WO2013061991A1 - 射出成形機における熱可塑性樹脂の温度制御方法 - Google Patents
射出成形機における熱可塑性樹脂の温度制御方法 Download PDFInfo
- Publication number
- WO2013061991A1 WO2013061991A1 PCT/JP2012/077440 JP2012077440W WO2013061991A1 WO 2013061991 A1 WO2013061991 A1 WO 2013061991A1 JP 2012077440 W JP2012077440 W JP 2012077440W WO 2013061991 A1 WO2013061991 A1 WO 2013061991A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- thermoplastic resin
- heaters
- molding machine
- injection molding
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/76—Measuring, controlling or regulating
- B29C45/78—Measuring, controlling or regulating of temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2945/00—Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
- B29C2945/76—Measuring, controlling or regulating
- B29C2945/76003—Measured parameter
- B29C2945/7604—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2945/00—Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
- B29C2945/76—Measuring, controlling or regulating
- B29C2945/76177—Location of measurement
- B29C2945/7618—Injection unit
- B29C2945/7619—Injection unit barrel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2945/00—Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
- B29C2945/76—Measuring, controlling or regulating
- B29C2945/76344—Phase or stage of measurement
- B29C2945/76441—Shut down
- B29C2945/76444—Shut down in case of emergency
Definitions
- the present invention relates to an injection molding machine that injects a thermoplastic resin melted by a heater of a heating cylinder into a mold cavity, and particularly to a temperature control method for the thermoplastic resin melted in the heating cylinder.
- a granular thermoplastic resin (pellet) as a raw material is fed into a heating cylinder, and the resin is melted by a reciprocating screw provided in the heating cylinder.
- the molten resin is injected from the injection nozzle provided on the screw tip side into the cavity of the mold apparatus, and the molten resin is cooled and solidified in the cavity, and then the mold is opened.
- a molded product is molded by removing a molded product attached to the mold with a protruding pin or the like from the mold.
- the outer side of the cylindrical heating cylinder has a structure in which a plurality of heaters are provided along the longitudinal direction to heat and melt the pellet-shaped resin supplied into the heating cylinder.
- the heaters As the heaters are heated, the resin transported into the heating cylinder is heated and melted at a high temperature of about 200 ° C to 250 ° C, but the operation of the injection molding machine is temporarily stopped. In such a case, the temperature of the molten resin that has been increased in temperature is drastically lowered (heated down) due to heat radiation from the surface of the heating cylinder, which may cause carbonization of the resin and generation of black spots in the molded product.
- Patent Document 1 discloses that the molding machine is temporarily stopped during molding, and when the molding is resumed, the molding is temporarily prevented from generating black spots due to carbonization.
- a method of controlling a molding machine that controls the temperature of a cylinder that is stopped is disclosed.
- the temperature control in Patent Document 1 is a method for preventing the generation of black spots in a molded product by maintaining the temperature of the cylinder when the molding machine is stopped at a temperature lower than the molding temperature of the resin.
- the material of the molded product is a so-called high-temperature resin such as acrylic resin or polycarbonate resin, even if the cylinder temperature is controlled to be lower than the molding temperature of the resin.
- black spots may be generated, improvement of such problems has been demanded.
- the present invention has been made in view of the above problems, and when the thermal operation of the thermoplastic resin in the heating cylinder is controlled by temporarily stopping (interrupting) the normal operation of the injection molding machine, It is an object of the present invention to provide a method for controlling the temperature of a thermoplastic resin in an injection molding machine, in which the temperature can be controlled without generating carbides.
- the temperature control method of the thermoplastic resin in the injection molding machine is as follows: A cylindrical heating cylinder having a screw inside and a heater mounted on the outer periphery, an injection nozzle configured to inject a molten thermoplastic resin formed at the tip of the heating cylinder, and mounted outside the heating cylinder
- a cylindrical heating cylinder having a screw inside and a heater mounted on the outer periphery, an injection nozzle configured to inject a molten thermoplastic resin formed at the tip of the heating cylinder, and mounted outside the heating cylinder
- the temperature control method of the thermoplastic resin in an injection molding machine provided with a plurality of heaters for melting the thermoplastic resin in the heating cylinder and a temperature detection sensor for detecting the temperature of these heaters
- the temperature control method of the thermoplastic resin in an injection molding machine provided with a plurality of heaters for melting the thermoplastic resin in the heating cylinder and a temperature detection sensor for detecting the temperature of these heaters
- the injection molding machine Controls the temperature of each of the heated heaters to be constant by lowering the temperature of multiple heaters that have varied in temperature during normal operation of the heater over a specified time to the heat retention limit temperature at which carbonization does not occur. Therefore, it is possible to prevent carbide from being generated in the thermoplastic resin in the heating cylinder.
- FIG. 1 It is a block diagram which shows the heating cylinder comprised by the injection molding machine of an example of this invention. It is a graph which shows the heat retention control of the thermoplastic resin by the heater provided in the heating cylinder.
- An injection molding machine has the same configuration as a known injection molding machine and is not shown in the figure, but includes an injection unit and a mold clamping unit.
- the injection unit includes a heating shown in FIG. A cylinder 1 is configured.
- a cylindrical heating cylinder 1 shown in FIG. 1 includes an injection nozzle 2 at the tip, a plurality of heaters 3a, 3b, 3c, 3d, and 3e on the outside, a screw 4 that is rotatable inside, a hopper block 5 at the base end, A hopper 6 is provided above the hopper block 5, and temperature detection sensors 7a, 7b, 7c, 7d, and 7e for detecting the temperatures of the heaters 3a, 3b, 3c, 3d, and 3e are provided for the heaters 3a, 3b, 3c, 3d and 3e are provided.
- the temperatures of the heaters 3a, 3b, 3c, 3d, and 3e detected by the temperature detection sensors 7a, 7b, 7c, 7d, and 7e are output to the control unit 10 and are managed by the control unit 10 in an integrated manner. Based on the output data from the heaters 3a, 3b, 3c, 3d, 3e, the control means 10 controls the temperature of each heater 3a, 3b, 3c, 3d, 3e.
- thermoplastic resin as a raw material is put into the hopper 6 and the screw 4 provided inside the heating cylinder 1 is rotated, whereby the heating cylinder 1.
- the thermoplastic resin supplied to the rear portion is sent to the front end side of the heating cylinder 1 provided with the injection nozzle 2, and is heated and melted in the heating cylinder 1 by the plurality of heaters 3a, 3b, 3c, 3d, 3e,
- a rotation driving means such as a metering motor (not shown)
- the screw 4 is advanced by an advancing / retreating driving means (not shown) consisting of an injection motor, a ball screw mechanism or the like.
- a predetermined amount of thermoplastic resin is injected into the mold cavity.
- the heaters 3a, 3b, 3c, 3d, and 3e are mounted not only on the outer periphery of the heating cylinder body but also on the outer periphery of the injection nozzle 2, and in the longitudinal direction of the heating cylinder 1,
- the heaters 3a, 3b, 3c, 3d, and 3e are mounted so as to be wound at five intervals, and when the molded body is molded by the injection molding machine, each heater 3a, 3b, 3c, 3d, and 3e is mounted. Is heated to a high temperature of 200 ° C. or higher.
- the temperature (heat retention) control method of the thermoplastic resin in the heating cylinder 1 using the plurality of heaters 3a, 3b, 3c, 3d, 3e as heat sources This will be described below with reference to FIG.
- the plurality of heaters 3a, 3b, 3c, 3d, 3e arranged from the front end side to the base end side of the heating cylinder 1 are arranged in order from the front end side to the base end side of the heating cylinder 1. 3a, the second heater 3b, the third heater 3c, the fourth heater 3d, and the fifth heater 3e.
- these heaters 3a, 3b, 3c, 3d The temperatures detected by the temperature detection sensors 7a, 7b, 7c, 7d, and 7e corresponding to 3e are represented by waveforms.
- FIG. 2 shows a state in which an injection molding machine is operated and molding is performed using a high temperature resin (thermoplastic resin) such as acrylic resin or polycarbonate resin as a material when manufacturing an optical component (light guide plate or lens).
- a high temperature resin such as acrylic resin or polycarbonate resin
- the operation is switched to the heat insulation control, and the operation of the injection molding machine is temporarily stopped to perform the heat insulation control of the thermoplastic resin in the heating cylinder 1, It shows changes in the temperature of the first to fifth heaters 3a, 3b, 3c, 3d, 3e.
- molding is made into the predetermined
- the temperature t2 it is necessary to control the temperature to be constant at 160 ° C. which is the temperature limit temperature t2.
- the first to fifth heaters 3a, 3b, 3c, 3d, and 3e of the present embodiment vary in temperature during molding, but the first to fifth heaters 3a, 3b, and 3c.
- the control means 10 controls the temperature of the first to fifth heaters 3a, 3b, 3c, 3d, 3e to 160 ° C. at that temperature.
- the “insulation temperature limit” is determined by the type of resin. When the temperature of the thermoplastic resin is lowered below 160 ° C., which is the temperature limit temperature t2, the injection molding machine is normally controlled from the temperature control. Since the resin burn occurs when the operation is returned to the operation, the temperature of 160 ° C. is defined as the heat retention limit temperature.
- the first to fifth heaters 3a, 3b, 3c, 3d, 3e that were 200 ° C. or higher during molding ((a) to (b)).
- the temperature is lowered stepwise (first stage of heat insulation process, second stage of heat insulation process, third stage of heat insulation process).
- the first to fifth heaters 3a, 3b are defined as T (min) in the heat insulation process stage (heat insulation process first stage, heat insulation process second stage, heat insulation process third stage, (heat insulation process n stage)).
- the temperature of the second heater 3b which is the highest temperature during molding, is t1 (250 ° C.), the heat retention limit temperature is t2 (160 ° C.), and the number of heat treatment steps is n times ( In the present embodiment, when it is 3 times, the time T is calculated by the following mathematical formula 1.
- control means 10 determines each time in the first to third stages of the heat retention process based on the calculated value of T.
- the control means 10 performs the heat treatment process according to the following mathematical formula 2. It is determined that the reference temperature at the end of each stage of the first to third stages ((c), (d), (e)) is lowered by 30 ° C. per stage (end of the heat insulation process first stage) 220 ° C. (250 ° C.-30 ° C.), 190 ° C. (250 ° C.-30 ° C. ⁇ 2) at the end of the second stage of heat treatment, 160 ° C. (250 ° C.-30 ° C. ⁇ 3) at the end of the third stage of heat treatment )).
- the temperatures of all the first to fifth heaters 3a, 3b, 3c, 3d, 3e are ⁇ 10 ° C. of the reference temperature ( More preferably, the control means 10 controls the heaters 3a, 3b, 3c, 3d, and 3e so as to be in the range of ⁇ 5 ° C., and the range of ⁇ 10 ° C. (more preferably ⁇ 5 ° C.) of the reference temperature. After that, the process proceeds to the next heat treatment stage. Then, as shown in FIG.
- the first to fifth heaters 3a, 3b, 3c, 3d, and 3e are kept at 160 ° C., which is the heat insulation limit temperature t2.
- the temperature is lowered to 160 ° C. at the end (e) of the heat retention process n stage (in this embodiment, the heat retention process 3rd stage) that reaches A.
- the control means 10 performs control so that the first to fifth heaters 3a, 3b, 3c, 3d, and 3e are maintained at a temperature of 160 ° C. as the temperature keeping continuation control.
- thermoplastic resin temperature control method in the present embodiment when the injection molding machine is operating, the operation of the injection molding machine is temporarily stopped (interrupted), and a plurality of heating operations are performed.
- the thermoplastic resin In order to prevent the thermoplastic resin from carbonizing due to a rapid temperature drop when performing heat insulation control while lowering the temperature of the thermoplastic resin in the heating cylinder 1 by the heaters 3a, 3b, 3c, 3d, 3e,
- the temperature of the plurality of heaters 3a, 3b, 3c, 3d, and 3e is lowered so that all the temperatures are constant, the period from the start of the heat control until the temperature reaches the temperature limit (b) (e) Divided into a plurality of stages (heat insulation treatment first stage to heat insulation treatment third stage), the number of times (n), the temperature decrease rate of the thermoplastic resin (a) determined in advance based on the type of thermoplastic resin, Using the insulation limit temperature (t2) etc.
- each heat treatment stage preset based on the reference temperature at the end of each heat treatment stage ((c) is 220 ° C., (d) is 190 ° C.
- Each of the heaters 3a, 3b, 3c, 3d, and 3e is controlled by the control means 10 so that the temperature ranges ((c) is a range of ⁇ 10 ° C. of 220 ° C. and (d) is a range of ⁇ 10 ° C. of 190 ° C.)
- All the temperatures of the plurality of heaters 3a, 3b, 3c, 3d, and 3e that have varied in temperature when the injection molding machine is in operation are set over a predetermined time (n ⁇ T).
- the plurality of heaters 3a, 3b, 3c, 3d, 3e reach the heat retention limit temperature (160 ° C.)
- the plurality of heaters are further increased. Temperature control is performed so that all the temperatures 3a, 3b, 3c, 3d, and 3e become constant.
- the thermoplastic resin in the heating cylinder 1 is not carbonized due to a rapid temperature drop.
- the number of times of the heat treatment process is set to 3 times, but it may be 4 times or less and less than 3 times, and in this embodiment, at the end of each heat treatment process stage ((c), (d) ), The temperature of all the first to fifth heaters 3a, 3b, 3c, 3d, and 3e is set within a range of ⁇ 10 ° C. of the reference temperature, and then the process proceeds to the next heat treatment process. May be moved to the next heat treatment step or may be selected as appropriate.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
射出成形機の通常の稼動を一時的に停止して加熱シリンダ内に有する熱可塑性樹脂の保温制御をする際、当該樹脂に炭化物が発生しないようにして保温制御することができる、射出成形機における熱可塑性樹脂の温度制御方法を提供する。 射出成形機で成形体を成形する通常の稼動から保温制御に切替えられた際、加熱シリンダ1内に有する熱可塑性樹脂が急激な降温により炭化しないようにするため、射出成形機の通常の稼動中に温度にばらつきのあった複数の加熱ヒータ3a,3b,3c,3d,3eを、炭化の発生することのない保温限界温度t2まで所定時間(n×T)をかけて降温し、降温された各加熱ヒータ3a,3b,3c,3d,3eの温度を一定になるよう制御する。これにより、加熱シリンダ1内に有する熱可塑性樹脂に炭化物が発生することを防止することが可能となる。
Description
本発明は、型閉された金型のキャビティに加熱シリンダの加熱ヒータで溶融された熱可塑性樹脂を射出する射出成形機に関し、特に加熱シリンダ内で溶融される熱可塑性樹脂の温度制御方法に関する。
従来から用いられている一般的な射出成形機においては、加熱シリンダ内に原料である粒状の熱可塑性樹脂(ペレット)を送り、加熱シリンダ内に設けられた進退可能なスクリューにより樹脂を溶融しながら、スクリュー先端のノズル側に送り出し、スクリューの先端側に設けられた射出ノズルから金型装置のキャビティに溶融樹脂を射出させ、キャビティ内で溶融樹脂を冷却させ固化させた後、金型を開き、突出しピンなどにより金型に張り付いている成形物を金型から外すことにより、成形体が成形されている。
ところで、筒状の加熱シリンダの外側には、その長手方向に沿うようにして、加熱シリンダ内に供給されてきたペレット状の樹脂を加熱溶融するための加熱ヒータが複数設けられている構造のものがあり、複数の加熱ヒータが加熱されることにより、加熱シリンダ内に搬送されてきた樹脂は200℃~250℃ほどの高温に加熱溶融されるのだが、射出成形機の稼動を一時的に停止したときには、高温化された溶融樹脂が、加熱シリンダ表面からの放熱によって急激に温度低下(降温)され、それにより、樹脂が炭化して成形品に黒点なとの炭化物が発生することがある。
上記技術に関連するものとして、特許文献1には、成形中に成形機を一時停止し、成形を再開したときに、成形体に炭化による黒点が発生することを防止することを目的として、一時停止中のシリンダーの温度を制御する成形機の制御方法が開示されている。
前記特許文献1における温度制御は、成形機の停止中のシリンダーの温度を樹脂の成形温度より低い温度に保持することにより、成形品に黒点が発生することを防止しようという方法であるが、成形機が停止され、樹脂が急激に冷却されると、シリンダーの温度を樹脂の成形温度より低い温度になるよう制御したとしても、成形品の材料がアクリル樹脂やポリカーボネイト樹脂等のいわゆる高温樹脂である場合には、黒点(炭化物)が発生することがあることから、このような問題点の改善が求められていた。
本発明は、上記課題に鑑みてなされたものであり、射出成形機の通常の稼動を一時的に停止(中断)して加熱シリンダ内に有する熱可塑性樹脂の保温制御をする際、当該樹脂に炭化物が発生しないようにして保温制御することができる、射出成形機における熱可塑性樹脂の温度制御方法を提供することを目的とする。
本発明に係る射出成形機における熱可塑性樹脂の温度制御方法は、
内部にスクリューが設けられると共に外周に加熱ヒータの装着された筒状の加熱シリンダと、該加熱シリンダの先端に構成され溶融された熱可塑性樹脂を射出する射出ノズルと、加熱シリンダの外側に装着され前記加熱シリンダ内に有する前記熱可塑性樹脂を溶融する複数の加熱ヒータと、これらの加熱ヒータの温度を検出する温度検出センサーを備えた射出成形機における熱可塑性樹脂の温度制御方法において、
前記射出成形機を稼動しているときに、該射出成形機の稼動を一時的に停止して前記複数の加熱ヒータにより前記熱可塑性樹脂の降温しながらの保温制御を行うときに、
前記熱可塑性樹脂が急激な降温により炭化しないようにするために、前記複数の加熱ヒータの温度を全て一定になるよう降温するとき、
前記保温制御が開始されてから前記保温限界温度になるまでを、保温処理段階として複数回の段階にわけ、
当該回数と、前記熱可塑性樹脂の種類に基づき予め決められた該熱可塑性樹脂の降温速度と、保温限界温度とを用いて、
各保温処理段階の終了時に、該各保温処理段階の終了時の基準温度に基づき予め設定した温度の範囲になるよう、制御手段が前記加熱ヒータの各々の温度を制御し、
前記射出成形機を稼動しているときに温度にばらつきのあった前記複数の加熱ヒータの全ての温度を前記保温限界温度になるように降温制御し、該複数の加熱ヒータの全ての温度が前記保温限界温度に達したら、さらに前記複数の加熱ヒータの全ての温度が一定になるよう温度制御することを特徴とする。
内部にスクリューが設けられると共に外周に加熱ヒータの装着された筒状の加熱シリンダと、該加熱シリンダの先端に構成され溶融された熱可塑性樹脂を射出する射出ノズルと、加熱シリンダの外側に装着され前記加熱シリンダ内に有する前記熱可塑性樹脂を溶融する複数の加熱ヒータと、これらの加熱ヒータの温度を検出する温度検出センサーを備えた射出成形機における熱可塑性樹脂の温度制御方法において、
前記射出成形機を稼動しているときに、該射出成形機の稼動を一時的に停止して前記複数の加熱ヒータにより前記熱可塑性樹脂の降温しながらの保温制御を行うときに、
前記熱可塑性樹脂が急激な降温により炭化しないようにするために、前記複数の加熱ヒータの温度を全て一定になるよう降温するとき、
前記保温制御が開始されてから前記保温限界温度になるまでを、保温処理段階として複数回の段階にわけ、
当該回数と、前記熱可塑性樹脂の種類に基づき予め決められた該熱可塑性樹脂の降温速度と、保温限界温度とを用いて、
各保温処理段階の終了時に、該各保温処理段階の終了時の基準温度に基づき予め設定した温度の範囲になるよう、制御手段が前記加熱ヒータの各々の温度を制御し、
前記射出成形機を稼動しているときに温度にばらつきのあった前記複数の加熱ヒータの全ての温度を前記保温限界温度になるように降温制御し、該複数の加熱ヒータの全ての温度が前記保温限界温度に達したら、さらに前記複数の加熱ヒータの全ての温度が一定になるよう温度制御することを特徴とする。
本発明によれば、射出成形機で成形体を成形する通常の稼動から保温制御に切替えられた際、加熱シリンダ内に有する熱可塑性樹脂が急激な降温により炭化しないようにするため、射出成形機の通常の稼動中に温度にばらつきのあった複数の加熱ヒータを、炭化の発生することのない保温限界温度まで所定時間かけて降温し、降温された各加熱ヒータの温度を一定になるよう制御することができるので、加熱シリンダ内に有する熱可塑性樹脂に炭化物が発生することを防止することが可能となる。
以下、本発明の実施形態を図1及び図2により以下に説明する。もちろん、本発明は、その発明の趣旨に反しない範囲で、実施形態において説明した以外の構成のものに対しても容易に適用可能なことは説明を要するまでもない。
本発明の一例の射出成形機は、公知の射出成形機と同様の構成を有するので図示を省略するが、射出ユニット、型締ユニットを備えるものであり、射出ユニットには、図1に示す加熱シリンダ1が構成されている。
図1に示す筒型の加熱シリンダ1には、先端に射出ノズル2、外側に複数の加熱ヒータ3a,3b,3c,3d,3e、内部に回転可能にスクリュー4、基端にホッパブロック5、ホッパブロック5の上部にホッパ6が設けられており、加熱ヒータ3a,3b,3c,3d,3eの各々の温度を検出する温度検出センサー7a,7b,7c,7d,7eが各加熱ヒータ3a,3b,3c,3d,3eに対応して設けられている。また、温度検出センサー7a,7b,7c,7d,7eで検出された各加熱ヒータ3a,3b,3c,3d,3eの温度は、制御手段10に出力され、当該制御手段10で一元的に管理されるようになっており、加熱ヒータ3a,3b,3c,3d,3eからの出力データに基づき制御手段10が、各加熱ヒータ3a,3b,3c,3d,3eの温度制御を行う。
また、本実施形態の射出成形機は、原料である粒状の熱可塑性樹脂(ペレット)がホッパ6に投入され、加熱シリンダ1の内部に設けられたスクリュー4が回転されることにより、加熱シリンダ1の後部へ供給された熱可塑性樹脂は射出ノズル2の設けられた加熱シリンダ1の先端側へ送り出され、複数の加熱ヒータ3a,3b,3c,3d,3eにより加熱シリンダ1内で加熱溶融され、図示しない、計量用モータ等からなる回転駆動手段によりスクリュー4が回転されることにより計量された後、図示しない、射出用モータ、ボールネジ機構等からなる進退駆動手段によりスクリュー4が前進されることで金型のキャビティへ所定量の熱可塑性樹脂が射出される。
また、加熱ヒータ3a,3b,3c,3d,3eは、図1に示すように、加熱シリンダ本体の外周のほか、射出ノズル2の外周にも装着されており、加熱シリンダ1の長手方向に前記加熱ヒータ3a,3b,3c,3d,3eが5つ間隔を空けて巻き付けられるようにして装着され、射出成形機で成形体を成形する稼動時には、各加熱ヒータ3a,3b,3c,3d,3eが200℃以上の高温に加熱される。
ここで、射出成形機の稼動を一時的に停止した際、複数の加熱ヒータ3a,3b,3c,3d,3eを熱源として、加熱シリンダ1内に有する熱可塑性樹脂の温度(保温)制御方法について図2に基づき以下に説明する。なお、加熱シリンダ1の先端側から基端側にかけて配列された複数の加熱ヒータ3a,3b,3c,3d,3eについては、加熱シリンダ1の先端側から基端側の順に、第1の加熱ヒータ3a、第2の加熱ヒータ3b、第3の加熱ヒータ3c、第4の加熱ヒータ3d、第5の加熱ヒータ3eとして説明することとし、図2では、これら加熱ヒータ3a,3b,3c,3d,3eに対応する温度検出センサー7a,7b,7c,7d,7eで検出された温度を波形で表している。
図2は、射出成形機を稼動して、光学部品(導光板やレンズ)を製造するときにアクリル樹脂やポリカーボネイト樹脂等の高温樹脂(熱可塑性樹脂)を材料として用いて成形する成形中のときに、機器の異常によりアラームが発生し、それに伴い保温制御に切替えられ、射出成形機の稼動を一時的に停止して加熱シリンダ1内に有する熱可塑性樹脂の保温制御を行っているときの、第1~第5の加熱ヒータ3a,3b,3c,3d,3eの温度の変化を表している。
ところで、加熱シリンダ1内に有する熱可塑性樹脂に対し炭化が発生しないよう制御するためには、成形中に200度以上の高温に加熱されている熱可塑性樹脂を、所定時間かけて所定の保温限界温度t2になるまで降温したのち、保温限界温度t2である160℃で一定になるよう保温制御する必要がある。そのため、本実施形態の第1~第5の加熱ヒータ3a,3b,3c,3d,3eは、成形中においては、温度にばらつきがあるが、第1~第5の加熱ヒータ3a,3b,3c,3d,3eの温度が全て160℃になったら、その温度で全ての第1~第5の加熱ヒータ3a,3b,3c,3d,3eを160℃になるよう制御手段10が保温制御する。なお、「保温限界温度」とは、樹脂の種類により決まるものであり、保温限界温度t2である160℃未満に熱可塑性樹脂の温度が低下された場合には、射出成形機を保温制御から通常の稼動に戻したときに、樹脂焼けが発生するため、160℃の温度を保温限界温度として定義する。
図2に示すように、射出成形機を稼動した成形体の成形中((a)~(b))において、何らかの原因より、アラームが発生されると(b)、(b)のタイミングで、射出成形機の稼動が一時的に中止され、保温制御が開始される。
本実施形態の保温制御((b)以降)においては、成形中((a)~(b))に200℃以上であった第1~第5の加熱ヒータ3a,3b,3c,3d,3eの温度を、段階的(図2の保温処理第1段階、保温処理第2段階、保温処理第3段階)に降温させる。
先ず、前記熱可塑性樹脂の降温速度(単位時間あたりの自然冷却速度)は、当該熱可塑性樹脂の種類により決まっているので、ここでは降温速度aは1.5(℃/分)であり、各保温処理段階(保温処理第1段階,保温処理第2段階,保温処理第3段階,(保温処理第n段階))の時間(分)をTとし、第1~第5の加熱ヒータ3a,3b,3c,3d,3eのうち成形中に最も高温の第2の加熱ヒータ3bの温度をt1(250℃)とし、保温限界温度をt2(160℃)とし、保温処理段階の回数をn回(本実施形態では3回)とした場合、下記数1の数式により、時間Tを算出する。
(数1)
(t1-t2)/(n×T)=a
※nは1以上とする
n×Tは、保温限界温度t2に達するまでの時間(b)~(e)
(t1-t2)/(n×T)=a
※nは1以上とする
n×Tは、保温限界温度t2に達するまでの時間(b)~(e)
上記数1の数式に前記数値を代入すると、(250(℃)-160(℃))/(3×T)=1.5(℃/分)
であるから、T=20(分)となる。
であるから、T=20(分)となる。
そして、算出されたTの数値により、保温処理第1~第3段階における各時間が制御手段10により決定される。
そして、Tは20(分)であって、aは1.5(℃/分)であることから、Tとaの数値を用いて、制御手段10が、下記数2の数式により、保温処理第1~第3段階の各段階の終了時((c),(d),(e))における各基準温度を、1段階あたり30℃ずつ降温することを決定する(保温処理第1段階終了時は220℃(250℃-30℃),保温処理第2段階終了時は190℃(250℃-30℃×2),保温処理第3段階終了時は160℃(250℃-30℃×3))。
(数2)
T×a=20(分)×1.5(℃/分)=30℃
T×a=20(分)×1.5(℃/分)=30℃
そして、各保温処理段階終了時((c),(d))では、第1~第5の全ての加熱ヒータ3a,3b,3c,3d,3eの温度が、前記基準温度の±10℃(より好ましくは±5℃)の範囲になるよう、制御手段10が各加熱ヒータ3a,3b,3c,3d,3eを制御し、前記基準温度の±10℃(より好ましくは±5℃)の範囲にしてから、次の保温処理段階に移行する。そして、図2に示すように、このような処理を、各段階毎に繰り返すことで、第1~第5の加熱ヒータ3a,3b,3c,3d,3eを、保温限界温度t2である160℃に到達する保温処理第n段階(本実施形態では保温処理第3段階)の終了時(e)に160℃まで降温させる。そして、制御手段10が、保温継続制御として、第1~第5の加熱ヒータ3a,3b,3c,3d,3eを160℃の状態を維持するよう制御を行う。
以上のような本実施形態における熱可塑性樹脂の温度制御方法によれば、射出成形機を稼動しているときに、該射出成形機の稼動を一時的に停止(中断)して、複数の加熱ヒータ3a,3b,3c,3d,3eにより、加熱シリンダ1内に有する熱可塑性樹脂の降温しながらの保温制御を行うときに、当該熱可塑性樹脂が急激な降温により炭化しないようにするために、複数の加熱ヒータ3a,3b,3c,3d,3eの温度を全て一定になるよう降温するとき、保温制御が開始されてから(b)保温限界温度になるまでを(e)、保温処理段階として複数回の段階(保温処理第1段階~保温処理第3段階)にわけ、当該回数(n)と、熱可塑性樹脂の種類に基づき予め決められた該熱可塑性樹脂の降温速度(a)と、保温限界温度(t2)等を用いて、各保温処理段階の終了時((c),(d))に、該各保温処理段階の終了時の基準温度((c)は220℃,(d)は190℃)に基づき予め設定した温度の範囲((c)は220℃の±10の範囲,(d)は190℃の±10℃の範囲)になるよう、制御手段10が加熱ヒータ3a,3b,3c,3d,3eの各々の温度を制御し、射出成形機を稼動しているときに温度にばらつきのあった複数の加熱ヒータ3a,3b,3c,3d,3eの全ての温度を、所定時間(n×T)かけて保温限界温度(160℃)になるように降温制御し、該複数の加熱ヒータ3a,3b,3c,3d,3eの全てが前記保温限界温度(160℃)に達したら、さらに前記複数の加熱ヒータ3a,3b,3c,3d,3eの全ての温度が一定になるよう温度制御する。これにより、射出成形機で成形体を成形する通常の稼動から保温制御に切替えられた際、加熱シリンダ1内に有する熱可塑性樹脂が急激な降温により炭化しないようにするため、射出成形機の通常の稼動中に温度にばらつきのあった複数の加熱ヒータ3a,3b,3c,3d,3eを、炭化の発生することのない保温限界温度t2まで所定時間(n×T=3×20=60分)かけて降温し、降温された各加熱ヒータ3a,3b,3c,3d,3eの温度を一定になるよう制御することで、加熱シリンダ1内に有する熱可塑性樹脂に炭化物が発生することを防止することが可能となる。
以上、本実施形態の一例を詳述したが、本発明は、前記実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、本実施形態においては、保温処理段階の回数を3回としているが、4回以上や3回未満でもよく、また、本実施形態では各保温処理段階終了時((c),(d))、第1~第5の全ての加熱ヒータ3a,3b,3c,3d,3eの温度が、前記基準温度の±10℃の範囲にしてから次の保温処理段階に移行するが、前記基準温度に一致したときに次の保温処理段階に移行するようにしてもよく適宜選定できるようにしてもよい。
1 加熱シリンダ
2 射出ノズル
3a 第1の加熱ヒータ
3b 第2の加熱ヒータ
3c 第3の加熱ヒータ
3d 第4の加熱ヒータ
3e 第5の加熱ヒータ
4 スクリュー
5 ホッパブロック
6 ホッパ
7a,7b,7c,7d,7e
10 制御手段
a 降温速度
n 保温制御時における保温処理段階の回数
t1 成形中に最も高温の加熱ヒータ3の温度
t2 保温限界温度
T 各保温処理段階の時間
2 射出ノズル
3a 第1の加熱ヒータ
3b 第2の加熱ヒータ
3c 第3の加熱ヒータ
3d 第4の加熱ヒータ
3e 第5の加熱ヒータ
4 スクリュー
5 ホッパブロック
6 ホッパ
7a,7b,7c,7d,7e
10 制御手段
a 降温速度
n 保温制御時における保温処理段階の回数
t1 成形中に最も高温の加熱ヒータ3の温度
t2 保温限界温度
T 各保温処理段階の時間
Claims (1)
- 内部にスクリューが設けられると共に外周に加熱ヒータの装着された筒状の加熱シリンダと、該加熱シリンダの先端に構成され溶融された熱可塑性樹脂を射出する射出ノズルと、加熱シリンダの外側に装着され前記加熱シリンダ内に有する前記熱可塑性樹脂を溶融する複数の加熱ヒータと、これらの加熱ヒータの温度を検出する温度検出センサーを備えた射出成形機における熱可塑性樹脂の温度制御方法において、
前記射出成形機を稼動しているときに、該射出成形機の稼動を一時的に停止して前記複数の加熱ヒータにより前記熱可塑性樹脂の降温しながらの保温制御を行うときに、
前記熱可塑性樹脂が急激な降温により炭化しないようにするために、前記複数の加熱ヒータの温度を全て一定になるよう降温するとき、
前記保温制御が開始されてから前記保温限界温度になるまでを、保温処理段階として複数回の段階にわけ、
当該回数と、前記熱可塑性樹脂の種類に基づき予め決められた該熱可塑性樹脂の降温速度と、保温限界温度とを用いて、
各保温処理段階の終了時に、該各保温処理段階の終了時の基準温度に基づき予め設定した温度の範囲になるよう、制御手段が前記加熱ヒータの各々の温度を制御し、
前記射出成形機を稼動しているときに温度にばらつきのあった前記複数の加熱ヒータの全ての温度を前記保温限界温度になるように降温制御し、該複数の加熱ヒータの全ての温度が前記保温限界温度に達したら、さらに前記複数の加熱ヒータの全ての温度が一定になるよう温度制御することを特徴とする射出成形機における熱可塑性樹脂の温度制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280052101.2A CN103889682B (zh) | 2011-10-24 | 2012-10-24 | 注塑成型机中的热塑性树脂的温度控制方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-232821 | 2011-10-24 | ||
JP2011232821A JP5829889B2 (ja) | 2011-10-24 | 2011-10-24 | 射出成形機における熱可塑性樹脂の温度制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013061991A1 true WO2013061991A1 (ja) | 2013-05-02 |
Family
ID=48167818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/077440 WO2013061991A1 (ja) | 2011-10-24 | 2012-10-24 | 射出成形機における熱可塑性樹脂の温度制御方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5829889B2 (ja) |
CN (1) | CN103889682B (ja) |
WO (1) | WO2013061991A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104552834A (zh) * | 2015-01-16 | 2015-04-29 | 迅得粘合剂(深圳)有限公司 | 一种新型螺杆式低压注塑机及其注塑方法 |
CN115494889A (zh) * | 2021-10-15 | 2022-12-20 | 义乌市绘海科技有限公司 | 一种波纹管挤出机挤出温度控制系统及方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108556293A (zh) * | 2018-06-05 | 2018-09-21 | 安徽得亿文教用品有限公司 | 一种用于塑料铅笔的注塑加热机 |
CN111493590A (zh) * | 2019-01-30 | 2020-08-07 | 明门瑞士股份有限公司 | 幼儿载具用支撑装置及其制造方法,及幼儿载具 |
CN110524830A (zh) * | 2019-07-25 | 2019-12-03 | 广东柳道热流道系统有限公司 | 一种自感应保护注塑系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0336427U (ja) * | 1989-08-10 | 1991-04-09 | ||
JPH04164622A (ja) * | 1990-10-29 | 1992-06-10 | Toyo Mach & Metal Co Ltd | 射出成形機の加熱シリンダの温度制御方法 |
JPH04276417A (ja) * | 1991-03-05 | 1992-10-01 | Teijin Chem Ltd | 成形機の停止方法 |
JPH07266394A (ja) * | 1994-04-01 | 1995-10-17 | Sumitomo Jukikai Plast Mach Kk | 樹脂成形装置の樹脂焼け防止方法 |
JP2006305777A (ja) * | 2005-04-26 | 2006-11-09 | Toshiba Mach Co Ltd | 射出成形機の制御装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06254930A (ja) * | 1993-03-08 | 1994-09-13 | Teijin Chem Ltd | 光学ディスク基板用成形機の停止方法 |
TW200517237A (en) * | 2003-08-27 | 2005-06-01 | Sumitomo Heavy Industries | Injection molding machine and temperature control method thereof |
-
2011
- 2011-10-24 JP JP2011232821A patent/JP5829889B2/ja active Active
-
2012
- 2012-10-24 WO PCT/JP2012/077440 patent/WO2013061991A1/ja active Application Filing
- 2012-10-24 CN CN201280052101.2A patent/CN103889682B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0336427U (ja) * | 1989-08-10 | 1991-04-09 | ||
JPH04164622A (ja) * | 1990-10-29 | 1992-06-10 | Toyo Mach & Metal Co Ltd | 射出成形機の加熱シリンダの温度制御方法 |
JPH04276417A (ja) * | 1991-03-05 | 1992-10-01 | Teijin Chem Ltd | 成形機の停止方法 |
JPH07266394A (ja) * | 1994-04-01 | 1995-10-17 | Sumitomo Jukikai Plast Mach Kk | 樹脂成形装置の樹脂焼け防止方法 |
JP2006305777A (ja) * | 2005-04-26 | 2006-11-09 | Toshiba Mach Co Ltd | 射出成形機の制御装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104552834A (zh) * | 2015-01-16 | 2015-04-29 | 迅得粘合剂(深圳)有限公司 | 一种新型螺杆式低压注塑机及其注塑方法 |
CN115494889A (zh) * | 2021-10-15 | 2022-12-20 | 义乌市绘海科技有限公司 | 一种波纹管挤出机挤出温度控制系统及方法 |
CN115494889B (zh) * | 2021-10-15 | 2023-11-17 | 义乌市绘海科技有限公司 | 一种波纹管挤出机挤出温度控制系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5829889B2 (ja) | 2015-12-09 |
CN103889682B (zh) | 2016-06-08 |
JP2013091169A (ja) | 2013-05-16 |
CN103889682A (zh) | 2014-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013061991A1 (ja) | 射出成形機における熱可塑性樹脂の温度制御方法 | |
JP4824081B2 (ja) | 射出成形機 | |
JPWO2005021237A1 (ja) | 射出成形機及び射出成形機の温度制御方法 | |
US9975288B2 (en) | Control device of injection molding machine having resin purge function | |
JP2017209880A (ja) | 射出成形機の設定支援方法 | |
KR100839610B1 (ko) | 금형의 웰드 라인 발생 방지 장치 및 이를 이용한성형제품의 제조 방법 | |
JP6173985B2 (ja) | ヒートアンドクール成形方法を実施するトグル式射出成形機の型締力調整方法 | |
KR101889314B1 (ko) | 벤트식 사출성형기의 온도제어방법 | |
KR101796455B1 (ko) | 예열 가능한 이젝터를 구비하는 사출 금형을 이용한 사출품 제조 방법 | |
JP2010089431A (ja) | 成形機の自動昇温制御方法 | |
JP2009083327A (ja) | 射出成形方法 | |
JP6206719B2 (ja) | 射出成形機の加熱バレル温度制御方法 | |
JP4247139B2 (ja) | 射出成形機及びその制御方法 | |
KR20090107141A (ko) | 사출성형기 노즐의 2단계 온도상승 제어방법 | |
JP2021049661A (ja) | 射出成形装置 | |
JP3542060B2 (ja) | 射出成形機およびそのノズル温度制御方法 | |
JP3790609B2 (ja) | 射出成形機の温度制御方法および温度制御装置 | |
JP2857971B2 (ja) | 射出成形機の加熱制御装置 | |
JP5917336B2 (ja) | 射出成形機 | |
JPH06254929A (ja) | 射出成形機 | |
JPH0565333B2 (ja) | ||
JPH11105093A (ja) | 射出成形機の制御装置 | |
JPH0446731B2 (ja) | ||
JP6438215B2 (ja) | 射出成形機及びその運転制御方法 | |
JP2001047485A (ja) | 射出成形機およびそのシリンダ加熱装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12844604 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12844604 Country of ref document: EP Kind code of ref document: A1 |