WO2013061501A1 - 冷媒用遠心式分配器および冷凍サイクル装置 - Google Patents

冷媒用遠心式分配器および冷凍サイクル装置 Download PDF

Info

Publication number
WO2013061501A1
WO2013061501A1 PCT/JP2012/005287 JP2012005287W WO2013061501A1 WO 2013061501 A1 WO2013061501 A1 WO 2013061501A1 JP 2012005287 W JP2012005287 W JP 2012005287W WO 2013061501 A1 WO2013061501 A1 WO 2013061501A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
outlet
separation chamber
flow
gas
Prior art date
Application number
PCT/JP2012/005287
Other languages
English (en)
French (fr)
Inventor
良子 阿波
中村 友彦
西嶋 春幸
山田 悦久
陽平 長野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2013061501A1 publication Critical patent/WO2013061501A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/03Cavitations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Definitions

  • the present disclosure relates to a centrifugal distributor that separates a liquid-phase refrigerant and a gas-phase refrigerant by centrifugal force, and a refrigeration cycle apparatus including the distributor.
  • Patent Document 1 and Patent Document 2 disclose a centrifugal distributor used in a refrigeration cycle apparatus.
  • the gas-liquid two-phase refrigerant can be distributed toward at least two passages.
  • a gas-liquid two-phase refrigerant with a relatively large amount of gas-phase refrigerant is distributed in the first passage.
  • a gas-liquid two-phase refrigerant or a saturated liquid refrigerant with a relatively large amount of liquid-phase refrigerant is distributed to the second passage.
  • a film of the liquid phase refrigerant is formed on the inner wall surface of the swirl chamber by the swirling flow of the refrigerant.
  • the gas-phase refrigerant prevents an increase in the thickness of the liquid-phase refrigerant film. For this reason, the film thickness of the liquid phase refrigerant may not be sufficiently grown at the outlet where it is desired to extract a large amount of the liquid phase refrigerant.
  • liquid-phase refrigerant film is formed with the same thickness along the swirl direction, that is, the circumferential direction. For this reason, the film thickness of the liquid phase refrigerant may not be sufficiently grown at the outlet where it is desired to extract a large amount of the liquid phase refrigerant.
  • the present disclosure has been made in view of the above points, and an object thereof is to provide a centrifugal distributor that easily collects liquid-phase refrigerant.
  • Another object of the present disclosure is to provide a centrifugal distributor capable of collecting a liquid phase refrigerant by promoting a flow of the gas phase refrigerant.
  • Another object of the present disclosure is to provide a centrifugal distributor that can partially collect liquid-phase refrigerant along the swirl direction.
  • Still another object of the present disclosure is to provide a refrigeration cycle apparatus including a centrifugal distributor that easily collects liquid phase refrigerant.
  • the centrifugal separator for refrigerant swirls the refrigerant to form a separation chamber for separating the refrigerant into a gas phase refrigerant and a liquid phase refrigerant, and to supply the refrigerant to the separation chamber.
  • An inlet for introduction, a first outlet that opens to the separation chamber, a housing that forms a second outlet that opens radially outward of the separation chamber, and a liquid-phase refrigerant film on the radially inner side of the second outlet In order to make it thick, a flow operation portion for operating the flow of the refrigerant in the separation chamber is provided.
  • the film of the liquid-phase refrigerant on the radially inner side of the second outlet can be thickened by the flow operation portion that manipulates the refrigerant flow in the separation chamber.
  • the refrigerant component flowing out from the second outlet can be stabilized.
  • the flow operation portion may be configured to keep the gas phase refrigerant region on the radially inner side of the second outlet from the second outlet.
  • the liquid-phase refrigerant film on the radially inner side of the second outlet can be made thicker by moving the gas-phase refrigerant region on the radially inner side of the second outlet from the second outlet.
  • the flow operation part may be configured to narrow the region of the gas-phase refrigerant in the separation chamber.
  • coolant in the radial inside of a 2nd outflow port can be kept away from a 2nd outflow port by narrowing the area
  • the flow operation part is a partition that partitions the separation chamber into an upstream swirl chamber and a downstream swirl chamber, and accelerates the flow of the gas-phase refrigerant in the upstream swirl chamber. Then, a partition wall in which a through hole is formed to flow out into the downstream swirl chamber may be included. According to this structure, the area
  • coolant can be made thin by accelerating the flow of a gaseous-phase refrigerant
  • the through hole may be provided at a position deviated from the axis so as to be away from the second outlet in order to shift the region of the gas-phase refrigerant from the axis of the separation chamber.
  • the region of the gas-phase refrigerant can be shifted from the axis of the separation chamber by shifting the position of the through hole from the axis.
  • the flow operation portion may shift the region of the gas-phase refrigerant in the separation chamber from the axis of the separation chamber. According to this configuration, by shifting the region of the gas-phase refrigerant from the axis of the separation chamber, the region of the gas-phase refrigerant on the radially inner side of the second outlet can be moved away from the second outlet.
  • the separation chamber has an inflow opening that is located downstream of the upstream swirl chamber having the first shaft and the upstream swirl chamber, and the second outflow port is open.
  • a downstream swirl chamber having a second axis, and the flow operation portion makes the distance between the second outlet and the first axis larger than the distance between the second outlet and the second axis.
  • the flow operation portion rapidly expands the cross-sectional area from the upstream swirl chamber to the downstream swirl chamber, and the step surface in which the second outlet is positioned in the vicinity of the downstream side. May be included.
  • coolant in the radial inside of a 2nd outflow port can be kept away from a 2nd outflow port by a level
  • a refrigeration cycle apparatus includes the centrifugal distributor according to any one of the first to eighth aspects, a nozzle portion provided downstream of the first outlet, and a nozzle A suction port that sucks the refrigerant by the flow of the refrigerant blown from the unit, a mixing unit that mixes the refrigerant blown from the nozzle unit and the refrigerant sucked from the suction port, and a pressure booster of the refrigerant provided downstream of the mixing unit You may provide an ejector provided with the diffuser part to perform, and an evaporator arranged between the 2nd outflow mouth and a suction opening.
  • the refrigerant distributed by the distributor is supplied from the second outlet to the evaporator.
  • the refrigerant evaporated in the evaporator is sucked by the ejector.
  • coolant supplied to an evaporator can be stabilized.
  • the refrigeration cycle apparatus may further include another evaporator provided downstream of the diffuser unit. According to this configuration, the refrigerant after passing through the ejector can be further evaporated to exhibit a cooling action.
  • an ejector refrigeration cycle apparatus 10 includes a compressor 11, a radiator 12, an expansion valve 13, and an evaporator unit 20.
  • the compressor 11 sucks the refrigerant and compresses it, and then discharges the high-pressure refrigerant.
  • the compressor 11 is rotationally driven by a vehicle travel engine (not shown) via an electromagnetic clutch 11a and a belt.
  • the compressor 11 is a variable capacity compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or a fixed capacity compressor that adjusts the refrigerant discharge capacity by changing the operating rate of the compressor operation by intermittently connecting the electromagnetic clutch 11a. Can be provided by.
  • the compressor 11 may be an electric compressor. In the electric compressor, the refrigerant discharge capacity can be adjusted by adjusting the rotation speed of the electric motor.
  • a radiator 12 is disposed on the refrigerant discharge side of the compressor 11.
  • the radiator 12 can be used as an indoor unit or an outdoor unit. When used as an outdoor unit, the radiator 12 provides heat exchange between the high-pressure refrigerant discharged from the compressor 11 and the vehicle exterior air.
  • the radiator 12 cools the high-pressure refrigerant.
  • a cooling fan that blows air to the radiator 12 can be provided.
  • the refrigeration cycle apparatus 10 uses a refrigerant whose high pressure does not exceed the critical pressure, such as refrigerants such as Freon and HC.
  • the refrigeration cycle apparatus 10 constitutes a vapor compression subcritical cycle. Therefore, the radiator 12 functions as a condenser that condenses the refrigerant.
  • a thermal expansion valve 13 is disposed on the outlet side of the radiator 12.
  • the expansion valve 13 is a decompression device that decompresses the liquid refrigerant from the radiator 12, and has a temperature sensing part 13 a disposed in the suction side passage of the compressor 11.
  • the expansion valve 13 detects the degree of superheat of the compressor suction side refrigerant based on the temperature and pressure of the suction side refrigerant of the compressor 11 so that the degree of superheat of the compressor suction side refrigerant becomes a predetermined value set in advance. Adjust the valve opening.
  • the suction side refrigerant corresponds to an outlet side refrigerant of an evaporator described later.
  • the refrigerant flow rate is adjusted according to the valve opening degree of the expansion valve 13.
  • the evaporator unit 20 is connected to the downstream side of the expansion valve 13.
  • the evaporator unit 20 is positioned between the expansion valve 13 and the compressor 11.
  • the evaporator unit 20 is connected to other components of the refrigeration cycle apparatus 10 via a pipe.
  • the evaporator unit 20 can be used as an indoor unit or an outdoor unit.
  • the evaporator unit 20 includes an ejector 14, a first evaporator 15, a distributor 16, a decompressor 17, and a second evaporator 18.
  • the evaporator unit 20 is configured as a unit that can be handled integrally by connecting these components.
  • the evaporator unit 20 is configured by integrally connecting a plurality of components by a fixing device such as brazing, a bolt, a screw, and an adhesive.
  • the evaporator unit 20 can also be called an ejector-type refrigeration cycle apparatus evaporator unit, an ejector-type refrigeration cycle apparatus integrated unit, or an evaporator unit with an ejector.
  • the two evaporators 15 and 18 are integrally formed.
  • a cylindrical ejector case 23 is disposed on the sides of the two evaporators 15 and 18.
  • the ejector 14 is accommodated in an ejector case 23.
  • the distributor 16 is integrally provided in the ejector 14 by being formed in the ejector case 23.
  • the ejector 14 is provided integrally with the evaporators 15 and 18 as a part of the evaporator unit 20.
  • the evaporator unit 20 is a component of the ejector refrigeration cycle apparatus 10.
  • an ejector 14 is disposed on the outlet side of the expansion valve 13.
  • the ejector 14 is a decompression device that decompresses the refrigerant.
  • the ejector 14 provides a refrigerant transport device that generates a refrigerant flow by suction of the refrigerant flow ejected at high speed.
  • the ejector 14 provides a refrigerant transport device that causes a refrigerant to flow in a branch path in the refrigeration cycle apparatus 10.
  • the ejector 14 can also be called a momentum transport pump.
  • the ejector 14 includes a nozzle portion 14a that further squeezes and expands the refrigerant by reducing the passage area of the refrigerant after passing through the expansion valve 13.
  • the refrigerant after passing through the expansion valve 13 is also called an intermediate pressure refrigerant.
  • the ejector 14 generates an entrainment action, that is, a suction force, by the refrigerant flow injected from the outlet of the nozzle portion 14a.
  • the ejector 14 includes a suction port 14b that communicates with the periphery of the ejection port of the nozzle portion 14a. The ejector 14 sucks the gas-phase refrigerant from the second evaporator 18 through the suction port 14b.
  • the mixing part 14c is provided in the refrigerant
  • the mixing unit 14c mixes the high-speed refrigerant flow from the nozzle unit 14a and the refrigerant sucked from the refrigerant suction port 14b.
  • a diffuser portion 14d forming a pressure increasing portion is disposed on the downstream side of the refrigerant flow in the mixing portion 14c.
  • the diffuser portion 14d is formed in a shape that gradually increases the passage area of the refrigerant toward the downstream side of the refrigerant flow, and acts to decelerate the refrigerant flow to increase the refrigerant pressure, that is, to convert the velocity energy of the refrigerant into pressure energy. Acts to convert.
  • the tip of the diffuser part 14 d is an outlet part of the ejector 14.
  • a first evaporator 15 is disposed on the downstream side of the ejector 14.
  • the first evaporator 15 is another evaporator provided downstream of the diffuser portion 14d.
  • the outlet side of the first evaporator 15 is connected to the suction side of the compressor 11.
  • a centrifugal distributor 16 for refrigerant is disposed on the outlet side of the expansion valve 13.
  • the distributor 16 distributes the refrigerant into the main passage toward the nozzle portion 14a and the branch passage toward the suction port 14b.
  • the distributor 16 distributes the entire flow rate G into the flow rate Gn of the main passage and the flow rate Ge of the branch passage.
  • the distributor 16 adjusts the ratio of the flow rate Gn and the flow rate Ge to a predetermined ratio.
  • the distributor 16 adjusts the refrigerant component toward the main passage and the refrigerant component toward the branch passage.
  • the distributor 16 adjusts the refrigerant going to the main passage to a refrigerant having a relatively large amount of gas phase components.
  • the distributor 16 adjusts the refrigerant going to the branch passage to a refrigerant having a relatively large liquid phase component.
  • the distributor 16 adjusts the refrigerant component so that the gas phase component of the refrigerant going to the main passage is larger than the gas phase component of the refrigerant going to the branch passage.
  • the distributor 16 is connected to the outlet of the expansion valve 13 and has an inlet 16a through which refrigerant flows.
  • the distributor 16 includes a first outlet 16b connected to the inlet of the nozzle portion 14a. Furthermore, the distributor 16 includes a second outlet 16c connected to the branch passage. The refrigerant flowing toward the suction port 14b flows out from the second outlet 16c.
  • a decompressor 17 and a second evaporator 18 are disposed between the second outlet 16 c and the suction port 14 b of the distributor 16.
  • the decompressor 17 is a decompressor that adjusts the refrigerant flow rate to the second evaporator 18.
  • the decompressor 17 is disposed on the inlet side of the second evaporator 18.
  • the decompressor 17 may be configured by a restriction mechanism such as a capillary tube or a restriction passage.
  • the two evaporators 15 and 18 are arranged such that the first evaporator 15 is located on the upstream side and the second evaporator 18 is located on the downstream side with respect to the air flow that is the object of temperature adjustment. .
  • the two evaporators 15 and 18 are configured and arranged to act on a common cooling load, that is, air to be cooled.
  • the two evaporators 15 and 18 are accommodated in an air conditioning case (not shown).
  • the air conditioning case provides an air conditioning duct.
  • the air to be cooled is blown into the air conditioning duct by an electric blower 19 as shown by an arrow F1.
  • the two evaporators 15 and 18 cool the air blown by the blower 19.
  • the cold air cooled by the two evaporators 15 and 18 is sent into a common cooling target space.
  • the first evaporator 15 is disposed in the main passage on the downstream side of the ejector 14.
  • the first evaporator 15 is an upwind evaporator disposed upstream of the air flow F1, that is, on the upwind side.
  • the second evaporator 18 is disposed in the branch passage that reaches the suction port 14 b of the ejector 14.
  • the second evaporator 18 is a leeward evaporator disposed on the downstream side of the air flow F1, that is, on the leeward side.
  • the two evaporators 15 and 18 are completely integrated as one evaporator structure.
  • the first evaporator 15 constitutes an upstream region of the air flow F1 in one evaporator structure
  • the second evaporator 18 constitutes a downstream region of the air flow F1 in one evaporator structure.
  • the basic configuration of the first evaporator 15 and the second evaporator 18 is the same.
  • the evaporators 15 and 18 include core portions 15a and 18a for heat exchange.
  • the evaporators 15 and 18 are provided with tank portions 15b, 15c, 18b and 18c extending in the horizontal direction in the figure at both ends in the vertical direction (TOP-BOTTOM) in the figure.
  • Tank portions 15b and 15c are arranged above and below the core portion 15a.
  • Tank portions 18b and 18c are arranged above and below the core portion 18a.
  • the core parts 15a and 18a are provided with a plurality of heat exchange tubes 21 extending in the vertical direction. Between the plurality of tubes 21, a passage through which the air to be cooled, which is a heat exchange medium, passes is formed. Fins 22 joined to the tubes 21 are disposed between the plurality of tubes 21.
  • the tubes 21 and the fins 22 are alternately stacked in the left-right direction of the core portions 15a and 18a.
  • Core portions 15 a and 18 a are formed by a laminated structure of the tube 21 and the fins 22.
  • the core portions 15 a and 18 a may be formed by a configuration of only the tube 21 that does not include the fins 22.
  • the tube 21 is formed of a flat tube that constitutes a refrigerant passage.
  • the fin 22 is a corrugated fin obtained by bending a thin plate material into a wave shape.
  • the fins 22 are joined to the flat outer surface of the tube 21 to expand the air side heat transfer area.
  • the tube 21 of the core part 15a and the tube 21 of the core part 18a constitute independent refrigerant passages.
  • the tank portions 15b, 15c, 18b, and 18c constitute mutually independent refrigerant passage spaces, that is, tank spaces.
  • the tank portions 15 b and 15 c communicate with the upper and lower ends of the tube 21.
  • the tank portions 18 b and 18 c communicate with the upper and lower ends of the tube 21.
  • the tank portions 15b, 15c, 18b, and 18c serve to distribute the refrigerant to the plurality of tubes 21 of the corresponding core portions 15a and 18a and to collect the refrigerant from the plurality of tubes 21.
  • a partition plate 28 that partitions the internal space of the upper tank portion 15b into a first space 26 and a second space 27 is disposed at a substantially central portion in the longitudinal direction inside the upper tank portion 15b.
  • the second space 27 serves as a distribution tank that distributes the refrigerant to the first group of the plurality of tubes 21 belonging to the first evaporator 15.
  • the first space 26 serves as a collection tank that collects the refrigerant that has passed through the second group of the plurality of tubes 21 belonging to the first evaporator 15.
  • the lower tank 15c serves as a redistribution tank that collects the refrigerant from the first group of tubes and then redistributes the refrigerant to the second group of tubes.
  • a partition plate 31 that divides the internal space of the upper tank portion 18b into a first space 29 and a second space 30 is disposed at a substantially central portion in the longitudinal direction inside the upper tank portion 18b.
  • the first space 29 serves as a distribution tank that distributes the refrigerant to the first group of the plurality of tubes 21 belonging to the second evaporator 18.
  • the second space 30 serves as a collection tank that collects the refrigerant that has passed through the second group of the plurality of tubes 21 belonging to the second evaporator 18.
  • the lower tank 18c serves as a redistribution tank that collects the refrigerant from the first group of tubes and then redistributes the refrigerant to the second group of tubes.
  • the refrigerant inlet 24 of the evaporator unit 20 is provided at one end portion of the upper tank portion 18b, that is, the left end portion in the drawing.
  • the refrigerant outlet 25 is provided at one end portion of the upper tank portion 15b, that is, the left end portion in the figure.
  • the refrigerant inlet 24 communicates with the inflow port 16a.
  • the refrigerant outlet 25 communicates with the upper tank portion 15b.
  • Ejector 14, distributor 16 and decompressor 17 are arranged on the upper side (TOP) of upper tank portions 15b and 18b in the drawing.
  • the ejector 14 has an elongated shape extending in the axial direction of the nozzle portion 14a.
  • the ejector 14 is disposed on the upper tank portions 15b and 18b so that the longitudinal direction thereof is parallel to the longitudinal direction of the tank portion.
  • the outlet of the ejector 14 opens into the internal space of the ejector case 23.
  • the internal space of the ejector case 23 communicates with the second space 27.
  • the suction port 14 b communicates with the second space 30.
  • the distributor 16 is arranged so as to be aligned with the ejector 14 along the longitudinal direction of the ejector 14.
  • the distributor 16 includes a cylindrical housing 16e.
  • the housing 16e is formed in a cylindrical shape extending in the axial direction of the nozzle portion 14a.
  • the housing 16e divides and forms a separation chamber 16d for rotating the refrigerant and separating it into a gas phase refrigerant and a liquid phase refrigerant.
  • the separation chamber 16d is a cylindrical space.
  • the housing 16e forms an inlet 16a for introducing the refrigerant into the separation chamber 16d, a first outlet 16b that opens to the separation chamber 16d, and a second outlet 16c that opens radially outward of the separation chamber 16d.
  • the inflow port 16a is provided at one end of the distributor 16, that is, the left end in the drawing.
  • the 1st outflow port 16b is provided in the other end part of the divider
  • the distributor 16 is disposed on the inlet side of the nozzle portion 14a.
  • the first outlet 16b and the nozzle portion 14a are directly connected.
  • the second outlet 16c is provided on the cylindrical surface portion of the distributor 16, that is, the outer peripheral wall.
  • a decompressor 17 is directly connected to the second outlet 16c.
  • the decompressor 17 communicates with the upper tank portion 18 b of the second evaporator 18.
  • FIG. 4 shows a longitudinal section of the ejector with a distributor in a section including the axis AXJ of the ejector 14.
  • FIG. 5 is a cross section perpendicular to the axis AXS at the opening position of the inflow port 16a, and shows a VV cross section of FIG.
  • FIG. 6 is a cross section perpendicular to the axis AXS in the vicinity of the first outlet 16b, and shows a VI-VI cross section of FIG.
  • the axis AXJ is the central axis of the nozzle portion 14a.
  • the axis AXS is the central axis of the housing 16e and corresponds to the central axis of the swirl flow formed in the housing 16e.
  • the axis AXJ and the axis AXS coincide.
  • the distributor 16 and the ejector 14 constitute an integral part.
  • the distributor 16 constitutes a centrifugal gas-liquid separator.
  • the shape of the housing 16e and the extending direction of the passage 16f toward the inflow port 16a are set so as to generate a swirling flow of the refrigerant in the distributor 16.
  • the passage 16 f extends in the tangential direction of the housing 16 e of the distributor 16.
  • the refrigerant flows from the inlet 16a into the separation chamber 16d after passing through the passage 16f. Thereby, the refrigerant swirls along the inner wall surface of the housing 16e. Further, the refrigerant flows in the distributor 16 toward the nozzle portion 14a while turning around the axis AXS. In this process, the liquid phase refrigerant is collected outside the separation chamber 16d by centrifugal force.
  • the gas-phase refrigerant is collected at the center of the swirl chamber, that is, on the axis AXS.
  • an apparatus for generating a swirling flow according to the shape of the inner wall surface of the housing 16e and the extending direction of the passage 16f.
  • the distributor 16 includes an annular partition wall 16g provided at a substantially center in the axial direction of the separation chamber 16d.
  • the partition wall 16g incompletely partitions the separation chamber 16d into an upstream swirl chamber 16d1 and a downstream swirl chamber 16d2.
  • the partition wall 16g has a disk shape.
  • the surface on the inlet 16a side of the partition wall 16g is a flat surface having no portion protruding toward the swirl chamber 16d1.
  • the surface on the outlet 16b side of the partition wall 16g has a portion that slightly protrudes toward the swirl chamber 16d2.
  • the outer peripheral edge of the partition wall 16g is liquid-tightly fixed to the inner wall surface of the housing 16e.
  • the partition wall 16g is disposed between the first outlet 16b and the second outlet 16c.
  • the partition wall 16g is disposed in the vicinity of the second outlet 16c.
  • the second outlet 16c opens in the housing 16e in the vicinity of the partition wall 16g and upstream of the partition wall 16g.
  • the second outlet 16c opens to the inner wall surface of the housing 16e, that is, the radially outer side of the swirl chamber 16d1.
  • the partition wall 16g has a through-hole 16h at substantially the center thereof.
  • the through hole 16h accelerates the flow of the gas-phase refrigerant in the upstream swirl chamber 16d1 and causes it to flow out to the downstream swirl chamber 16d2.
  • the through-hole 16h has a position and a size for mainly leading out the gas-phase refrigerant rather than the liquid-phase refrigerant separated in the swirl chamber 16d1.
  • the through hole 16h is located on the same axis as the axis AXS.
  • the through hole 16h has a small opening on the axis AXS.
  • the through hole 16h opens on the plane of the partition wall 16g on the upstream side.
  • the through hole 16h opens on the protruding portion of the partition wall 16g on the downstream side.
  • the through hole 16h is positioned so as to mainly lead out the gas phase component separated by the swirl chamber 16d1. However, the through hole 16h is formed so as to allow a part of the liquid phase refrigerant to pass through while accelerating the gas phase refrigerant.
  • the through-hole 16h opens on the plane of the partition wall 16g, thereby accelerating the gas-phase refrigerant and the liquid-phase refrigerant.
  • the cross-sectional area of the gas-phase refrigerant is smaller than the cross-sectional area of the liquid-phase refrigerant, and the flow rate of the gas-phase refrigerant is faster than the flow rate of the liquid-phase refrigerant.
  • the flow operation portion includes a partition wall 16g in which a through hole 16h is formed.
  • a through hole 16h is formed.
  • the gas-phase refrigerant and the liquid-phase refrigerant are separated by the swirling flow in the swirl chamber 16d1, and a gas-liquid boundary surface is formed between them. Since the through-hole 16h accelerates the flow of the gas-phase refrigerant, the region occupied by the gas-phase refrigerant gradually becomes narrower toward the through-hole 16h. That is, the flow operation portion operates the refrigerant flow in the separation chamber 16d so as to narrow the region of the gas-phase refrigerant in the separation chamber 16d.
  • the region of the gas-phase refrigerant on the radially inner side of the separation chamber 16d at the opening position of the second outlet 16c can be moved away from the second outlet 16c.
  • the thickness of the film occupied by the liquid-phase refrigerant gradually increases toward the partition wall 16g.
  • a funnel-shaped gas-liquid interface that swells toward the through hole 16h is formed.
  • the diameter of the gas-liquid boundary surface is sufficiently small. The gas-liquid interface is kept away from the second outlet 16c.
  • the liquid refrigerant film on the radially inner side of the opening position of the second outlet 16c becomes thicker.
  • the liquid refrigerant accumulates in the swirl chamber 16d1 between the inlet 16a and the partition wall 16g, particularly in the radially outer side, and in the vicinity of the partition wall 16g.
  • the vapor-phase refrigerant is suppressed from reaching the second outlet 16c, the liquid-phase refrigerant can be stably discharged from the second outlet 16c.
  • the refrigerant that has passed through the through hole 16h maintains a slightly swirling flow in the swirling chamber 16d2. Also in the swirl chamber 16d2, the refrigerant is incompletely separated into the gas-phase refrigerant and the liquid-phase refrigerant, and gradually mixes, that is, gradually disappears the gas-liquid boundary line, toward the first outlet 16b. It will flow. At this time, since the downstream surface of the partition wall 16g slightly protrudes and the through hole 16h is opened at the protruding portion, the refrigerant that has passed through the through hole 16h is guided toward the nozzle portion 14a.
  • the refrigerant flowing into the distributor 16 from the refrigerant inlet 24 is branched into a main flow toward the nozzle portion 14a and a branch flow toward the decompressor 17.
  • the main stream passes through the ejector 14 and is depressurized, and is supplied to the first evaporator 15 as indicated by an arrow R1.
  • the refrigerant flows into the second space 27 of the upper tank portion 15b.
  • the refrigerant flows from the second space 27 toward the lower tank 15c through the plurality of tubes 21 in the right half of the core portion 15a as indicated by an arrow R2.
  • the refrigerant moves in the lower tank 15c as indicated by an arrow R3.
  • the refrigerant flows from the lower tank 15c toward the first space 26 of the upper tank 15b through the plurality of tubes 21 in the left half of the core portion 15a as indicated by an arrow R4. Thereafter, the refrigerant flows toward the refrigerant outlet 25 as indicated by an arrow R5.
  • the branch flow is decompressed by passing through the decompressor 17.
  • the decompressed low-pressure refrigerant is supplied to the second evaporator 18 as indicated by an arrow R6.
  • the refrigerant flows into the first space 29 of the upper tank portion 18b.
  • the refrigerant flows from the first space 29 toward the lower tank 18c through the plurality of tubes 21 in the left half of the core portion 18a as indicated by an arrow R7.
  • the refrigerant moves in the lower tank 18c as indicated by an arrow R8.
  • the refrigerant flows as indicated by an arrow R9 from the lower tank 18c toward the second space 30 of the upper tank 18b through the plurality of tubes 21 in the right half of the core 18a. Thereafter, the refrigerant is sucked into the ejector 14 from the suction port 14b. Since the evaporator unit 20 has the flow path configuration as described above, it is only necessary to provide one refrigerant inlet 24 and one refrigerant outlet 25 as the evaporator unit 20 as a whole.
  • the compressor 11 When the compressor 11 is operated, the high-temperature and high-pressure refrigerant flows into the radiator 12. In the radiator 12, the high-temperature refrigerant is cooled and condensed by the outside air. The high-pressure refrigerant flowing out of the radiator 12 is decompressed when passing through the expansion valve 13. In the expansion valve 13, the valve opening degree is adjusted so that the degree of superheat of the outlet refrigerant of the first evaporator 15 becomes a predetermined value. The intermediate pressure refrigerant after passing through the expansion valve 13 flows into the refrigerant inlet 24 and further flows into the separation chamber 16d of the distributor 16 through the inlet 16a. In the separation chamber 16d, the refrigerant is divided into a main flow from the first outlet 16b to the nozzle portion 14a and a branch flow from the second outlet 16c to the decompressor 17.
  • the mainstream refrigerant is decompressed and expanded by the nozzle portion 14a.
  • the pressure energy of the refrigerant is converted into velocity energy at the nozzle portion 14a, and the refrigerant is ejected at a high speed from the outlet of the nozzle portion 14a. Due to the pressure drop caused by the high-speed refrigerant flow, the branch flow refrigerant that has passed through the second evaporator 18 is sucked from the suction port 14b.
  • the refrigerant ejected from the nozzle portion 14a and the refrigerant sucked from the suction port 14b are mixed by the mixing portion 14c and then flow into the diffuser portion 14d.
  • the refrigerant pressure rises because the velocity energy of the refrigerant is converted into pressure energy by expanding the passage area.
  • the refrigerant that has flowed out of the diffuser portion 14d flows through the first evaporator 15. During this time, the low-temperature low-pressure refrigerant in the core portion 15a evaporates by absorbing heat from the blown air. The refrigerant is sucked into the compressor 11 from the refrigerant outlet 25 and compressed again.
  • the branched flow is decompressed by the decompressor 17 to become a low-pressure refrigerant, that is, a gas-liquid two-phase refrigerant.
  • the decompressed refrigerant flows through the second evaporator 18.
  • the low-temperature low-pressure refrigerant absorbs heat from the blown air after passing through the first evaporator 15 and evaporates.
  • the refrigerant is sucked into the ejector 14 from the suction port 14b.
  • the refrigerant evaporation pressure of the second evaporator 18 can be made lower than the refrigerant evaporation pressure of the first evaporator 15.
  • the first evaporator 15 having a high refrigerant evaporation temperature is arranged upstream of the air flow direction F1
  • the second evaporator 18 having a low refrigerant evaporation temperature is arranged downstream of the air flow direction F1. Therefore, a large temperature difference between the refrigerant evaporation temperature and the blown air in the second evaporator 18 can be maintained to improve the cooling performance.
  • the driving power of the compressor 11 can be reduced by increasing the suction pressure of the compressor 11 by the pressure increasing action in the diffuser portion 14d.
  • the film of the liquid phase refrigerant on the radially inner side of the opening position of the second outlet 16c can be thickened with a simple configuration.
  • the refrigerant component flowing into the second outlet 16c can be stabilized.
  • the inflow of the gas phase refrigerant to the second outlet 16c can be suppressed, and stable cooling capacity and cooling efficiency can be obtained.
  • the second outlet 216c is provided on the downstream side of the partition wall 16g. Also in this configuration, it is possible to increase the thickness of the liquid refrigerant film on the radially inner side of the downstream-side swirl chamber 16d2 at the opening position of the second outlet 216c. Furthermore, according to 1st Embodiment and 2nd Embodiment, since the film
  • the position of the second outlet 16c in the axial direction is the position of the refrigerant flowing into the first space 29 of the upper tank portion 18b, and a plurality of heat exchange tubes depending on the position.
  • the flow distribution to 21 can be adjusted. Even when the installation position of the outlet 16c is set mainly considering distribution, the partition wall 16g can stabilize the refrigerant component flowing into the second outlet 16c.
  • the through hole 16h is formed coaxially with the axis AXS.
  • a shifted through hole 316h may be formed.
  • the through hole 316h is provided at a position shifted from the axis AXS so as to be away from the second outlet 16c in order to shift the region of the gas-phase refrigerant from the axis AXS of the separation chamber 16d.
  • the through hole 316h is formed at a position shifted from the axis AXS so as to be farther from the second outlet 16c than when formed through the same axis as the axis AXS.
  • the radial distance LS between the edge of the through hole 316h and the second outlet 16c is larger than the radial distance LC when the through hole is formed on the axis AXS.
  • the gas-phase refrigerant is accelerated by the through hole 316h. And since the through-hole 316h has shifted
  • the partition wall 16g having the through hole 316h narrows the region of the gas-phase refrigerant in the separation chamber 16d and simultaneously shifts the region of the gas-phase refrigerant in the separation chamber 16d from the axis AXS of the separation chamber 16d.
  • the thickness of the liquid-phase refrigerant film on the opening position of the second outlet 16c is thicker than the thickness of the liquid-phase refrigerant film at a position radially opposite to the opening position of the second outlet 16c. Accordingly, the refrigerant component flowing into the second outlet 16c can be stabilized.
  • the partition walls and the through holes are employed in order to increase the thickness of the liquid refrigerant film on the second outlet 16c.
  • a displaced swirl chamber 416i may be employed.
  • no partition is employed.
  • the cylindrical housing 416e forms an upstream swirl chamber 416i and a downstream swirl chamber 416j therein.
  • the swirl chamber 416j is arranged in series downstream of the swirl chamber 416i.
  • the diameter of the swirl chamber 416i is smaller than the diameter of the swirl chamber 416j.
  • the circular region of the swirl chamber 416i is included in the circular region of the swirl chamber 416j.
  • the first swirl chamber 416i is partitioned by a cylindrical inner wall surface centered on the first axis AXS1. An inflow port 16a is opened in the first swirl chamber 416i.
  • the refrigerant that has flowed through the passage 16f flows into the first swirl chamber 416i from the inlet 16a and forms a swirl flow.
  • the first swirl chamber 416i is a swirl imparting unit that imparts a swirl component to the refrigerant flow.
  • the second swirl chamber 416j is partitioned by a cylindrical inner wall surface centered on the axis AXS2. First and second outlets 16b and 16c are opened in the second swirl chamber 416j.
  • the refrigerant given the turning force in the first swirl chamber 416i flows in the axial direction while swirling, and flows from the first swirl chamber 416i to the second swirl chamber 416j.
  • the refrigerant also maintains a swirl flow in the second swirl chamber 416j.
  • a step surface 416k is provided between the swirl chamber 416i and the swirl chamber 416j.
  • the step surface 416k is provided by a surface perpendicular to the axes AXS1, AXS2, or a surface slightly inclined so that the inner diameter gradually increases from the swirl chamber 416i toward the swirl chamber 416j.
  • the step surface 416k rapidly expands the cross-sectional area of the separation chamber 16d along the refrigerant flow direction from the swirl chamber (416i) to the downstream swirl chamber (416j).
  • the 2nd outflow port 16c is located in the downstream of the level
  • the distance between the second outlet 16c and the step surface 416k is sufficiently shorter than the distance between the second outlet 16c and the first outlet 15b.
  • the flow operation portion includes a step surface 416k.
  • the axis AXS2 coincides with the axis AXJ of the ejector 14.
  • the axes AXS1 and AXS2 are parallel to each other, but are separated from each other by a predetermined distance.
  • the axis AXS1 is offset from the axis AXS2 so as to be away from the second outlet 16c.
  • a distance LS1 between the second outlet 16c and the axis AXS1 is larger than a radial distance LS2 between the second outlet 16c and the axis AXS2.
  • the flow manipulation portion is provided by making the distance LS1 larger than the distance LS2.
  • the funnel on the gas-liquid boundary surface is distorted so as to gradually shift from the axis AXS1 to the axis AXS2.
  • the funnel undulates away from the second outlet 16c.
  • a thick portion and a thin portion of the liquid-phase refrigerant film are formed along the turning direction of the separation chamber 16d, that is, the circumferential direction.
  • the thickness of the liquid-phase refrigerant film on the second outlet 16c is thicker than the thickness of the liquid-phase refrigerant film on the side opposite to the second outlet 16c.
  • the flow operation portion shifts the region of the gas-phase refrigerant in the separation chamber 16d from the axis AXS2 of the separation chamber 16d.
  • coolant in the radial inside of the separation chamber 16d can be kept away from the 2nd outflow port 16c. Accordingly, the refrigerant component flowing into the second outlet 16c can be stabilized.
  • the evaporator unit 20 may be a unit that further includes an expansion valve 13.
  • the expansion valve 13 can be provided by a box-type expansion valve, and the box-type expansion valve can be attached to the evaporator unit 20.
  • the distributor 16 is provided in the evaporator unit 20. However, the distributor 16 may be provided separately from the evaporators 15 and 18. In the above embodiment, the ejector 14 and the distributor 16 are integrally connected. However, the distributor 16 may be provided separately from the ejector 14.
  • the second outlet 16c may be provided on the downstream side of the partition wall 16g.
  • you may employ adopt additionally the partition of previous embodiment to embodiment shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

分配器(16)は、流入口(16a)から流入した冷媒が旋回する分離室を有する。分離室には、隔壁(16g)が設けられている。隔壁(16g)は、分離室を、上流側旋回室(16d1)と、下流側旋回室(16d2)とに区画する。隔壁(16g)には、遠心分離された気相冷媒を主として加速する貫通穴(16h)が設けられている。この結果、流出口(16c)の開口位置における分離室(16d)の径方向内側には、液相冷媒の厚い膜が形成される。これにより、流出口(16c)に流入する冷媒の成分を安定化することができる。貫通穴(16h)は、流出口(16c)から離れるようにずれていてもよい。また、隔壁(16g)に代えて、旋回室の上流側部分だけが流出口(16c)から離れるようにずれしてもよい。

Description

冷媒用遠心式分配器および冷凍サイクル装置 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2011年10月27日に出願された日本特許出願2011-236422を基にしている。
 本開示は、液相冷媒と気相冷媒とを遠心力によって分離する遠心式分配器、およびその分配器を備える冷凍サイクル装置に関する。
 特許文献1および特許文献2は、冷凍サイクル装置に用いられる遠心式分配器を開示している。この分配器によると、気液二相冷媒を少なくとも2つの通路に向けて分配することができる。例えば、第1通路には、気相冷媒が比較的多い気液二相冷媒が分配される。また、第2通路には、液相冷媒が比較的多い気液二相冷媒、または飽和液冷媒が分配される。
特開2007-46806号公報 特開2010-181136号公報
 従来技術の構成では、冷媒の旋回流によって、旋回室の内壁面上に液相冷媒の膜が形成される。しかし、液相冷媒と気相冷媒とが共に流れるため、気相冷媒が液相冷媒の膜の厚さの増加を妨げる。このため、液相冷媒を多く取り出したい出口において、液相冷媒の膜の厚さが十分に成長しないことがあった。
 また、別の観点では、液相冷媒の膜は、旋回方向、すなわち周方向に沿って同じ厚さで形成される。このため、液相冷媒を多く取り出したい出口において、液相冷媒の膜の厚さが十分に成長しないことがあった。
 さらに、上記点は、冷媒流量が減少する低負荷時に特に顕著となる。出口において液相冷媒の膜の厚さが十分に成長しない場合、期待されたより多くの気相冷媒が第2通路に分配されることがあった。
 本開示は上記点に鑑みてなされたものであり、その目的は、液相冷媒を集めやすい遠心式分配器を提供することである。
 本開示の他の目的は、気相冷媒の流れを促進することにより液相冷媒を集めることができる遠心式分配器を提供することである。
 本開示の他の目的は、旋回方向に沿って部分的に液相冷媒を集めることができる遠心式分配器を提供することである。
 本開示のさらに他の目的は、液相冷媒を集めやすい遠心式分配器を備えた冷凍サイクル装置を提供することである。
 本開示の実施例の第1態様によると、冷媒用遠心式分配器は、冷媒を旋回させ気相冷媒と液相冷媒とに分離するための分離室を区画形成するとともに、分離室へ冷媒を導入する流入口、分離室に開口する第1流出口、および分離室の径方向外側に開口する第2流出口を形成するハウジングと、第2流出口の径方向内側における液相冷媒の膜を厚くするために、分離室における冷媒の流れを操作する流れ操作部分とを備える。
 この構成によると、分離室における冷媒の流れを操作する流れ操作部分によって、第2流出口の径方向内側における液相冷媒の膜を厚くすることができる。この結果、第2流出口から流出する冷媒の成分を安定化することができる。
 本開示の実施例の第2態様によると、流れ操作部分は、第2流出口の径方向内側における気相冷媒の領域を第2流出口から遠ざけるように構成されてもよい。この構成によると、第2流出口の径方向内側における気相冷媒の領域を第2流出口から遠ざけることによって、第2流出口の径方向内側における液相冷媒の膜を厚くすることができる。
 本開示の実施例の第3態様によると、流れ操作部分は、分離室における気相冷媒の領域を細くするように構成されてもよい。この構成によると、気相冷媒の領域を細くすることによって、第2流出口の径方向内側における気相冷媒の領域を第2流出口から遠ざけることができる。
 本開示の実施例の第4態様によると、流れ操作部分は、分離室を上流側旋回室と下流側旋回室とに区画する隔壁であって、上流側旋回室における気相冷媒の流れを加速して下流側旋回室に流出させる貫通穴が形成された隔壁を含んでもよい。この構成によると、貫通穴によって気相冷媒の流れを加速することによって、気相冷媒の領域を細くすることができる。
 本開示の実施例の第5態様によると、貫通穴は、気相冷媒の領域を分離室の軸からずらすために、第2流出口から離れるように軸からずれた位置に設けられてもよい。この構成によると、貫通穴の位置を軸からずらすことによって、気相冷媒の領域を分離室の軸からずらすことができる。
 本開示の実施例の第6態様によると、流れ操作部分は、分離室における気相冷媒の領域を分離室の軸からずらしてもよい。この構成によると、気相冷媒の領域を分離室の軸からずらすことによって、第2流出口の径方向内側における気相冷媒の領域を第2流出口から遠ざけることができる。
 本開示の実施例の第7態様によると、分離室は、流入口が開口し、第1軸を有する上流側旋回室と、上流側旋回室より下流に位置し、第2流出口が開口するとともに、第2軸を有する下流側旋回室とを備え、流れ操作部分は、第2流出口と第1軸との間の距離を第2流出口と第2軸との間の距離より大きくすることにより提供されてもよい。この構成によると、軸がずれた2つの旋回室によって、第2流出口の径方向内側における気相冷媒の領域を第2流出口から遠ざけることができる。
 本開示の実施例の第8態様によると、流れ操作部分は、上流側旋回室から下流側旋回室へ断面積を急拡大させるとともに、下流側近傍に第2流出口が位置付けられた段差面を含んでもよい。この構成によると、段差面によって、第2流出口の径方向内側における気相冷媒の領域を第2流出口から遠ざけることができる。
 本開示の実施例の第9態様による冷凍サイクル装置は、上記の第1-第8態様のいずれかに記載の遠心式分配器と、第1流出口の下流に設けられたノズル部と、ノズル部から噴出される冷媒の流れにより冷媒を吸引する吸引口と、ノズル部から噴出された冷媒と吸引口から吸引された冷媒とを混合する混合部と、混合部の下流に設けられ冷媒を昇圧するディフューザ部とを備えるエジェクタと、第2流出口と吸引口との間に配置された蒸発器とを備えてもよい。この構成によると、分配器によって分配された冷媒は、第2流出口から蒸発器に供給される。蒸発器において蒸発した冷媒は、エジェクタによって吸引される。この構成によると、蒸発器に供給される冷媒の成分を安定化することができる。
 本開示の実施例の第10態様によると、冷凍サイクル装置は、さらに、ディフューザ部の下流に設けられた他の蒸発器を備えてもよい。この構成によると、エジェクタを通過した後の冷媒をさらに蒸発させて冷却作用を発揮させることができる。
本開示を適用した第1実施形態のエジェクタ式冷凍サイクル装置のブロック図である。 第1実施形態の一体化ユニットの全体構成を示す模式的な斜視図である。 第1実施形態の一体化ユニットの模式的な分解斜視図である。 第1実施形態のエジェクタおよび分配器を示す断面図である。 第1実施形態のエジェクタおよび分配器を示す断面図である。 第1実施形態のエジェクタおよび分配器を示す断面図である。 本開示を適用した第2実施形態のエジェクタおよび分配器を示す断面図である。 本開示を適用した第3実施形態のエジェクタおよび分配器を示す断面図である。 第3実施形態のエジェクタおよび分配器を示す断面図である。 本開示を適用した第4実施形態のエジェクタおよび分配器を示す断面図である。 第4実施形態のエジェクタおよび分配器を示す断面図である。 第4実施形態のエジェクタおよび分配器を示す断面図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。また、後続の実施形態においては、先行する実施形態で説明した事項に対応する部分に百以上の位だけが異なる参照符号を付することにより対応関係を示し、重複する説明を省略する場合がある。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(第1実施形態)
 図1において、エジェクタ式冷凍サイクル装置10は、圧縮機11、放熱器12、膨張弁13、および蒸発器ユニット20を備える。
 圧縮機11は、冷媒を吸入し、圧縮した後に、高圧冷媒を吐出する。圧縮機11は、電磁クラッチ11a、およびベルト等を介して図示しない車両走行用エンジンにより回転駆動される。圧縮機11は、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機、あるいは電磁クラッチ11aの断続により圧縮機作動の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機によって提供することができる。また、圧縮機11は、電動圧縮機でもよい。電動圧縮機では、電動モータの回転数調整により冷媒吐出能力を調整できる。
 圧縮機11の冷媒吐出側には放熱器12が配置されている。放熱器12は室内機または室外機として用いることができる。室外機として利用されるとき、放熱器12は、圧縮機11から吐出された高圧冷媒と車室外空気との間の熱交換を提供する。放熱器12は、高圧冷媒を冷却する。放熱器12に送風する冷却ファンを備えることができる。冷凍サイクル装置10は、フロン系、HC系等の冷媒のように高圧圧力が臨界圧力を超えない冷媒を用いている。冷凍サイクル装置10は、蒸気圧縮式亜臨界サイクルを構成している。したがって、放熱器12は冷媒を凝縮する凝縮器として機能する。
 放熱器12の出口側には温度式膨張弁13が配置されている。膨張弁13は放熱器12からの液冷媒を減圧する減圧装置であって、圧縮機11の吸入側通路に配置された感温部13aを有している。膨張弁13は、圧縮機11の吸入側冷媒の温度と圧力とに基づいて圧縮機吸入側冷媒の過熱度を検出し、圧縮機吸入側冷媒の過熱度が予め設定された所定値となるように弁開度を調整する。吸入側冷媒は、後述の蒸発器の出口側冷媒に対応する。膨張弁13の弁開度に応じて、冷媒流量が調整される。
 膨張弁13の下流側には、蒸発器ユニット20が接続されている。蒸発器ユニット20は、膨張弁13と圧縮機11との間に位置付けられている。蒸発器ユニット20は、配管を介して冷凍サイクル装置10の他の構成部品と接続される。蒸発器ユニット20は室内機または室外機として用いることができる。
 図2および図3において、蒸発器ユニット20は、エジェクタ14、第1蒸発器15、分配器16、減圧器17、および第2蒸発器18を備える。蒸発器ユニット20は、これらの構成部品を接続することによって、一体的に取り扱い可能なユニットとして構成されている。蒸発器ユニット20は、複数の構成部品をろう付け、ボルト、ねじ、接着などの固定装置によって一体的に接続することによって構成されている。蒸発器ユニット20は、エジェクタ式冷凍サイクル装置用蒸発器ユニット、エジェクタ式冷凍サイクル装置用一体化ユニットあるいは、エジェクタ付き蒸発器ユニットとも呼ばれうるものである。2つの蒸発器15、18は、一体的に構成されている。2つの蒸発器15、18の側部には、筒状のエジェクタケース23が配置されている。エジェクタ14は、エジェクタケース23に収納されている。分配器16は、エジェクタケース23内に形成されることによって、エジェクタ14に一体的に設けられている。エジェクタ14は、蒸発器ユニット20の一部品として、蒸発器15、18に一体的に設けられている。蒸発器ユニット20は、エジェクタ式冷凍サイクル装置10の一部品である。
 図1に戻り、膨張弁13の出口側には、エジェクタ14が配置されている。エジェクタ14は冷媒を減圧する減圧装置である。同時に、エジェクタ14は、高速で噴出する冷媒流の吸引作用によって、冷媒の流れを生成する冷媒輸送装置を提供する。エジェクタ14は、冷凍サイクル装置10内の分岐経路内に冷媒を流す冷媒輸送装置を提供する。エジェクタ14は、運動量輸送式ポンプとも呼ぶことができる。エジェクタ14は、膨張弁13通過後の冷媒の通路面積を小さく絞って冷媒をさらに減圧膨張させるノズル部14aを備える。膨張弁13通過後の冷媒は、中間圧冷媒とも呼ばれる。エジェクタ14は、ノズル部14aの噴出口から噴射される冷媒流によって、巻き込み作用、すなわち吸引力を発生する。エジェクタ14は、ノズル部14aの噴出口の周辺に連絡する吸引口14bを備える。エジェクタ14は、吸引口14bを通して、第2蒸発器18から気相冷媒を吸引する。
 エジェクタ14のうちノズル部14aおよび吸引口14bの冷媒流れ下流側部位には、混合部14cが設けられている。混合部14cは、ノズル部14aからの高速度の冷媒流と、冷媒吸引口14bから吸引された冷媒とを混合する。混合部14cの冷媒流れ下流側に昇圧部をなすディフューザ部14dが配置されている。ディフューザ部14dは、冷媒の通路面積を冷媒流れ下流に向けて徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する作用を果たす。ディフューザ部14dの先端部は、エジェクタ14の出口部である。エジェクタ14の下流側には、第1蒸発器15が配置されている。第1蒸発器15は、ディフューザ部14dの下流に設けられた他の蒸発器である。第1蒸発器15の出口側は圧縮機11の吸入側に接続されている。
 膨張弁13の出口側には、冷媒用遠心式分配器16が配置されている。分配器16は、ノズル部14aに向かう主通路と、吸引口14bに向かう分岐通路とに冷媒を分配する。分配器16は、全体の流量Gを、主通路の流量Gnと、分岐通路の流量Geとに分配する。分配器16は、流量Gnと流量Geとの比を、所定の比に調節する。さらに、分配器16は、主通路に向かう冷媒の成分と、分岐通路に向かう冷媒の成分とを調整する。分配器16は、主通路に向かう冷媒を、気相成分が比較的多い冷媒に調整する。分配器16は、分岐通路に向かう冷媒を、液相成分が比較的多い冷媒に調整する。分配器16は、主通路に向かう冷媒の気相成分が、分岐通路に向かう冷媒の気相成分より多くなるように、冷媒成分を調整する。分配器16は、膨張弁13の出口に接続されて、冷媒が流入する流入口16aを有する。分配器16は、ノズル部14aの入口に接続された第1流出口16bを備える。さらに、分配器16は、分岐通路に接続された第2流出口16cを備える。第2流出口16cから、吸引口14bに向かう冷媒が流出する。
 分配器16の第2流出口16cと吸引口14bとの間には、減圧器17と第2蒸発器18とが配置されている。減圧器17は第2蒸発器18への冷媒流量の調節作用をなす減圧装置である。減圧器17は、第2蒸発器18の入口側に配置されている。減圧器17は、キャピラリチューブ、または絞り通路などの絞り機構によって構成されてもよい。
 2つの蒸発器15、18は、温度調節の対象である空気流に対して、第1蒸発器15が上流側に位置し、第2蒸発器18が下流側に位置するように配置されている。2つの蒸発器15、18は、共通の冷却負荷、すなわち被冷却空気に対して作用するように構成され、配置されている。2つの蒸発器15、18は、図示しない空調ケース内に収納されている。空調ケースは、空調ダクトを提供する。空調ダクト内には、電動の送風機19によって、被冷却空気が、矢印F1のように送風される。2つの蒸発器15、18は、送風機19によって送風される空気を冷却する。2つの蒸発器15、18で冷却された冷風は、共通の冷却対象空間に送り込まれる。これにより2つの蒸発器15、18にて共通の冷却対象空間が冷房される。第1蒸発器15は、エジェクタ14の下流側の主通路に配置されている。第1蒸発器15は、空気流れF1の上流側、すなわち風上側に配置された風上側蒸発器である。第2蒸発器18は、エジェクタ14の吸引口14bに到達する分岐通路に配置されている。第2蒸発器18は、空気流れF1の下流側、すなわち風下側に配置された風下側蒸発器である。
 図2および図3において、2つの蒸発器15、18は、完全に1つの蒸発器構造体として一体化されている。第1蒸発器15は1つの蒸発器構造のうち空気流れF1の上流側領域を構成し、第2蒸発器18は1つの蒸発器構造のうち空気流れF1の下流側領域を構成している。第1蒸発器15および第2蒸発器18の基本的構成は同一である。蒸発器15、18は、熱交換のためのコア部15a、18aを備える。蒸発器15、18は、図中の上下方向(TOP-BOTTOM)の両端に、図中の水平方向に延びるタンク部15b、15c、18b、18cを備える。コア部15aの上下にタンク部15b、15cが配置されている。コア部18aの上下にタンク部18b、18cが配置されている。コア部15a、18aは、上下方向に延びる複数の熱交換チューブ21を備えている。複数のチューブ21の間には、被熱交換媒体である被冷却空気が通る通路が形成されている。複数のチューブ21相互間には、チューブ21と接合されたフィン22が配置されている。チューブ21およびフィン22はコア部15a、18aの左右方向に交互に積層配置されている。チューブ21とフィン22との積層構造によってコア部15a、18aが形成されている。フィン22を備えないチューブ21のみの構成によってコア部15a、18aを形成してもよい。チューブ21は冷媒通路を構成する扁平チューブよりなる。フィン22は薄板材を波状に曲げ成形したコルゲートフィンである。フィン22は、チューブ21の平坦な外面に接合され、空気側伝熱面積を拡大している。コア部15aのチューブ21とコア部18aのチューブ21は互いに独立した冷媒通路を構成している。
 タンク部15b、15c、18b、18cは互いに独立した冷媒通路空間、すなわちタンク空間を構成している。タンク部15b、15cはチューブ21の上下両端に連通している。同様に、タンク部18b、18cはチューブ21の上下両端に連通している。タンク部15b、15c、18b、18cは、対応するコア部15a、18aの複数のチューブ21へ冷媒を分配したり、複数のチューブ21からの冷媒を集合したりする役割を果たす。上側タンク部15bの内部の長手方向における略中央部には、上側タンク部15bの内部空間を第1空間26と第2空間27とに仕切る仕切板28が配置されている。第2空間27は第1蒸発器15に属する複数のチューブ21の第1群に対して冷媒を分配する分配タンクの役割を果たす。第1空間26は第1蒸発器15に属する複数のチューブ21の第2群を通過した冷媒を集合する集合タンクの役割を果たす。下側タンク15cは、第1群のチューブから冷媒を集合させ、その後に、第2群のチューブに冷媒を再分配する再分配タンクの役割を果たす。上側タンク部18bの内部の長手方向における略中央部には、上側タンク部18bの内部空間を第1空間29と第2空間30とに仕切る仕切板31が配置されている。第1空間29は第2蒸発器18に属する複数のチューブ21の第1群に対して冷媒を分配する分配タンクの役割を果たす。第2空間30は第2蒸発器18に属する複数のチューブ21の第2群を通過した冷媒を集合する集合タンクの役割を果たす。下側タンク18cは、第1群のチューブから冷媒を集合させ、その後に、第2群のチューブに冷媒を再分配する再分配タンクの役割を果たす。蒸発器ユニット20の冷媒入口24は、上側タンク部18bの一端部、図中左端部に設けられている。冷媒出口25は、上側タンク部15bの一端部、図中左端部に設けられている。冷媒入口24は流入口16aに連通している。冷媒出口25は上側タンク部15bと連通している。
 上側タンク部15b、18bの図中の上側(TOP)には、エジェクタ14、分配器16および減圧器17が配置されている。エジェクタ14は、ノズル部14aの軸方向に延びる細長形状となっている。エジェクタ14は、その長手方向が、タンク部の長手方向と平行になるように上側タンク部15b、18b上に配置されている。エジェクタ14の出口部はエジェクタケース23の内部空間に開口する。エジェクタケース23の内部空間は第2空間27に連通している。吸引口14bは第2空間30に連通している。
 分配器16は、エジェクタ14の長手方向に沿って、エジェクタ14と並ぶように配置されている。分配器16は、円筒状のハウジング16eを備える。ハウジング16eは、ノズル部14aの軸方向に延びる円筒状に形成されている。ハウジング16eは、冷媒を旋回させ気相冷媒と液相冷媒とに分離するための分離室16dを区画形成する。分離室16dは円柱状の空間である。ハウジング16eは、分離室16dへ冷媒を導入する流入口16a、分離室16dに開口する第1流出口16b、および分離室16dの径方向外側に開口する第2流出口16cを形成する。流入口16aは、分配器16の一端部、すなわち図中の左端部に設けられている。第1流出口16bは、分配器16の他端部、すなわち図中の右端部に設けられている。分配器16は、ノズル部14aの入口側に配置されている。第1流出口16bとノズル部14aとは、直接的に接続されている。第2流出口16cは、分配器16の筒面部、すなわち外周壁に設けられている。第2流出口16cには、減圧器17が直接的に接続されている。減圧器17は、第2蒸発器18の上側タンク部18b内に連通している。
 図4は、エジェクタ14の軸AXJを含む断面における分配器付エジェクタの縦断面を示す。図5は、流入口16aの開口位置における軸AXSに垂直な断面であって、図4のV-V断面を示す。図6は、第1流出口16bの近傍における軸AXSに垂直な断面であって、図4のVI-VI断面を示す。軸AXJは、ノズル部14aの中心軸である。軸AXSは、ハウジング16eの中心軸であって、ハウジング16e内に形成される旋回流の中心軸に対応する。軸AXJと軸AXSとは一致している。図示されるように、分配器16とエジェクタ14とは、一体の部品を構成している。
 分配器16は、遠心式気液分離器を構成している。ハウジング16eの形状と、流入口16aに向かう通路16fの延在方向とが、分配器16内において冷媒の旋回流を発生させるように設定されている。通路16fは、分配器16のハウジング16eの接線方向に延在している。冷媒は、通路16fを通った後に流入口16aから分離室16dに流入する。これにより、冷媒は、ハウジング16eの内壁面に沿って旋回する。さらに、冷媒は、分配器16内を軸AXSの周りを旋回しながら、ノズル部14aに向かって流れてゆく。この過程において、液相冷媒は遠心力によって分離室16dの外側に集められる。また、気相冷媒は、旋回室の中央、すなわち軸AXS上に集められる。ハウジング16eの内壁面の形状と通路16fの延在方向とによって旋回流を生成する装置が提供されている。
 分配器16は、分離室16dの軸方向の略中央に設けられた環状の隔壁16gを備える。隔壁16gは、分離室16dを、上流側旋回室16d1と、下流側旋回室16d2とに不完全に区画する。隔壁16gは、円板状である。隔壁16gの流入口16a側の面は、旋回室16d1に向けて突出する部位を持たない平面である。一方、隔壁16gの流出口16b側の面は、旋回室16d2に向けてわずかに突出する部位を有している。隔壁16gの外周縁は、ハウジング16eの内壁面に液密に固定されている。隔壁16gは、第1流出口16bと、第2流出口16cとの間に配置されている。隔壁16gは、第2流出口16cの近傍に配置されている。言い換えると、第2流出口16cは、隔壁16gの近傍であって、かつ、隔壁16gより上流側においてハウジング16eの内部に開口している。第2流出口16cは、ハウジング16eの内壁面、すなわち旋回室16d1の最も径方向外側に開口している。
 隔壁16gは、そのほぼ中央に貫通穴16hを有する。貫通穴16hは、上流側旋回室16d1における気相冷媒の流れを加速して下流側旋回室16d2に流出させる。貫通穴16hは、旋回室16d1において分離された液相冷媒よりも、気相冷媒を主として導出する位置、および大きさを有する。貫通穴16hは、軸AXSと同軸上に位置している。貫通穴16hは、軸AXS上に、小さく開口している。貫通穴16hは、上流側では、隔壁16gの平面上に開口する。貫通穴16hは、下流側では、隔壁16gの突出部分上に開口する。貫通穴16hは、旋回室16d1によって分離された気相成分を主として導出するように位置付けられている。ただし、貫通穴16hは、気相冷媒を加速しながら、一部の液相冷媒も通過させるように形成されている。貫通穴16hは、隔壁16gの平面上に開口することにより、気相冷媒と液相冷媒を加速させる。このとき、気相冷媒は液相冷媒よりも圧縮性が高いため、気相冷媒の断面積は液相冷媒の断面積に対して小さくなり、気相冷媒の流速は液相冷媒の流速より速くなる。
 この実施形態では、流れ操作部分は、貫通穴16hが形成された隔壁16gを含む。分配器16に気液二相の冷媒が流れると、旋回室16d1内における旋回流によって気相冷媒と液相冷媒とが分離し、両者の間にぼんやりとした気液境界面が形成される。貫通穴16hは気相冷媒の流れを加速するから、気相冷媒が占める領域は、貫通穴16hに向けて徐々に細くなる。すなわち、流れ操作部分は、分離室16dにおける気相冷媒の領域を細くするように、分離室16dにおける冷媒の流れを操作する。これによって、第2流出口16cの開口位置における分離室16dの径方向内側の気相冷媒の領域を第2流出口16cから遠ざけることができる。反対に、液相冷媒が占める膜の厚さは、隔壁16gに向けて徐々に厚くなる。旋回室16d1内には、貫通穴16hに向けてすぼまるファンネル状の気液境界面が形成される。第2流出口16cの開口位置の径方向内側においては、気液境界面の径が十分に小さくなる。気液境界面は、第2流出口16cから遠ざけられる。この結果、第2流出口16cの開口位置の径方向内側における液相冷媒の膜が厚くなる。したがって、流入口16aと隔壁16gとの間の旋回室16d1の内部、特に、径方向外側、さらには隔壁16gの近傍には、液相冷媒が溜まる。この結果、気相冷媒が第2流出口16cに到達することが抑制されるから、第2流出口16cから液相冷媒を安定的に流し出すことができる。
 貫通穴16hを通過した冷媒は、旋回室16d2においてもやや旋回流を維持している。冷媒は、旋回室16d2においても、気相冷媒と液相冷媒とに不完全に分離され、徐々に混ざり合いながら、すなわち気液境界線を徐々に消失させながら、第1流出口16bに向けて流れてゆく。このとき、隔壁16gの下流側の面がやや突出し、その突出部位に貫通穴16hが開口しているから、貫通穴16hを通過した冷媒はノズル部14aに向けて案内される。
 図3に戻り、冷媒の流れを説明する。冷媒入口24から分配器16に流入した冷媒は、ノズル部14aに向かう主流と、減圧器17に向かう分岐流とに分岐される。主流はエジェクタ14を通過して減圧され、矢印R1のように第1蒸発器15に供給される。冷媒は、上側タンク部15bの第2空間27に流入する。冷媒は、第2空間27から下側タンク15cに向けて、コア部15aの右半部の複数のチューブ21を通って、矢印R2のように流れる。冷媒は、下側タンク15c内を矢印R3のように移動する。冷媒は、下側タンク15cから上側タンク15bの第1空間26に向けて、コア部15aの左半部の複数のチューブ21を通って、矢印R4のように流れる。その後、冷媒は、矢印R5のように、冷媒出口25へ向けて流れる。分岐流は減圧器17を通過することによって減圧される。減圧された低圧冷媒は、矢印R6のように、第2蒸発器18に供給される。冷媒は、上側タンク部18bの第1空間29に流入する。冷媒は、第1空間29から下側タンク18cに向けて、コア部18aの左半部の複数のチューブ21を通って、矢印R7のように流れる。冷媒は、下側タンク18c内を矢印R8のように移動する。冷媒は、下側タンク18cから上側タンク18bの第2空間30に向けて、コア部18aの右半部の複数のチューブ21を通って、矢印R9のように流れる。その後、冷媒は、吸引口14bからエジェクタ14内に吸引される。蒸発器ユニット20は、上述のような流路構成を持つから、蒸発器ユニット20全体として冷媒入口24および冷媒出口25を1つずつ設けるだけでよい。
 次に、第1実施形態の作動を説明する。圧縮機11が作動すると、高温高圧の冷媒は放熱器12に流入する。放熱器12では高温の冷媒が外気により冷却されて凝縮する。放熱器12から流出した高圧冷媒は膨張弁13を通過するときに減圧される。膨張弁13では、第1蒸発器15の出口冷媒の過熱度が所定値となるように弁開度が調整される。膨張弁13通過後の中間圧冷媒は冷媒入口24に流入し、さらに流入口16aを通じて分配器16の分離室16dに流入する。冷媒は、分離室16dにおいて、第1流出口16bからノズル部14aに向かう主流と、第2流出口16cから減圧器17に向かう分岐流とに分流される。
 主流の冷媒は、ノズル部14aで減圧され膨張する。ノズル部14aで冷媒の圧力エネルギーが速度エネルギーに変換され、冷媒は、ノズル部14aの噴出口から高速度となって噴出する。高速の冷媒流によって生じる圧力低下により、吸引口14bから第2蒸発器18を通過した分岐流の冷媒が吸引される。ノズル部14aから噴出した冷媒と吸引口14bから吸引された冷媒は、混合部14cで混合された後に、ディフューザ部14dに流入する。ディフューザ部14dでは通路面積の拡大により、冷媒の速度エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する。ディフューザ部14dから流出した冷媒は第1蒸発器15を流れる。この間に、コア部15aでは低温の低圧冷媒が、送風空気から吸熱して蒸発する。冷媒は冷媒出口25から圧縮機11に吸入され、再び圧縮される。
 一方、分岐流は、減圧器17で減圧されて低圧冷媒、すなわち気液2相冷媒となる。減圧された冷媒は、第2蒸発器18を流れる。この間に、コア部18aでは、低温の低圧冷媒が、第1蒸発器15を通過した後の送風空気から吸熱して蒸発する。冷媒は吸引口14bからエジェクタ14内に吸引される。
 以上に説明したこの実施形態によると、第1蒸発器15の冷媒蒸発圧力よりも第2蒸発器18の冷媒蒸発圧力を低くすることができる。しかも、冷媒蒸発温度が高い第1蒸発器15を空気流れ方向F1の上流側に配置し、冷媒蒸発温度が低い第2蒸発器18を空気流れ方向F1の下流側に配置している。したがって、第2蒸発器18における冷媒蒸発温度と送風空気との温度差を、大きく維持して、冷却性能を高めることができる。また、ディフューザ部14dでの昇圧作用により圧縮機11の吸入圧を高めることにより、圧縮機11の駆動動力を低減できる。
 さらに、上記構成によると、簡単な構成で、第2流出口16cの開口位置の径方向内側における液相冷媒の膜を厚くすることができる。この結果、第2流出口16cに流入する冷媒の成分を安定化することができる。例えば、第2流出口16cへの気相冷媒の流入を抑制することができ、安定した冷却能力、冷却効率を得ることができる。
 (第2実施形態)
 図7において、この実施形態では、第2流出口216cを、隔壁16gより下流側に設けている。この構成においても、第2流出口216cの開口位置における下流側旋回室16d2の径方向内側の液相冷媒の膜を厚くすることができる。さらに、第1実施形態と第2実施形態とによると、隔壁16gを設けることにより、液相冷媒の膜が厚くなるから、第2流出口16c、216cの設置位置の選択自由度が大きくなる。例えば、図2のような一体化ユニットの場合、第2流出口16cの軸方向の位置が上側タンク部18bの第1空間29に流入する冷媒の位置であり、その位置により複数の熱交換チューブ21への流量分配性を調整することができる。流出口16cの設置位置を分配性を主として考慮して設定した場合であっても、隔壁16gを設けることによって、第2流出口16cに流入する冷媒の成分を安定化することができる。
 第2実施形態では、その他部分が、第1実施形態と同じように構成されてもよい。
 (第3実施形態)
 上記実施形態では、貫通穴16hを軸AXSと同軸上に形成した。これに代えて、図8および図9に示すように、ずれた貫通穴316hを形成してもよい。貫通穴316hは、気相冷媒の領域を分離室16dの軸AXSからずらすために、第2流出口16cから離れるように軸AXSからずれた位置に設けられている。貫通穴316hは、軸AXSと同軸に形成された場合より第2流出口16cから遠く離れるように、軸AXSからずれた位置に形成されている。貫通穴316hの縁と第2流出口16cとの間の径方向距離LSは、貫通穴が軸AXS上に形成された場合の径方向距離LCより大きい。
 この実施形態によると、気相冷媒が貫通穴316hによって加速される。しかも、貫通穴316hが第2流出口16cから離れるようにずれているから、気液境界面のファンネルが、貫通穴316hを通るように歪む。ファンネルは、第2流出口16cから離れるようにうねる。この実施形態によると、貫通穴316hを有する隔壁16gは、分離室16dにおける気相冷媒の領域を細くするとともに、同時に、分離室16dにおける気相冷媒の領域を分離室16dの軸AXSからずらす。この結果、第1旋回室16d1の旋回方向、すなわち周方向に沿って、液相冷媒の膜が厚い部分と、薄い部分とが形成される。特に、第2流出口16cの開口位置上の液相冷媒の膜の厚さは、第2流出口16cの開口位置に対して径方向反対側の位置における液相冷媒の膜の厚さより厚くなる。したがって、第2流出口16cに流入する冷媒の成分を安定化することができる。
 第3実施形態では、その他部分が、第1実施形態と同じように構成されてもよい。
 (第4実施形態)
 上記実施形態では、第2流出口16c上の液相冷媒の膜を厚くするために、隔壁と貫通穴とを採用した。これに代えて、図10、図11、および図12に示すように、ずれた旋回室416iを採用してもよい。この実施形態では、隔壁は採用されない。円筒状のハウジング416eは、その内部に、上流側旋回室416iと、下流側旋回室416jとを形成している。旋回室416jは、旋回室416iの下流側に直列的に配置されている。旋回室416iの直径は、旋回室416jの直径より小さい。軸AXJに沿って見た場合、旋回室416iの円領域は、旋回室416jの円領域の中に含まれている。
 第1旋回室416iは、第1軸AXS1を中心とする円筒内壁面によって区画されている。第1旋回室416iには、流入口16aが開口している。通路16fを流れた冷媒は、流入口16aから第1旋回室416iに流入して、旋回流を形成する。第1旋回室416iは、冷媒流に旋回成分を与える旋回付与部である。
 第2旋回室416jは、軸AXS2を中心とする円筒内壁面によって区画されている。第2旋回室416jには、第1および第2流出口16b、16cが開口している。第1旋回室416iで旋回力を与えられた冷媒は、旋回しながら、軸方向に流れ、第1旋回室416iから第2旋回室416jへ流れる。冷媒は、第2旋回室416jにおいても、旋回流を維持している。
 旋回室416iと旋回室416jとの間には、段差面416kが設けられている。段差面416kは、軸AXS1、AXS2に垂直な面、または旋回室416iから旋回室416jへ向けて内径が徐々に拡大するようにわずかに傾斜した面によって提供される。段差面416kは、旋回室(416i)から下流側旋回室(416j)へ向かう冷媒の流れ方向に沿って、分離室16dの断面積を急拡大させる。第2流出口16cは、段差面416kの下流側に位置しており、かつ、段差面416kの近傍に位置している。第2流出口16cと段差面416kとの間の距離は、第2流出口16cと第1流出口15bとの間の距離より十分に短い。流れ操作部分は段差面416kを含む。
 軸AXS2は、エジェクタ14の軸AXJと一致している。軸AXS1と軸AXS2とは、互いに平行であるが、互いに所定の距離だけ離れている。軸AXS1は、第2流出口16cから離れるように、軸AXS2からずれている。第2流出口16cと軸AXS1との間の距離LS1は、第2流出口16cと軸AXS2との間の径方向距離LS2より大きい。流れ操作部分は、距離LS1を距離LS2より大きくすることにより提供されている。
 第1旋回室416iで形成された旋回流は、第2旋回室416jに到達しても、旋回中心を軸AXS1上に維持しようとする。このとき、軸AXS1が第2流出口16cから離れるように、軸AXS2からずれているから、気液境界面のファンネルが、軸AXS1上から軸AXS2上へ徐々に推移するように歪む。ファンネルは、第2流出口16cから離れるようにうねる。この結果、分離室16dの旋回方向、すなわち周方向に沿って、液相冷媒の膜が厚い部分と、薄い部分とが形成される。特に、第2流出口16c上の液相冷媒の膜の厚さは、第2流出口16cとは反対側における液相冷媒の膜の厚さより厚くなる。
 この実施形態によると、流れ操作部分は、分離室16dにおける気相冷媒の領域を分離室16dの軸AXS2からずらす。これにより、分離室16dの径方向内側における気相冷媒の領域を第2流出口16cから遠ざけることができる。したがって、第2流出口16cに流入する冷媒の成分を安定化することができる。
 第4実施形態では、その他部分が、第1実施形態と同じように構成されてもよい。
 (他の実施形態)
 以上、本開示の好ましい実施形態について説明したが、本開示は上述した実施形態に何ら制限されることなく、本開示の主旨を逸脱しない範囲において種々変形して実施することが可能である。上記実施形態の構造は、あくまで例示であって、本開示の範囲はこれらの記載の範囲に限定されるものではない。本開示の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものである。
 例えば、蒸発器ユニット20は、さらに膨張弁13を含むユニットとすることができる。例えば、膨張弁13をボックス型エキスパンションバルブによって提供し、蒸発器ユニット20にボックス型エキスパンションバルブを装着することができる。
 また、上記実施形態では、蒸発器ユニット20に分配器16を設けたが、分配器16を蒸発器15、18とは別体に設けてもよい。また、上記実施形態では、エジェクタ14と分配器16とを一体に連結して構成したが、分配器16をエジェクタ14とは別体に設けてもよい。
 また、第1蒸発器15を備えない構成を採用してもよい。また、図8に図示された実施形態においても、第2流出口16cを隔壁16gの下流側に設けてもよい。また、図10に図示された実施形態に、先行する実施形態の隔壁を追加的に採用してもよい。

Claims (10)

  1.  冷媒を旋回させ気相冷媒と液相冷媒とに分離するための分離室(16d)を区画形成するとともに、前記分離室へ冷媒を導入する流入口(16a)、前記分離室に開口する第1流出口(16b)、および前記分離室の径方向外側に開口する第2流出口(16c、216c)を形成するハウジング(16e)と、
     前記第2流出口の径方向内側における液相冷媒の膜を厚くするために、前記分離室における冷媒の流れを操作する流れ操作部分(16g、16h、316h、416i、416j、416k)とを備える冷媒用遠心式分配器。
  2.  前記流れ操作部分(16g、16h、316h、416i、416j、416k)は、
     前記第2流出口の径方向内側における前記気相冷媒の領域を前記第2流出口から遠ざけるように構成されている請求項1に記載の冷媒用遠心式分配器。
  3.  前記流れ操作部分(16g、16h、316h)は、
     前記分離室における気相冷媒の領域を細くするように構成されている請求項2に記載の冷媒用遠心式分配器。
  4.  前記流れ操作部分は、
     前記分離室を上流側旋回室と下流側旋回室とに区画する隔壁(16g)であって、
     前記上流側旋回室における気相冷媒の流れを加速して前記下流側旋回室に流出させる貫通穴(16h、316h)が形成された隔壁を含んでいる請求項3に記載の冷媒用遠心式分配器。
  5.  前記貫通穴(316h)は、気相冷媒の領域を前記分離室の軸(AXS)からずらすために、前記第2流出口から離れるように前記軸(AXS)からずれた位置に設けられている請求項4に記載の冷媒用遠心式分配器。
  6.  前記流れ操作部分(16g、316h、416i、416j、416k)は、
     前記分離室における気相冷媒の領域を前記分離室の軸(AXS、AXS2)からずらすように構成されている請求項2に記載の冷媒用遠心式分配器。
  7.  前記分離室は、
     前記流入口が開口し、第1軸(AXS1)を有する上流側旋回室(416i)と、
     前記上流側旋回室より下流に位置し、前記第2流出口が開口するとともに、第2軸(AXS2)を有する下流側旋回室(416j)とを備え、
     前記流れ操作部分は、
     前記第2流出口と前記第1軸との間の距離(LS1)を前記第2流出口と前記第2軸との間の距離(LS2)より大きくすることにより提供されている請求項6に記載の冷媒用遠心式分配器。
  8.  前記流れ操作部分は、
     前記上流側旋回室(416i)から前記下流側旋回室(416j)へ断面積を急拡大させるとともに、下流側の近傍に前記第2流出口が位置付けられた段差面(416k)を含んでいる請求項7に記載の冷媒用遠心式分配器。
  9.  請求項1から請求項8のいずれかに記載の遠心式分配器と、
     前記第1流出口の下流に設けられたノズル部(14a)と、前記ノズル部から噴出される冷媒の流れにより冷媒を吸引する吸引口(14b)と、前記ノズル部から噴出された冷媒と前記吸引口から吸引された冷媒とを混合する混合部(14c)と、混合部の下流に設けられ冷媒を昇圧するディフューザ部(14d)とを備えるエジェクタと、
     前記第2流出口と前記吸引口との間に配置された蒸発器(18)とを備えている冷凍サイクル装置。
  10.  さらに、前記ディフューザ部の下流に設けられた他の蒸発器(15)を備えている請求項9に記載の冷凍サイクル装置。
     
PCT/JP2012/005287 2011-10-27 2012-08-23 冷媒用遠心式分配器および冷凍サイクル装置 WO2013061501A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011236422A JP5609845B2 (ja) 2011-10-27 2011-10-27 冷媒用の遠心式分配器および冷凍サイクル
JP2011-236422 2011-10-27

Publications (1)

Publication Number Publication Date
WO2013061501A1 true WO2013061501A1 (ja) 2013-05-02

Family

ID=48167359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005287 WO2013061501A1 (ja) 2011-10-27 2012-08-23 冷媒用遠心式分配器および冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP5609845B2 (ja)
WO (1) WO2013061501A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259134A1 (en) 2021-06-09 2022-12-15 Stora Enso Oyj Barrier coating for paper and paperboard

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162520A1 (ja) * 2013-04-02 2014-10-09 三菱電機株式会社 冷凍サイクル装置
JP6036592B2 (ja) * 2013-07-31 2016-11-30 株式会社デンソー エジェクタ
WO2017154603A1 (ja) * 2016-03-08 2017-09-14 株式会社デンソー 蒸発器ユニット
JP2017161214A (ja) * 2016-03-08 2017-09-14 株式会社デンソー 蒸発器ユニット
JP7040285B2 (ja) * 2018-05-24 2022-03-23 株式会社デンソー エジェクタ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281297A (ja) * 1993-03-31 1994-10-07 Kubota Corp 冷媒分離混合器
JP2004176968A (ja) * 2002-11-26 2004-06-24 Kubota Corp 気液分離器
JP2007046806A (ja) * 2005-08-08 2007-02-22 Denso Corp エジェクタ式サイクル
JP2010181136A (ja) * 2009-01-12 2010-08-19 Denso Corp 蒸発器ユニット
JP2011017527A (ja) * 2009-06-12 2011-01-27 Daikin Industries Ltd 分流器及びこの分流器を備えた膨張弁並びにこの膨張弁を備えた冷凍装置
JP2011094946A (ja) * 2009-09-30 2011-05-12 Daikin Industries Ltd ガス冷媒分離器、ガス冷媒分離兼冷媒分流器、膨張弁及び冷凍装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281297A (ja) * 1993-03-31 1994-10-07 Kubota Corp 冷媒分離混合器
JP2004176968A (ja) * 2002-11-26 2004-06-24 Kubota Corp 気液分離器
JP2007046806A (ja) * 2005-08-08 2007-02-22 Denso Corp エジェクタ式サイクル
JP2010181136A (ja) * 2009-01-12 2010-08-19 Denso Corp 蒸発器ユニット
JP2011017527A (ja) * 2009-06-12 2011-01-27 Daikin Industries Ltd 分流器及びこの分流器を備えた膨張弁並びにこの膨張弁を備えた冷凍装置
JP2011094946A (ja) * 2009-09-30 2011-05-12 Daikin Industries Ltd ガス冷媒分離器、ガス冷媒分離兼冷媒分流器、膨張弁及び冷凍装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259134A1 (en) 2021-06-09 2022-12-15 Stora Enso Oyj Barrier coating for paper and paperboard

Also Published As

Publication number Publication date
JP2013096581A (ja) 2013-05-20
JP5609845B2 (ja) 2014-10-22

Similar Documents

Publication Publication Date Title
US8973394B2 (en) Dual evaporator unit with integrated ejector having refrigerant flow adjustability
US7823401B2 (en) Refrigerant cycle device
JP5482767B2 (ja) エジェクタ式冷凍サイクル
US9784487B2 (en) Decompression device having flow control valves and refrigeration cycle with said decompression device
JP5050563B2 (ja) エジェクタ及びエジェクタ式冷凍サイクル用ユニット
US7367202B2 (en) Refrigerant cycle device with ejector
US7694529B2 (en) Refrigerant cycle device with ejector
CN100414221C (zh) 喷射器循环装置
US20110061423A1 (en) Ejector
US8365552B2 (en) Evaporator unit having tank provided with ejector nozzle
WO2013061501A1 (ja) 冷媒用遠心式分配器および冷凍サイクル装置
JP2008045774A (ja) エジェクタ式冷凍サイクル
JP6458680B2 (ja) 熱交換器
WO2016021141A1 (ja) 蒸発器
JP4553040B2 (ja) 蒸発器ユニット
JP5316465B2 (ja) 蒸発器ユニット
JP2014055765A (ja) 蒸発器ユニット
JP2010014353A (ja) エジェクタ式冷凍サイクル用蒸発器ユニット
JP2019020063A (ja) エジェクタ式冷凍サイクル
JP2008309343A (ja) 膨張機構及びこれを備えた冷凍装置
JP2008261512A (ja) エジェクタ式冷凍サイクル
WO2016125437A1 (ja) エジェクタ一体型熱交換器
JP4784418B2 (ja) エジェクタ式冷凍サイクルおよび蒸発器ユニット
JP2008107054A (ja) 減圧装置および冷凍サイクル装置
WO2013084418A1 (ja) エジェクタ式冷凍サイクル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844076

Country of ref document: EP

Kind code of ref document: A1