WO2013062069A1 - ジェミニウイルス複製阻害剤 - Google Patents

ジェミニウイルス複製阻害剤 Download PDF

Info

Publication number
WO2013062069A1
WO2013062069A1 PCT/JP2012/077669 JP2012077669W WO2013062069A1 WO 2013062069 A1 WO2013062069 A1 WO 2013062069A1 JP 2012077669 W JP2012077669 W JP 2012077669W WO 2013062069 A1 WO2013062069 A1 WO 2013062069A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
zinc finger
azp
plant
finger protein
Prior art date
Application number
PCT/JP2012/077669
Other languages
English (en)
French (fr)
Inventor
貴史 世良
Original Assignee
Sera Takashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sera Takashi filed Critical Sera Takashi
Priority to BR112014009924A priority Critical patent/BR112014009924A2/pt
Priority to CA2853023A priority patent/CA2853023A1/en
Priority to US14/354,167 priority patent/US9943083B2/en
Priority to CN201280052566.8A priority patent/CN104011205B/zh
Priority to AU2012329917A priority patent/AU2012329917A1/en
Priority to EA201490877A priority patent/EA031900B1/ru
Publication of WO2013062069A1 publication Critical patent/WO2013062069A1/ja
Priority to IN3458CHN2014 priority patent/IN2014CN03458A/en
Priority to AU2018203072A priority patent/AU2018203072A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/50Isolated enzymes; Isolated proteins
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/10Animals; Substances produced thereby or obtained therefrom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N55/00Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur
    • A01N55/02Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur containing metal atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/001Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8283Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/12011Geminiviridae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/12011Geminiviridae
    • C12N2750/12061Methods of inactivation or attenuation
    • C12N2750/12062Methods of inactivation or attenuation by genetic engineering

Definitions

  • the present invention relates to effective infection control means for plant viruses. More specifically, the present invention relates to a replication inhibitor for plant viruses belonging to the genus Masterovirus included in the plant virus Gemini virus, and a plant having resistance to infection by plant viruses belonging to the genus Masterovirus.
  • a zinc finger is a DNA-binding motif together with a helix-turn-helix motif and a leucine zipper motif.It has two cysteines on the amino-terminal side and two histidines on the carboxyl-terminal side, and zinc ( It has a three-dimensional structure coordinated with Zn). Since zinc fingers have a very strong binding force to DNA, artificial DNA binding proteins that bind strongly to DNA using this motif (hereinafter referred to as ⁇ AZP '' in this specification) AZP designed to be able to recognize a specific base sequence using a recognition code table (NondegenerategnRecognition Code ⁇ ⁇ Table) has been reported (Japanese Patent Publication No. 2004-519211) ; Biochemistry, 41, pp.7074-7081, 2002).
  • the zinc finger motif can recognize and bind 3 bp or 4 bp, and the length of the base sequence to be specifically bound can be adjusted by connecting the zinc fingers with a peptide linker.
  • the fourth recognition base sequence of the zinc finger motif is an antisense strand and overlaps with the first recognition base sequence of the next zinc finger motif, so it recognizes and binds the base sequence of 3N + 1bp for every N zinc finger motifs. (See Figure 1).
  • WDV wheat dwarf virus
  • ⁇ WDV '' WDV wheat dwarf virus
  • Geminivirus is a general term for viruses having one or two single-stranded circular DNAs that infect plants, and includes a variety of plant viruses, including Begomovirus, Topokvirus, Kurtovirus, and Mastere. It is roughly divided into four types of virus genus.
  • viruses belonging to the genus Begomovirus include tomato yellow leaf curl virus (Tomato Yellow Curl Virus: ⁇ TYLCV), potato yellow mosaic virus (Potato Yellow Mosaic Virus: ⁇ ⁇ PYMV) and bean golden mosaic virus ( Bean Golden Mosaic Virus: BGMV) and other viruses belonging to the genus Mastelevirus include the above-mentioned WDV, maize streak virus (MSV), Miscanthus streak virus (Miscanthas Streak) Virus: MiSV), tobacco yellow dwarf virus (Tobacco Yellow Dwarf Virus: TYDV), chloris strite mosaic virus (Chloris Straite Mosaic Virus: CSMV), and the like.
  • the virus belonging to the genus Topovirus is Tomato Pseudo-curly Top Virus (TPCTV), and the virus belonging to the genus Kurtovirus is Beet Mild Curly. Top Virus: BMCTV) (see Fig. 3).
  • the geminivirus When entering the plant, the geminivirus is first converted into double-stranded circular DNA by the plant's endogenous factors. Next, the virus-derived replication protein (Rep) binds to the Rep binding site upstream of the stem loop of the Intergenic Region (IR). Rep is a multifunctional protein that binds to the Rep binding site, nicks the 9 base sequence of the loop portion of the stem loop, and then covalently binds to the 5 ′ end of the nicked DNA. Subsequently, DNA synthesis was started from the 3 ′ end using the ⁇ strand as a template, and when a single copy of the genome was synthesized, the newly created 9 base sequence was nicked again by Rep.
  • Rep virus-derived replication protein
  • An object of the present invention is to provide effective infection control means against geminivirus. More specifically, the present invention provides a drug that inhibits replication of plant viruses belonging to the genus Masterovirus included in Geminivirus, a plant having resistance to plant viruses belonging to the genus Masterovirus, and the like. It is a problem.
  • the present inventor paid attention to this stem loop portion and conducted earnest research to provide means capable of commonly inhibiting the replication of various viruses belonging to Geminivirus.
  • Rep that can cleave only single-stranded DNA by stabilizing the double-stranded structure of viral DNA by specifically binding AZP to the DNA of the stem-loop part and inhibiting the structural change to the stem-loop. It was found that the cleavage of viral DNA can be inhibited.
  • the present inventor has also confirmed that this virus replication inhibitory action actually functions in plants. This technique is extremely useful for providing a general-purpose virus replication inhibitor for viruses belonging to the genus Begomovirus, for example, by utilizing a stem loop portion that is particularly highly conserved in the genus Begomovirus of Geminivirus. .
  • the present inventors applied a similar technique using a stem loop portion and its peripheral region conserved in a virus belonging to the genus Masterovirus of geminivirus, thereby causing wheat atrophy disease.
  • the present inventors have found that a general-purpose virus replication inhibitor can be provided for viruses belonging to the genus Masterovirus including viruses (WDV) and the like, and have completed the present invention.
  • WDV viruses
  • a replication inhibitor for viruses belonging to the genus Masterovirus of the Geminiviridae family which is specific to the full length DNA of the stem loop region of the virus or one or more partial DNAs selected from the full length DNA
  • a replication inhibitor is provided that includes a zinc finger protein that is capable of binding, and is capable of inhibiting the formation of a stem-loop structure.
  • the replication inhibitor comprising a single zinc finger protein capable of binding to one partial DNA selected from the full-length DNA of a stem loop region of a virus belonging to the genus Masterovirus; A single DNA that can bind to a continuous DNA consisting of one partial DNA selected from the full length DNA of the stem loop region of a virus belonging to the genus Televirus and one DNA selected from the peripheral region that binds to the DNA.
  • the above-mentioned replication inhibitor containing a zinc finger protein; and two zinc finger proteins that can bind to two or more partial DNAs selected from DNA consisting of a stem loop region and a peripheral region that binds to the stem loop region.
  • the above-described replication inhibitor containing the zinc finger protein bound thereto is provided.
  • the replication inhibitor wherein the zinc finger protein is a zinc finger protein comprising 8 to 13, preferably 9 to 12 zinc finger domains.
  • the present invention also provides a nucleic acid encoding the zinc finger protein and a replication inhibitor for geminivirus, the replication inhibitor including the nucleic acid encoding the zinc finger protein.
  • the replication inhibitor described above wherein the virus belonging to the genus Masterovirus is wheat dwarf virus (WDV).
  • WDV wheat dwarf virus
  • an antiviral agent against a virus belonging to the genus Masterovirus comprising the above zinc finger protein or a nucleic acid encoding the above zinc finger protein; the above zinc finger protein or the above zinc finger protein
  • An agent for preventing infection of a virus belonging to the genus Masterovirus, which contains a nucleic acid encoding the above; a pesticide for controlling infection by a virus belonging to the genus Masterovirus, which encodes the above zinc finger protein or the above zinc finger protein A pesticide containing the nucleic acid is provided.
  • a method for preventing viral infection belonging to the genus Masterovirus of a plant wherein a preventive effective amount of the zinc finger protein or the nucleic acid encoding the zinc finger protein
  • a method comprising controlling a virus infection belonging to the genus Mastelevirus, the method comprising applying a control effective amount of the zinc finger protein or the nucleic acid encoding the zinc finger protein to a plant.
  • a method is provided.
  • a plant having resistance to a virus belonging to the genus Masterovirus which is a genetically modified plant capable of expressing the zinc finger protein;
  • a transformed plant into which a gene encoding the above zinc finger protein is introduced ;
  • a method for allowing a plant to acquire resistance to a virus belonging to the genus Mastelevirus, the gene encoding the above zinc finger protein A method comprising the step of transforming a plant with is provided.
  • a recombinant vector comprising a nucleic acid encoding the above zinc finger protein, and the above recombinant vector used for transforming a plant into a plant having resistance to a virus belonging to the genus Masterovirus.
  • a plant viral vector or the like can be used as the vector.
  • the replication inhibitor of the present invention targets the stem loop region conserved in viruses belonging to the genus Masterovirus of the Geminiviridae family, it is common to infection by various viruses belonging to the genus Masterovirus. It can act as a replication inhibitor. Therefore, the replication inhibitor of the present invention exhibits high effectiveness not only for WDV infection, which is a typical virus belonging to the virus belonging to the genus Masterovirus, but also for other viruses belonging to the genus Masterovirus. Therefore, it is extremely useful as a control means for various viruses belonging to the genus Masterovirus.
  • 35S Cauliflower mosaic virus-derived promoter
  • NLS nuclear localization signal
  • 5: 5'-leader sequence for increasing translation efficiency
  • NOST terminator
  • TYLCV3 / 4/6 ⁇ all TYLCVs bind to common nucleotide sequences AZP (recognition sequence is 5'-GGCCATCCGTATAATATTACCGGATGGCCGC-3 '). It is the figure which showed the preparation method of the APZ expression plasmid for transformation.
  • FIG. 3 is a view showing the structure of an inserted gene and a PCR primer set for detecting a kanamycin resistance gene and an AZP gene for transformant T1. It is the figure which showed the result of having detected the kanamycin resistance gene and the AZP gene about transformant T1.
  • Lanes 1 to 4 show the results of PCR using DNA extracted from each T1 plant, N using DNA extracted from wild-type tomatoes, and P using the binary vector used for transformation. It is the figure which showed the primer set for confirming that it was inserted in the structure of the insertion gene in the whole area of an AZP expression cassette, and a genome. It is the figure which showed the result of having confirmed AZP gene insertion in T2 plant obtained by introduce
  • lanes 1 to 8 show the results of PCR using DNA extracted from each T1 plant, and P shows the binary vector used for transformation.
  • Lanes 1 to 18 show the results of PCR using DNA extracted from T2 plants from a specific transformant T1
  • N is DNA extracted from wild-type tomatoes
  • P is a binary vector used for transformation.
  • AZP was detected by Western blotting using anti-HA antibody from the leaf extract of the T2 plant shown in FIG. The lane numbers in the figure correspond to those in FIG.
  • Lanes 1 to 16 show the results of PCR using DNA extracted from T3 plants from a specific T2 line. This T2 plant in which the AZP insertion gene was confirmed in all T3 individuals was selected as homozygous. It is the figure which showed the result of having confirmed the expression of AZP in the T3 plant obtained by introduce
  • the replication inhibitor of the present invention is a replication inhibitor for viruses belonging to the genus Masterovirus of the Geminiviridae, and is a full-length DNA of the stem loop region of the virus or one or more partial DNAs selected from the full-length DNA It contains a zinc finger protein that can specifically bind to and is capable of inhibiting the formation of a stem-loop structure.
  • the term “geminivirus” refers to a DNA virus that infects a plant and that has one or two single-stranded circular DNAs. , Chemistry and Biology, 41, pp.311-317, 2003, etc. Geminiviruses are divided into the following four genera, depending on the genome structure, host range, and type of vector insect: Mastrevirus genus, Kurtovirus genus, Topocuvirus genus, and Begomovirus genus Among them, the replication inhibitor of the present invention can specifically target any virus belonging to the genus Mastrevirus. The genomic organization of viruses belonging to each genus is specifically shown in FIG. 2 of the above-mentioned publication (Chemistry and Biology, 41, pp.311-317, 2003).
  • geminiviruses include not only known geminiviruses, but also unknown geminiviruses and new geminiviruses in which known geminiviruses are mutated.
  • viruses belonging to the genus Mastrevirus such as MSV (Maize streak virus), WDV (Wheat dwarf virus), BeYDV (Bean yellow dwarf virus), BCTV (Beet cury top virus), etc.
  • viruses belonging to the genus Kurtovirus viruses belonging to topok virus such as TPCTV (Tomato pseudo-cury top virus), BGMV (Bean golden mosaic virus), ACMV (African cassava mosaic virus), SLCV (Squash leaf curl virus), TGMV Viruses belonging to the genus Begomovirus such as (Tomato golden mosaic virus) and TYLCV (Tomato Yellow Leaf Curl Virus) can be mentioned, but are not limited thereto.
  • the replication inhibitor of the present invention is provided as a replication inhibitor for viruses belonging to the genus Mastrevirus such as MSV (Maize streak virus), WDV (Wheat dwarf virus), BeYDV (Bean yellow dwarf virus), etc. Of these, WDV is a particularly preferred target.
  • viruses belonging to the genus Begomovirus have a highly conserved stem loop region that serves as a binding site for replication inhibitors.
  • Viruses belonging to the genus Begomo virus include, for example, TYLCCNV, TYLCGV, TYLCMalV, TYLCSV, TYLCTHV, TYLCV, ACMV, BGMV, CaLCuV, ToCMoV, TGMV, ToGMoV, ToMHV, ToMoV, ToMoV, RMToLC, RMToLC , CLCuAV, ClCuGV, CLCuKV, CLCuMV, CLCuRV), East African cassava mosaic (EACMCV, EACMMV, EACMV, EACMZV), potato yellowing mosaic (PYMPV, PYMTV, PYMV), pumpkin cigar (SLCCNV, CYSLCV, CYSLCV, CYSLCV (SPLCGV)
  • TYLCCNV TYLCCNV
  • TYLCGV TY
  • FIG. 3 shows the inclusion relationship between geminivirus and TYLCV and WDV.
  • the replication inhibitor of the present invention comprises a zinc finger protein that can specifically bind to the full length DNA of a stem loop region of a virus belonging to the genus Mastrevirus or one or more partial DNAs selected from the full length DNA, In addition, it has the effect of inhibiting the formation of a stem loop structure.
  • ⁇ stem loop region '' of geminivirus for example, taking TYLCV belonging to the genus Begomovirus as an example, the stem loop region is composed of two stem regions (regions each consisting of 11 bases) that bind complementarily to each other, and between them A 33-base region consisting of a loop region (region consisting of 11 bases) that exists and forms a loop.
  • TYLCV Although various strains are known for TYLCV, the base sequence of the stem loop region is highly conserved in all TYLCV.
  • Fig. 4 shows the stem loop region of TYLCV. This stem loop region is highly conserved in other viruses belonging to Begomovirus, for example, there is a stem loop region consisting of 34 bases on the CR (common region) of both DNAs of BGMV, Its base sequence is extremely homologous to the base sequence of the stem loop region of other viruses belonging to Begomovirus.
  • the base sequence of the stem loop region is ⁇ highly conserved '' means that the homology of the base sequence to be compared is 80% or more, preferably 90% or more, more preferably 95% or more, and still more preferably Means 97% or more, particularly preferably 99% or more.
  • the stem loop region is highly conserved.
  • FIG. 5 shows the homology of the stem loop region for several viruses included in the geminivirus.
  • the replication inhibitor of the present invention specifically binds to the full length DNA of the stem loop region conserved in viruses belonging to the genus Mastrevirus as described above, or one or more partial DNAs selected from the full length DNA, As a result of specific binding, it can be designed to inhibit the formation of stem-loop structures.
  • the replication inhibitor of the present invention is located upstream and / or downstream of the stem loop region DNA. It can also be designed to specifically bind to the DNA of the flanking region to be bound, and such an embodiment is a preferred embodiment in the present invention.
  • One particularly preferred embodiment is: (a) one partial DNA selected from the full-length DNA of the stem loop region of a virus belonging to the genus Masterovirus, and one DNA selected from the flanking region that binds to the DNA.
  • a replication inhibitor comprising a single zinc finger protein capable of binding to continuous DNA consisting of
  • AZP-11 and 12 are disclosed in Example 1 of the present specification (FIG. 30).
  • AZP-13 is disclosed in Example 1 of the present specification (FIG. 30).
  • two or more zinc finger proteins that can bind to two or more partial DNAs selected from DNA consisting of a stem loop region and a peripheral region (flanking region) that binds to the stem loop region are bound by a linker.
  • the above-mentioned replication inhibitors comprising a zinc finger protein.
  • the inhibitor of the present invention binds to the selected DNA to stabilize the double-stranded structure of the viral DNA, but as appropriate based on the stem loop region and, if necessary, the base sequence of the surrounding region. It is possible to design a zinc finger protein that inhibits the formation of a stem loop structure of a virus belonging to the genus Masterovirus.
  • the zinc finger domain contained in the zinc finger protein can be designed so that a specific base sequence can be recognized using a recognition code table (Nondegenerate Recognition Code Table).
  • a zinc finger domain means a domain constituting a DNA binding site present in a zinc finger protein, and may be simply referred to as a “finger”.
  • zinc finger proteins typically have about 2, 3, 4, 6, or 10 zinc finger domains.
  • the design method of a zinc finger protein that recognizes and specifically binds to a recognition code table and a specific base sequence is described, for example, in JP-T-2004-519211. The entire disclosure of the above patent publication is included in the disclosure of this specification by reference. Biochemistry, 41, pp.7074-7081, 2002, and the like can also be referred to.
  • the base sequence information of the stem loop region of the genomic DNA of a virus belonging to the genus Mastrevirus can be easily obtained, and one skilled in the art can select at least one or two or more selected from the full length DNA or full length DNA of the stem loop region. It is possible to easily design and produce a zinc finger protein that can specifically bind to the partial DNA of
  • a method for designing a replication inhibitor targeting only TYLCV is shown in Reference Example 1 of the Examples. It is only necessary to design a zinc finger protein that can bind to DNA containing the full length or almost full length of stem loop region DNA (33 bases) that is well conserved among TYLCV, and one type selected from such zinc finger proteins It is possible to inhibit the replication of all TYLCV by using the zinc finger protein of the present invention as a replication inhibitor of the present invention. As such a zinc finger protein, for example, a zinc finger protein containing 10 zinc finger domains can be designed. It will be readily understood by those skilled in the art that the above method can be appropriately applied to the design of replication inhibitors targeting the geminivirus family other than TYLCV.
  • a method for designing replication inhibitors targeting various geminiviruses including viruses belonging to the genus Begomovirus in addition to TYLCV is also shown in Reference Example 2 of the Examples.
  • linker in addition to a peptide linker having 1 to 40 amino acid residues, preferably 1 to 20, more preferably about 1 to 10, a synthetic linker such as an alkylene chain or a polyethylene glycol chain, a sugar chain, etc. May be used.
  • a synthetic linker such as an alkylene chain or a polyethylene glycol chain, a sugar chain, etc. May be used.
  • examples of replication inhibitors targeting only TYLCV and examples of replication inhibitors targeting various geminiviruses including viruses belonging to the genus Begomovirus are shown in FIG.
  • the upper side is an example in which only TYLCV is targeted
  • the lower side is an example in which various diverse geminiviruses including viruses belonging to the genus Begomovirus are targeted.
  • a protein having substantially the same replication inhibitory activity as the protein consisting of the amino acid sequence specified by SEQ ID NO: 1 or 2 can also be used as a replication inhibitor.
  • an amino acid having 70%, preferably 80%, more preferably 90% or more homology with the amino acid sequence specified by SEQ ID NO: 1 or 2, and the amino acid specified by SEQ ID NO: 1 or 2 A protein having a replication inhibitory action substantially similar to a protein comprising a sequence can also be used as a replication inhibitor.
  • a nucleic acid containing DNA encoding the protein (b) or (c) can be used.
  • DNA encoding the protein represented by (b) or (c) above for example, DNA capable of hybridizing under stringent conditions to the DNA specified by the nucleotide sequence shown in SEQ ID NO: 3 or 4 Etc. are included.
  • DNA for example, a DNA is used as a probe, and a colony or plaque-derived DNA or DNA fragment-immobilized filter is used in a colony hybridization method, plaque hybridization method, or Southern blot hybridization method.
  • a 0.1 to 2 ⁇ SSC solution (1 ⁇ SSC solution contains 150 ⁇ mM sodium chloride and 15 ⁇ mM sodium citrate) is used. Examples thereof include DNA that can be identified by washing the filter under the condition of ° C.
  • a DNA having a homology of 70% or more, preferably 80% or more, more preferably 90% or more, particularly preferably 95% or more, and most preferably 98% or more with respect to the base sequence of DNA used as a probe is preferable. Can be used.
  • the design of a replication inhibitor for viruses belonging to the genus Mastrevirus can be carried out as follows.
  • a typical example of a virus belonging to the genus Mastrevirus is WDV.
  • WDV the mutant shown in FIG. 29 is known, but the stem loop region is highly conserved, and further downstream of the stem region. And the surrounding region (flanking region) that binds upstream is also highly conserved (for the WDV genome sequence and variants, Plant Pathology, 57, pp. 838-841, 2008; Plant Pathology, 58, pp. 1161 -1169, 2009; Virus genes, 34, ppo.359-366, 2007, etc.).
  • the number of bases in the peripheral region to be considered in the design of the replication inhibitor of the present invention is, for example, 200 or less, preferably 100 or less, more preferably 50 or less, particularly preferably 30 or less from the end of the stem region. Furthermore, these regions are also conserved in other viruses belonging to the genus Mastrevirus, and the homology of this region is usually 60% or more, preferably 70% or more, more preferably 80% or more, more preferably 90% or more. Particularly preferably, it is 95% or more.
  • a zinc finger protein that specifically binds to the stem loop region of WDV is used, or it binds to a part of the stem loop region of WDV and upstream of the stem region of WDV and A zinc finger protein that specifically binds to DNA bound downstream can be used.
  • FIG. 30 shows a target site of the replication inhibitor of the present invention for a virus belonging to the genus Mastrevirus containing WDV.
  • a zinc finger protein that specifically binds to the antisense strand may be used.
  • Example 1 of the present specification AZP11 and AZP13 are specifically disclosed as zinc finger proteins that recognize the sense strand, and AZP12 is specifically exemplified as a zinc finger protein designed based on the sequence on the antisense strand side. Is disclosed. Further, the design methods of AZP11, AZP12, and AZP13 are shown in FIG. 31, FIG. 32, FIG. And 33, respectively, and the amino acid sequences of AZP11, AZP12, and AZP13 are shown in SEQ ID NOs: 5, 6, and 7, respectively. .
  • deletion, substitution and / or selection or addition of 1 to several amino acids preferably about 1 to 5 amino acids in the amino acid sequence specified by SEQ ID NO: 5, 6, or 7
  • a replication inhibitor consisting of an amino acid sequence having a replication inhibitory action substantially similar to a protein consisting of the amino acid sequence specified by SEQ ID NO: 5, 6, or 7 against viruses belonging to the genus Mastrevirus Proteins can also be used.
  • a protein having substantially the same replication inhibitory activity as the protein consisting of the amino acid sequence specified by 7 can also be used as the replication inhibitor of the present invention.
  • nucleic acids used for preparing a replication inhibitor for viruses belonging to the genus Mastrevirus include, for example, DNAs encoding the above AZP11, AZP12, and AZP13 (base sequences shown in SEQ ID NOs: 8, 9, and 10 in the sequence listing, respectively)
  • a nucleic acid containing DNA encoding the protein (d) or (e) can be used.
  • the DNA encoding the protein represented by (d) or (e) above for example, hybridizes under stringent conditions to the DNA specified by the nucleotide sequences shown in SEQ ID NOs: 8, 9, and 10. DNA that can be used.
  • DNA for example, a DNA is used as a probe, and a colony or plaque-derived DNA or DNA fragment-immobilized filter is used in a colony hybridization method, plaque hybridization method, or Southern blot hybridization method.
  • a 0.1 to 2 ⁇ SSC solution (1 ⁇ SSC solution contains 150 ⁇ mM sodium chloride and 15 ⁇ mM sodium citrate) is used. Examples thereof include DNA that can be identified by washing the filter under the condition of ° C.
  • a DNA having a homology of 70% or more, preferably 80% or more, more preferably 90% or more, particularly preferably 95% or more, and most preferably 98% or more with respect to the base sequence of DNA used as a probe is preferable. Can be used.
  • the replication inhibitor of the present invention is provided in the form of the above zinc finger protein or a nucleic acid encoding the zinc finger protein.
  • Infection control against the virus to which it belongs can be performed.
  • the application method of the replication inhibitor of this invention is not specifically limited, For example, it can prepare as an agrochemical composition using the additive for a formulation well-known in this industry. Agrochemical compositions containing proteins or nucleic acids as active ingredients are known in the art, and agrochemical compositions can be prepared using any suitable means.
  • a method of transiently transforming a plant by introducing the nucleic acid into a plant cell using a vector such as a plasmid incorporating the nucleic acid a method of incorporating the nucleic acid into a plant genome using a vector, etc.
  • a vector such as a plasmid incorporating the nucleic acid
  • a method of incorporating the nucleic acid into a plant genome using a vector etc.
  • Vectors that can be used in the method of the present invention include viral vectors that infect plants.
  • the form of the agricultural chemical composition is not particularly limited, and any form may be adopted as long as it is a form that can be used in the industry.
  • a composition in the form of an emulsion, solution, oil, water solvent, wettable powder, flowable, powder, fine granule, granule, aerosol, fumigant, or paste can be used.
  • a method for producing the composition for agricultural chemicals is not particularly limited, and any method available to those skilled in the art can be appropriately employed.
  • other agrochemical active ingredients such as other antiviral agents, insecticides, fungicides, insecticide fungicides, herbicides and the like can be added to the agrochemical composition.
  • the present invention provides a transformed plant capable of expressing the replication inhibitor.
  • the plant to be transformed in the present invention is not particularly limited, in addition to the whole plant body, plant organs (e.g. leaves, petals, stems, roots, seeds, etc.), plant tissues (e.g. epidermis, phloem, soft tissue, Any of a xylem, a vascular bundle, a fence-like tissue, a spongy tissue, etc.) or a plant cultured cell may be used.
  • the type of plant is not particularly limited, and any plant can be targeted, but it is preferable to target a plant species that is infected with a virus belonging to the genus Mastrevirus.
  • mallow such as okra
  • red crustaceae beet, spinach, etc.
  • cruciferous such as turnip, cauliflower, broccoli, cabbage, komatsuna, stock, Japanese radish, duckweed, Chinese cabbage, wasabi, etc.
  • Iridaceae Iris, Gladiolus, Freesia, etc.
  • Pinaceae Statices, etc.
  • Gramineae Rhice, Sheep, Corn, Wheat, etc.
  • Siwa Tobacco Saintpaulia, etc.
  • Argiaceae Udo, etc.
  • Walnut family such as walnut
  • mulberry family such as fig, mulberry, hop
  • Lamiaceae Iceland Poppy, etc.
  • Scorpionaceae Antirrhinum majus
  • Primula Cicumamen, Primula, etc.
  • Taro Konjac, Taro, etc.
  • Cactaceae Cactus, etc.
  • Perilla Salvia, Perilla, etc.
  • Glyceraceae such as begonia
  • Ginger such as ginger and agar
  • Lilyaceae such as lotus root
  • Violet such as
  • Rose family (apricot, strawberry, plum, sweet cherry, plum, pear, rose, loquat, peach, snow willow Apples, pears, etc.), convolvulaceae (morning glory, sweet potatoes, etc.), sorghum (geraniums, etc.), vines (grape, etc.), beechs (chestnuts, etc.), buttons (buttons, peonies, etc.), matabidae (kiwi) Fruits, etc.), legumes (adzuki bean, green beans, green beans, green beans, peas, sweet peas, broad beans, soybeans, groundnuts, etc.), citrus (citrus, etc.), yams (such as yams), saxifragaceae (such as cymbidium), liliaceae (E.g.
  • tomato, pepper, tobacco, pumpkin, manioc, sweet potato, cotton, melon, potato, soybean, wine, corn, wheat, rice, sugar cane, bean, watermelon, okra, cassava and the like can be mentioned.
  • a more preferred plant is wheat or rice, and a particularly preferred plant is wheat.
  • plant sources to be transformed include protoplasts, seeds, seedlings, seedlings, callus, cultured cells, and plant bodies, but are not particularly limited. Depending on the type of target plant, those skilled in the art can perform transformation by selecting an appropriate site.
  • the type of vector used for transformation is not particularly limited, but the vector preferably includes a promoter and / or enhancer sequence for expressing the gene encoding the zinc finger protein.
  • the promoter and enhancer sequence are not particularly limited as long as the gene can be expressed in plant cells, and any promoter and enhancer sequence can be used.
  • promoters derived from plants, plant viruses, or bacteria, including genes expressed in plant cells such as Agrobacterium or Rhizobium can be used.
  • promoters include, for example, a promoter derived from Agrobacterium tumefaciens T-DNA, Smas promoter, cinnamon alcohol dehydrogenase promoter, NOS promoter, ribulose diphosphate carboxylase oxygenase (Rubisco) promoter, GRP1-8 promoter, cauliflower mosaic virus (CaMV) ) -Derived 35S promoter and plant-derived actin and histone promoters / enhancers can be used, but are not limited thereto.
  • the vector can contain sequences encoding various antibiotic resistance genes and other marker genes as selection marker genes.
  • marker genes include, for example, anti-spectinomycin gene, streptomycin resistance gene, kanamycin resistance gene, geneticin resistance gene, hygromycin resistance gene, resistance gene for herbicide that inhibits acetolactate synthase (ALS), glutamine synthesis
  • examples include, but are not limited to, resistance genes to herbicides that inhibit enzymes (eg, the bar gene), ⁇ -glucuronidase genes, luciferase genes, and the like.
  • poly (A) + sequences can be derived from various plant genes or T-DNA, but are not limited thereto.
  • Another sequence useful for expressing a gene at a high level for example, an intron sequence of a specific gene, a 5 ′ untranslated region sequence, or the like may be introduced into the vector.
  • NLS nuclear localization signal
  • Vectors useful for gene expression in higher plants are well known in the art, and any vector can be used.
  • a vector derived from Agrobacterium tumefaciens Ti plasmid as a vector that can incorporate a part of vector DNA into the genome of a host plant when the vector is introduced into a plant cell KYLX6 derived from Ti pbasmid, pKYLX7, pBI101, pBH2113 , PBI121 and the like, but are not limited thereto.
  • Expression vectors are known methods for introducing foreign genes into plant cells, such as particle gun method, electroporation method, polyethylene glycol (PEG) method, calcium phosphate method, DEAE dextran method, microinjection, lipofection method, and agro It can be introduced into a desired plant cell using a microorganism-mediated transfection method such as a bacterial method.
  • particle gun method, electroporation method, polyethylene glycol method, Agrobacterium method and the like are preferable, but Agrobacterium method can be used particularly preferably (Methods Mol. Biol, 82, pp.259- 266, 1998).
  • genetic recombination can be performed efficiently by using a two-component vector (binary vector) method.
  • the desired plant can be transformed to express the replication inhibitor of the present invention by appropriately modifying or modifying the type of vector, the sequence to be introduced into the vector, the transformation method, etc. .
  • AZP-2 TYPV-specific AZP
  • genes with linked zinc fingers were synthesized by PCR, and each gene was cloned into the BamH I / Hind III site of pET-21a (Novagen) of the E. coli expression vector.
  • pET-TYLCV-3, pET-TYLCV-4, and pET-TYLCV-5 were obtained.
  • the three-finger AZP genes in pET-TYLCV-3 and pET-TYLCV-4 were amplified by PCR and ligated to finally obtain pET-TYLCV3 / 4.
  • a zinc finger gene recognizing 5′-TATA-3 ′ was prepared, and pET-TYLCV6 was prepared by ligating with a 3-finger AZP gene in pET-TYLCV5 by the method described above. Finally, by recognizing and linking the 6-finger AZP gene and the 4-finger AZP gene from pE-TYLCV3 / 4 and pET-TYLCV6 by PCR, 31 bases of the 33 bases forming the stem loop region sequence are recognized. An AZP-2 expression plasmid (pET-TYLCV3 / 4/6) was prepared.
  • a Geminivirus general-purpose AZP (hereinafter referred to as “AZP-3”) was prepared according to the scheme shown in FIG.
  • a precursor plasmid (pET-MCS) was prepared in order to incorporate two AZP genes and linker peptide genes that recognize two regions conserved in geminiviruses within the stem loop region.
  • a 6-finger AZP gene that recognizes the longer region conserved by geminivirus was amplified by PCR from pET-TYLCV3 / 4 and cloned into pET-MCS to prepare pET-TYLCV3 / 4-MCS.
  • a 3-finger AZP gene that recognizes the shorter region conserved in Geminivirus is amplified from pET-TYLCV5 by PCR and cloned into pET-TYLCV3 / 4-MCS, so that it has 6 amino acids as a linker peptide
  • a plasmid (pET-TYLCV3 / 4-MCS-TYLCV5) expressing AZP-3 was prepared.
  • Each AZP was basically purified by the same method. Add 10 ml of lysis buffer (100 mM Trs-HCl, 100 mM NaCl, 0.1 mM ZnCl 2 , 5 mM DTT, pH 8.0) to E. coli stored at -80 ° C, and freeze and thaw 3 times to remove the E. coli cell wall. Made it fragile. Next, the E. coli was crushed using an ultrasonic crusher, and then the supernatant containing the target protein was recovered by centrifugation.
  • lysis buffer 100 mM Trs-HCl, 100 mM NaCl, 0.1 mM ZnCl 2 , 5 mM DTT, pH 8.0
  • the supernatant was applied to the cation exchange resin Biorex-70 (Bio-Rad) to adsorb the target protein to the resin, and then washed with a wash buffer (50 mM Trs-HCl, 50 mM NaCl, 0.1 mM ZnCl 2 , Wash thoroughly with 0.2 mM DTT, pH 8.0).
  • a wash buffer 50 mM Trs-HCl, 50 mM NaCl, 0.1 mM ZnCl 2 , Wash thoroughly with 0.2 mM DTT, pH 8.0.
  • an elution buffer 50 mM Trs-HCl, 300 mM NaCl, 0.1 mM ZnCl 2 , 0.2 mM DTT, pH 8.0).
  • RepN has a DNA binding ability at the N-terminal region (191 amino acid residues) of the viral replication protein Rep.
  • RepN was prepared by the following method for use in inhibition experiments of Rep binding to direct repeats by AZP.
  • the RepN gene was amplified from the TYLCV genome by PCR using the TYLCV genome recovered from the infected tomato and cloned into the BamH I / Hind III site of pET-21a in the same manner as in AZP.
  • a plasmid for RepN expression (pET-RepN) was prepared by confirming the base sequence of the obtained plasmid.
  • RepN protein expression and purification RepN expression was carried out in the same manner as in the case of AZP expression to obtain a sufficient amount of expression.
  • the obtained E. coli was stored at -80 ° C until protein purification.
  • RepN was purified in the same manner as in AZP. In ion exchange chromatography using Biorex-70, high purity RepN could be obtained by elution with elution buffer (50 mM Tris-HCl, 250 mM NaCl, 0.2 mM DTT, pH 8.0).
  • GST-AZP fusion protein AZP was used as a fusion with glutathione S-transferase (GST), the GST-AZP gene was placed downstream of the T7 promoter, and an expression vector was introduced into E. coli.
  • the E. coli was cultured in 120 mL of LB-Amp liquid medium until the OD 600 was 0.65 to 0.75. After culturing, IPTG was added to a final concentration of 1 mM, and further cultured for 3 hours to induce and express GST-AZP protein.
  • the induced Escherichia coli was collected by centrifugation and stored at -80 ° C.
  • the GST-AZP protein was purified by the same method as the GST-Rep protein.
  • Reference example 2 Materials and methods (1) Preparation of AZP transformed tomato (a) Preparation of AZP plant-use stable expression vector The gene encoding AFP-2 was inserted into the plant genome by the Agrobacterium method. For protoplast experiments, pUC35SO-TYLCV3 / 4/6 was prepared from pUC35SO-MCS by the method of FIG. 14, and a region containing 35S promoter-AZP gene-NOS terminator was excised from this plasmid with EcoR I and Hind III. The fragment was purified on an agarose gel and then cloned into the EcoR I / Hind III site of the binary plasmid pBI121 to obtain pBI-OTYLCV3 / 4/6. The nucleotide sequence was confirmed to be correct by sequencing. The same operation was performed for AZP-3.
  • the cotyledons of Micro-Tom were cut out with a razor and cut into two near half from the tip. These cotyledon sections were immersed in the above-mentioned Agrobacterium suspension and allowed to stand for 10 minutes for infection. Absorb excess suspension on sterilized Kim towel, coexisting medium (1 ⁇ MS medium, 30 g / L sucrose, 3 g / L gelrite, 1.5 mg / L t-zeatin, 40 ⁇ M acetosyringone, 0.1% Leave the leaves on MES, pH 5.7). The lid was sealed with surgical tape, and shielded from light with aluminum foil and cultured at 25 ° C.
  • callus induction medium (1 ⁇ MS medium, 3 g / L gelrite, t-zeatin 1.5 mg / L, Kan 100 mg / L, Augmentin 667 mg / L, 0.1% MES, Moved to pH (5.7). Callus was formed from some cotyledon sections infected in about 2 weeks, and some formed shoots.
  • the individuals that did not root within 2 weeks on the first rooting medium (plate) were cut into thin cuts, transplanted to a new rooting medium, and induced rooting again.
  • Individuals whose rooting was seen in the plant box rooting medium were planted in soil to produce fruit and to obtain seeds.
  • the humidity was gradually lowered to acclimatize. Specifically, moistened soil was put in a plant box, rooted individuals were planted in it, and the humidity was initially lowered to a high humidity, and the lid was gradually loosened to lower the humidity. Plants that had been fully acclimatized over about one month in the plant box were planted in pots and grown.
  • a primer set for amplifying a kanamycin resistance gene (NPT2 gene) and a primer set for amplifying a region including an artificial transcription gene and a NOS terminator were designed and used.
  • Virus infection experiment (a) Preparation of plasmid for virus infection Virus infection was performed using the infectivity of Agrobacterium. In order to introduce a viral genome copy having two origins of replication into a binary plasmid, target plasmids were prepared in two stages as shown below for two types, TYLCV and TYLCV-mild. TYLCV-mild differs from TYLCV in the direct repeats sequence to which Rep binds, and was used to investigate the versatility against geminivirus.
  • a DNA fragment of 0.5 copies including the replication origin was amplified by PCR from the viral genomic DNA of TYLCV and cloned into the EcoR I / Hind III site of the binary plasmid pBI121 to obtain pBI-TYLCV (0.5).
  • the nucleotide sequence was confirmed to be correct by sequencing.
  • cloning DNA amplified by PCR when introducing a DNA fragment of one copy of TYLCV it is necessary to confirm the base sequence of the prepared plasmid. However, because the target plasmid contains 1.5 copies of the viral genome, There are overlapping DNA regions, and it is not possible to confirm that the nucleotide sequence is correct by sequencing.
  • a DNA fragment of one copy containing the origin of replication was amplified by PCR from the viral genomic DNA of TYLCV and cloned into the Pst I / Hind III site of pBluescript II KS + to obtain pBS-TYLCV. Sequencing confirmed that the entire base sequence was correct.
  • a DNA fragment of one copy of the viral genome was excised from pBS-TYLCV with BsrG I and Hind III, purified on an agarose gel, cloned into the BsrG I / Hind III site of pBI-TYLCV (0.5), and finally The target plasmid pBI-TYLCV (1.5) was obtained. The same operation was performed for TYLCV-mild, and finally the target plasmid pBI-TYLCV-mild (1.5) was obtained.
  • This suspension was injected into the cotyledons of seedlings about 10 days after sowing to infect them. Periodic observation of plant individuals and detection of viral DNA in leaves were performed after infection. For this purpose, DNA samples were prepared as described above, and viral infection was evaluated at the molecular level by analyzing PCR products obtained using primer sets specific to each TYLCV.
  • AZP-transformed tomatoes were introduced into Micro-Tom tomatoes via Agrobacterium, respectively. Genes were introduced by infecting cotyledon sections with Agrobacterium transformed with a binary vector having each AZP expression cassette shown in FIG. Next, callus was induced using a medium containing kanamycin to induce shoots and then roots. Transformants were further selected at the time of induction of rooting by selecting individuals whose roots were deeply extended on the agar medium, and after acclimation, the transformants were obtained by transplanting to soil.
  • AZP expression in the transformants of each approach was confirmed by Western blot.
  • the AZP expression cassette for each approach was preliminarily attached with an HA epitope tag so that the expression of AZP protein in the transformant could be verified by Western blotting using an anti-HA antibody.
  • FIG. 21 it was confirmed that the AZP protein was also strongly expressed in the T2 plant introduced with AFP-2.
  • T3 seedlings from each T2 plant it was determined by PCR analysis of T3 seedlings from each T2 plant whether each T2 line obtained from T1 plants in which insertion of one copy of the AZP gene was confirmed was homozygous or heterozygous. If T3 seedlings from each T2 line (about 20 seedlings per line) are extracted from the DNA samples extracted from the leaves, and if all seedlings retain the AZP gene, the parent T2 line Can be determined to be homozygous (if the separation ratio is 1: 3, the parent T2 line is heterozygous). In all T3 plants from the same T2 line, the AZP gene was retained, indicating that this T2 line was homozygous (FIG. 22). It was also confirmed to be homozygous by statistical processing. It was also confirmed by Western blot that AZP was expressed in T3 plants (FIG. 23). For the plants transformed with AFP-3, the same operation was performed on T3 seedlings from each T2 plant, and similar results were obtained.
  • TYLCV-mild ⁇ Infection of TYLCV by the agroinoculation method was also confirmed at the molecular level. After the infection was established, leaves were collected at each stage, and TYLCV genomic DNA was detected by PCR in all infected leaves. The same experiment was performed for TYLCV-mild. Unlike TYLCV, the infection was mild. In particular, the symptoms at the early stage of infection are such that the color around the leaves becomes light, and it may be difficult to judge infection from the expression system. Therefore, not only the determination by the expression system but also the accurate determination can be made by identifying at the molecular level that the TYLCV-mild is replicated in the infected individual by the PCR method.
  • Example 1 Design of AZP targeting WDV A zinc finger protein that recognizes each of the following two DNA regions was designed based on the recognition code table described in JP-T-2004-519211. a. Upstream stem region and its flanking region b. Stem loop region c. Downstream stem region and its flanking region
  • AZP-11 was designed to recognize 10 base pairs shown in Fig. 30 by binding 10 zinc finger domains continuously.
  • AZP-12 12 zinc finger domains were designed to be linked sequentially to recognize the 37 base pairs shown in FIG. 30 (however, AZP-12 was designed based on the sequence on the antisense strand side).
  • AZP-13 was designed to recognize the 28 base pairs shown in Fig. 30 by linking 9 zinc finger domains sequentially.
  • AZP expression plasmid AZP-11 was prepared according to the scheme shown in FIG. First, genes with linked zinc fingers were synthesized by PCR, and each gene was cloned into the BamH I / Hind III site of pET-21a (Novagen) of the E. coli expression vector. As a result, pET-WDV3-1, pET-WDV3-2, and pET-WDV3-3 were obtained. Next, the three-finger AZP genes in pET-WDV3-2 and pET-WDV3-3 were ligated by PCR amplification, and finally pET-WDV6 was obtained.
  • a zinc finger gene recognizing 5′-GGGT-3 ′ was prepared, and pET-WDV4 was prepared by ligation with the three-finger AZP gene in pET-WDV3-1 by the method described above. Finally, 6-finger AZP gene and 4-finger AZP gene from pET-WDV4 and pET-WDV6, respectively, are amplified by PCR and linked to recognize 31 consecutive bases including the upstream stem region and its flanking region. A plasmid (pET-WDV10) encoding AZP-11 was prepared.
  • AZP-12 was produced with the scheme shown in FIG. First, genes with linked zinc fingers were synthesized by PCR, and each gene was cloned into the BamH I / HindHIII site of pET-21a (Novagen) of the E. coli expression vector. As a result, pET-WDV3-4, pET-WDV3-5, pET-WDV3-6, and pET-WDV3-7 were obtained. Next, the three-finger AZP genes in pET-WDV3-4 and pET-WDV3-5 were amplified and ligated by PCR to finally obtain pET-WDV6-2.
  • pET-WDV3-6 and pET-WDV3-7 were amplified by PCR and ligated to finally obtain pET-WDV6-3.
  • 6-finger AZP genes from pE-WDV6-2 and pET-WDV6-3 are each amplified by PCR and ligated to recognize 37 consecutive bases including the downstream stem region and its flanking region.
  • a plasmid (pET-WDV12) encoding AZP-12 was prepared.
  • AZP-13 was produced with the scheme shown in FIG. First, genes with linked zinc fingers were synthesized by PCR, and each gene was cloned into the BamH I / HindHIII site of pET-21a (Novagen) of the E. coli expression vector. As a result, pET-WDV3-8, pET-WDV3-9, and pET-WDV3-10 were obtained. Next, the three-finger AZP genes in pET-WDV3-9 and pET-WDV3-10 were amplified by PCR and ligated to finally obtain pET-WDV6-4. Finally, a 6-finger AZP gene was amplified from pE-WDV6-4 by PCR and ligated to prepare a plasmid (pET-WDV9) encoding AZP-13 that recognizes 28 bases of the stem loop region.
  • Example 2 Materials and methods (1) Preparation of stable expression vector for plant of AZP Each gene fragment encoding AZP11 and AZP12 designed in Example 1 was inserted into the enzyme cleavage site in the multicloning site of binary vector pUBIN-ZH2.
  • the binary vector pUBIN-ZH2 contains a cauliflower mosaic virus 35S promoter, a nopaline synthase terminator and a T-DNA portion of pPZP202 (P. Hajdukiewicz, Z. Svab, P. Maliga, 1994. Plant Molecular Biology 25: 989-994).
  • T1 generation T0 generation individuals in which PCR bands were confirmed were grown and T1 seeds were obtained.
  • the obtained T1 seeds were germinated, the genome was extracted from the leaves of the grown individuals, and PCR was performed. The method was carried out in the same manner as described in (3) above.
  • Transgene expression was checked by PCR using 1 ⁇ L of the cDNA solution prepared in (5). The number of PCR cycles was 30.
  • a primer a primer set that amplifies a region containing AZP was designed and used. In addition, it was confirmed by sequence analysis that the obtained band was an AZP fragment.
  • AZP-transformed wheat The AZP gene was introduced into wheat through Agrobacterium.
  • a binary vector having an AZP expression cassette was prepared by introducing the AZP gene into the binary vector shown in FIG. 34, and the gene was introduced by infecting wheat seeds with Agrobacterium transformed with this vector.
  • the transformed seed was transferred to a pot containing culture soil and grown at 25 ° C. under long-day conditions (16 hours light period, 8 hours dark period).
  • T1 seed obtained from the transformed individual was germinated, and it was confirmed by PCR that the grown T1 generation individual had the AZP gene.
  • PCR was performed using the PCR primer set shown in FIG. As shown in FIG. 36, since the target fragment was detected in several individuals (Nos. 4, 5, and 7), it was confirmed that the transformation operation was successfully performed. It was confirmed by sequence analysis that the obtained fragment was a ubiquitin promoter and an AZP gene fragment.
  • Example 3 Materials and methods (1) Preparation of plasmid for WDV infection Yunnan Kunming type (Accession Number: EU541489) of WDV was used for infection.
  • the WDV binary plasmid for infection was prepared in three stages as shown below. First, the DNA fragment of one copy of WDV was cloned into the cloning plasmid pBluescript II KS +.
  • a DNA fragment of one copy of WDV was synthesized by reconstitution from a synthetic DNA oligomer by PCR, the DNA end was cleaved with Bsa I and Hind III, and the obtained DNA fragment was then converted into pBluescript II KS + Acc65 I PBS-WDV was obtained by cloning into the / Hind III site. The nucleotide sequence was confirmed to be correct by sequencing.
  • a DNA fragment of one copy of the viral genome was excised from pBS-WDV with BsiW I and Hind III, purified on an agarose gel, cloned into the BsiW I / Hind III site of pBI-WDV (0.5), and finally The target plasmid pBI-WDV (1.5) was obtained.
  • WDV was inoculated in the same manner as above for each of three randomly selected T1 transformants prepared by introducing AZP11 or AZP12 gene. On the 20th, the leaves were collected, and whether or not WDV genomic DNA was detected was examined by PCR. As shown in FIG. 39, no WDV viral DNA was detected in any transformed wheat, and no viral growth was observed.
  • the replication inhibitor of the present invention can exhibit high effectiveness against WDV and other viruses belonging to the genus Masterovirus, it is extremely useful as a control means for various viruses belonging to the genus Masterovirus.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Inorganic Chemistry (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

 ジェミニウイルス科のマステレウイルス属に属するウイルスに対する複製阻害剤であって、該ウイルスのステムループ領域の全長DNA又は該全長DNAから選ばれる1又は2以上の部分DNAに特異的に結合することができるジンクフィンガータンパク質を含み、かつステムループ構造の形成を阻害することができる複製阻害剤。

Description

ジェミニウイルス複製阻害剤
 本発明は植物ウイルスに対する有効な感染防除手段に関するものである。より具体的には、植物ウイルスであるジェミニウイルスに包含されるマステレウイルス属に属する植物ウイルスに対する複製阻害剤及びマステレウイルス属に属する植物ウイルスによる感染に対して耐性を有する植物などに関する。
 ジンクフィンガーはヘリックス-ターン-ヘリックスモチーフ、ロイシンジッパーモチーフとともにDNA結合モチーフの一つであり、アミノ末端側に2個のシステインとカルボキシル末端側に2個のヒスチジンをもち、これらの残基にジンク(Zn)が配位した三次元構造をとっている。ジンクフィンガーはDNAに対して非常に強い結合力を有することから、このモチーフを利用して、DNAに対して強固に結合する人工DNA結合タンパク質((以下、本明細書において「AZP」と呼ぶ場合がある)が提案されており、認識コード表(Nondegenerate Recognition Code Table)を用いて特定の塩基配列を認識することができるように設計されたAZPが報告されている(特表2004-519211号公報;Biochemistry, 41, pp.7074-7081, 2002)。
 ジンクフィンガーモチーフひとつで3bp又は4bpを認識して結合することができ、ジンクフィンガーをペプチドリンカーで連結させることで特異的に結合させたい塩基配列の長さを調節することができる。ジンクフィンガーモチーフの4番目の認識塩基配列はアンチセンス鎖であり、次のジンクフィンガーモチーフの1番目の認識塩基配列に重なるので、ジンクフィンガーモチーフN個につき3N+1bpの塩基配列を認識して結合する(図1を参照)。
 このAZPを用いて植物DNAウイルスに対する感染防除を達成できることが報告されている(J. Virology, 79, pp.2614-2619, 2005)。この刊行物には、シロイヌナズナにおいて植物DNAウイルスであるBeet Severe Curly Top Virus (BSCTV)に対するAZPの感染防除効果が報告されているが、 この方法では、ウイルス複製の開始に必要な複製タンパク質(Rep)の複製起点上のRep結合サイト(direct repeats)への結合をAZPにより阻害する手段が採用されており、複製起点のdirect repeatsに基づいてRepよりも高いDNA結合能をもつAZPを設計してウイルス複製を阻害する方法である。しかしながら、Repのdirect repeatsをAZPでブロックするこの方法では、複製起点がウイルス固有の塩基配列を有していることから、様々な植物ウイルスに対応するためにはそれぞれ別のAZPを用いなければならないという問題がある。このような観点から、単一のAZPにより多様な植物ウイルスに対する感染防除効果を達成する手段の提供が求められている。
 一方、中華人民共和国のシャンシー省ハンチョンにおいて小麦に萎縮、斑葉、黄化、及び出穂低下を引き起こす病害が発見され、その原因ウイルスとしてコムギ萎縮病ウイルス(Wheat Dwarf Virus: WDV、以下このウイルスを「WDV」と略す場合がある)が同定された(Zhiwu Baohu(ISSN: 0529-1542), Vol.34, No.2, pp.17-21, 2008)。ハンチョンで単離された数種のWDVのゲノム構造は同一であり、ジェミニウイルス(Geminiviridae)科のマステレウイルス(Masterevirus)に属することも明らかにされた。WDVに関してはPlant Pathology, 57, pp.838-841, 2008; Plant Pathology, 58, pp.1161-1169, 2009のほかVirus genes, 34, ppo.359-366, 2007などの報告もある。
 ジェミニウイルスは植物に感染する一本鎖の環状DNAを1つ又は2つ有するウイルスの総称であり、多様な植物ウイルスが包含されているが、ベゴモウイルス属、トポクウイルス属、クルトウイルス属、及びマステレウイルス属の4種類に大別される。ベゴモウイルス属に属するウイルスとしては、例えば、トマト黄化葉巻ウイルス(Tomato Yellow Leaf Curl Virus: TYLCV)のほか、ジャガイモ黄化モザイク・ウイルス(Potato Yellow Mosaic Virus: PYMV)やビーン・ゴールデン・モザイク・ウイルス(Bean Golden Mosaic Virus: BGMV)などを挙げることができ、マステレウイルス属に属するウイルスとしては、上記のWDVのほか、トウモロコシ条斑ウイルス(Maize Streak Virus: MSV)、ミスカンザス条斑ウイルス(Miscanthas Streak Virus: MiSV)、タバコ黄萎ウイルス(Tobacco Yellow Dwarf Virus: TYDV)、クロリス・ストライト・モザイク・ウイルス(Chloris Straite Mosaic Virus: CSMV)などを挙げることができる。また、トポクウイルス属に属するウイルスとしてはトマト・プソイド-カーリー・トップ・ウイルス(Tomato Pseudo-curly Top Virus: TPCTV)、クルトウイルス属に属するウイルスとしてはビート・マイルド・カーリー・トップ・ウイルス(Beet Mild Curly Top Virus: BMCTV)をそれぞれ挙げることができる(図3参照)。
 ジェミニウイルスは植物内に入るとまず植物内在性の因子によって二重鎖環状DNAとなる。次にウイルス由来の複製タンパク質(Rep)がIntergenic Region(IR)のステムループの上流にあるRep結合サイトに結合する。Repは多機能を有するタンパク質であり、Rep結合サイトに結合し、ステムループのループ部分の9塩基配列にニックを入れた後、ニックの入ったDNAの5'末端と共有結合する。その後、3'末端から-鎖を鋳型としてDNA合成が開始され、ゲノムが1コピー合成されたところで新たにできた9塩基配列にRepによって再びニックがはいる。同時に切り出されたゲノム1コピー分のDNAはRepによってライゲーションされて一本鎖環状DNAが複製されるが、Repは新しくできた5'末端と共有結合する。この繰り返しによりジェミニウイルスの複製が行われるが、Rep以外の複製に必要な材料はすべて植物由来のものである(図2、及び化学と生物, 41, pp.311-317, 2003などを参照のこと)。
 Repは一本鎖DNAしか切断しないことが知られており、RepがウイルスDNAを切断するためにはウイルスDNAがステムループ構造をとる必要がある。ジェミニウイルスのうちベゴモウイルス属ではこのステムループを形成する塩基配列が極めて高度に保存されていることが知られている。一般的に、ステム領域は9つのGC対と2つのAT対からなり、ループ領域は11塩基又は12塩基からなり、TT、TTT、TA、又はATAに続いてTAATATTACの塩基配列が存在する(化学と生物, 41, pp.311-317, 2003におけるp.313の図2などを参照のこと)。
 ジェミニウイルスのうちマステレウイルス属において保存されている塩基配列をターゲットとしたウイルス複製阻害手段を提供することができれば、WDV感染のみならず、マステレウイルス属に属する多様な植物ウイルス感染を有効に防除することができるものと期待される。なお、ジェミニウイルス持続耐性を有する形質転換植物の作製方法については国際公開WO2004/101798に開示された方法などが知られているが、本発明のアプローチとは全く異なる。
特表2004-519211号公報 国際公開WO2004/101798
Biochemistry, 41, pp.7074-7081, 2002 J. Virology, 79, pp.2614-2619, 2005 Zhiwu Baohu(ISSN: 0529-1542), Vol.34, No.2, pp.17-21, 2008 Plant Pathology, 57, pp.838-841, 2008 Plant Pathology, 58, pp.1161-1169, 2009 Virus genes, 34, ppo.359-366, 2007 化学と生物, 41, pp.311-317, 2003
 本発明の課題は、ジェミニウイルスに対する有効な感染防除手段を提供することにある。より具体的には、ジェミニウイルスに包含されるマステレウイルス属に属する植物ウイルスの複製を阻害する薬剤及びマステレウイルス属に属する植物ウイルスに対して耐性を有する植物などを提供することが本発明の課題である。
 本発明者はこのステムループ部分に着目し、ジェミニウイルスに属する多様なウイルスの複製を共通して阻害することができる手段を提供すべく鋭意研究を行った。その結果、ステムループ部分のDNAにAZPを特異的に結合させることによりウイルスDNAの二重鎖構造を安定化し、ステムループへの構造変化を阻害することによって、一本鎖DNAしか切断できないRepによるウイルスDNAの切断を阻害することができることを見出した。また、本発明者はこのウイルス複製阻害作用が実際に植物体において機能することを確認した。この手法は、例えば、ジェミニウイルスのベゴモウイルス属において特に高度に保存されているステムループ部を利用することによりベゴモウイルス属に属するウイルスに対して汎用のウイルス複製阻害剤を提供するために極めて有用である。
 さらに本発明者らは研究を進めた結果、ジェミニウイルスのマステレウイルス属に属するウイルスにおいて保存されているステムループ部及びその周辺領域を利用して同様の手法を適用することにより、コムギ萎縮病ウイルス(WDV)などを含むマステレウイルス属に属するウイルスに対して汎用のウイルス複製阻害剤を提供することができることを見出し、本発明を完成するに至った。
 すなわち、本発明により、ジェミニウイルス科のマステレウイルス属に属するウイルスに対する複製阻害剤であって、該ウイルスのステムループ領域の全長DNA又は該全長DNAから選ばれる1又は2以上の部分DNAに特異的に結合することができるジンクフィンガータンパク質を含み、かつステムループ構造の形成を阻害することができる複製阻害剤が提供される。
 上記発明の好ましい態様によれば、マステレウイルス属に属するウイルスのステムループ領域の全長DNAから選ばれる1個の部分DNAに結合可能な単一のジンクフィンガータンパク質を含む上記の複製阻害剤;マステレウイルス属に属するウイルスのステムループ領域の全長DNAから選ばれる1個の部分DNAと、該DNAに結合する周辺領域から選ばれる1個のDNAとからなる連続したDNAに結合可能な単一のジンクフィンガータンパク質を含む上記の複製阻害剤;及びステムループ領域及び該ステムループ領域に結合する周辺領域からなるDNAから選ばれる2個以上の部分DNAにそれぞれ結合可能なジンクフィンガータンパク質をリンカーで2個以上結合したジンクフィンガータンパク質を含む上記の複製阻害剤が提供される。
 さらに好ましい態様によれば、上記ジンクフィンガータンパク質が8個ないし13個、好ましくは9個ないし12個のジンクフィンガードメインを含むジンクフィンガータンパク質である上記の複製阻害剤が提供される。
 また、本発明により、上記のジンクフィンガータンパク質をコードする核酸、及びジェミニウイルスに対する複製阻害剤であって、上記のジンクフィンガータンパク質をコードする核酸を含む複製阻害剤も提供される。
 上記発明の好ましい態様によれば、マステレウイルス属に属するウイルスがコムギ萎縮病ウイルス(WDV)である上記の複製阻害剤が提供される。
 別の観点からは、本発明により、上記のジンクフィンガータンパク質又は上記のジンクフィンガータンパク質をコードする核酸を含むマステレウイルス属に属するウイルスに対する抗ウイルス剤;上記のジンクフィンガータンパク質又は上記のジンクフィンガータンパク質をコードする核酸を含むマステレウイルス属に属するウイルスに対する感染予防剤;マステレウイルス属に属するウイルスによる感染に対する防除用の農薬であって、上記のジンクフィンガータンパク質又は上記のジンクフィンガータンパク質をコードする核酸を含む農薬が提供される。
 さらに別の観点からは、本発明により、植物のマステレウイルス属に属するウイルス感染を予防する方法であって、上記のジンクフィンガータンパク質又は上記のジンクフィンガータンパク質をコードする核酸の予防有効量を植物に施用する工程を含む方法;マステレウイルス属に属するウイルス感染に対する防除方法であって、上記のジンクフィンガータンパク質又は上記のジンクフィンガータンパク質をコードする核酸の防除有効量を植物に施用する工程を含む方法が提供される。
 また、本発明により、マステレウイルス属に属するウイルスに対して耐性を有する植物であって、上記のジンクフィンガータンパク質を発現可能な遺伝子組み換え植物;マステレウイルス属に属するウイルスに対して耐性を有する植物であって、上記のジンクフィンガータンパク質をコードする遺伝子が導入された形質転換植物;植物にマステレウイルス属に属するウイルスに対する耐性を獲得させる方法であって、上記のジンクフィンガータンパク質をコードする遺伝子で植物を形質転換する工程を含む方法が提供される。
 さらに本発明により、上記のジンクフィンガータンパク質をコードする核酸を含む組換えベクター、及び植物をマステレウイルス属に属するウイルスに対して耐性を有する植物に形質転換するために用いる上記の組換えベクターが提供される。ベクターとしては植物用のウイルスベクターなどを用いることができる。
 本発明の複製阻害剤は、ジェミニウイルス科のマステレウイルス属に属するウイルスにおいて保存されているステムループ領域をターゲットとしていることから、マステレウイルス属に属する多様なウイルスによる感染に対して共通の複製阻害剤として作用することができる。従って、本発明の複製阻害剤は、マステレウイルス属に属するウイルスに属する代表的なウイルスであるWDV感染のみならず、マステレウイルス属に属する他のウイルスに対しても高い有効性を発揮することができるので、マステレウイルス属に属する多様なウイルスに対する防除手段として極めて有用である。
ジンクフィンガーモチーフとDNAとの結合様式を示した図である。 ジェミニウイルスの複製工程の概念図である。 ジェミニウイルスとTYLCVの包含関係を示した図である。 TYLCVのステムループ領域を示した図である。 ジェミニウイルスに包含される数種のウイルスについてのステムループ領域の相同性を示した図である。 TYLCVのみを標的とする複製阻害剤の例(上段)及び多様なジェミニウイルスを標的とする複製阻害剤の例(下段)を示した図である。 TYLCV専用AZP-2の作成工程を示したスキームである。 ジェミニウイルス汎用AZP-3の作成工程を示したスキームである。 TYLCV専用AZP-2の標的DNA配列への結合能をゲルシフトアッセイにより評価した結果を示した図である。 ジェミニウイルス汎用AZP-3の標的DNA配列への結合能をゲルシフトアッセイにより評価した結果を示した図である。 比較のためRepNの標的DNA配列への結合能をゲルシフトアッセイにより評価した結果を示した図である。 Repの複製起点切断に対するGST-AZP(AZP-2)の阻害活性を示した図である。レーン1は基質DNA、レーン2は切断生成物マーカーを示し、レーン3は2μM GST-Repによる切断を示す。 Repの複製起点切断に対するGST-AZP(AZP-3)の阻害活性を示した図である。GST-Rep濃度2μM、反応温度25℃、反応時間30分における切断物を示した。 pUC35SO-TYLCV3/4/6の作製方法を示した図である。35S: カリフラワーモザイクウイルス由来プロモーター;NLS: 核局在化シグナル;Ω: 翻訳効率を上昇させるための5'-leader配列;NOST: ターミネーター;TYLCV3/4/6: 全TYLCVにおいて共通塩基配列に結合するAZP(認識配列は5'-GGCCATCCGTATAATATTACCGGATGGCCGC-3')。 形質転換用APZ発現プラスミドの作製方法を示した図である。NOS: ノバリン合成プロモーター(Agrobacterium tumefaciens由来);NPT2: カナマイシン耐性遺伝子;GUS: β-ガラクトシダーゼ遺伝子;RB(ライトボーダー)及びLB(レフトボーダー): 約25bpの繰り返し配列(この配列に挟まれたDNA領域が植物ゲノムに転移する)。 形質転換体T1について挿入遺伝子の構造、並びにカナマイシン耐性遺伝子及びAZP遺伝子を検出するためのPCRプライマーセットを示した図である。 形質転換体T1についてカナマイシン耐性遺伝子及びAZP遺伝子を検出した結果を示した図である。レーン1~4は各T1植物から抽出したDNAを、Nは野生型トマトから抽出したDNAを、Pは形質転換に用いたバイナリーベクターをそれぞれ用いてPCRを行った結果を示した。 AZP発現カセット全領域における挿入遺伝子の構造、並びにゲノムに挿入されていることを確認するためのプライマーセットを示した図である。 AZP-2を導入して得られたT2植物におけるAZP遺伝子挿入をPCRにより確認した結果を示した図である。AZP発現カセットの検出のため、レーン1~8は各T1植物から抽出したDNAを、Pは形質転換に用いたバイナリーベクターをそれぞれ用いてPCRを行った結果を示した。 AZP-2を導入して得られたT2植物についてPCRによりAZP挿入遺伝子のコピー数を同定した結果を示した図である。レーン1~18は特定の形質転換体T1からのT2植物から抽出したDNA、Nは野生型トマトから抽出したDNA、Pは形質転換に用いたバイナリーベクターをそれぞれ用いてPCRを行った結果を示す。 AZP-2を導入して得られたT2植物におけるAZPの発現を確認した結果を示した図である。図20に示したT2植物の葉の抽出液から抗HA抗体によるウェスタンブロット法によりAZPを検出した。図中のレーンの番号は図20に対応させてある。 AZP-2を導入して得られたT3植物についてPCRによりAZP挿入遺伝子のホモのT2ラインを同定した結果を示した図である。レーン1~16は特定のT2ラインからのT3植物から抽出したDNAを用いてPCRを行った結果を示す。全てのT3個体においてAZP挿入遺伝子が確認されたこのT2植物をホモであるとして選別した。 AZP-2を導入して得られたT3植物におけるAZPの発現を確認した結果を示した図である。レーン1~4はT3植物の葉からの抽出液、Nは野生型トマトの葉からの抽出液、及びPは用いたラインのT2植物の葉からの抽出液をそれぞれ用いて、抗HA抗体によるウェスタンブロットによりAZPを検出した。 アグロイノキュレーション法により野生型Micro-TomトマトにTYLCVゲノムを有するアグロバクテリアを注入し、TYLCVの感染を成立させた結果を示した図である。成長した個体(右)においてTYLCV感染の特徴的症状である葉のカーリングや黄色化が明確に観察されるとともに、明白な成長の阻害が認められた。 AZP-2を導入して得られたT3植物に対してTYLCVの感染試験を行った結果を示した図である。形質転換体には感染症状は認められなかった。 ウイルスを感染させて30日後のAZP-2形質転換トマトから葉を回収し、TYLCV検出用のプライマーを用いたPCRを行なった結果を示した図である。 AZP-3を導入して作製したT1植物1個体から得られたT3植物にTYLCVを感染させた結果を示した図である。 AZP-3の形質転換体においてウイルスDNAが検出されないことを示した図である。 コムギ萎縮病ウイルス(WDV)の変異体を示した図である。 WDVを含むマステレウイルス属に属するウイルスに対する3種類の複製阻害剤の標的サイトを示した図である。AZP11及びAZP13はセンス鎖を認識するように設計されており、AZP12はアンチセンス鎖側の配列に基づいて設計されている(実施例1)。 AZP-11の作成工程を示した図である。 AZP-12の作成工程を示した図である。 AZP-13の作成工程を示した図である。 AZP-11及びAZP-12発現カセットを有するバイナリーベクターを調製するためのプリカーサーベクターの構造を示した図である。 ユビキチンプロモーターとAZPの断片を増幅するためのプライマーセットを示した図である。 ユビキチンプロモーターとAZPの断片をPCRで増幅した結果を示した図である。 AZPを含む領域を増幅するためのプライマーセットを示した図である。 AZP11及びAZP12を導入したT1個体においてAZPが強く発現されている結果を示した図である。 AZP11又はAZP12遺伝子を導入して作製したT1形質転換体に対してWDVを感染させた後にWDVゲノムDNAをPCRにより検出した結果を示した図である。
 本発明の複製阻害剤は、ジェミニウイルス科のマステレウイルス属に属するウイルスに対する複製阻害剤であって、上記ウイルスのステムループ領域の全長DNA又は該全長DNAから選ばれる1又は2以上の部分DNAに特異的に結合することができるジンクフィンガータンパク質を含み、かつステムループ構造の形成を阻害することができることを特徴としている。
 本明細書において用いられる「ジェミニウイルス」の用語は、植物に感染するDNAウイルスであって、一本鎖の環状DNAを1つ又は2つ有するウイルスを意味するが、この用語の意味は、例えば、化学と生物, 41, pp.311-317, 2003などに具体的に説明されている。ジェミニウイルスはゲノム構造、宿主範囲、及び媒介昆虫の種類に応じて以下の4つの属、すなわちマストレウイルス(Mastrevirus)属、クルトウイルス(Curtovirus)属、トポクウイルス(Topocuvirus)属、及びベゴモウイルス(Begomovirus)属に分類されるが、本発明の複製阻害剤はこれらのうち特にマストレウイルス属に属する任意のウイルスを標的とすることができる。それぞれの属に属するウイルスのゲノム構成については、上記の刊行物(化学と生物, 41, pp.311-317, 2003)の図2に具体的に示されている。また、ジェミニウイルスに属するウイルス及びその略号については、例えば、国際公開WO2004/101798に詳細な表が開示されている。国際公開WO2004/101798の開示の全てを参照により本明細書の開示として含める。ジェミニウイルスには、既知のジェミニウイルスのほか、未知のジェミニウイルスや既知のジェミニウイルスが変異した新種ジェミニウイルスなども包含されることは言うまでもない。
 ジェミニウイルスに包含されるウイルスとしては、例えば、MSV(Maize streak virus)、WDV(Wheat dwarf virus)、BeYDV(Bean yellow dwarf virus)などのマストレウイルス属に属するウイルス、BCTV(Beet cury top virus)などのクルトウイルス属に属するウイルス、TPCTV(Tomato pseudo-cury top virus)などのトポクウイルスに属するウイルス、並びにBGMV(Bean golden mosaic virus)、ACMV(African cassava mosaic virus)、SLCV(Squash leaf curl virus)、TGMV(Tomato golden mosaic virus)、及びTYLCV(Tomato Yellow Leaf Curl Virus)などのベゴモウイルス属に属するウイルスを挙げることができるが、これらに限定されることはない。本発明の複製阻害剤はMSV(Maize streak virus)、WDV(Wheat dwarf virus)、BeYDV(Bean yellow dwarf virus)などのマストレウイルス属に属するウイルスを対象とする複製阻害剤として提供されるが、これらのうちWDVが特に好ましい対象である。
 ベゴモウイルス属に属するウイルスでは複製阻害剤の結合部位となるステムループ領域が高度に保存されていることが知られている。ベゴモウイルス属に属するウイルスとしては、例えば、TYLCCNV、 TYLCGV、TYLCMalV、 TYLCSV、 TYLCTHV、 TYLCV、 ACMV、 BGMV、 CaLCuV、 ToCMoV、TGMV、 ToGMoV、 ToMHV、 ToMoTV、 ToMoV、ToRMV、 ToSLCV、 ToSRV、 ワタ葉巻(CLCrV、 CLCuAV、ClCuGV、 CLCuKV、 CLCuMV、 CLCuRV)、東アフリカキャッサバモザイク(EACMCV、 EACMMV、 EACMV、EACMZV)、ジャガイモ黄化モザイク(PYMPV、PYMTV、 PYMV)、 カボチャ葉巻(SLCCNV、 SLCV, SLCYV)、サツマイモ葉巻(SPLCGV、 SPLCV)、 タバコ葉巻(TbLCJV、 TbLCKoV、 TbLCYNV、TbLCZV)、トマト葉巻(ToLCBV、 ToLCBDV、 ToLCGV、 ToLCKV、ToLCLV、 ToLCMV、 ToLCNDV、 ToLCSLV、 ToLCTWV、ToLCVV、 ToLCV)などを挙げることができるが、これらに限定されることはない。以下、本発明の複製阻害剤の設計手法及び作用機序などの説明のために参考として特にベゴモウイルス属に属するTYLCVについて言及する場合がある。図3にジェミニウイルスとTYLCV及びWDVとの包含関係を示す。
 本発明の複製阻害剤は、マストレウイルス属に属するウイルスのステムループ領域の全長DNA又は該全長DNAから選ばれる1又は2以上の部分DNAに特異的に結合することができるジンクフィンガータンパク質を含み、かつステムループ構造の形成を阻害する作用を有している。ジェミニウイルスの「ステムループ領域」の用語について、例えばベゴモウイルス属に属するTYLCVを例にとって説明すると、ステムループ領域は互いに相補的に結合する2つのステム領域(それぞれ11塩基からなる領域)と、その間に存在してループを形成するループ領域(11塩基からなる領域)とからなる33塩基の領域である。TYLCVには多様な株の存在が知られているが、全てのTYLCVにおいてステムループ領域の塩基配列は高度に保存されている。図4にTYLCVのステムループ領域を示す。このステムループ領域はベゴモウイルスに属する他のウイルスにおいても高度に保存されており、例えば、BGMVの両方のDNAのCR(common region)上には34塩基からなるステムループ領域が存在しているが、その塩基配列はベゴモウイルスに属する他のウイルスのステムループ領域の塩基配列と極めて相同性が高い。
 本明細書において、ステムループ領域の塩基配列が「高度に保存されている」とは、比較すべき塩基配列のホモロジーが80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上であることを意味する。マストレウイルス属に属するウイルスについても同様であり、一般的にはベゴモウイルス属に属するウイルスに比べてステムループ領域のホモロジーが低い場合もあるが、マストレウイルス属に属するウイルスにおけるステムループ領域の塩基配列も保存されており、ホモロジーは通常は60%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上である。さらに、ジェミニウイルスの他の属に属するウイルスについても、ステムループ領域については高度に保存されている。図5にジェミニウイルスに包含される数種のウイルスについてのステムループ領域の相同性を示す。
 本発明の複製阻害剤は、上記のとおりマストレウイルス属に属するウイルスにおいて保存されているステムループ領域の全長DNA又は該全長DNAから選ばれる1又は2以上の部分DNAに特異的に結合し、この特異的な結合の結果として、ステムループ構造の形成を阻害することができるように設計することができる。本発明の複製阻害剤は、ステムループ領域の全長DNA又は該全長DNAから選ばれる1又は2以上の部分DNAに特異的に結合する性質に加えて、ステムループ領域DNAの上流及び/又は下流に結合するフランキング領域のDNAに特異的に結合するように設計することもでき、このような態様は本発明において好ましい態様である。
 特に好ましい態様の一つは、(a)マステレウイルス属に属するウイルスのステムループ領域の全長DNAから選ばれる1個の部分DNAと、該DNAに結合しフランキング領域から選ばれる1個のDNAとからなる連続したDNAに結合可能な単一のジンクフィンガータンパク質を含む複製阻害剤である。この特に好ましい態様の複製阻害剤の具体例として、本明細書の実施例1にはAZP-11及び12が開示されている(図30)。また、特に好ましい他の態様では、(b)ステムループ領域の該全長DNAから選ばれる1個の部分DNAに特異的に結合するジンクフィンガータンパク質を含む複製阻害剤である。この特に好ましい態様の複製阻害剤の具体例として、本明細書の実施例1にはAZP-13が開示されている(図30)。さらに、(c)ステムループ領域及び該ステムループ領域に結合する周辺領域(フランキング領域)からなるDNAから選ばれる2個以上の部分DNAにそれぞれ結合可能なジンクフィンガータンパク質をリンカーで2個以上結合したジンクフィンガータンパク質を含む上記の複製阻害剤も好ましい。特異的な結合によりステムループ構造の形成を阻害するためには、ステムループ領域から選ばれるDNAに対して、又はステムループ領域から選ばれるDNAとともに該ステムループ領域の周辺領域であるフランキング領域から選ばれるDNAに対して本発明の阻害剤が結合してウイルスDNAの二重鎖構造を安定化することができればよいが、ステムループ領域及び必要に応じてその周辺領域の塩基配列に基づいて適宜のジンクフィンガードメインを選択することにより、マステレウイルス属に属するウイルスのステムループ構造の形成を阻害するジンクフィンガータンパク質を設計することが可能である。
 ジンクフィンガータンパク質に含まれるジンクフィンガードメインは、認識コード表(Nondegenerate Recognition Code Table)を用いて特定の塩基配列を認識することができるように設計することができる。本明細書においてジンクフィンガードメインとはジンクフィンガードメインとはジンクフィンガータンパク質に存在するDNA結合部位を構成するドメインのことを意味しており、単に「フィンガー」と呼ばれる場合もある。代表的にはジンクフィンガータンパク質は2個、3個、4個、6個、又は10個程度のジンクフィンガードメインを有している。認識コード表及び特定の塩基配列を認識して特異的に結合するジンクフィンガータンパク質の設計手法については、例えば特表2004-519211号公報に記載されている。上記特許公報の開示の全てを参照により本明細書の開示に含める。また、Biochemistry, 41, pp.7074-7081, 2002などを参照することもできる。上記のとおり、マストレウイルス属に属するウイルスのゲノムDNAのステムループ領域の塩基配列情報は容易に入手可能であり、当業者は少なくともステムループ領域の全長DNA又は全長DNAから選択される1又は2以上の部分DNAに対して特異的に結合可能なジンクフィンガータンパク質を容易に設計して製造することができる。
 参考のために、例えばTYLCVのみを標的とした複製阻害剤を設計する手法を実施例の参考例1に示した。TYLCV間でよく保存されているステムループ領域DNA(33塩基)の全長又はほぼ全長を含むDNAに対して結合可能なジンクフィンガータンパク質を設計すればよく、このようなジンクフィンガータンパク質から選ばれる1種類のジンクフィンガータンパク質を本発明の複製阻害剤として用いることにより、全てのTYLCVの複製を阻害することが可能になる。このようなジンクフィンガータンパク質としては、例えば、ジンクフィンガードメインを10個含むジンクフィンガータンパク質を設計することができる。上記の手法をTYLCV以外のジェミニウイルスファミリーを標的とした複製阻害剤の設計に適宜適用できることは当業者に容易に理解されることである。
 また、参考のために、TYLCVのほかベゴモウイルス属に属するウイルスを含む多様なジェミニウイルスを標的とした複製阻害剤を設計する手法も実施例の参考例2に示した。例えば、ステム領域の全長DNAから標的ジェミニウイルスにおいて共通の配列であ2個以上の部分DNAを選択し、それらの部分DNAに対して結合する単一のジンクフィンガータンパク質を設計するか、又はそれらの部分DNAに対してそれぞれ結合する2個以上のジンクフィンガータンパク質を設計して、これらの2個以上のジンクフィンガータンパク質を適宜のリンカー、例えばペプチドリンカーなどでそれぞれ結合すればよい。リンカーとしては、アミノ酸残基数が1~40個、好ましくは1~20個、さらに好ましくは1~10個程度のペプチドリンカーのほか、例えばアルキレン鎖やポリエチレングリコール鎖などの合成リンカーや糖鎖などを用いてもよい。ステム領域の全長DNAから2以上の部分DNAを選択するにあたっては、標的となるベゴモウイルス属に属するウイルスを含む多様なジェミニウイルスのステム領域において非共通配列となる部分DNAを含まないように選択することが好ましく、一般的には、この非共通配列の上流及び下流に位置する共通配列のDNAを部分DNAとして選択することが望ましい。
 参考として、TYLCVのみを標的とする複製阻害剤の例、及びベゴモウイルス属に属するウイルスを含む多様なジェミニウイルスを標的とする複製阻害剤の例をそれぞれ図6に示す。図中、上側がTYLCVのみを標的とする場合の例であり、下側がベゴモウイルス属に属するウイルスを含む多様な多様なジェミニウイルスを標的とする場合の例である。
 例えば、(a)TYLCVのみを標的とする複製阻害剤として配列表の配列番号1に示すアミノ酸配列を有する複製阻害剤、及びベゴモウイルス属に属するウイルスを含む多様なジェミニウイルスを標的とする複製阻害剤として配列番号2に示すアミノ酸配列を有する複製阻害剤を挙げることができる。また、(b)配列番号1又は2により特定されるアミノ酸配列において1から数個、好ましくは1~5個程度のアミノ酸の欠失、置換、及び/ 又は付加を有するアミノ酸配列からなる複製阻害剤であって、配列番号1又は2により特定されるアミノ酸配列からなるタンパク質と実質的に同様の複製阻害作用を有するタンパク質も複製阻害剤として用いることができる。さらに、(c)配列番号1又は2により特定されるアミノ酸配列に対して70%、好ましくは80%、さらに好ましくは90%以上の相同性を有し、配列番号1又は2により特定されるアミノ酸配列からなるタンパク質と実質的に同様の複製阻害作用を有するタンパク質も複製阻害剤として用いることができる。
 TYLCVのみを標的とする複製阻害剤の例、及びベゴモウイルス属に属するウイルスを含む多様なジェミニウイルスを標的とする複製阻害剤を調製するために用いる核酸としては、上記(a)のタンパク質をコードするDNA(配列表の配列番号3又は4に示す塩基配列で特定されるDNA)のほか、上記(b)又は(c)のタンパク質をコードするDNAを含む核酸を用いることができる。上記(b)又は(c)で表されるタンパク質をコードするDNAとしては、例えば、配列番号3又は4に示す塩基配列で特定されるDNAにストリンジェントな条件下でハイブリダイズすることができるDNAなどが含まれる。このようなDNAとしては、例えば、DNAをプローブとして使用し、コロニーハイブリダイゼーション法、プラークハイブリダイゼーション法、又はサザンブロットハイブリダイゼーション法において、コロニー又はプラーク由来のDNA又はDNA断片を固定化したフィルターを用いて0.7~1.0 M程度のNaCl存在下で65℃でハイブリダイゼーションを行った後、0.1~2×SSC溶液(1×SSC溶液は150 mM 塩化ナトリウム及び15 mM クエン酸ナトリウムを含む)を用いて65℃条件下でフィルターを洗浄することにより同定できるDNAなどを挙げることができる。例えば、プローブとして用いるDNAの塩基配列に対して70%以上、好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上、最も好ましくは98%以上の相同性を有するDNAを好ましく用いることができる。
 本発明により提供されるマストレウイルス属に属するウイルスに対する複製阻害剤の設計は以下のように行うことができる。マストレウイルス属に属するウイルスの代表例としてWDVを挙げることができるが、WDVについては図29に示す変異体が知られているがステムループ領域は高度に保存されており、さらにそれぞれステム領域の下流及び上流に結合する周辺領域(フランキング領域)も高度に保存されている(WDVのゲノム配列や変異体に関してはPlant Pathology, 57, pp.838-841, 2008; Plant Pathology, 58, pp.1161-1169, 2009; Virus genes, 34, ppo.359-366, 2007などを参照することもできる)。本発明の複製阻害剤の設計において考慮すべき周辺領域の塩基数は、例えばステム領域の末端から200以下、好ましくは100以下、さらに好ましくは50以下、特に好ましくは30以下程度である。さらにこれらの領域はマストレウイルス属に属する他のウイルスにおいても保存されており、この領域のホモロジーは通常は60%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上である。
 従って、WDVの複製を阻害するためには、WDVのステムループ領域に特異的に結合するジンクフィンガータンパク質を用いるか、あるいはWDVのステムループ領域の一部に結合するとともにWDVのステム領域の上流及び/又は下流に結合しているDNAに対して特異的に結合するジンクフィンガータンパク質を用いることができる。一例として、図30にWDVを含むマストレウイルス属に属するウイルスに対する本発明の複製阻害剤の標的サイトを示す。WDVの複製を阻害するためにセンス鎖に対して特異的に結合するジンクフィンガータンパク質のほか、アンチセンス鎖に対して特異的に結合するジンクフィンガータンパク質を用いてもよい。
 本明細書の実施例1にはセンス鎖を認識するジンクフィンガータンパク質としてAZP11及びAZP13が具体的に開示されており、アンチセンス鎖側の配列に基づいて設計されたジンクフィンガータンパク質としてAZP12が具体的に開示されている。また、AZP11、AZP12、及びAZP13の設計方法をそれぞれ図31、図32、図及び33に示し、AZP11、AZP12、及びAZP13のアミノ酸配列を配列表の配列番号5、6、及び7にそれぞれ示した。本発明の複製阻害剤として、(d)配列番号5、6、又は7により特定されるアミノ酸配列において1から数個、好ましくは1~5個程度のアミノ酸の欠失、置換、及び/ 又は付加を有するアミノ酸配列からなる複製阻害剤であって、マストレウイルス属に属するウイルスに対して配列番号5、6、又は7により特定されるアミノ酸配列からなるタンパク質と実質的に同様の複製阻害作用を有するタンパク質を用いることもできる。さらに、(e)配列番号5、6、又は7により特定されるアミノ酸配列に対して70%、好ましくは80%、さらに好ましくは90%以上の相同性を有し、配列番号5、6、又は7により特定されるアミノ酸配列からなるタンパク質と実質的に同様の複製阻害作用を有するタンパク質も本発明の複製阻害剤として用いることができる。
 マストレウイルス属に属するウイルスに対する複製阻害剤を調製するために用いる核酸としては、例えば、上記AZP11、AZP12、及びAZP13をコードするDNA(それぞれ配列表の配列番号8、9、及び10に示す塩基配列で特定されるDNA)のほか、上記(d)又は(e)のタンパク質をコードするDNAを含む核酸を用いることができる。上記(d)又は(e)で表されるタンパク質をコードするDNAとしては、例えば、配列番号8、9、及び10に示す塩基配列で特定されるDNAにストリンジェントな条件下でハイブリダイズすることができるDNAなどが含まれる。このようなDNAとしては、例えば、DNAをプローブとして使用し、コロニーハイブリダイゼーション法、プラークハイブリダイゼーション法、又はサザンブロットハイブリダイゼーション法において、コロニー又はプラーク由来のDNA又はDNA断片を固定化したフィルターを用いて0.7~1.0 M程度のNaCl存在下で65℃でハイブリダイゼーションを行った後、0.1~2×SSC溶液(1×SSC溶液は150 mM 塩化ナトリウム及び15 mM クエン酸ナトリウムを含む)を用いて65℃条件下でフィルターを洗浄することにより同定できるDNAなどを挙げることができる。例えば、プローブとして用いるDNAの塩基配列に対して70%以上、好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上、最も好ましくは98%以上の相同性を有するDNAを好ましく用いることができる。
 本発明の複製阻害剤は上記のジンクフィンガータンパク質又は該ジンクフィンガータンパク質をコードする核酸の形態で提供されるが、本発明の複製阻害剤をそのまま農薬として植物に施用することにより、マストレウイルス属に属するウイルスに対する感染防除を行うことができる。本発明の複製阻害剤の施用方法は特に限定されないが、例えば、当業界で周知の製剤用添加物を用いて、農薬用組成物として調製することができる。有効成分としてタンパク質又は核酸を含む農薬用組成物が当業界で知られており、適宜の手段を用いて農薬用組成物を調製することができる。例えば、上記の核酸を組み込んだプラスミドなどのベクターを用いて植物細胞内に上記核酸を導入して一過性に植物を形質転換する方法や、ベクターを用いて植物ゲノムに上記核酸を組み込む方法などが挙げられるが、この方法に限定されるわけではない。本発明の方法において利用可能なベクターには、植物に感染するウイルスベクターも含まれる。
 農薬用組成物の形態は特に限定されず、当業界で利用可能な形態であればいかなる形態を採用してもよい。例えば、乳剤、液剤、油剤、水溶剤、水和剤、フロアブル、粉剤、微粒剤、粒剤、エアゾール、くん蒸剤、又はペースト剤などの形態の組成物を用いることができる。農薬用組成物の製造方法も特に限定されず、当業者に利用可能な方法を適宜採用することができる。また、他の抗ウイルス剤、殺虫剤、殺菌剤、殺虫殺菌剤、除草剤などの他の農薬の有効成分を農薬用組成物に配合することもできる。
 本発明により、上記の複製阻害剤を発現可能な形質転換植物が提供される。本発明において形質転換の対象となる植物は特に限定されず、植物体全体のほか、植物器官(例えば葉、花弁、茎、根、種子等)、植物組織(例えば表皮、師部、柔組織、木部、維管束、柵状組織、海綿状組織等)、又は植物培養細胞のいずれであってもよい。植物の種類は特に限定されず、任意の植物を対象とすることができるが、マストレウイルス属に属するウイルスの感染が成立する植物種を対象とすることが好ましい。
 より具体的には、植物種として、例えばアオイ科(オクラなど)、アカザ科(ビート、ホウレンソウなど)、アブラナ科(カブ、カリフラワー、ブロッコリー、キャベツ、コマツナ、ストック、ダイコン、チンゲンサイ、ハクサイ、ワサビなど)、アヤメ科(アイリス、グラジオラス、フリージアなど)、イソマツ科(スターチスなど)、イネ科(イネ、シバ、トウモロコシ、ムギなど)、イワタバコ科(セントポーリアなど)、ウコギ科(ウドなど)、ウリ科(カボチャ、キュウリ、シロウリ、スイカ、メロンなど)、カキノキ科(カキなど)、キク科(ガーベラ、キク、キンセンカ、コスモス、ゴボウ、シネラリア、シュンギク、ダリア、ヒマワリ、フキ、マーガレット、ミヤコワスレ、レタスなど)、クルミ科(クルミなど)、クワ科(イチジク、クワ、ホップなど)、ケシ科(アイスランドポピーなど)、ゴマノハグサ科(キンギョソウなど)、サクラソウ科(シクラメン、プリムラなど)、サトイモ科(コンニャク、サトイモなど)、サボテン科(サボテンなど)、シソ科(サルビア、シソなど)、シュウカイドウ科(ベゴニアなど)、ショウガ科(ショウガ、ミョウガなど)、スイレン科(レンコンなど)、スミレ科(パンジーなど)、セリ科(セリ、セルリー、ニンジン、パセリ、ミツバなど)、センリョウ科(センリョウなど)、ツツジ科(ベリー類など)、ツバキ科(チャなど)、トウダイグサ科(ポインセチアなど)、ナス科(ジャガイモ、タバコ、トマト、ナス、ピーマン、シシトウガラシなど)、ナデシコ科(カーネーション、宿根カスミソウなど)、バラ科(アンズ、イチゴ、ウメ、オウトウ、スモモ、ナシ、バラ、ビワ、モモ、ユキヤナギ、リンゴ、西洋ナシなど)、ヒルガオ科(アサガオ、サツマイモなど)、フウロソウ科(ゼラニウムなど)、ブドウ科(ブドウなど)、ブナ科(クリなど)、ボタン科(ボタン、シャクヤクなど)、マタタビ科(キウイフルーツなど)、マメ科(アズキ、インゲン、インゲンマメ、エダマメ、エンドウ、スイートピー、ソラマメ、ダイズ、ラッカセイなど)、ミカン科(カンキツなど)、ヤマノイモ科(ナガイモなど)、ユキノシタ科(シンビジウムなど)、ユリ科(アスパラガス、タマネギ、チューリップ、ニラ、ニンニク、ネギ、ヒヤシンス、ユリ、ラッキョウ、ワケギなど)、ラン科(カトレア、ハイドランジア、ファレノプシスなど)、リュウゼツラン科(ドラセナ類など)、リンドウ科(トルコギキョウ、リンドウなど)、イネ科(コムギ、イネなど)に属する植物を挙げることができるが、これらに限定されることはない。
 好ましくは、例えば、トマト、コショウ、タバコ、カボチャ、マニオック、サツマイモ、ワタ、メロン、ジャガイモ、ダイズ、ワイン、トウモロコシ、コムギ、イネ、サトウキビ、マメ、ビート、スイカ、オクラ、キャッサバなどを挙げることができるが、これらに限定されることはない。さらに好ましい植物はコムギ又はイネなどであり、特に好ましい植物はコムギである。
 形質転換すべき植物源としては、プロトプラスト、種子、芽生え、苗、カルス、培養細胞、植物体などが挙げられるが特に限定されることはない。対象植物の種類に応じて、当業者は適宜の部位を選択して形質転換を行うことが可能である。
 形質転換に用いるためのベクターの種類は特に限定されないが、ベクターには上記のジンクフィンガータンパク質をコードする遺伝子を発現させるためのプロモーター及び/又はエンハンサー配列を含むことが好ましい。プロモーター及びエンハンサー配列としては、植物細胞において上記遺伝子を発現しうるものであればその種類は特に限定されず、任意のプロモーター及びエンハンサー配列を使用することができる。例えば、アグロバクテリウム又はリゾビウムのような植物細胞内で発現する遺伝子を含め、植物体、植物ウイルス、又は細菌由来のプロモーターなどを用いることができる。プロモーターとしては、例えば、Agrobacterium tumefaciensのT-DNA由来のプロモーター、Smasプロモーター、桂皮アルコールデヒドロゲナーゼプロモータ、NOSプロモーター、リブロース二リン酸カルボキシラーゼオキシゲナーゼ(Rubisco)プロモーター、GRP1-8プロモーター、カリフラワー・モザイク・ウイルス(CaMV)由来の35Sプロモーター、植物由来のアクチンやヒストン等のプロモーター/エンハンサーなどを用いることができるが、これらに限定されることはない。
 ベクターには選択マーカー遺伝子として種々の抗生物質耐性遺伝子や他のマーカー遺伝子をコードする配列を含めることができる。マーカー遺伝子の例としては、例えば、抗スペクチノマイシン遺伝子、ストレプトマイシン耐性遺伝子、カナマイシン耐性遺伝子、ジェネティシン耐性遺伝子、ハイグロマイシン耐性遺伝子、アセト乳酸合成酵素(ALS)を阻害する除草剤に対する耐性遺伝子、グルタミン合成酵素を阻害する除草剤に対する耐性遺伝子(例えばbar遺伝子)、β-グルクロニダーゼ遺伝子、ルシフェラーゼ遺伝子等を挙げることができるが、これらに限定されることはない。
 遺伝子発現効率を高めるために、例えば、遺伝子のコード領域のポリヌクレオチドコーディング領域の3'末端にポリ(A)+配列を包含させることも好ましい場合がある。ポリ(A)+配列としては種々の植物遺伝子又はT-DNA由来のものを用いることができるが、これらに限定されることはない。遺伝子を高レベルに発現させるために有用な他の配列、例えば特定の遺伝子のイントロン配列、5'不翻訳領域の配列などをベクターに導入しておいてもよい。また、核内への移行を促進するために核局在化シグナル(NLS)などを組み込んでおくことも好ましい。
 高等植物の遺伝子発現に有用なベクターは当分野において周知であり、任意のベクターを使用することができる。例えば、ベクターを植物細胞に導入した際にベクターDNAの一部を宿主植物のゲノムに組み込むことができるベクターとしてAgrobacterium tumefaciensのTiプラスミド由来のベクターのほか、Tiプバスミド由来のKYLX6、pKYLX7、pBI101、pBH2113、pBI121などを挙げることができるが、これらに限定されることはない。
 発現ベクターは外来性遺伝子を植物細胞に導入するための公知の方法、例えばパーティクルガン法、エレクトロポレーション法、ポリエチレングリコール(PEG)法、リン酸カルシウム法、DEAEデキストラン法、マイクロインジェクション、リポフェクション法、及びアグロバクテリウム法などの微生物媒介トランスフェクション法などを用いて所望の植物細胞に導入することができる。これらのうち、パーティクルガン法、エレクトロポレーション法、ポリエチレングリコール法、及びアグロバクテリウム法などが好ましいが、アグロバクテリウム法を特に好ましく用いることができる(Methods Mol. Biol, 82, pp.259-266, 1998)。2成分ベクター(バイナリーベクター)法を用いることにより、効率的に遺伝子組み換えを行うことができる場合もある。
 なお、発現ベクターの構築方法及び植物の形質転換方法については、本明細書の実施例にさらに具体的に説明されているので、当業者は上記の一般的な説明及び実施例の具体的な説明を参照しつつ、ベクターの種類やベクターに導入すべき配列、形質転換法などを適宜修飾ないし改変することにより、本発明の複製阻害剤を発現するように所望の植物を形質転換することができる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。
参考例1
1.材料と方法
(1)AZPのデザイン
 以下の2種類のDNA領域をそれぞれ認識するジンクフィンガータンパク質(以下、実施例において「AZP」と略す)を特表2004-519211号公報に記載された認識コード表に基づいてデザインした。
a.TYLCVで保存されているステムループ領域
b.ジェミニウイルスで保存されているステムループ領域
 図6の上段に示したAZP(TYLCV専用)では10個のジンクフィンガードメインを連続的に結合した。図6の下段に示すAZP(ジェミニウイルス汎用)ではステムループ領域内でジェミニウイルスに保存されている2つの領域を認識する2種のAZPを短いペプチドで連結した。
(2)AZP発現プラスミドの作製
 TYLCV専用AZP(以下、「AZP-2」と呼ぶ)を図7に示すスキームで作製した。まず3個ずつジンクフィンガーを連結した遺伝子をPCRにより合成し、それぞれの遺伝子を大腸菌発現ベクターのpET-21a(Novagen社)のBamH I/Hind IIIサイトにクローニングした後、得られたプラスミドの塩基配列を確認することにより、pET-TYLCV-3、pET-TYLCV-4、及びpET-TYLCV-5を得た。次にpET-TYLCV-3及びpET-TYLCV-4内の3フィンガーAZPの遺伝子をPCRにより増幅して連結し、最終的にpET-TYLCV3/4を得た。5'-TATA-3'を認識するジンクフィンガー遺伝子を作製し、上述した方法でpET-TYLCV5内の3フィンガーAZP遺伝子と連結することによりpET-TYLCV6を作製した。最後に、pE-TYLCV3/4及びpET-TYLCV6からそれぞれ6フィンガーAZP遺伝子及び4フィンガーAZP遺伝子をPCRにより増幅して連結することにより、ステムループ領域の配列を形成する33塩基のうち31塩基を認識するAZP-2発現用プラスミド(pET-TYLCV3/4/6)を作製した。
 ジェミニウイルス汎用AZP(以下、「AZP-3」と呼ぶ)を図8に示すスキームで作製した。まずステムループ領域内でジェミニウイルスにおいて保存されている2つの領域を認識する2種のAZP遺伝子とリンカーペプチド遺伝子を組み込むため、まずプリカーサー・プラスミド(pET-MCS)を作製した。ジェミニウイルスで保存されている長いほうの領域を認識する6フィンガーAZP遺伝子をpET-TYLCV3/4からPCRで増幅し、pET-MCSにクローニングすることによりpET-TYLCV3/4-MCSを作製した。次にジェミニウイルスで保存されている短いほうの領域を認識する3フィンガーAZP遺伝子をpET-TYLCV5からPCRで増幅し、pET-TYLCV3/4-MCSにクローニングすることにより、リンカーペプチドとして6アミノ酸を有するAZP-3を発現するプラスミド(pET-TYLCV3/4-MCS-TYLCV5)を作製した。
(3)AZPの発現
 AZP発現プラスミドで大腸菌BL21(DE3)を形質転換し、得られた形質転換体をアンピリシリンを含むLB培地で37℃で培養し、OD600が0.6-0.7になったときにIPTGを最終濃度1 mMになるように添加し、目的タンパク質の発現を誘導した。さらに3時間培養した後、遠心分離により大腸菌を回収し、タンパク質精製まで-80°Cに保存した。
(4)AZPの精製
 各AZPは基本的に同じ方法で精製した。-80℃で保存した大腸菌にlysis buffer(100 mM Trs-HCl、100 mM NaCl、0.1 mM ZnCl2、5 mM DTT、pH 8.0)10 mlを加え、凍結及び融解を3回繰り返して大腸菌の細胞壁を壊れやすくした。次に超音波破砕機にかけて大腸菌を破砕した後、遠心分離することにより目的タンパク質を含む上清を回収した。この上清を陽イオン交換樹脂のBiorex-70(Bio-Rad社)にアプライして目的タンパク質を樹脂に吸着させた後、wash buffer(50 mM Trs-HCl、50 mM NaCl、0.1 mM ZnCl2、0.2 mM DTT、pH 8.0)で十分洗浄した。次に、elution buffer(50 mM Trs-HCl、300 mM NaCl、0.1 mM ZnCl2、0.2 mM DTT、pH8.0)で目的タンパク質を溶出させた。目的タンパク質を含むフラクションのみを集め、限外ろ過膜で濃縮後、等量のグリセロールを加えて撹拌した後、-80℃にて保存した。AZP純度はSDS-PAGE上のクマシーブルー染色のバンドの量で判断した。各タンパク質の濃度は、Protein Assay ESL(Roche社)を用いて決定した。
(5)RepN発現プラスミドの作製
 RepNはウイルス複製タンパク質RepのN末領域部(191アミノ酸残基)でDNA結合能を有している。AZPによるRepのdirect repeatsへの結合の阻害実験に用いるためにRepNを以下の方法で調製した。感染したトマトから回収したTYLCVゲノムを用いてRepN遺伝子をPCRによりTYLCVゲノムから増幅し、AZPの場合と同様に、pET-21aのBamH I/Hind IIIサイトにクローニングした。得られたプラスミドの塩基配列を確認することによりRepN発現用のプラスミド(pET-RepN)を作製した。
(6)RepNタンパク質の発現及び精製
 RepNの発現はAZP発現の場合と同様に行い十分量の発現を得た。得られた大腸菌は、タンパク質精製まで-80°Cに保存した。RepNの精製はAZPの場合と同様に行った。Biorex-70を用いたイオン交換クロマトグラフィーにおいて、elution buffer(50 mM Tris-HCl、250 mM NaCl、0.2 mM DTT、pH8.0)により溶出することにより、純度の高いRepNを得ることができた。
(7)AZP及びRepNの複製起点への結合能の評価
 各タンパク質の標的DNA配列への結合能の評価はゲルシフトアッセイにより行った。標的DNA配列を含むDNAオリゴマーを作成し、5'末端を32Pで標識した。次に標識DNAを含むbinding buffer(10 mM Tris-HCl、100 mM NaCl、5 mM MgCl2、0.1 mM ZnCl2、0.05% BSA、10% glycerol、pH7.5)に所定量のタンパク質を添加し、氷上で1時間反応させた。この反応物を6%非変性アクリルアミドゲルにアプライし、4℃で2時間電気泳動した(running buffer:45 mM Tris-borate)。泳動後、ゲルをクロマト紙に載せて乾燥させた。十分乾燥した後にX線フィルムに感光させ、標識DNAのバンドを検出した。遊離DNAとタンパク質とのDNA複合体の量比が1:1になるときのタンパク質濃度が標的DNA配列との解離定数に相当する。そのタンパク質濃度に基づいてAZP及びRepNの結合能の比較を行った。
(8)AZPによるウイルス複製タンパク質の切断阻害能の評価
(a)Rep発現プラスミドの作製-1
 切断阻害能の評価には切断活性を有するfull lengthのRepが必要となるので、Rep発現プラスミドの作製を行った。RepN発現プラスミドの作製と同様に、Rep遺伝子はPCRによりTYLCVゲノムから増幅し、pET-21aのBamH I/Hind IIIサイトにクローニングした。得られたプラスミドの塩基配列を確認することによりRep発現用のプラスミド(pET-Rep)を作製した。
(b)Rep発現プラスミドの作製-2
 Rep単独では、大腸菌破砕後に可溶化の状態で検出できない場合があることから、溶けにくいタンパク質の可溶化を促進し、かつ精製が簡便なglutachione S-transferase(GST)との融合体としてRepを作製した。T7プロモーター及びGST遺伝子を含むDNA領域をGST融合タンパク質発現用のプラスミド(pET-41a, Novagen社)からPCRにより増幅し、pET-RepのBamH I/Sph Iサイトにクローニングした。DNA塩基配列を確認することにより、GST-Repタンパク質発現用のプラスミド(pET-GST-Rep)を作製した。
(c)GST-Rep融合タンパク質の発現
 3種類の大腸菌、BL21(DE3)、Rosetta 2(DE3)pLysS、及びBL21-Codon-Plus(DE3)-RILをそれぞれpET-GST-Repで形質転換し、得られた各クローンをRepNタンパク質発現時と同様に37℃、1 mM IPTGで発現誘導した。それぞれの大腸菌で発現量は同じであったが、大腸菌破砕後のGST-Repの可溶化量はBL21(DE3)において最も高かった。そこでBL21(DE 3)形質転換体を用いて30℃でのタンパク質発現を行った。
(d)GST-Repタンパク質の精製
 大腸菌ペレットをLysis Buffer (4.3 mM Na2HPO4, 1.47 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl, pH7.3, 0.1 mM ZnCl2, 5 mM DTT) 3 mLに懸濁し、ソニケーションを行った。GST- Repタンパク質の可溶化をSDS-PAGEで確認後、遠心分離して上清のみを取り出した。20倍量の1x GST-Bind Wash Bufferであらかじめ洗浄したGST結合レジンを15 mLコニカルに移し、さらに1x GST-Bind Wash Buffer (4.3 mM Na2HPO4, 1.47 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl, pH7.3) 5 mLで洗浄し、400×g、25℃、5 分間遠心して上清を丁寧に取り除いた。この前処理したレジンにソニケーション後のGST- Repタンパク質を含む上清を0.45μmメンブレンフィルターでろ過したものを添加した。4℃で一晩振盪して、レジンにGST-AZPタンパク質を吸着させた。このレジンをカラムに流し、Washing Buffer (4.3 mM Na2HPO4, 1.47 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl, 0.1 mM ZnCl2)で洗浄後、Elution Buffer (50 mM Tris・HCl, pH8.0, 0.1 mM ZnCl2, 10 mM reduced glutathione)で溶出した。溶出した各フラクションをSDS-PAGEで確認し、GST- Repタンパク質を含むフラクションを集め、限外ろ過膜で全量が300μLになるまで濃縮した。タンパク質濃度は市販のキット(Protein Assay ECL)で決定した。
(e)GST-AZP融合タンパク質の発現
 AZPをglutachione S-transferase(GST)との融合体とし、そのGST-AZP遺伝子をT7プロモーターの下流においた、発現ベクターを大腸菌に導入した。この大腸菌をLB-Amp液体培地120 mLでOD600が0.65~0.75になるまで培養した。培養後, 最終濃度が1 mMとなるようにIPTGを添加し、さらに3 時間培養することにより、GST-AZPタンパク質を誘導発現させた。誘導後の大腸菌を遠心して回収して-80℃に保存した。GST-AZPタンパク質の精製はGST-Repタンパク質の精製と同じ方法で行った。
(f)AZPによるウイルス複製タンパク質の切断阻害能の評価
 Repの結合サイトを含む200塩基対からなる標識DNA(5 nM)を含む反応溶液(25 mM Tris-HCl, pH7.5, 75 mM NaCl, 2.5 mM DTT)にGST-AZP(又は性能比較実験のためにGST-RepN若しくはコントロール実験のためGST)を添加して混合し、氷上に30分間静置した。その後、最終濃度が2μM及び5 mMとなるようにGST-Rep及びMgCl2をそれぞれ添加した後、25℃で反応させた。30分後、0.5 M EDTAを2μLを添加して反応を終了させ、フェノール処理及びエタノール沈殿を行った。Loading Buffer (80 % formamide, 10 mM EDTA ) 3μLで溶解して作製したサンプルを8%変性アクリルアミドゲルにおいて電気泳動した。
2.結果
(1)AZPの標的DNA配列への結合能の評価
 精製したAZP及びRepNの標的DNA配列への結合能をゲルシフトアッセイにより評価した。この実験においては、32PでラベルしたDNAに各種濃度でタンパク質を添加し結合反応を行わせた後、遊離DNAとタンパク質とのDNA複合体を非変性ゲル上で分離する。遊離DNAとタンパク質とのDNA複合体のバンドの比が1:1になるタンパク質濃度(解離定数に相当)を求めたところ、TYLCV専用のAZP-2の解離定数は0.3~1 nM(図9)、ジェミニウイルス汎用のAZP-3の解離定数は<10 nM(図10)であることがわかった。一方、RepNの解離定数は30 nMであった(図11)。この実験により、デザインしたAZP-2及びAZP-3の標的DNA配列に対する結合力はいずれもRepNより強いことが確認された。
(2)AZPによるウイルス複製タンパク質の切断阻害能の評価
 精製したTYLCV専用のGST-AZP(AZP-2)は図12のレーン4~7に示されているようにRepによる複製起点の切断を効果的に阻害できた。その阻害効果はAZP濃度に依存しており、20μMで完全な阻害が認められた。一方、Repのドミナントネガティブ体であるRepNでは全く切断阻害が認められなかった(図12のレーン8~11)。RepNはDNA結合ドメインを有しており、当然のことながら阻害したいRepとはDNA結合が全く同じである。GSTについてはレーン12に見られるように切断阻害が全く見られないことからも、レーン4~7で確認されたGST-AZPの切断阻害活性はもっぱらAZPに由来するものであることが確認された。また、GST-AZP(AZP-3)についても同様にして切断阻害能を評価した。その結果を図13に示す。
参考例2
1.材料と方法
(1)AZP形質転換トマトの作製
(a)AZPの植物用安定的発現ベクターの作製
 AFP-2をコードする遺伝子の植物ゲノムへの挿入はアグロバクテリア法により行った。プロトプラスト実験用にpUC35SO-TYLCV3/4/6をpUC35SO-MCSから図14の方法で調製し、このプラスミドから35Sプロモーター‐AZP遺伝子‐NOSターミネーターを含む領域をEcoR I及びHind IIIで切り出した。断片をアガロースゲル上で精製した後、バイナリープラスミドpBI121のEcoR I/Hind IIIサイトにクローニングしてpBI-OTYLCV3/4/6を得た。シークエンシングにより塩基配列が正しいことを確認した。AZP-3についても同様の操作を行った。
(b)Micro-Tomの育種
 72穴のプラスチックトレイに栽培土をつめ、如雨露で軽く土を湿らせた後、Micro-Tomの種をひとつずつ蒔き、その上に湿らせた土を軽くかぶせ、全体をサランラップで覆った。このトレイを人工気象室(明期:25°C、16時間;暗期:22°C、8時間)で培養した。発芽が認められた時点でサランラップをはずし、培養を同一条件下で培養を継続した。播種後約2週間経過後に苗を直径12 cmのプラスチックポットに移し、種を回収するまで培養した。
(c)Micro-Tomの種の調製
 赤く熟したMicro-Tomの実を回収し、赤道線上でナイフで2つに分割し、スパチュラですべての種を50 mlプラスチックチューブに回収した。水で軽く洗った後、1%塩酸水で10分間洗浄し、種の周囲のゼラチン層を溶解させた。次に流水で10分間種を洗浄し、余分な水分をペッパータオルで吸い取った後、室温で2日間風乾させた。乾燥した種は4℃で保存した。
(d)Micro-Tom子葉への遺伝子導入
 Micro-Tomの種子10~20 粒を10%希釈したハイター(花王)で殺菌した後、滅菌水を用いて4回洗浄した。この種子を播種用培地(1×Murashige-Skoog (MS) 培地 、15 g/L sucrose、3 g/L gelrite)を固めたプラントボックスに播種し、6日間、25℃、16時間日長の条件で生育させた。本葉が数ミリ程度になった個体を形質転換に用いた。
 アグロバクテリア感染の前日にpBI-OTYLCV3/4/6で形質転換したアグロバクテリアC58C1RifR(GV2260) のグリセロールストック20μLを、2 mLのLB 培地 (Kan 100 mg/L、Amp 50 mg/L) に植菌し、30℃で24時間培養した。感染当日、アグロバクテリウム菌液1 mLをエッペンドルフチューブに取り、5,000 rpm、5分間の遠心分離により集菌した。この菌体を100 μMのアセトシリンゴン、10 μMのメルカプトエタノールを含むMS培地 40 mLに懸濁させた。
 Micro-Tomの子葉をカミソリを用いて切り取り、先端から半分の付近で2つに切断した。これら子葉切片を上述のアグロバクテリウム懸濁液に浸け、10分間静置し、感染させた。滅菌したキムタオルにのせて余分な懸濁液を吸い取り、共存培地(1×MS培地、30 g/L sucrose、3 g/L gelrite、1.5 mg/L t-zeatin、40 μM アセトシリンゴン、0.1% MES、pH 5.7) に葉を置いた。フタをサージカルテープでシールし、アルミホイルで遮光して25℃で培養した。3~4日後、感染させた子葉切片をカルス誘導培地(1× MS培地、3 g/L gelrite、t-zeatin 1.5 mg/L、Kan 100 mg/L、Augmentin 667 mg/L、0.1% MES、pH 5.7) に移した。約2週間で感染させた一部の子葉切片からカルスが形成され、シュートを形成するものも見られた。
 2週間ごとに新しいカルス誘導培地に植え継いだ。カルスから葉が3~4枚形成された個体の子葉切片部分を切り落としてシュート誘導培地 (SIM培地; CIM培地のt-zeatin濃度を1.0 mg/Lに下げたもの)に移し、シュートの成長を促進させた。シュートが1~2 cmの長さに伸びた時点でシュートの最下端でカルスから切り離し、発根培地(RIM培地; 1/2 x MS培地, 3 g/L Gelrite, Kan 50 mg/L, Augmentin 375 mg/L、0.1% MES pH 5.7)に植え継いだ。発根培地で2週間以内に発根した個体の根を切り落としてプラントボックス内に固化させた発根培地に植え継ぎ、発根の二次選抜を行った。プラントボックスで発根した個体を以下の順化のステップに移した。
 最初の発根培地(プレート)で2週間以内に発根しなかった個体は、切り口を薄く切り落として新しい発根培地へ植え継ぎ、再び発根を誘導した。プラントボックスの発根培地で発根が見られた個体は、結実させて種子を得るために土植えにした。この際、湿度環境等の変化で植物が枯死しないように、湿度緩やかに下げて順化させた。具体的には、プラントボックスに湿らせた土を入れ、その中に発根個体を植えて、最初は高湿度の状態にし、徐々にフタを緩めて湿度を下げた。プラントボックス内で約1ヶ月かけて十分に順化させた植物を鉢に植えて生育させた。
 2回目の発根選抜以降の植物について目的の遺伝子が導入されているかどうかをPCRによって確認した。約5 mmの本葉1枚を切り取り、CTAB法によってゲノム DNAを抽出した。最終的に300 μLのTEに懸濁したゲノム DNA溶液のうち1μLを用いてPCR法により遺伝子導入をチェックした。プライマーとしては、カナマイシン耐性遺伝子(NPT2遺伝子)が増幅されるプライマーセットと人工転写遺伝子とNOS terminator を含む領域が増幅されるプライマーセットを設計して用いた。
(e)形質転換体からのタンパク質の抽出
 形質転換植物の1~2 cmの葉をマイクロチューブに採取した。これに液体窒素を加えて凍結させ、ホモジナイズペッスルを用いて細かく砕いた。液体窒素が気化した後、200μLのSDS サンプルバッファー(0.125 M Tris-HCl (pH 6.8), 4% SDS, 20% glycerol, 0.01% BPB, 10% 2-ME])を加え、さらにすりつぶした。95℃で10分間保温したあと、遠心後に上清を新しいマイクロチューブに移した。これを植物抽出タンパク質のサンプルとした。
(f)ウエスタンブロット
 抽出したタンパク質のうち1μLを12% SDSポリアクリルアミドゲルを用いて電気泳動した。分子量マーカーとしてPerfect Protein Western Marker (Novagen)を同時に泳動した。タンパク質をアクリルアミドゲルからPVDFメンブレンに転写したあと、ポンソーSを用いてタンパク質を確認した。メンブレンをブロッキング液(5% スキムミルク、0.05% tween 20, PBS)で振盪したのち、ペルオキシダーゼ標識-抗HA抗体を反応させた。分子量マーカーに対する抗体としてS-protein HRPも同時に反応させた。ECL化学発光システムを用いてX線フィルムを感光させ、シグナルを検出した。このシグナルのサイズとシグナル強度から、形質転換植物内でAZPが発現しているかどうかを検証した。
(2)ウイルス感染実験
(a)ウイルス感染用プラスミドの作製
 ウイルス感染はアグロバクテリアの感染力を利用して行った。複製起点を2つ有するウイルスゲノムコピーをバイナリープラスミドに導入するために、TYLCV及びTYLCV-mildの2種類について、目的プラスミドの作製を以下に示す2段階で行った。TYLCV-mildはTYLCVとはRepの結合するdirect repeats配列が異なり、ジェミニウイルスに対する汎用性を調べる目的で用いた。
 TYLCVのウイルスゲノムDNAから複製起点を含む0.5コピー分のDNAフラグメントをPCRにより増幅し、バイナリープラスミドpBI121のEcoR I/Hind IIIサイトにクローニングし、pBI-TYLCV(0.5)を得た。シークエンシングにより塩基配列が正しいことを確認した。TYLCVの1コピー分のDNAフラグメントを導入する際、PCRで増幅したDNAをクローニングする場合には、作製したプラスミドの塩基配列を確認する必要があるが、目的プラスミドはウイルスゲノムを1.5コピー含むので必ず重複するDNA領域があり、シークエンシングにより塩基配列が正しいことを確認することができない。そこで、一度クローニングプラスミドpBluescript II KS+にウイルスゲノム1コピー分を組み込んで、全塩基配列を確認した後にPCRを行わずに制限酵素で切り出したDNAフラグメントをpBI-TYLCV(0.5)に導入することにした。
 TYLCVのウイルスゲノムDNAから複製起点を含む1コピー分のDNAフラグメントをPCRにより増幅し、pBluescript II KS+のPst I/Hind IIIサイトにクローニングしてpBS-TYLCVを得た。シークエンシングにより全塩基配列が正しいことを確認した。次にpBS-TYLCVからBsrG I及びHind IIIでウイルスゲノム1コピー分のDNAフラグメントを切り出し、アガロースゲル上で精製後、pBI-TYLCV(0.5)のBsrG I/Hind IIIサイトにクローニングし、最終的に目的プラスミドのpBI-TYLCV(1.5)を得た。TYLCV-mildについても、同様の操作を行い、最終的に目的プラスミドのpBI-TYLCV-mild(1.5)を得ることができた。
(b)ウイルス感染用プラスミドの感染能の確認
 アグロバクテリア C58C1RifR (GV2260) のコンピテントセルを作製した。このコンピテントセルに、作製したTYLCVゲノムあるいはTYLCV-mildゲノムを1.5コピー有するバイナリーベクターを導入し、アグロイノキュレーション用のアグロバクテリアのグリセロールストックを作成し、-80℃に保存した。野生型トマトに感染する前日に、このグリセロールストックを6 mLのLB 培地 (Kan 100 mg/L、Amp 50 mg/L) に植菌し、30℃で一昼夜培養した。次にアグロバクテリアを集菌し、バッファー1 mLに懸濁させた。この懸濁液を播種後約10日の苗の子葉に注入して、感染させた。感染後定期的に植物個体の観察及び葉の中のウイルスDNAの検出を行った。そのためのDNAサンプルの作製は上述したように行い、それぞれのTYLCVに特異的なプライマーセットを用いて行って得たPCR生成物の解析により、ウイルス感染を分子レベルで評価した。
(3)TYLCV感染耐性の評価
 形質転換体T3からの苗にウイルスバイナリーベクターを保持するアグロバクテリアの懸濁液を注入し、感染症状を経時的に肉眼で確認した。また、感染させたトマトの葉からDNAを抽出し、植物体内でウイルスが増殖しているかどうかを、前項の方法に従ってPCRで検証した。
2.結果
(1)AZP形質転換トマトの作製
 Micro-TomトマトにAZP遺伝子をそれぞれアグロバクテリアを介して導入した。図15に示す各AZP発現カセットを有するバイナリーベクターで形質転換されたアグロバクテリアを子葉切片に感染させて遺伝子を導入した。次にカナマイシンを含む培地を用いてカルスを誘導させ、シュート、次に根を誘導させた。発根が深く寒天培地に伸びている個体を選ぶことにより発根誘導時に形質転換体をさらに選別し、順化後、土に植替えることにより形質転換体を得た。
 これら形質転換体T1がAZP遺伝子を有することをPCR法により確認した。カナマイシン耐性遺伝子及びAZP遺伝子を検出するため、図16に示すPCRプライマーセットを用いて(それぞれ図中でオレンジ色及び青色の矢印で示す)PCRを行った。図17に示すように得られた形質転換体で両方の遺伝子が検出され、形質転換操作がうまく行われたことを確認できた。さらに念のため、AZP発現カセット全領域がトマトゲノムに挿入されていることを別のプライマーセットで確認した(図18: ピンク色の矢印で図示)。図19に示されているように、35SプロモーターからNOSターミネーターまで、AZP発現カセット全領域が植物ゲノムに遺伝子導入されていることを確認した。
(2)T2及びT3植物の作製及び各ラインの解析
 得られたT1植物におけるAZP遺伝子のコピー数は、T2植物のAZP遺伝子挿入個体の割合を調べ、カイ2乗検定により同定した。すなわち、各T1ラインからT2種子を回収し、それらを播種して得られた各T2個体でのAZP遺伝子の有無をPCRにより同定した。AZP-2を導入して得られたT2植物のうち、各々ひとつのラインを例として図19に示した。図19を例に取ると、PCR法により特定のT1ラインから得られた18個体のT2植物中、13個体がAZP遺伝子を有しており、分離比は13対5となる。もし、このT1ラインがAZP遺伝子1コピーを有しているのであれば、その分離比は3対1となるはずである。そこでカイ2乗検定により1コピーと仮定するとカイの2乗値は0.074であり、P = 0.01の臨界値は6.63であることから、この帰無仮説は棄却されない。他方、2コピー挿入と仮定すると、カイの2乗値は14.2となり、臨界値より大きくなり、この帰無仮説は棄却される。以上の検証結果から、このT1ラインは1コピー挿入体であることがわかる。そのほかのT1個体についても同様にして1コピー挿入体の選別を行った(図20)。
 さらに各アプローチの形質転換体でのAZP発現をウェスタンブロットで確認した。各々のアプローチ用のAZP発現カセットには、あらかじめHAエピトープタグをつけて、形質転換体におけるAZPタンパク質の発現を抗HA抗体を用いてたウェスタンブロット法により検証できるようにしておいた。図21に示すように、AFP-2を導入したT2植物についてもAZPタンパク質が強く発現されていることが確認できた。
 AZP遺伝子の1コピー挿入が確認されたT1植物から得られた各T2ラインがホモ又はヘテロのいずれであるかは、それぞれのT2植物からのT3苗のPCR解析により決定した。各T2ラインからのT3苗(各ライン約20個体の苗を使用)の葉から抽出したDNAサンプルのPCR解析により、すべての苗でAZP遺伝子の保持が確認されれば、その親であるT2ラインをホモであると断定することができる(分離比が1:3となれば、その親であるT2ラインはヘテロである)。同一のT2ラインからのすべてのT3植物において、AZP遺伝子が保持されていることから、このT2ラインはホモであることが分かった(図22)。統計処理によりホモであることも確認した。また、T3植物においてAZPが発現していることもウェスタンブロットにより確認した(図23)。AFP-3を用いて形質転換した植物についても、それぞれのT2植物からのT3苗について同様の操作を行ない、同様の結果を得た。
Figure JPOXMLDOC01-appb-T000001
(3)TYLCVバイナリープラスミドの作製及び感染能の確認
 アグロイノキュレーション法によりMicro-Tomトマトを感染させることが可能かどうかを検証した。複数の野生型Micro-TomにTYLCVゲノムを有するアグロバクテリアを注入し、TYLCVの感染を試みた。複数回の試験を行った結果、各回とも高効率で感染させることができた。感染後約10日には若い葉においてTYLCV感染の特徴的な葉の縮退が観察された。さらに成長させた個体ではTYLCV感染の特徴的症状である葉のカーリングや黄色化が明確に観察された。感染した個体では明白な成長の阻害が認められ(図24)、開花は多いものの、結実する確率は著しく低かった。
 アグロイノキュレーション法によるTYLCVの感染を分子レベルでも確認した。感染成立後、各ステージでの葉を回収し、すべての感染した葉でTYLCVゲノムDNAをPCR法により検出することができた。また、TYLCV-mildについても同様の実験を行ったが、TYLCVとは異なり、その感染症状はマイルドであった。特に感染初期の症状が葉の周辺の色が薄くなるという程度であり、表現系からの感染の判断は難しい場合がある。従って、表現系による判定だけでなく、PCR法により感染個体でのTYLCV-mildで複製されていることを分子レベルで同定することで正確な判定が可能になる。
(4)AZP発現によるTYLCV感染耐性の獲得
  AZP-2を導入して作製したT1植物のうちの3個体からそれぞれ得られたホモのT2ライン(表1参照)から得られたT3植物に対して上記と同様にしてTYLCVを感染させた。図25に示されるとおり、感染した野生型(図の左側の植物)に見られるような葉の萎縮や黄色化は、形質転換トマトにおいては認められなかった。さらに、感染耐性をPCRにより分子レベルで評価した。図26に示されているように、T3ホモ体でウイルスDNAは検出されなかった。また、ホモ体だけでなく、ヘテロ体でもウイルスDNAは検出されず、ウイルスの増殖は見られなかった。
 また、AZP-3を導入して作製したT1植物1個体から得られたT3植物にも同様にしてTYLCVを感染させたところ、図27に示されるとおり、感染した野生型に見られるような葉の萎縮や黄色化は、形質転換トマトにおいては認められなかった。さらに、図28に示されているように、AZP-3の形質転換体においても、ウイルスDNAは検出されなかった。
実施例1
(1)WDVをターゲットとするAZPのデザイン
 以下の2種類のDNA領域をそれぞれ認識するジンクフィンガータンパク質を特表2004-519211号公報に記載された認識コード表に基づいてデザインした。
a.上流側のステム領域とそのフランキング領域
b.ステムループ領域
c.下流側のステム領域とそのフランキング領域
 AZP-11は10個のジンクフィンガードメインを連続的に結合し、図30に示した31塩基対を認識できるようデザインした。AZP-12では12個のジンクフィンガードメインを連続的に結合し、図30に示した37塩基対を認識できるようデザインした(ただしAZP-12はアンチセンス鎖側の配列に基づいてデザインした)。AZP-13では9個のジンクフィンガードメインを連続的に結合し、図30に示した28塩基対を認識できるようデザインした。
(2)AZP発現プラスミドの作製
 AZP-11を図31に示すスキームで作製した。まず3個ずつジンクフィンガーを連結した遺伝子をPCRにより合成し、それぞれの遺伝子を大腸菌発現ベクターのpET-21a(Novagen社)のBamH I/Hind IIIサイトにクローニングした後、得られたプラスミドの塩基配列を確認することにより、pET-WDV3-1、pET- WDV3-2、及びpET- WDV3-3を得た。次にpET- WDV3-2及びpET- WDV3-3内の3フィンガーAZPの遺伝子をPCRにより増幅して連結し、最終的にpET-WDV6を得た。5'-GGGT-3'を認識するジンクフィンガー遺伝子を作製し、上述した方法でpET-WDV3-1内の3フィンガーAZP遺伝子と連結することによりpET-WDV4を作製した。最後に、pET-WDV4及びpET-WDV6からそれぞれ6フィンガーAZP遺伝子及び4フィンガーAZP遺伝子をPCRにより増幅して連結することにより、上流側のステム領域とそのフランキング領域を含む連続した31塩基を認識するAZP-11をコードするプラスミド(pET-WDV10)を作製した。
 AZP-12を図32に示すスキームで作製した。まず3個ずつジンクフィンガーを連結した遺伝子をPCRにより合成し、それぞれの遺伝子を大腸菌発現ベクターのpET-21a(Novagen社)のBamH I/Hind IIIサイトにクローニングした後、得られたプラスミドの塩基配列を確認することにより、pET-WDV3-4、pET-WDV3-5、pET-WDV3-6、及びpET-WDV3-7を得た。次にpET-WDV3-4及びpET-WDV3-5内の3フィンガーAZPの遺伝子をPCRにより増幅して連結し、最終的にpET-WDV6-2を得た。また、pET-WDV3-6及びpET-WDV3-7内の3フィンガーAZPの遺伝子をPCRにより増幅して連結し、最終的にpET-WDV6-3を得た。最後に、pE-WDV6-2及びpET-WDV6-3からそれぞれ6フィンガーAZP遺伝子をPCRにより増幅して連結することにより、下流側のステム領域とそのフランキング領域を含む連続した37塩基を認識するAZP-12をコードするプラスミド(pET-WDV12)を作製した。
 AZP-13を図33に示すスキームで作製した。まず3個ずつジンクフィンガーを連結した遺伝子をPCRにより合成し、それぞれの遺伝子を大腸菌発現ベクターのpET-21a(Novagen社)のBamH I/Hind IIIサイトにクローニングした後、得られたプラスミドの塩基配列を確認することにより、pET-WDV3-8、pET-WDV3-9、及びpET-WDV3-10を得た。次にpET-WDV3-9及びpET-WDV3-10内の3フィンガーAZPの遺伝子をPCRにより増幅して連結し、最終的にpET-WDV6-4を得た。最後に、pE-WDV6-4から6フィンガーAZP遺伝子をPCRにより増幅して連結することにより、ステムループ領域28塩基を認識するAZP-13をコードするプラスミド(pET-WDV9)を作製した。
実施例2
1.材料と方法
(1) AZPの植物用安定的発現ベクターの作製
 上記実施例1で設計したAZP11及びAZP12をコードする各遺伝子断片をバイナリーベクターpUBIN-ZH2のマルチクローニングサイト中の当該酵素切断部位に挿入した。バイナリーベクターpUBIN-ZH2は、pPZP202(P. Hajdukiewicz, Z. Svab, P. Maliga, 1994. Plant Molecular Biology 25: 989-994)のT-DNA部分に、カリフラワーモザイクウイルス35Sプロモーターとノパリンシンターゼターミネーターとの間にハイグロマイシン耐性遺伝子を導入したカセット、及びトウモロコシユビキチン遺伝子プロモーター (Plant physiology Volume 100, 1992, Pages 1503-1507)とノパリンシンターゼターミネーターとの間にマルチクローニングサイトを持つ遺伝子発現用カセットを組み込んだものである(図34)。このようにしてAZP11及びAZP12を含む2種類の植物用安定的発現ベクターを作製した。
(2)アグロバクテリウムを用いたコムギAZP遺伝子のコムギへの導入
 上記(1)で得られた形質転換用ベクターを用いて、凍結融解法(Hofgen et al.(1998) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. Oct 25;16(20):9877)によりアグロバクテリウム(LBA4404株)を形質転換した。さらに、上述の手法にて取得したアグロバクテリウムの形質転換体を用いて、コムギ(品種:ハルヨコイ)の形質転換を実施した。コムギの形質転換には特許第4754968号に記載のインプランタ形質転換法を用いた。
(3)T0世代での遺伝子導入確認
 上記(2)で得られた形質転換処理個体を培養土の入ったポットに移し、23℃、長日条件(16時間明期、8時間暗期)にて生育させた。目的の遺伝子が導入されているかどうかをPCRによって確認した。T0世代の形質転換個体が第6葉期まで成長した段階で、約5 mmの本葉1枚を切り取り、CTAB法によってゲノム DNAを抽出した。ゲノム DNA溶液(10ng/1μL )1μLを用いてPCR法により遺伝子導入をチェックした。プライマーとしては、ユビキチンプロモーターとAZPを含む領域が増幅されるプライマーセットを設計して用いた。
(4) T1世代での遺伝子導入確認
 PCRのバンドが確認できたT0世代個体を生育し、T1種子を取得した。得られたT1種子を発芽させ、生育した個体の葉よりゲノムを抽出し、PCRを実施した。方法は上記(3)に記載の方法と同一の方法にて実施した。
(5) T1形質転換体からのRNA抽出、cDNA合成
 形質転換植体T1世代の葉(第1~第2葉)をマイクロチューブに採取し、RNeasy Plant Mini Kit(QIAGEN社製)を用いて、total RNAを抽出した。方法はキットのマニュアルに従った。得られたtotal RNA 1ugを用いて、High Capacity RNA-to-cDNA(登録商標) Kit (アプライドバイオシステムズ社製)によりcDNAを合成した。
(6) T1世代での導入遺伝子の発現確認(RT-PCR)
 (5)にて調製したcDNA溶液1μLを用いてPCR法により導入遺伝子発現をチェックした。PCRのサイクル数は30サイクルとした。プライマーとしては、AZPを含む領域が増幅されるプライマーセットを設計して用いた。また、得られたバンドがAZP断片である事を、シークエンス解析により確認した。
2.結果
(1)AZP形質転換コムギの作製
 コムギへのAZP遺伝子導入はそれぞれアグロバクテリアを介して実施した。図34に示すバイナリーベクターにAZP遺伝子を導入してAZP発現カセットを有するバイナリーベクターを調製し、このベクターで形質転換されたアグロバクテリウムをコムギ種子に感染させて遺伝子を導入した。形質転換処理した種子を培養土の入ったポットに移し、25℃、長日条件(16時間明期、8時間暗期)にて生育させた。
(2)T1世代での遺伝子導入確認
 形質転換処理した個体から得られた種子(T1種子)を発芽させ、生育したT1世代の個体がAZP遺伝子を有することをPCR法により確認した。ユビキチンプロモーターとAZPの断片を増幅するため、図35に示すPCRプライマーセットを用いてPCRを行った。図36に示すように、いくつかの個体(No. 4, 5, 7)において目的の断片が検出されたことから形質転換操作がうまく行われたことを確認できた。なお、得られた断片がユビキチンプロモーター及び、AZP遺伝子の断片であることをシークエンス解析により確認した。
(3) T1世代での導入遺伝子の発現確認(RT-PCR) 
 さらに各形質転換体でのAZP発現をRT-PCRで確認した。プライマーとしては、AZPを含む領域が増幅されるプライマーセットを設計して用いた(図37)。図38に示すように、AZP11及びAZP12を導入したT1個体においてAZPが強く発現されていることが確認できた。なお、得られた断片がAZP遺伝子の断片であることをシークエンス解析により確認した。
実施例3
1.材料と方法
(1)WDV感染用プラスミドの作製
 感染にはWDVのうちYunnnan Kunming型(Accession Number: EU541489)を用いた。感染用のWDVバイナリープラスミドの作製は、以下に示すように3段階でおこなった。
 まず、WDVの1コピー分のDNAフラグメントをクローニングプラスミドpBluescript II KS+にクローニングした。すなわち、WDVの1コピー分のDNAフラグメントを合成DNAオリゴマーからPCRにより再構成して合成した後、DNA末端をBsa I及びHind IIIで切断した後、得られたDNAフラグメントをpBluescript II KS+のAcc65 I/Hind IIIサイトにクローニングし、pBS-WDVを得た。シークエンシングにより塩基配列が正しいことを確認した。
 次に、pBS-WDV上のWDVのウイルスゲノムDNAから複製起点を含む0.5コピー分のDNAフラグメントをPCRにより増幅し、バイナリープラスミドpBI121のCla I/ EcoR Iサイトにクローニングし、pBI-WDV(0.5)を得た。シークエンシングにより塩基配列が正しいことを確認した。
 WDVの1コピー分のDNAフラグメントを導入する際、PCRで増幅したDNAをクローニングする場合には、作製したプラスミドの塩基配列を確認する必要があるが、目的プラスミドはウイルスゲノムを1.5コピー含むので必ず重複するDNA領域があり、シークエンシングにより塩基配列が正しいことを確認することができない。そこで、作製したpBS-WDVから、PCRを行わずに制限酵素で切り出したDNAフラグメントをpBI-WDV(0.5)に導入した。すなわち、pBS-WDVからBsiW I及びHind IIIでウイルスゲノム1コピー分のDNAフラグメントを切り出し、アガロースゲル上で精製後、pBI-WDV(0.5)のBsiW I/Hind IIIサイトにクローニングし、最終的に目的プラスミドのpBI-WDV(1.5)を得た。
(2)WDVの感染
 アグロバクテリア C58C1RifR (GV2260) のコンピテントセルを作製した。このコンピテントセルに、作製したWDVゲノムを1.5コピー有するバイナリープラスミドを導入し、アグロイノキュレーション用のアグロバクテリアのグリセロールストックを作製し、-80℃に保存した。小麦に感染する前日に、このグリセロールストックを6 mLのLB 培地 (Kan 100 mg/L、Amp 50 mg/L) に植菌し、30℃で一昼夜培養した。次にアグロバクテリアを集菌し、バッファー1 mLに懸濁させた。この懸濁液を播種後約20日の苗の茎に注入して、感染させた。感染後植物個体の葉の中のウイルスDNAの検出を行った。そのためのDNAサンプルの作製は上述したように行い、WDVのYunnnan Kunming型に特異的なプライマーセットを用いて行ったPCR生成物の解析により、ウイルス感染を分子レベルで評価した。
(3)WDV感染耐性の評価
 AZP11あるいはAZP12遺伝子を導入して得られたT1形質転換体からの苗にWDVウイルスバイナリープラスミドを保持するアグロバクテリアの懸濁液を注入した。感染させた小麦の葉からDNAを抽出し、植物体内でウイルスが増殖しているかどうかを、前項の方法に従ってPCRで検証した。
2.結果
(1)WDVバイナリープラスミドの作製およびウイルス感染の確認
 アグロイノキュレーション法により小麦を感染させることが可能かどうかを検証した。複数の野生型小麦(品種:「春よ来い」)にWDVゲノムを有するアグロバクテリアを注入し、WDVの感染を試みた。アグロバクテリア注入後20日に若い葉を回収し、DNAを抽出した。このDNAサンプルを用いたPCR法により、アグロバクテリアを注入した野生型小麦個体において、回収した葉でWDVゲノムDNAを検出することができた。その一例を図39に示す。
(2)AZP発現によるWDV感染耐性の獲得
 AZP11又はAZP12遺伝子を導入して作製したT1形質転換体のうち無作為に選んだ3個体それぞれに対して上記と同様にしてWDVを接種し、接種後20日に葉を回収し、WDVゲノムDNAが検出されるかどうかをPCR法により調べた。図39に示されるとおり、すべての形質転換小麦でWDVウイルスDNAは検出されず、ウイルスの増殖は見られなかった。
 本発明の複製阻害剤はマステレウイルス属に属するWDVや他のウイルスに対して高い有効性を発揮することができるので、マステレウイルス属に属する多様なウイルスに対する防除手段として極めて有用である。

Claims (13)

  1. ジェミニウイルス科のマステレウイルス属に属するウイルスに対する複製阻害剤であって、該ウイルスのステムループ領域の全長DNA又は該全長DNAから選ばれる1又は2以上の部分DNAに特異的に結合することができるジンクフィンガータンパク質を含み、かつステムループ構造の形成を阻害することができる複製阻害剤。
  2. マステレウイルス属に属するウイルスのステムループ領域の全長DNAから選ばれる1個の部分DNAに結合可能な単一のジンクフィンガータンパク質を含む請求項1に記載の複製阻害剤。
  3. マステレウイルス属に属するウイルスのステムループ領域の全長DNAから選ばれる1個の部分DNAと、該DNAに結合しフランキング領域から選ばれる1個のDNAとからなる連続したDNAに結合可能な単一のジンクフィンガータンパク質を含む請求項1に記載の複製阻害剤。
  4. 上記ジンクフィンガータンパク質が9個ないし12個のジンクフィンガードメインを含むジンクフィンガータンパク質である請求項1ないし3のいずれか1項に記載の複製阻害剤。
  5. マステレウイルス属に属するウイルスがコムギ萎縮病ウイルスである請求項1ないし4のいずれか1項に記載の複製阻害剤。
  6. 請求項1ないし5のいずれか1項に記載のジンクフィンガータンパク質をコードする核酸。
  7. 請求項6に記載の核酸を含む植物形質転換用の組換えベクター。
  8. 請求項1ないし5のいずれか1項に記載のジンクフィンガータンパク質又は該ジンクフィンガータンパク質をコードする核酸を有効成分として含む農薬。
  9. ジェミニウイルス科のマステレウイルス属に属するウイルスによる植物の感染を予防する方法であって、請求項1ないし5のいずれか1項に記載のジンクフィンガータンパク質又は該ジンクフィンガータンパク質をコードする核酸の予防有効量を植物に施用する工程を含む方法。
  10. ジェミニウイルス科のマステレウイルス属に属するウイルスに対して耐性を有する植物であって、請求項1ないし5のいずれか1項に記載のジンクフィンガータンパク質を発現可能な遺伝子組み換え植物。
  11. 請求項1ないし5のいずれか1項に記載のジンクフィンガータンパク質をコードする核酸を導入することにより形質転換された植物。
  12. ジェミニウイルス科のマステレウイルス属に属するウイルスに対する耐性を植物に獲得させる方法であって、請求項1ないし5のいずれか1項に記載のジンクフィンガータンパク質をコードする核酸を該植物に導入して形質転換する工程を含む方法。
  13. 請求項1ないし5のいずれか1項に記載のジンクフィンガータンパク質をコードする核酸を含む植物形質転換用ベクター。
PCT/JP2012/077669 2011-10-27 2012-10-26 ジェミニウイルス複製阻害剤 WO2013062069A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112014009924A BR112014009924A2 (pt) 2011-10-27 2012-10-26 Inbidor de replicação geminivírus
CA2853023A CA2853023A1 (en) 2011-10-27 2012-10-26 Geminivirus replication inhibitor
US14/354,167 US9943083B2 (en) 2011-10-27 2012-10-26 Geminivirus replication inhibitor
CN201280052566.8A CN104011205B (zh) 2011-10-27 2012-10-26 双生病毒复制抑制剂
AU2012329917A AU2012329917A1 (en) 2011-10-27 2012-10-26 Geminivirus replication inhibitor
EA201490877A EA031900B1 (ru) 2011-10-27 2012-10-26 Ингибитор репликации геминивируса
IN3458CHN2014 IN2014CN03458A (ja) 2011-10-27 2014-05-07
AU2018203072A AU2018203072A1 (en) 2011-10-27 2018-05-02 Geminivirus replication inhibitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-235960 2011-10-27
JP2011235960A JP2015013810A (ja) 2011-10-27 2011-10-27 ジェミニウイルス複製阻害剤

Publications (1)

Publication Number Publication Date
WO2013062069A1 true WO2013062069A1 (ja) 2013-05-02

Family

ID=48167894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077669 WO2013062069A1 (ja) 2011-10-27 2012-10-26 ジェミニウイルス複製阻害剤

Country Status (9)

Country Link
US (1) US9943083B2 (ja)
JP (1) JP2015013810A (ja)
CN (1) CN104011205B (ja)
AU (2) AU2012329917A1 (ja)
BR (1) BR112014009924A2 (ja)
CA (1) CA2853023A1 (ja)
EA (1) EA031900B1 (ja)
IN (1) IN2014CN03458A (ja)
WO (1) WO2013062069A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11618780B2 (en) * 2017-10-20 2023-04-04 City Of Hope Composition and method for activating latent human immunodeficiency virus (HIV)
CN111118061A (zh) * 2019-12-31 2020-05-08 中国农业科学院植物保护研究所 基于CRISPR/Cas9系统编辑中国番茄黄化曲叶病毒的载体及其构建方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519211A (ja) * 2000-07-21 2004-07-02 シンジェンタ パーティシペーションズ アーゲー 亜鉛フィンガードメイン認識コードおよびその使用
WO2011155426A1 (ja) * 2010-06-07 2011-12-15 Sera Takashi ジェミニウイルス複製阻害剤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030082561A1 (en) * 2000-07-21 2003-05-01 Takashi Sera Zinc finger domain recognition code and uses thereof
ITRM20030242A1 (it) 2003-05-19 2004-11-20 Consiglio Nazionale Ricerche Metodo per la preparazione di piante transgeniche

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519211A (ja) * 2000-07-21 2004-07-02 シンジェンタ パーティシペーションズ アーゲー 亜鉛フィンガードメイン認識コードおよびその使用
WO2011155426A1 (ja) * 2010-06-07 2011-12-15 Sera Takashi ジェミニウイルス複製阻害剤

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MASATO IKEGAMI: "Geminiviruses-Gene Functions, Replication and Host Interactions", KAGAKU TO SEIBUTSU, vol. 41, no. 5, 2003, pages 311 - 317 *
RAMSELL,J.N.E. ET AL.: "Sequence analyses of Wheat dwarf virus isolates from different hosts reveal low genetic diversity within the wheat strain", PLANT PATHOL., vol. 57, 2008, pages 834 - 841 *
RAMSELL,J.N.E. ET AL.: "Studies on the host range of the barley strain of Wheat dwarf virus using an agroinfectious viral clone", PLANT PATHOL., vol. 58, 2009, pages 1161 - 1169 *
SERA, T.: "Inhibition of virus DNA replication by artificial zinc finger proteins", J.VIROLOGY, vol. 79, no. 4, 2005, pages 2614 - 2619 *
SERA,T ET AL.: "Rational Design of artificial zinc-finger proteins using a nondegenerate recognition code table", BIOCHEMISTRY, vol. 41, 2002, pages 7074 - 7081, XP003017623, DOI: doi:10.1021/bi020095c *

Also Published As

Publication number Publication date
US20150173367A1 (en) 2015-06-25
AU2012329917A1 (en) 2014-05-29
JP2015013810A (ja) 2015-01-22
BR112014009924A2 (pt) 2022-02-22
EA201490877A1 (ru) 2014-08-29
CA2853023A1 (en) 2013-05-02
AU2018203072A1 (en) 2018-05-24
CN104011205A (zh) 2014-08-27
US9943083B2 (en) 2018-04-17
EA031900B1 (ru) 2019-03-29
IN2014CN03458A (ja) 2015-07-03
CN104011205B (zh) 2018-09-18

Similar Documents

Publication Publication Date Title
ES2373318T3 (es) Modificación del desarrollo y morfología de una planta.
Bhomkar et al. Salt stress alleviation in transgenic Vigna mungo L. Hepper (blackgram) by overexpression of the glyoxalase I gene using a novel Cestrum yellow leaf curling virus (CmYLCV) promoter
CN111246875B (zh) 用于治疗韧皮杆菌属病害和其它细菌性病害的组合物和方法
MX2014009113A (es) Composiciones citricas resistentes a patogeno, organismos, sistemas y metodos.
Chen et al. Overexpression of glucanase gene and defensin gene in transgenic tomato enhances resistance to Ralstonia solanacearum
RU2136757C1 (ru) Конструкция днк, конструкция рекомбинантной днк и способ получения растений
US11608505B2 (en) Genome-edited plant production method
Jung Enhanced resistance to bacterial pathogen in transgenic tomato plants expressing cathelicidin antimicrobial peptide
WO2013062069A1 (ja) ジェミニウイルス複製阻害剤
JP6153154B2 (ja) ジェミニウイルス複製阻害剤
AU2019370387A1 (en) Serine recombinases mediating stable integration into plant genomes
WO2007125531A2 (en) Transgenic plants exhibiting increased tolerance to stress and methods of generating same
JP4776216B2 (ja) 新規な植物細胞死誘導因子NbCD1
Siti Nur Akmar Over-expression of two putative disease resistant genes NBS-type rgc and wrky against Fusarium oxysporum f. sp. cubense in plants/Siti Nur Akmar Mazlin
Mazlin Over-Expression of Two Putative Disease Resistant Genes NBS-Type RGC and WRKY Against Fusarium Oxysporum F. Sp. Cubense in Plants
Dutta et al. An Insight into Transgenic Development Activities in Fruit Crops
JP4583051B2 (ja) 新規な植物細胞死誘導因子NbCD3
JP4583050B2 (ja) 新規な植物細胞死誘導因子NbCD2
Chettri et al. Development of posttranscriptional gene silencing constructs for Groundnut Bud Necrosis Virus nucleocapsid protein gene
JP2004344046A (ja) 植物の茎の重力屈性に関係する新規タンパク質とそれをコードする遺伝子
Mackey Resistance to Verticillium in Tomatoes: The Root-Stem Controversy
BRPI1009965A2 (pt) mÉtodo para produÇço de plantas tolerantes a estresses ambientais, seus usos e vetor de dna recombinante
WO2012083393A2 (pt) Vetor de dna recombinante, método para produção de plantas tolerantes a estresses ambientais e seus usos
CZ20004746A3 (cs) Indukovatelné promotory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2853023

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14354167

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201490877

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2012329917

Country of ref document: AU

Date of ref document: 20121026

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12844329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014009924

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112014009924

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112014009924

Country of ref document: BR

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: 112014009924

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014009924

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140425