的天线调试方法的调试点示意图,一个典型的WCDMA+GSM双模终端的射频框架如下图1所示,其主要包括天线95、天线开关模组(ASM,Antenna Switch Module)90、收发器10、多个信号接收支路以及多个信号发射支路。
GSM980/850 RX SAW模块20和DCS/PCS RX SAW 模块30为两个信号接收支路,用于接收天线95获取且被天线开关模组90选通的射频信号,而收发器10通过端口1011和端口1012获取经GSM980/850 RX SAW模块20处理的射频信号,通过端口1013和端口1014获取经DCS/PCS RX SAW 模块30处理的射频信号。
GSM HB PA(GSM High Band Power Amplifier,GSM高频段功率放大器)40和HB MN(High Band Match Network,高频段匹配网络)41为一个GSM信号发射支路,收发器10通过端口1015发出的GSM高频段信号发送至GSM HB PA 40和HB MN 41,GSM HB PA 40和HB MN 41分别对GSM高频段信号进行功率放大以及网络匹配处理,经处理后的GSM高频段信号经天线开关模组90选通后由天线95发送出去。
而GSM LB PA(GSM Low Band Power Amplifier,GSM低频段功率放大器)50和LB MN(Low Band Match Network,低频段匹配网络)51为另一个GSM信号发射支路,收发器10通过端口1016发出的GSM低频段信号发送至GSM LB PA 50和LB MN 51,GSM HB PA 50和HB MN 51分别对GSM低频段信号进行功率放大以及网络匹配处理,经处理后的GSM低频段信号经天线开关模组90选通后由天线95发送出去。
并且,WCDMA BC1 PA(WCDMA 频段1功率放大器)60、W MN1(WCDMA匹配网络)61、双工器62以及DPX MN(Duplexer Match Network,双工器匹配网络)63为一个WCDMA信号发射/接收支路,用于发射或接收WCDMA的频段1信号,其中,收发器10通过端口1019发出频段1信号,WCDMA BC1 PA 60、W MN1 61以及DPX MN 63分别对频段1信号进行功率放大以及网络匹配处理,经处理后的频段1信号经天线开关模组90选通后由天线95发射出去。其中,双工器62可用于选择通路,使得收发器10可通过端口1019发出的频段1信号经由天线95发射出去,或可通过端口1017从天线95获取对应的WCDMA信号。
同样地,收发器10通过端口1022和端口1023分别产生WCDMA的频段2信号和频段5信号,通过端口1017和端口1018分别获取天线95从外界接收的频段2信号和频段5信号,因此,端口1022和端口1023分别对应两个WCDMA信号发射支路,通过端口1017和端口1018分别对应两个WCDMA信号接收支路,其中上述的WCDMA信号发射/接收支路与上述的频段1信号对应的WCDMA信号发射/接收支路的架构完全一致,于此不作赘述。
另外,在天线与天线开关模组90之间更设置有射频信号连接器(RF Connector)92和天线匹配网络(ANT MN,Antenna Match Network)94,分别用于耦合多个来自不同信源的信号以及对该信号进行天线匹配。
从图1可以看到GSM信号和WCDMA信号是通过不同支路的,最终均通过天线开关模组90将所有的信号输出连接到天线95上。因此,即使信号的工作频段相同(例如GSM850和WCDMA BC5发射都工作在824-849MHz,或者GSM1900和WCDMA BC2发射都工作在1850-1910MHz),而且也使用同一支天线95进行发射,但是由于其信号不一样,因此其发射源(可理解为各支路中设置的功率放大器)都是不同的。
同样地,其他双模或多模终端如CDMA2000+GSM或者LTE+WCDMA+GSM等终端的射频框架也是类似。只要是相同频段,但是制式不同,其射频信号就会从不同的发射源发射出来,经过天线开关汇合到天线上。
现有技术的天线调试方法一般分为两步,首先会进行无源调试,即在天线开关模组90和天线匹配网络94之间任选一位置(如端点93)与一根RF cable(射频线)的一端焊接,然后将该射频线的另一端连接到矢量网络分析仪(VNA,Vector Network Analyzer)上。根据矢量网络分析仪测出的负载特性调试天线95的形状和天线匹配网络94,使得天线95的谐振频段和带宽满足要求。一般在无源的前提下,矢量网络分析仪所测出的参数有天线的反射系数(S11),电压驻波比(VSWR,Voltage Standing Wave Ratio)、天线效率、天线负载等等。
以图1中所示的WCDMA信号发射支路上的功率放大器80(下文表述为WCDMA BC5 PA 80)为例,请进一步参见图2和图3,图2是图1中的移动通讯终端的WCDMA BC5 PA 80的负载特性图,如图2所示,基于WCDMA BC5 PA 80本身特性,当在WCDMA BC5 PA 80的输出端所测出的天线负载在斯密斯圆图的第三象限时,WCDMA BC5 PA 80能够输出最好的功率,而图3是采用现有技术的移动通讯终端的天线调试方法后的移动通讯终端的WCDMA BC5 PA 80的天线阻抗特性曲线,由于现有技术仅在端点93上进行测试,根据测试结果作出的调整并不能使得WCDMA BC5 PA 80工作在最佳位置,因此图3示出的天线阻抗特性曲线不在图2所示的最佳位置上,故测试结果中的TRP(Total Radiated Power,天线指标)参数不能满足要求。
请进一步参见图4,图4是采用现有技术的移动通讯终端的天线调试方法后的天线95的VSWR(Voltage Standing Wave Ratio,电压驻波比)曲线,由图4可知,其在不同的频段会发送抖动,因此测试结果中的VSWR参数也不能满足要求。
并且,由于图1所示的终端同时支持GSM850(对应于GSM LB PA50所在支路)和WCDMA BC5(对应于WCDMA BC5 PA 60所在支路)两种制式,其工作频段都是824MHz-849MHz,如表1所示,在采用相同天线95的情况下,GSM850的TRP性能很好,而WCDMA的性能较差。
表1:
Low CH TRP Mid CH TRP Hi CH TRP
GSM850 28.6 28.4 28.2
Band5 17.1 18.8 18.8
而现有方法只能一味的提升天线95的性能(比如将天线95拉到低频)强行提高Band5的TRP。但是这样一来,GSM850的TRP就会很高,带来Specific Absorption Rate(SAR,比吸收率)和Hearing Aids Compatibility(HAC,助听器兼容性)问题。同时将天线偏向低频,其高频性能会下降,这是一个矛盾。
因此,综上所述,现有的方法带来以下问题:
1. 由于射频线的一端不是与真正的发射源输出端连接,故该端不能反映出每个模式下天线的真实情况,因此,现有的调试方法有一定的盲目性,对于天线净空不足,难度较大的项目现有方法不方便调试甚至会误导调试。
2. 在现有方式下,调整天线匹配网络或者天线形状都会影响所有的频段和制式,但是大多数情况下,希望仅仅调整某种模式下的其中一个频段,现有方式往往不能满足这个要求。
因此,需提供一种测试系统和移动通讯终端的天线调试方法,以解决上述问题。
【发明内容】
为解决上述技术问题,本发明提供一种测试系统和移动通讯终端的天线调试方法,以获得与各个制式和各个频段均匹配的天线性能。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种移动通讯终端的天线调试方法,其中,在移动通讯终端中,第一发射源经第一匹配网络连接天线开关,第二发射源经第二匹配网络连接天线开关,天线开关经天线匹配网络连接天线,天线调试方法包括:将第一发射源的输出端连接至矢量网络分析仪,利用矢量网络分析仪测试第一发射源的输出端至天线之间的第一负载特性;获取第一发射源的负载特性图,并判断负载特性图上的最佳功率输出位置,调整第一匹配网络的匹配值以使得第一发射源工作在最佳功率输出位置上;将第二发射源的输出端连接至矢量网络分析仪,利用矢量网络分析仪测试第二发射源的输出端至天线之间的第二负载特性;获取第二发射源的负载特性图,并判断负载特性图上的最佳功率输出位置,调整第二匹配网络的匹配值以使得第二发射源工作在最佳功率输出位置上。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种移动通讯终端的天线调试方法,其中,在移动通讯终端中,第一发射源经第一匹配网络连接天线开关,第二发射源经第二匹配网络连接天线开关,天线开关经天线匹配网络连接天线,天线调试方法包括:将第一发射源的输出端连接至矢量网络分析仪,利用矢量网络分析仪测试第一发射源的输出端至天线之间的第一负载特性;根据第一负载特性调整第一匹配网络的匹配值。
其中,在根据第一负载特性调整第一匹配网络的匹配值的步骤中,获取第一发射源的负载特性图,并判断负载特性图上的最佳功率输出位置,调整第一匹配网络的匹配值以使得第一发射源工作在最佳功率输出位置上。
其中,在根据第一负载特性调整第一匹配网络的匹配值的步骤中,调整第一匹配网络的匹配值的方法为对第一匹配网络进行串联电感、串联电容、并联电感或并联电容处理。
其中,天线调试方法进一步包括:将第二发射源的输出端连接至矢量网络分析仪,利用矢量网络分析仪测试第二发射源的输出端至天线之间的第二负载特性;根据第二负载特性调整第二匹配网络的匹配值。
其中,在根据第二负载特性调整第二匹配网络的匹配值的步骤中,获取第二发射源的负载特性图,并判断负载特性图上的最佳功率输出位置,调整第二匹配网络的匹配值以使得第二发射源工作在最佳功率输出位置上。
其中,在根据第二负载特性调整第二匹配网络的匹配值的步骤中,调整第二匹配网络的匹配值的方法为对第二匹配网络进行串联电感、串联电容、并联电感或并联电容处理。
其中,第一发射源为第一功率放大器,第二发射源为第二功率放大器。
其中,第一发射源所输出的信号为WCDMA信号,第二发射源所输出的信号为GSM信号。
为解决上述技术问题,本发明进一步提供一种测试系统,包括:
移动通讯终端,包括第一发射源、第一匹配网络、第二发射源、第二匹配网络、天线匹配网络、天线开关以及天线,第一发射源经第一匹配网络连接天线开关,第二发射源经第二匹配网络连接天线开关,天线开关经天线匹配网络连接天线;
矢量网络分析仪,第一发射源的输出端连接至矢量网络分析仪,矢量网络分析仪测试第一发射源的输出端至天线之间的第一负载特性,其中,第一匹配网络的匹配值根据第一负载特性调整。
其中,第二发射源的输出端连接至矢量网络分析仪,利用矢量网络分析仪测试第二发射源的输出端至天线之间的第二负载特性,其中,第二匹配网络的匹配值根据第二负载特性调整。
本发明的有益效果是:区别于现有技术的情况,本发明所提供的技术方案将第一发射源的输出端连接至矢量网络分析仪,利用矢量网络分析仪针对单一频段或模式所对应的天线进行负载特性测试,以获取针对于单一频段或模式的第一发射源的输出端与天线之间的负载特性,并根据负载特性调整第一发射源所对应的第一匹配网络,使得第一发射源与天线相匹配,获得与第一发射源最佳匹配的天线性能,从而优化了天线的性能。
【附图说明】
图1为现有技术的移动通讯终端的天线调试方法的调试点示意图;
图2是图1中的移动通讯终端的WCDMA BC5 PA 80的负载特性图;
图3是采用现有技术的移动通讯终端的天线调试方法后的天线95的VSWR曲线;
图4是采用现有技术的移动通讯终端的天线调试方法后的移动通讯终端的WCDMA BC5 PA 80的天线阻抗特性曲线;
图5是根据本发明一优选实施例的移动通讯终端的天线调试方法的调试点示意图;
图6是根据本发明一优选实施例的移动通讯终端的天线调试方法的流程图;
图7是采用根据本发明一优选实施例的移动通讯终端的天线调试方法后的移动通讯终端的WCDMA BC5 PA 80的天线阻抗特性曲线;
图8是采用根据本发明一优选实施例的移动通讯终端的天线调试方法后天线95的VSWR曲线。
【具体实施方式】
首先请参见图5,图5是根据本发明一优选实施例的移动通讯终端的天线调试方法的调试点示意图,如图5所示,在本实施例中,所采用的移动通讯终端结构与图1所述完全相同,其为典型的WCDMA+GSM双模终端的射频框架。
在本实施例中,分别选取作为GSM HB PA 40、GSM LB PA 50、WCDMA BC1 PA 60、WCDMA BC2 PA 70或WCDMA BC5 PA 80等功率放大器输出端的端点43、端点53、端点64、端点74或端点84作为与射频线的一端相焊接的焊接点,并将射频线的另一端与矢量网络分析仪连接,从而利用矢量网络分析仪直接获取GSM HB PA 40、GSM LB PA 50、WCDMA BC1 PA 60、WCDMA BC2 PA 70或WCDMA BC5 PA 80等功率放大器输出端的对应参数,这些参数包括:天线的反射系数(S11),电压驻波比(VSWR,Voltage Standing Wave Ratio)、天线效率等等。
若将GSM HB PA 40、GSM LB PA 50、WCDMA BC1 PA 60、WCDMA BC2 PA 70或WCDMA BC5 PA 80等功率放大器中的一者作为第一发射源,矢量网络分析仪测试出第一发射源的输出端至天线95之间的天线的反射系数(S11),电压驻波比(VSWR,Voltage Standing Wave Ratio)、天线效率、天线负载等参数,其中天线负载为第一发射源的输出端至天线95之间的天线的第一负载特性。
其中,就GSM HB PA 40所在支路而言,HB MN 41可作为GSM HB PA 40与天线95之间的匹配网络;就GSM LB PA 50所在支路而言,HB MN 51可作为GSM HB PA 50与天线95之间的匹配网络;就WCDMA BC1 PA 60所在支路而言,WNM1 61、双工器62以及DPX MN 63可作为WCDMA BC1 PA 60与天线95之间的匹配网络;就WCDMA BC2 PA 70所在支路而言,WNM1 71、双工器72以及DPX MN 73可作为WCDMA BC2 PA 70与天线95之间的匹配网络;就WCDMA BC5 PA 80所在支路而言,WNM1 81、双工器82以及DPX MN 83可作为WCDMA BC5 PA 80与天线95之间的匹配网络。
在本实施例中,根据以上所测出的第一负载特性调整第一匹配网络的匹配值,其中第一匹配网络为第一发射源对应的匹配网络,如第一发射源为WCDMA BC5 PA 80,则第一匹配网络为WNM1 81、双工器82以及DPX MN 83。
其调整方法如下:在获取到第一负载特性后,获取第一发射源的负载特性图(如图2,其为WCDMA BC5 PA 80的负载特性图),并判断负载特性图上的第一发射源的最佳功率输出位置,其中,就WCDMA BC5 PA 80而言,当在WCDMA BC5 PA 80的输出端所测出的天线负载在斯密斯圆图的第三象限时,WCDMA BC5 PA 80能够输出最好的功率。因此,可调整第一匹配网络的匹配值以使得第一发射源工作在最佳功率输出位置上(即斯密斯圆图的第三象限)。
具体而言,调整第一匹配网络的匹配值的方法为对第一匹配网络进行串联电感、串联电容、并联电感或并联电容处理,其中,串联电容可使得天线负载会沿等电阻圆向下移动,并联电感可使得天线负载会沿等电导圆向上移动,并联电容可使得天线负载会沿等电导圆向下移动。举例而言,若选取WCDMA BC5 PA 80作为第一发射源,则其对应的第一匹配网络为WNM1 81、双工器82以及DPX MN 83,将射频线的一端与WCDMA BC5 PA 80的输出端即(端点94)连接,将射频线的另一端连接至矢量网络分析仪,从矢量网络分析仪可获取WCDMA BC5 PA 80与天线95之间的天线负载,即第一负载特性,获取WCDMA BC5 PA 80的负载特性图(即图2),判断负载特性图上的WCDMA BC5 PA 80的最佳功率输出位置,其中,当在WCDMA BC5 PA 80的输出端所测出的天线负载在斯密斯圆图的第三象限时,WCDMA BC5 PA 80能够输出最好的功率,因此,若矢量网络分析仪测出的天线负载不在第三象限,则可通过调整第一匹配网络来使得矢量网络分析仪测出的天线负载在图2所示的史密斯圆图的第三象限上,其中,调整方法为:在W MN3 81或DPX MN 83串联电感使得天线负载沿图2所示等电阻圆向上移动;在W MN3 81或DPX MN 83串联电容使得天线负载沿图2所示的等电阻圆向下移动;在W MN3 81或DPX MN 83并联电感使得天线负载沿图2所示的等电导圆向上移动;在W MN3 81或DPX MN 83并联电容使得天线负载沿图2所示的等电导圆向下移动。
其中,串联电感、串联电容、并联电感以及并联电容等动作可在HB MN 41、LB MN 51、W MN1 61、DPX MN 63、W MN1 71、DPX MN 73、W MN1 81或DPX MN83等位置进行,以调整对应匹配网络的匹配值。
请参见图6,图6是根据本发明一优选实施例的移动通讯终端的天线调试方法的流程图。如图6所示,本发明的移动通讯终端的天线调试方法包括以下步骤:
步骤101,将第一发射源的输出端连接至矢量网络分析仪,利用矢量网络分析仪测试第一发射源的输出端至天线之间的第一负载特性。其中,第一发射源为第一功率放大器。并且,第一发射源所输出的信号可为WCDMA信号或GSM信号。
此处所述的第一发射源可为GSM HB PA 40、GSM LB PA 50、WCDMA BC1 PA 60、WCDMA BC2 PA 70或WCDMA BC5 PA 80,其可根据实际需要测试的频段进行选取。矢量网络分析仪直接获取GSM HB PA 40、GSM LB PA 50、WCDMA BC1 PA 60、WCDMA BC2 PA 70或WCDMA BC5 PA 80的输出端至天线之间的第一负载特性。
步骤102,根据第一负载特性调整第一匹配网络的匹配值。在步骤102中,在获取到第一负载特性后,具体可进一步获取第一发射源的负载特性图(其中,第一发射源的负载特性图可由第一发射源的生产商提供,或可通过多次实验获取,其为现有技术,于此不作赘述),并判断负载特性图上的第一发射源的最佳功率输出位置,调整第一匹配网络的匹配值以使得第一发射源工作在最佳功率输出位置上。具体而言,调整第一匹配网络的匹配值的方法为对第一匹配网络进行串联电感、串联电容、并联电感或并联电容处理,其中,串联电容可使得天线负载会沿等电阻圆向下移动,并联电感可使得天线负载会沿等电导圆向上移动,并联电容可使得天线负载会沿等电导圆向下移动。
请参见图7,图7是采用根据本发明一优选实施例的移动通讯终端的天线调试方法后的移动通讯终端的WCDMA BC5 PA 80的天线阻抗特性曲线,由图7可知,从图7可以看出,天线负载收敛到第三象限,满足功率放大器的负载特性要求。而且从图5可以看出,这种调试方法和GSM以及其他WCDMA 频段没有任何关系,不会影响这些频段的天线性能。实际测试所得值如表2:
表2:
Band5 19 19.7 19.6
请参见图8,图8是采用根据本发明一优选实施例的移动通讯终端的天线调试方法后天线95的VSWR曲线,从图8可知,相对于图4所示的现有技术所测出的VSWR曲线而言,采用本发明的天线调试方法后,天线95的VSWR曲线的抖动现象得到明显抑制。
而在本发明的备选实施例中,也可选取另一功率放大器为第二发射源,第一发射源经第一匹配网络连接天线开关,第二发射源经第二匹配网络连接天线开关,天线开关经天线匹配网络连接天线,将第二发射源的输出端连接至矢量网络分析仪,利用矢量网络分析仪测试第二发射源的输出端至天线之间的第二负载特性,并根据第二负载特性调整第二匹配网络的匹配值。其中,第二发射源可为第二功率放大器,具体可为除上述第一发射源外的GSM HB PA 40、GSM LB PA 50、WCDMA BC1 PA 60、WCDMA BC2 PA 70以及WCDMA BC5 PA 80中的任一者。并且,第一发射源所输出的信号可为WCDMA信号或GSM信号。
再者,也可将第三发射源、第四发射源……等多个发射源(发射源的数量取决于移动通讯终端的设置方式,其对应于GSM HB PA 40、GSM LB PA 50、WCDMA BC1 PA 60、WCDMA BC2 PA 70以及WCDMA BC5 PA 80等功率放大器)依序分别连接至矢量网络分析仪,以分别对每一发射源与天线之间的匹配网络的匹配值进行调整。
在根据第二负载特性调整第二匹配网络的匹配值的步骤中,可获取第二发射源的负载特性图,并判断负载特性图上的最佳功率输出位置,调整第二匹配网络的匹配值以使得第二发射源工作在最佳功率输出位置上。调整第二匹配网络的匹配值的方法为对第二匹配网络进行串联电感、串联电容、并联电感或并联电容处理。同理,根据从第三发射源、第四发射源……等多个发射源的输出端获取的负载特性调整匹配网络的匹配值的步骤与上述一致,于此不作赘述。
本实施例中的移动通讯终端同时支持GSM850和WCDMA BC5两种制式,其工作频段都是824MHz-849MHz。但是相同天线情况下,GSM850的TRP性能很好,WCDMA的性能较差,因此在WCDMA的所在的支路进行天线调试,以在不影响GSM850对应的TRP性能的前提下提升WCDMA对应的TRP性能。
本发明在对天线的无源调试中把功率放大器和天线开关之间的匹配网络和器件(可以但不限于双工器)等也纳入调试过程,即将包括但不限于2G,3G和4G等制式的信号发射支路的天线无源调试分开,各自从每一发射支路的功率放大器的输出端开始调试。只要是发射通路有分支的终端(可以但不限于是2G、3G、4G的不同支路),都可以利用这些支路上得射频匹配获得彼此独立的天线性能调试工具。在不影响其他通路的射频和天线性能前提下,获得该支路射频和天线性能的最优化。原来用于传导的匹配网络对天线进行调试。天线无源调试射频线的焊接点变换,从现有的天线开关后修改为功率放大器的输出端。
同样地,本发明所提供的技术方案亦可适用于其他类似的双模或多模终端,如CDMA2000+GSM或者LTE+WCDMA+GSM等终端的射频框架。
并且,请进一步参见图5,本发明进一步提供一种测试系统,其包括移动通讯终端和矢量网络分析仪(图未示),其中,移动通讯终端包括第一发射源(未标示)、第一匹配网络(未标示)、第二发射源(未标示)、第二匹配网络(未标示)、天线匹配网络94、天线开关90以及天线95,第一发射源经第一匹配网络连接天线开关90,第二发射源经第二匹配网络连接天线开关90,天线开关90经天线匹配网络94连接天线95。
第一发射源的输出端连接至矢量网络分析仪,矢量网络分析仪测试第一发射源的输出端至天线95之间的第一负载特性,其中,第一匹配网络的匹配值根据第一负载特性调整。
并且,第二发射源的输出端连接至矢量网络分析仪,利用矢量网络分析仪测试第二发射源的输出端至天线95之间的第二负载特性,其中,第二匹配网络的匹配值根据第二负载特性调整。
本发明的技术方案在相同的工作频段不同制式下天线性能不一致时,也可以通过调整不同制式的功率放大器的所在支路的天线负载来使得不同制式的功率放大器与天线相匹配。本发明所提供的技术方案将第一发射源的输出端连接至矢量网络分析仪,利用矢量网络分析仪针对单一频段或模式所对应的天线进行负载特性测试,以获取针对于单一频段或模式的第一发射源的输出端与天线之间的负载特性,并根据负载特性调整第一发射源所对应的第一匹配网络,使得第一发射源与天线相匹配,获得与第一发射源最佳匹配的天线性能,从而优化了天线的性能。综上所示,本发明提出了一种适用于多模多频段的无线通讯终端的天线调试方法,利用这种方法可以更加容易的获得对于各个制式和各个频段都最佳的天线性能。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

  1. 一种移动通讯终端的天线调试方法,其特征在于,在所述移动通讯终端中,第一发射源经第一匹配网络连接天线开关,第二发射源经第二匹配网络连接所述天线开关,所述天线开关经天线匹配网络连接天线,所述天线调试方法包括:
    将所述第一发射源的输出端连接至矢量网络分析仪,利用所述矢量网络分析仪测试所述第一发射源的输出端至所述天线之间的第一负载特性;
    获取所述第一发射源的负载特性图,并判断所述负载特性图上的最佳功率输出位置,调整所述第一匹配网络的匹配值以使得所述第一发射源工作在所述最佳功率输出位置上;
    将所述第二发射源的输出端连接至所述矢量网络分析仪,利用所述矢量网络分析仪测试所述第二发射源的输出端至所述天线之间的第二负载特性;
    获取所述第二发射源的负载特性图,并判断所述负载特性图上的最佳功率输出位置,调整所述第二匹配网络的匹配值以使得所述第二发射源工作在所述最佳功率输出位置上。
  2. 一种移动通讯终端的天线调试方法,其特征在于,在所述移动通讯终端中,第一发射源经第一匹配网络连接天线开关,第二发射源经第二匹配网络连接所述天线开关,所述天线开关经天线匹配网络连接天线,所述天线调试方法包括:
    将所述第一发射源的输出端连接至矢量网络分析仪,利用所述矢量网络分析仪测试所述第一发射源的输出端至所述天线之间的第一负载特性;
    根据所述第一负载特性调整所述第一匹配网络的匹配值。
  3. 根据权利要求2所述的方法,其特征在于,在根据第一负载特性调整所述第一匹配网络的匹配值的步骤中,获取所述第一发射源的负载特性图,并判断所述负载特性图上的最佳功率输出位置,调整所述第一匹配网络的匹配值以使得所述第一发射源工作在所述最佳功率输出位置上。
  4. 根据权利要求3所述的方法,其特征在于,在根据第一负载特性调整所述第一匹配网络的匹配值的步骤中,调整所述第一匹配网络的匹配值的方法为对所述第一匹配网络进行串联电感、串联电容、并联电感或并联电容处理。
  5. 根据权利要求2所述的方法,其特征在于,所述天线调试方法进一步包括:
    将所述第二发射源的输出端连接至所述矢量网络分析仪,利用所述矢量网络分析仪测试所述第二发射源的输出端至所述天线之间的第二负载特性;
    根据第二负载特性调整所述第二匹配网络的匹配值。
  6. 根据权利要求5所述的方法,其特征在于,在根据第二负载特性调整所述第二匹配网络的匹配值的步骤中,获取所述第二发射源的负载特性图,并判断所述负载特性图上的最佳功率输出位置,调整所述第二匹配网络的匹配值以使得所述第二发射源工作在所述最佳功率输出位置上。
  7. 根据权利要求6所述的方法,其特征在于,在根据第二负载特性调整所述第二匹配网络的匹配值的步骤中,调整所述第二匹配网络的匹配值的方法为对所述第二匹配网络进行串联电感、串联电容、并联电感或并联电容处理。
  8. 根据权利要求2至7任一项所述的方法,其特征在于,所述第一发射源为第一功率放大器,所述第二发射源为第二功率放大器。
  9. 根据权利要求2至7任一项所述的方法,其特征在于,所述第一发射源所输出的信号为WCDMA信号,所述第二发射源所输出的信号为GSM信号。
  10. 一种测试系统,其特征在于,包括:
    所述移动通讯终端,包括第一发射源、第一匹配网络、第二发射源、第二匹配网络、天线匹配网络、天线开关以及天线,所述第一发射源经所述第一匹配网络连接所述天线开关,所述第二发射源经所述第二匹配网络连接所述天线开关,所述天线开关经所述天线匹配网络连接所述天线;
    矢量网络分析仪,所述第一发射源的输出端连接至所述矢量网络分析仪,所述矢量网络分析仪测试所述第一发射源的输出端至所述天线之间的第一负载特性,其中,所述第一匹配网络的匹配值根据所述第一负载特性调整。
  11. 根据权利要求10所述的测试系统,其特征在于,所述第二发射源的输出端连接至所述矢量网络分析仪,利用所述矢量网络分析仪测试所述第二发射源的输出端至所述天线之间的第二负载特性,其中,所述第二匹配网络的匹配值根据所述第二负载特性调整。
PCT/CN2012/081609 2011-10-24 2012-09-19 一种测试系统和移动通讯终端的天线调试方法 WO2013060209A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110327104.XA CN102412913B (zh) 2011-10-24 2011-10-24 一种测试系统和移动通讯终端的天线调试方法
CN201110327104.X 2011-10-24

Publications (1)

Publication Number Publication Date
WO2013060209A1 true WO2013060209A1 (zh) 2013-05-02

Family

ID=45914787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081609 WO2013060209A1 (zh) 2011-10-24 2012-09-19 一种测试系统和移动通讯终端的天线调试方法

Country Status (2)

Country Link
CN (1) CN102412913B (zh)
WO (1) WO2013060209A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412913B (zh) * 2011-10-24 2016-09-14 惠州Tcl移动通信有限公司 一种测试系统和移动通讯终端的天线调试方法
US9312889B2 (en) * 2012-11-27 2016-04-12 Aviacomm Inc. Tunable wideband RF transmitter interface
CN104198824B (zh) * 2014-09-05 2017-05-03 中国科学院电子学研究所 一种差分天线测量方法
CN105811054B (zh) * 2016-05-31 2018-09-07 广东欧珀移动通信有限公司 调试双工器收敛的方法及装置
CN106130664B (zh) * 2016-06-21 2018-07-20 广东欧珀移动通信有限公司 移动终端的天线测试方法及测试系统
CN106685448A (zh) * 2017-01-20 2017-05-17 江苏智联天地科技有限公司 一种手机射频前端发射链路功耗和aclr优化匹配方法
CN108964695B (zh) * 2018-07-18 2021-06-08 Oppo广东移动通信有限公司 射频电路调试方法及相关装置
CN109041096B (zh) * 2018-07-18 2021-04-13 Oppo广东移动通信有限公司 射频电路仿真方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003047035A1 (en) * 2001-11-27 2003-06-05 Qualcomm Incorporated Gps equipped cellular phone using a spdt mems switch and single shared antenna
CN1534698A (zh) * 2002-12-30 2004-10-06 摩托罗拉公司 高密度应用中的分布电容器
US20100253435A1 (en) * 2004-03-18 2010-10-07 Ikuroh Ichitsubo Rf power amplifier circuit utilizing bondwires in impedance matching
CN102412913A (zh) * 2011-10-24 2012-04-11 惠州Tcl移动通信有限公司 一种测试系统和移动通讯终端的天线调试方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003047035A1 (en) * 2001-11-27 2003-06-05 Qualcomm Incorporated Gps equipped cellular phone using a spdt mems switch and single shared antenna
CN1534698A (zh) * 2002-12-30 2004-10-06 摩托罗拉公司 高密度应用中的分布电容器
US20100253435A1 (en) * 2004-03-18 2010-10-07 Ikuroh Ichitsubo Rf power amplifier circuit utilizing bondwires in impedance matching
CN102412913A (zh) * 2011-10-24 2012-04-11 惠州Tcl移动通信有限公司 一种测试系统和移动通讯终端的天线调试方法

Also Published As

Publication number Publication date
CN102412913A (zh) 2012-04-11
CN102412913B (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
WO2013060209A1 (zh) 一种测试系统和移动通讯终端的天线调试方法
WO2013063915A1 (zh) 一种移动通讯终端
KR102362459B1 (ko) 광대역 멀티모드 멀티-대역 프론트 엔드 모듈에서의 결합기를 위한 적응적 부하
US8467738B2 (en) Multi-mode radio frequency front end module
US9093967B2 (en) Power amplifier with co-existence filter
CN1121804C (zh) 测量基站天线中电压驻波率的设备与方法
US8923167B2 (en) Communication device for simultaneous transmission by multiple transceivers
WO2019085556A1 (zh) 信号传输装置及其测试设备、直放站通信设备
WO2014000471A1 (zh) 一种用于自动调节天线匹配的移动终端及其控制方法
WO2011098020A1 (zh) 驻波检测方法、驻波检测装置及基站
WO2012016466A1 (zh) 一种通信方法及移动通信终端
US9647742B2 (en) Antenna architecture and operational method for RF test connector reduction
WO2014190626A1 (zh) 一种终端天线接收灵敏度测试方法及系统
WO2013104174A1 (zh) 一种射频指标的测试系统
US8805306B2 (en) Method for determining optimum power amplifier configurations using list mode testing
WO2013023539A1 (zh) 一种校准移动终端发射gsm频段功率的方法
CN110176935A (zh) 用于天线调谐的方法和装置
US20220014257A1 (en) Software-defined filtering in a repeater
US8948707B2 (en) Duplex filter arrangements for use with tunable narrow band antennas having forward and backward compatibility
WO2011157010A1 (zh) 多模移动终端天线匹配的实现方法及多模移动终端
TW201820806A (zh) 對稱式中繼器及其測量天線隔離度的方法
JP2013143770A (ja) マルチバンド電力増幅器のためのインピーダンス整合回路網の形態の装置
JP2017532861A (ja) オンチップの直線性較正
CN111525977A (zh) 一种信号监测干扰方法
WO2016095471A1 (zh) 测试装置和测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843057

Country of ref document: EP

Kind code of ref document: A1