WO2013060288A1 - 一种改性橡胶母料及其所制备的橡胶组合物及其硫化胶和他们的制备方法 - Google Patents

一种改性橡胶母料及其所制备的橡胶组合物及其硫化胶和他们的制备方法 Download PDF

Info

Publication number
WO2013060288A1
WO2013060288A1 PCT/CN2012/083574 CN2012083574W WO2013060288A1 WO 2013060288 A1 WO2013060288 A1 WO 2013060288A1 CN 2012083574 W CN2012083574 W CN 2012083574W WO 2013060288 A1 WO2013060288 A1 WO 2013060288A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
latex
particles
styrene
modified
Prior art date
Application number
PCT/CN2012/083574
Other languages
English (en)
French (fr)
Inventor
乔金樑
丛悦鑫
张晓红
李迎
高建明
张乾民
宋志海
孙艳玲
赖金梅
宋培军
蔡传伦
赵国训
张红彬
戚桂村
王亚
李秉海
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110330604.9A external-priority patent/CN103073760B/zh
Priority claimed from CN201110330561.4A external-priority patent/CN103073759B/zh
Priority claimed from CN201210229516.4A external-priority patent/CN103524810B/zh
Priority claimed from CN201210229510.7A external-priority patent/CN103524814B/zh
Priority claimed from CN201210229274.9A external-priority patent/CN103524813B/zh
Priority to JP2014537481A priority Critical patent/JP6091511B2/ja
Priority to RU2014121083A priority patent/RU2608764C2/ru
Priority to BR112014009912-0A priority patent/BR112014009912B1/pt
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to EP12844199.5A priority patent/EP2772513B1/en
Priority to CA2853523A priority patent/CA2853523C/en
Priority to SG11201401845PA priority patent/SG11201401845PA/en
Priority to AU2012327629A priority patent/AU2012327629B2/en
Priority to US14/354,233 priority patent/US9290643B2/en
Priority to MX2014005050A priority patent/MX343657B/es
Priority to IN3426DEN2014 priority patent/IN2014DN03426A/en
Priority to KR1020147013129A priority patent/KR101698947B1/ko
Publication of WO2013060288A1 publication Critical patent/WO2013060288A1/zh
Priority to ZA2014/03789A priority patent/ZA201403789B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/42Nitriles
    • C08F20/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/26Crosslinking, e.g. vulcanising, of macromolecules of latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • C08L9/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • C08L21/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/22Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to the field of rubber, and more particularly to a modified rubber masterbatch and a process, and a rubber composition modified from a modified rubber masterbatch, a process for preparing the same, and a vulcanizate thereof.
  • Tire rolling resistance is also one of the important factors. Tire rolling resistance fuel consumption accounts for 14 ⁇ 17% of car fuel consumption, and tire rolling resistance is reduced by 10%, usually reducing fuel consumption. ⁇ 2%. Therefore, reducing tire rolling resistance is one of the important measures to reduce fuel consumption.
  • Increasing the amount of the vulcanizing agent that is, increasing the crosslinking density, is the same as increasing the amount of reinforcing filler, reducing the rolling resistance while making the wet skid resistance worse.
  • the formulation of rubber compound mainly tread rubber
  • a rubber gel prepared by a direct polymerization method or a chemical crosslinking method such as a peroxide can improve the properties of the vulcanizate when the formulation is appropriate.
  • European Patent EP 405 216 and German Patent DE 42 20 563 respectively report the addition of a neoprene rubber strand and a butadiene rubber gel to the rubber composition to improve the wear resistance and fatigue temperature rise of the vulcanizate, but loss of moisture resistance. Slippery.
  • chlorohydrazine is grafted onto the surface of the butyl rubber, which is then used in the NR formulation system to reduce the rolling resistance of the vulcanizate and improve the wet skid resistance.
  • U.S. Patent No. 6,207,757 A styrene-butadiene rubber dish modified with chlorodecyl styrene achieves a reduction in the rolling resistance of the vulcanizate of the NR formulation system while improving the traction performance and durability of the tire.
  • U.S. Patent No. 6,242,534 uses a styrene-butadiene rubber gel containing a carboxyl group and an amino group in the NR formulation system, which not only reduces the rolling resistance of the vulcanizate, but also improves the wet skid resistance and significantly increases the modulus.
  • European patent EP1431075 uses styrene-butadiene rubber gel and plasticized starch to improve the properties of the white carbon black system of styrene-butadiene rubber (SBR) and butadiene rubber (BR). As a result, the wear resistance is improved, the rolling resistance is reduced, The proportion of stocks is also small.
  • SBR styrene-butadiene rubber
  • BR butadiene rubber
  • U.S. Patent No. 6,699,935 uses a copolymerized modified styrene butadiene rubber to form a modified styrene butadiene rubber formulation having low rolling resistance and excellent wet skid resistance and abrasion resistance.
  • the rubber gels mentioned in the above patent documents are all crosslinked by chemical crosslinking method. This method requires high-cost cross-linking monomers and consumes a large amount of energy, and mainly involves a natural rubber formula system or a rubber gel.
  • the white carbon black system and the modified butyl rubber compound formula system it is important that the rubber gel obtained after crosslinking can be modified to achieve both rolling resistance, wet skid resistance and abrasion resistance.
  • the particle size of the rubber dish is reported in these patents, when these rubber containers are used in the vulcanized rubber, can the dispersion of the initial particle size be achieved, and whether the modification of the nano-scale rubber dish can be truly realized. Role, not reported in any patent. Summary of the invention
  • one of the objects of the present invention is to provide a modified rubber masterbatch, also It may be referred to as a modified rubber component.
  • the vulcanizate of the rubber composition prepared from the masterbatch not only has low rolling resistance and excellent wet skid resistance, but also has excellent wear resistance and can be used as an excellent car tread rubber.
  • Another object of the present invention is to provide a process for producing the modified rubber masterbatch.
  • a fourth object of the present invention is to provide a process for the preparation of the rubber composition.
  • a fifth object of the present invention is to provide a vulcanizate of the rubber composition.
  • a modified rubber masterbatch comprising: uncrosslinked rubber and rubber particles having a crosslinked structure; wherein the rubber particles having a crosslinked structure are synthetic rubber particles or/and natural rubber particles, and the average particle diameter is 20 to 500 nm, preferably 50 to 200 nm, more preferably 70 to 200 nm,
  • the amount is 60% by weight or more, preferably 75% by weight or more; wherein the uncrosslinked rubber is styrene-butadiene rubber; the weight ratio of the rubber particles having a crosslinked structure to the uncrosslinked rubber is more than 20: 80 , less than or equal to 80: 20.
  • the modified rubber master batch according to embodiment 1, characterized in that the rubber particles having a crosslinked structure are any one or more of the following: natural rubber particles, styrene-butadiene rubber particles, carboxylated styrene-butadiene rubber particles , nitrile rubber particles, carboxylated nitrile rubber particles, neoprene particles, polybutadiene rubber particles, silicone rubber particles, acrylate rubber particles, styrene-butadiene rubber particles, preferably any one or more of the following: butyronitrile Rubber particles, styrene-butadiene rubber particles, styrene-butadiene rubber particles, carboxylate
  • the gum particles are more preferably one or more of the following: styrene-butadiene rubber particles, nitrile rubber particles, and more preferably nitrile rubber particles.
  • the modified rubber master batch according to the embodiment 1 or 2 characterized in that the rubber particles having a crosslinked structure have a homogeneous structure.
  • modified rubber master batch according to any one of the above aspects, wherein the modified rubber master batch comprises a latex comprising an uncrosslinked rubber latex and a rubber particle having a crosslinked structure.
  • the components in the mixture are uniformly mixed and then coagulated; wherein the latex of the rubber particles having a crosslinked structure is a rubber latex obtained by irradiation.
  • a method of preparing a modified rubber masterbatch according to any one of embodiments 1 to 5 Includes the following steps:
  • the synthetic rubber or/and the natural rubber latex is cross-linked by irradiation so that the synthetic rubber or/and the natural rubber particles in the latex have a crosslinked structure to attain the gel content, and the synthetic rubber in the latex or / and natural rubber particles are fixed within the average particle size range;
  • the synthetic rubber or/and the natural rubber latex is one or more of the following: natural rubber latex, styrene-butadiene rubber latex, and a few shy ⁇ Dish milk, nitrile rubber latex, carboxylated nitrile rubber latex, neoprene latex, polybutadiene rubber latex, silicone rubber latex or acrylate rubber latex, styrene-butadiene rubber latex, etc., preferably any one or more of the following Species: nitrile rubber stock, styrene-butadiene rubber latex, styrene-butadiene rubber latex, carboxylate
  • more preferably any one or more of the following: styrene-butadiene rubber latex, nitrile rubber latex, more preferably butyronitrile rubber latex.
  • a rubber composition comprising the modified rubber master batch and the eli rubber according to any one of the embodiments 1 to 5, wherein the rubber is loo by weight of the loo rubber Masterbatch
  • the rubber is one or more of the following: natural rubber, modified natural rubber, synthetic rubber; preferably any one or more of the following Species: styrene/butadiene copolymer prepared by natural rubber, emulsion polymerization method (emulsion polymerization method) or an oil-filled product thereof; styrene/butadiene copolymer prepared by solution polymerization method (solumel polymerization method) Or an oil-extended product thereof; polybutadiene rubber of any structure or an oil-extended product thereof prepared by any polymerization method using butadiene as a monomer in the prior art, more preferably any one or more of the following: a styrene/butadiene copolymer prepared by a polymerization method (emulsion polymerization method) or an oil-extended product thereof; or a styrene/butadiene copolymer prepared by a solution polymerization method (solution polymerization method)
  • the preparation method comprises the following steps:
  • the synthetic rubber or/and the natural rubber latex is cross-linked by irradiation so that the synthetic rubber or/and the natural rubber particles in the latex have a crosslinked structure to attain the gel content, and the synthetic rubber in the latex or / and natural rubber particles are fixed within the average particle size range;
  • the international patent application WO01/40356 submitted by the applicant on September 18, 2000 (priority 12 December 3, 1999) is submitted by the applicant on June 15, 2001.
  • a fully vulcanized powdered rubber is disclosed in the patent application WO 01/98395 (priority date June 15, 2000). It is proposed that when the cross-linked rubber milk is irradiated by irradiation, the latex particles (rubber particles) in the latex milk reach a certain gel content due to the irradiation cross-linking, and the particle size of the latex particles is fixed, and will not be after Adhesive or coagulate during the drying process.
  • the modified rubber master batch is used as a solid masterbatch, and the uncrosslinked block rubber is blended by an internal mixer, a twin roll mill, a screw extruder or the like to obtain a rubber compound.
  • the rubber compound thus obtained can also ensure that the radiation-crosslinked rubber particles having a crosslinked structure reach a dispersion state within the particle size range in the uncrosslinked rubber matrix.
  • a common rubber processing aid is further added and vulcanized to obtain a vulcanized rubber.
  • the rubber particles after the irradiation cross-linking already have a cross-linked structure, it is not necessary to consider the vulcanization of the sub-f, thus solving the co-vulcanization problem of the composition of different rubber compositions;
  • the radiation-crosslinked crosslinked rubber particles are still in a vulcanized rubber having a very small original particle size and a rubber matrix, so that the finally obtained vulcanized rubber not only has low rolling resistance and excellent wet skid resistance. Sex, while having excellent wear resistance.
  • a modified rubber master batch of the present invention comprises an uncrosslinked rubber and rubber particles having a crosslinked structure dispersed therein.
  • the uncrosslinked rubber is a continuous phase, and the rubber particles having a crosslinked structure are sub-f.
  • the weight ratio of the rubber particles having a crosslinked structure to the uncrosslinked rubber is greater than 20:80, less than or equal to 80:20; preferably 30:70-80:20, more preferably 40:60-80: 20.
  • the rubber particles having a crosslinked structure are synthetic rubber particles or/and natural rubber particles, and may be, for example, any one or more of the following: natural rubber particles, styrene-butadiene rubber particles, carboxylated styrene-butadiene rubber particles, and nitrile rubber particles.
  • carboxylated nitrile rubber particles, neoprene particles, polybutadiene rubber particles, silicone rubber particles or acrylate rubber particles, styrene-butadiene rubber particles, etc. preferably any one or more of the following: nitrile rubber particles, butyl
  • the benzopyrene rubber particles, the styrene-butadiene rubber particles, and the carboxylated styrene-butadiene rubber particles are more preferably any one or more of the following: styrene-butadiene rubber particles and nitrile rubber particles, and more preferably nitrile rubber particles.
  • the average particle diameter is from 20 to 500 nm, preferably from 50 to 200 nm, more preferably from 70 to 200 nm; the gel content is 60% by weight or more, preferably 75% by weight or more, preferably 80% by weight or more.
  • the rubber particles having a crosslinked structure in the modified rubber master batch described above have a homogeneous structure. Moreover, no graft modification or surface modification is carried out.
  • the uncrosslinked rubber is various styrene-butadiene rubbers in the prior art, preferably an emulsion polystyrene-butadiene rubber of the prior art, that is, a styrene/butadiene copolymer prepared by an emulsion polymerization method (emulsion polymerization method).
  • the method for preparing a modified rubber masterbatch according to the present invention comprises the steps of uniformly mixing a non-crosslinked rubber latex and a latex of a rubber particle having a crosslinked structure and then coagulating: having a crosslinked structure
  • the rubber latex of the rubber particles is a rubber latex obtained by irradiation crosslinking.
  • the method for preparing the modified rubber master batch comprises the following steps:
  • the rubber latex is cross-linked by irradiation, so that the rubber particles in the latex have a cross-linked structure to reach the content of the dish, and the rubber particles in the milk are fixed within the average particle size range;
  • the butyl milk is a synthetic rubber latex commonly used in the prior art, including the emulsion polybutene styrene latex directly prepared by the emulsion polymerization method in the prior art, and the styrene-butadiene block prepared by any existing method;
  • the obtained latex preferably an emulsion polystyrene-butadiene latex prepared directly by the emulsion polymerization method of the prior art.
  • the rubber latex before irradiation crosslinking may be a natural rubber or/and a synthetic rubber latex prepared by an existing synthetic technique, and may be, for example, any one or more of the following: natural rubber latex, styrene-butadiene rubber, carboxystyrene-butadiene rubber Latex, nitrile rubber latex, carboxylated nitrile rubber latex, neoprene latex, polybutadiene rubber latex, silicone rubber latex or acrylate rubber latex, styrene-butadiene rubber latex, etc., preferably any one or more of the following: Nitrile rubber latex, styrene-butadiene rubber latex, styrene-butadiene rubber latex, carboxylated styrene-butadiene rubber latex, more preferably any one or more of the following: styrene-butadiene rubber latex, nitrile rubber latex, more
  • the weight ratio of the solid content of the milk is greater than 20: 80, less than or equal to 80: 20; and the preferred weight ratio is 30: 70-80: 20, more preferably 40: 60-80: 20.
  • the irradiation cross-linking of the rubber latex in the above step (1) is the same as in the preparation method of the fully vulcanized powder rubber disclosed in the international patent application WO 01/40356 (Priority Date, December 3, 1999). A method of crosslinking rubber latex. The resulting radiation crosslinked rubber latex was also the same as the rubber before the irradiation in WO01/40356.
  • a crosslinking aid may be used in the rubber latex, and a crosslinking assistant may also be used.
  • the crosslinking assistant used is selected from the group consisting of a monofunctional crosslinking assistant, a difunctional crosslinking assistant, a trifunctional crosslinking assistant, a tetrafunctional crosslinking assistant or a polyfunctional crosslinking assistant, and any combination thereof.
  • Examples of the monofunctional crosslinking crosslinking aid include, but are not limited to: (fluorenyl) octyl acrylate, (fluorenyl) isooctyl acrylate, glycidyl (mercapto) acrylate; the difunctional group
  • Examples of co-agents include, but are not limited to: 1, 4-butanediol bis(indenyl) acrylate, 1,6-hexanediol bis(indenyl) acrylate, diethylene glycol bis(indenyl) Acrylate, triethylene glycol bis(indenyl) acrylate, neopentyl glycol bis(indenyl) acrylate, divinylbenzene;
  • examples of the trifunctional crosslinking assistants include (but are not limited to) : trihydroxymercaptopropane tris(indenyl) acrylate, pentaerythritol tris(fluorenyl) acrylate;
  • crosslinking auxiliaries may be used in any combination as long as they contribute to crosslinking under irradiation.
  • the crosslinking aid is added in an amount of from 0.1 to 10% by weight based on the weight of the dry gum in the latex. It is preferably from 0.5 to 9% by weight, more preferably from 0.7 to 7% by weight.
  • the source of high energy radiation for irradiation is selected from a cobalt source, an ultraviolet or high energy electron accelerator, preferably a cobalt source.
  • the dose of irradiation may be 0.1 to 30 Mrad, preferably 0.5 to 20 Mrad.
  • the amount of the irradiating agent is such that the rubber particles after the crosslinking of the rubber latex are 60% by weight or more, preferably 75% by weight or more, more preferably 80% by weight or more.
  • the modified rubber masterbatch obtained by mixing the radiation-crosslinked rubber latex with the usual uncrosslinked styrene-butadiene rubber latex is dispersed in the uncrosslinked styrene-butadiene rubber.
  • the rubber particles in the continuous phase are also characterized by the fully vulcanized powder rubber disclosed in WO 01/40356. That is, the rubber particles having a crosslinked structure are rubber particles having a gel content of 60% by weight or more, more preferably 75% by weight or more, still more preferably 80% by weight or more.
  • Each of the rubber particles having the crosslinked structure is homogeneous, that is, the individual particles are homogeneous in composition, and no delamination or equalization is found in the observation of the existing microscopic technique.
  • the rubber particles having a crosslinked structure are fixed in particle diameter by crosslinking the corresponding rubber latex, and the particle diameter thereof is identical to the particle diameter of the latex particles in the original rubber latex.
  • the rubber particles (latex particles) in the original cheese milk have an average particle diameter of usually 20 to 500 nm, preferably 50 to 200 nm, more preferably 70 to 200 nm.
  • the average particle diameter of the rubber particles having a crosslinked structure after irradiation crosslinking is also usually from 20 to 500 nm, preferably from 50 to 200 nm, more preferably from 70 to 200 nm.
  • the rubber particles in the irradiated cross-linked rubber milk have been cross-linked, have a certain gel content, and do not stick or coagulate during the gelation process. And it can be uniformed in the uncrosslinked butyl rubber; therefore, in the modified rubber masterbatch finally obtained, the average particle diameter of the rubber particles having a crosslinked structure as a fraction of
  • f is also 20 It is in the range of 500 nm, preferably 50 to 200 nm, more preferably 70 to 200 nm.
  • the uncrosslinked styrene-butadiene rubber latex and the radiation-crosslinked rubber latex are mixed and coagulated in accordance with the weight ratio, and the modified rubber master batch is prepared.
  • the mixing equipment used in the mixing steps of the two rubber latexes is a commonly used mixing equipment, which is selected from the prior art high-speed agitating machine, kneading machine, etc.
  • the latex coagulation and equipment are based on the latex coagulating conditions and equipment commonly used in the existing rubber industry.
  • the radiation-crosslinked rubber latex and the uncrosslinked styrene-butadiene rubber latex were mixed, and then coagulated to obtain a crosslinked rubber particle-modified styrene-butadiene rubber composition.
  • the rubber particles having a crosslinked structure which are crosslinked by irradiation do not stick and coagulate, and the latex particles of the ordinary uncrosslinked styrene-butadiene rubber latex are coagulated, so that the rubber particles having a crosslinked structure are In the raw body obtained by the particle size of the original particle ⁇ uncrosslinked, and the degree of uniformity is better than the mixture obtained by directly mixing the fully vulcanized powder rubber with the raw rubber. Much better.
  • the modified rubber component is used as a solid masterbatch, and the uncrosslinked block rubber is blended by an internal mixer, a double mill, a screw extruder or the like to obtain a rubber compound.
  • the rubber compound thus obtained can also ensure that the radiation-crosslinked rubber particles having a crosslinked structure reach a dispersion state within the particle size range in the uncrosslinked rubber matrix.
  • a common rubber processing aid is further added and vulcanized to obtain a vulcanized rubber.
  • the radiation-crosslinked rubber particles already have a crosslinked structure, it is not necessary to consider the vulcanization of the fractions, thus solving the problem of co-vulcanization of compositions of different rubber compositions; and simultaneously irradiating cross-linked crosslinked structures
  • the rubber particles are still very uniformly dispersed in the rubber-based vulcanized rubber with a very small original particle size, so that the finally obtained vulcanized rubber not only has low rolling resistance and excellent wet skid resistance, but also has excellent wear resistance. .
  • a rubber composition of the present invention comprises a blended modified rubber component and a base rubber; and the modified rubber component is from 1 to 70 parts, preferably 1 based on 100 parts by weight of the base rubber. To 40 parts, more preferably 1 to 30 parts.
  • the rubber is one or more of the following: natural rubber, modified natural rubber, synthetic rubber, preferably synthetic rubber or natural rubber which can be used in the preparation of automobile tires, especially automobile tread rubber, in the prior art.
  • it may be any one or more of the following: a natural rubber, a styrene/butadiene copolymer prepared by an emulsion polymerization method (emulsion polymerization method) or an oil-extended product thereof; or a solution polymerization method (solution polymerization method) a prepared styrene/butadiene copolymer or an oil-extended product thereof; a polybutadiene rubber of any structure prepared by any polymerization method using butadiene as a monomer or an oil-extended product thereof, etc., preferably Any one or more of the following: emulsion polymerization method (emulsion polymerization method) The prepared styrene/butadiene copolymer or an oil-extended product thereof; or a sty
  • the modified rubber component comprises an uncrosslinked rubber and rubber particles having a crosslinked structure dispersed therein; the rubber particles having a crosslinked structure are not crosslinked
  • the weight ratio of the rubber is greater than 20:80, less than or equal to 80:20; preferably the weight ratio is 30: 70-80: 20, more preferably 40: 60-80: 20.
  • the uncrosslinked rubber is various styrene-butadiene rubbers in the prior art, and is preferably a styrene-butadiene rubber produced in the prior art, that is, a styrene/butadiene copolymer prepared by an emulsion polymerization method (emulsion polymerization method).
  • the rubber particles having a crosslinked structure are synthetic rubber particles or/and natural rubber particles, and may be, for example, any one or more of the following: natural rubber particles, styrene-butadiene rubber particles, carboxylated styrene-butadiene rubber particles, nitrile rubber particles, The carboxylated nitrile rubber particles, the neoprene rubber particles, the polybutadiene rubber particles, the silicone rubber particles or the acrylate rubber particles, the styrene-butadiene rubber particles, and the like are preferably any one or more of the following: nitrile rubber particles, butylbenzene
  • the pyridine rubber particles, the styrene-butadiene rubber particles, and the carboxy styrene-butadiene rubber particles are more preferably any one or more of the following: nitrile rubber particles, styrene-butadiene rubber particles, and more preferably nitrile rubber particles.
  • the average particle diameter is from 20 to 500 nm, preferably from 50 to 200 nm, more preferably from 70 to 200 nm; the gel content is 60% by weight or more, preferably 75% by weight or more, preferably 80% by weight or more.
  • the rubber particles having a crosslinked structure in the modified rubber component are in a homogeneous structure, and are not subjected to any graft modification or surface modification.
  • the preparation of the modified rubber component in the rubber of the present invention comprises: mixing and mixing the uncrosslinked rubber latex with the latex of the rubber particles having a crosslinked structure;
  • the latex of the rubber particles of the crosslinked structure is a rubber latex obtained by irradiation crosslinking.
  • the method for preparing the modified rubber component comprises the following steps:
  • the rubber latex is cross-linked by irradiation, so that the rubber particles in the latex have a cross-linked structure to reach the content of the dish, and the rubber particles in the milk are fixed within the average particle size range;
  • the above-mentioned radiation crosslinked rubber latex is mixed with the uncrosslinked styrene butadiene rubber latex to be uniform;
  • the uncrosslinked styrene-butadiene rubber latex is a synthetic rubber latex commonly used in the prior art, and comprises an emulsion polybutadiene latex directly prepared by an emulsion polymerization method in the prior art.
  • the rubber latex before irradiation crosslinking is a synthetic rubber latex or/and a natural rubber latex which is common in the prior art, and may be, for example, any one or more of the following: natural rubber latex, styrene butadiene rubber latex, carboxyl styrene butadiene rubber Latex, nitrile rubber latex, carboxylated nitrile rubber latex, neoprene latex, polybutadiene rubber latex, silicone rubber latex or acrylate rubber latex, styrene-butadiene rubber latex, etc., preferably any one or more of the following: Nitrile rubber milk, styrene-butadiene rubber, Ding ⁇ milk, Ding ⁇ milk, more preferably one or more of the following: styrene-butadiene rubber, nitrile rubber latex, more preferred Nitrile rubber latex.
  • the weight ratio of the solid content of the radiation crosslinked rubber milk to the solid content of the milk is greater than 20:80, less than or equal to 80:20; the preferred weight ratio is 30:70-80:20, more It is preferably 40: 60-80: 20.
  • the irradiation cross-linking of the rubber latex in the above step (1) is the same as in the preparation method of the fully vulcanized powder rubber disclosed in the international patent application WO 01/40356 (Priority Date, December 3, 1999). A method of crosslinking rubber latex. The resulting radiation crosslinked rubber latex was also the same as the rubber before the irradiation in WO01/40356.
  • a crosslinking aid may be used in the rubber latex, and a crosslinking assistant may also be used.
  • the crosslinking assistant used is selected from the group consisting of a monofunctional crosslinking assistant, a difunctional crosslinking assistant, a trifunctional crosslinking assistant, a tetrafunctional crosslinking assistant or a polyfunctional crosslinking assistant, and any combination thereof.
  • Examples of the monofunctional crosslinking crosslinking aid include, but are not limited to: (fluorenyl) octyl acrylate, (fluorenyl) isooctyl acrylate, glycidyl (mercapto) acrylate; the difunctional group
  • Examples of co-agents include, but are not limited to: 1, 4-butanediol bis(indenyl) acrylate, 1,6-hexanediol bis(indenyl) acrylate, diethylene glycol bis(indenyl) Acrylate, triethylene glycol bis(indenyl) acrylate, neopentyl glycol bis(indenyl) acrylate, divinylbenzene;
  • examples of the trifunctional crosslinking assistants include (but are not limited to) : trihydroxymercaptopropane tris(indenyl) acrylate, pentaerythritol tris(fluorenyl) acrylate;
  • crosslinking auxiliaries may be used in any combination as long as they contribute to crosslinking under irradiation.
  • the crosslinking aid is added in an amount of from 0.1 to 10% by weight based on the weight of the dry gum in the latex. It is preferably from 0.5 to 9% by weight, more preferably from 0.7 to 7% by weight.
  • the source of high energy radiation for irradiation is selected from a cobalt source, an ultraviolet or high energy electron accelerator, preferably a cobalt source.
  • the dose of irradiation may be 0.1 to 30 Mrad, preferably 0.5 to 20 Mrad.
  • the amount of the irradiating agent is such that the rubber particles after the crosslinking of the rubber latex are 60% by weight or more, preferably 75% by weight or more, more preferably 80% by weight or more.
  • the modified rubber component obtained by mixing the radiation-crosslinked rubber latex with the usual uncrosslinked styrene-butadiene rubber latex is dispersed in the continuous phase composed of uncrosslinked raw rubber.
  • the radiation crosslinked rubber particles in the group also have the characteristics of the fully vulcanized powder rubber disclosed in WO 01/40356. That is, the rubber particles having a crosslinked structure are rubber particles having a gel content of 60% by weight or more, preferably 75% by weight or more, more preferably 80% or more.
  • Each of the rubber particles having the crosslinked structure is homogeneous, that is, the individual ⁇ is homogeneous in composition, and no delamination or equalization is found in the observation of the existing microscopic technique. Heterogeneous phenomenon.
  • the rubber particles having a crosslinked structure are fixed in particle diameter by crosslinking the corresponding rubber latex, and the particle diameter thereof is identical to the particle diameter of the latex particles in the original rubber latex.
  • the rubber particles (latex particles) in the raw rubber latex generally have an average particle diameter of 20 to 500 nm, preferably 50 to 200 nm, more preferably 70 to 200 nm.
  • the average particle diameter of the rubber particles having a crosslinked structure after irradiation crosslinking is also generally from 20 to 500 legs, preferably from 50 to 200 legs, more preferably from 70 to 200 legs.
  • the rubber particles in the irradiated crosslinked rubber stocks have been crosslinked, have a certain gel content, and do not stick during the latex condensation process or It is coagulated and can be uniformly dispersed in the uncrosslinked styrene-butadiene rubber. Therefore, among the modified rubber components finally obtained, the average particle diameter of the rubber particles having a crosslinked structure as a fraction is also 20 to 500 nm. It is preferably in the range of 50 to 200 nm, more preferably 70 to 200 nm.
  • the uncrosslinked styrene-butadiene rubber latex and the radiation-crosslinked rubber latex are mixed and coagulated in accordance with the weight ratio, and the modified rubber component is prepared.
  • the mixing equipment used in the mixing steps of the two rubber latexes is a commonly used mixing equipment, which is selected from the prior art high-speed mixer, kneading machine, etc.
  • the latex coagulation and equipment are based on the latex coagulating conditions and equipment commonly used in the existing rubber industry.
  • the preparation of the rubber composition of the present invention comprises: preparing the modified rubber component first, that is, the rubber latex is cross-linked by irradiation, so that the rubber particles in the latex have a crosslinked structure, and then After the radiation-crosslinked rubber latex and the uncrosslinked styrene-butadiene rubber latex are mixed on a common mixing device, the modified rubber component is obtained by a coagulation method commonly used for rubber latex; and then the modification is performed.
  • the sex rubber j ⁇ a is used as a solid masterbatch.
  • the rubber compound is obtained by mixing with a rubber compounding method commonly used in the rubber industry and a non-crosslinked block base rubber together with other conventional rubber additives.
  • the method for preparing the rubber composition of the present invention comprises the following steps:
  • the rubber latex is cross-linked by irradiation, so that the rubber particles in the latex have a cross-linked structure, the content of the dish is i ⁇ JiJ, and the rubber particles in the milk are fixed within the average particle size range, such as In the range of 20 to 500 nm, preferably 50 to 200 nm, more preferably 70 to 200 nm;
  • the above-mentioned radiation crosslinked rubber latex is mixed with the uncrosslinked styrene butadiene rubber latex to be uniform;
  • the weight ratio of the solid content of the latex milk to the solid content of the styrene butadiene rubber latex is greater than 20:80, less than or equal to 80:20; preferably 30:70-80:20, more preferably 40:60-80. : 20;
  • the above-mentioned modified rubber component is kneaded in the amount and the base rubber to obtain a rubber composition; wherein the rubber is loo weight ten, and the modified rubber JK a is divided into ⁇ to 70 parts. It is preferably from 1 to 40 parts, more preferably from 1 to 30 parts.
  • the rubber composition of the present invention may further contain a filler commonly used in the field of rubber processing.
  • the metal oxide is preferably at least one of titanium oxide, aluminum oxide, magnesium oxide, calcium oxide, cerium oxide, and zinc oxide.
  • the rubber composition of the present invention may further contain, for example, a crosslinking agent, a vulcanization accelerator, an antioxidant, a heat stabilizer, a light stabilizer, an ozone stabilizer, a processing aid, a plasticizer, a softener, an anti-blocking agent, and a hair
  • auxiliary agent commonly used in rubber vulcanization processes such as foaming agents, dyes, pigments, waxes, extenders, organic acids, flame retardants, and coupling agents.
  • the amount of the auxiliary agent used is a conventional amount, or it can be adjusted according to actual conditions.
  • the vulcanizate prepared from the rubber composition of the present invention is a vulcanizate obtained by kneading and vulcanizing the rubber composition of the present invention described above by a vulcanization system and a process commonly used in the rubber field.
  • the vulcanizate prepared by the present invention is not affected by the vulcanization system and can be vulcanized in a conventional vulcanization system or a non-vulcanization system.
  • the vulcanizate prepared by the rubber compound of the invention is not affected by the vulcanization process, and can be flat vulcanized, injection vulcanized, vulcanized vulcanized, individual vulcanized; ML, eutectic salt vulcanization, bubbling bed vulcanization, microwave vulcanization and high energy ray Vulcanization, etc.
  • the method used and the usual mixing equipment may be an open mill, an internal mixer, a single screw extruder or a twin screw extruder.
  • the state of the modified rubber component according to the present invention is as follows: the uncrosslinked styrene-butadiene rubber is a continuous phase, and the rubber particles having a crosslinked structure are sub-f, And
  • the fine particle size of 20 to 500 nm is dispersed.
  • the vulcanizate prepared from the rubber composition obtained by kneading the modified rubber component with the base rubber still has the same structure, that is, the rubber particles having the crosslinked structure in the modified rubber component are still 20 to A fine particle size of 500 nm is divided into a rubber matrix.
  • the modified rubber component in the rubber composition of the present invention is irradiated and crosslinked during the coagulation process because the rubber particles in the rubber latex are fixed by the particle size of the original latex particles by irradiation crosslinking.
  • the rubber particles are classified as a fraction, and are uniformly classified into a continuous phase of uncrosslinked styrene-butadiene rubber with a fine particle diameter of 20 to 500 nm.
  • the modified rubber component is kneaded as a master rubber and a base rubber to obtain a rubber composition, and the vulcanizate obtained from the rubber composition still has the same microstructure, that is, the modified rubber component has a cross-linking
  • the rubber particles of the joined structure are still separated into fine layers by a fine particle size of 20 to 500 nm. With such a microscopic morphology, the rubber particles having a crosslinked structure can exert a nano effect, and at the same time, the co-vulcanization problem of the different rubbers in the vulcanization process, the slip property, and the excellent wear resistance can be solved,
  • the performance of automotive tread rubber is used.
  • the overall comprehensive performance of the rubber composition can be adjusted by adding other additives to prepare the automobile tread with different performance requirements. Tape to give more room for adjustment.
  • the rubber composition of the present invention and the vulcanizate thereof are simple in preparation, easy to operate, and the process conditions are all normal conditions, and are easy to be widely used.
  • Rolling resistance The rolling power loss was measured using an RSS-II rubber rolling resistance tester (Beijing Wanhui Technology Co., Ltd.).
  • the constant-speed moving round-shaped rubber sample is in close contact with the drum for relative movement.
  • the surface of the rubber sample in contact with the drum is deformed under pressure load, and the deformation gradually increases from the beginning of the contact point to the intermediate point; and then gradually decreases from the intermediate point to the exit point to zero.
  • the resultant force of the rubber sample during the deformation from the beginning of the contact point to the intermediate point will be higher than the resultant force during the recovery from the intermediate point to the exit point.
  • This force parallel to the load force is the rubber sample. Power loss value (J/r). According to this, the rolling resistance of the rubber formulation can be characterized.
  • Rolling resistance index (%) The rolling resistance of pure rubber is measured as the base. The measured value of other modified rubber accounts for the rolling resistance index as a percentage of the measured value of pure rubber rolling resistance.
  • the principle is: The sample and the grinding wheel are rubbed under a certain inclination angle and a certain load to determine the wear volume of a certain mileage.
  • the wear volume is calculated as follows:
  • Abrasion index (%) The measured value of the abrasion volume of pure rubber is the base.
  • the measured value of the wear volume of other modified rubbers is the wear index of the measured value of pure rubber.
  • the friction of the compound on the wet surface is related to the hysteresis loss, usually 0. TanS under C characterizes resistance to slip. 0. The larger the tanS value under C, the better the traction performance of the tire on a wet road surface.
  • the tanS resistance of the pure rubber is measured as the base number, and the anti-wet slip measurement value of the other modified rubber accounts for the wet skid index of the pure rubber anti-wet slip measurement value.
  • Milk polybutadiene ⁇ J ⁇ milk SBR1502 solid content 20 wt%, combined with styrene content 23 wt%, Mooney viscosity 50, produced by Qilu Petrochemical Company rubber plant.
  • Emulsion polystyrene-butadiene rubber blocky raw rubber, grade: SBR1500, produced by Nantong Shenhua Chemical Industry Co., Ltd.
  • Nitrile rubber milk The grade is nitrile -26, produced by Zhaoyuan Tianyuan Chemical Co., Ltd.
  • Carbon black 234 Tianjin Dolphin Carbon Black Co., Ltd.
  • Accelerator TBBS N-tert-butyl-2-benzothiazole hypoxanthine, Zhengzhou Jinshan Chemical Plant Calcium Chloride: Commercially available
  • the coagulant solution was prepared according to the formulation of Table 1, and then added to the coagulant solution according to the same weight of the gelling agent as the coagulant. After stirring for 15 minutes, it was filtered, washed and dried to obtain a solid rubber band. share).
  • Table 1 is the parts by weight of the mixture and the method of vulcanization:
  • Example 1 After adding the above-mentioned one-stage rubber mixture to sulfur and accelerator, it is thinned six times on the XK-160 type open mill (Shanghai Rubber Factory), and then the next piece. Then at 160. Press C for the vulcanization time T 9 . After vulcanization, the vulcanized rubber samples were then made into standard splines, and various mechanical properties were tested. The results are shown in Table 3. The formulation of the rubber compound is shown in Table 2, and the unit is the parts by weight. Example 1
  • the crosslinking assistant trisylhydrin propane triacrylate was added in an amount of 3% by weight of the nitrile latex, and the irradiation was carried out.
  • the irradiation dose was 3.0 Mrad, and the radiation-crosslinked nitrile rubber latex was obtained.
  • the average particle diameter of the irradiated crosslinked nitrile rubber particles in the latex was 100 nm, and the gel content was 91%.
  • the irradiated cross-linked nitrile rubber latex is added to the uncrosslinked milk polybutadiene latex SBR1502 according to a certain solid content ratio, wherein the irradiation of the nitrile rubber leg solid content and the untreated
  • the emulsion weight ratio of the emulsion of the emulsion was 50:50. After stirring at a high speed for 15 minutes in a stirrer, it was coagulated according to the previous milk coagulation method to obtain a solid modified rubber component A.
  • the composition of the coagulant solution is the same as in Table 1.
  • the modified rubber component A obtained above is used as a masterbatch, and is added to a block of raw rubber (milk styrene-butadiene rubber SBR1500) to be kneaded to obtain a rubber compound, and the composition thereof is divided into parts by weight.
  • a block of raw rubber milk styrene-butadiene rubber SBR1500
  • the preparation of the rubber compound and the vulcanization method are as described above.
  • the vulcanized rubber samples were prepared into standard splines, and various mechanical properties were tested. The results are shown in Table 3.
  • the preparation of the irradiated cross-linked nitrile rubber latex and the latex mixing and coagulation were carried out in the same manner as in Example 1, except that the solid content of the nitrile rubber latex after crosslinking and the uncrosslinked emulsion polybutadiene rubber latex were irradiated.
  • the solid content weight ratio was changed to 80:20, and a solid modified rubber fraction of 8 was obtained.
  • the modified rubber component B obtained above is used as a masterbatch, and is added to a block of raw rubber (milk styrene-butadiene rubber SBR1500) to be kneaded to obtain a rubber compound, and the formulation thereof is divided into parts by weight.
  • a block of raw rubber milk styrene-butadiene rubber SBR1500
  • the formulation thereof is divided into parts by weight.
  • Table 2 the preparation of the rubber compound and the vulcanization method are as described above. Then, the vulcanized rubber samples were prepared into standard splines, and various mechanical properties were tested. The results are shown in Table 3.
  • the simple emulsion polybutadiene rubber (milk polybutadiene rubber SBR1500) was mixed and vulcanized by the same mixing and vulcanization process as in the second step of Example 1. Mixture with ⁇ & compound The formulation composition is listed in Table 2. The properties of vulcanized rubber are shown in Table 3.
  • the rolling resistance index, the abrasion index and the wet skid index of the vulcanized rubber can be simultaneously improved, so that the prepared vulcanizate not only has low rolling resistance and Excellent wet skid resistance and excellent wear resistance, the reason is
  • the irradiated crosslinked butadiene rubber particles having a crosslinked structure are dispersed in a continuous phase emulsion polystyrene-butadiene rubber matrix at a fine particle diameter of 50 to 200 nm.
  • This property of the rubber composition of the present invention is particularly suitable for use as a tread rubber for automobiles. Since the three parameters of the rubber composition of the present invention are improved, the overall comprehensive performance of the rubber composition can be adjusted according to the specific requirements of the three parameters in practical application. Thus, there is greater room for adjustment in the preparation of tread tapes with different performance requirements.
  • Milk polybutadiene ⁇ J ⁇ milk SBR1502 solid content 20 wt%, combined with styrene content 23 wt%, Mooney viscosity 50, produced by Qilu Petrochemical Company rubber plant.
  • Oil-filled milk polybutadiene ⁇ ⁇ Glue oil-filled block-like raw rubber, grade: SBR1712, produced by Sinopec Qilu Stone Chemical Branch.
  • Nitrile rubber milk The grade is nitrile -26, produced by Zhaoyuan Tianyuan Chemical Co., Ltd.
  • Carbon black 234 Tianjin Dolphin Carbon Black Co., Ltd.
  • Accelerator TBBS N-tert-butyl-2-benzothiazole hypoxanthine, Zhengzhou Jinshan Chemical Plant Calcium Chloride: Commercially available
  • the coagulant solution was prepared according to the formulation of Table 4, and then added to the coagulant solution according to the same amount of the latex as the coagulant. After stirring for 15 minutes, it was filtered, washed and dried to obtain a solid rubber band. share). Table 4
  • Table 4 is the parts by weight of the mixture and the method of vulcanization:
  • the volume is 1.57L
  • the rotor speed is 80r.mii! -1 ; the process is: adding oil-filled milk polybutadiene rubber alone or adding the invention Modified rubber masterbatch, oil-filled latex polystyrene-butadiene rubber raw rubber, carbon black and other additives (sulfur, accelerator, except), put down the top plug, and mix for 3min. Discharge (temperature between 150 ⁇ 160 ° C).
  • the crosslinking assistant trisylhydrin propane triacrylate was added in an amount of 3% by weight of the nitrile latex, and the irradiation was carried out.
  • the irradiation dose was 3.0 Mrad, and the radiation-crosslinked nitrile rubber latex was obtained.
  • the average particle diameter of the irradiated crosslinked nitrile rubber particles in the latex was 100 nm, and the gel content was 91%.
  • the irradiated cross-linked nitrile rubber latex is added to the uncrosslinked milk polybutadiene latex SBR1502 according to a certain solid content ratio, wherein the irradiation of the nitrile rubber leg solid content and the untreated
  • the emulsion weight ratio of the emulsion of the emulsion was 50:50.
  • the composition of the coagulant solution is the same as in Table 4. 2.
  • the modified rubber masterbatch A obtained above is used as a masterbatch, and is added to a block of raw rubber (oil-filled latex polystyrene-butadiene rubber SBR1712) to be kneaded to obtain a rubber compound, and the formulation is composed of a weight.
  • the parts are shown in Table 5.
  • the preparation and vulcanization method of the rubber compound are as described above.
  • the vulcanized rubber samples were then made into standard splines and tested for various mechanical properties. The results are shown in Table 6. Examples 5 to 6
  • the preparation of the irradiated crosslinked nitrile rubber latex and the latex mixing and coagulation were carried out in the same manner as in Example 3 except that the solid content of the nitrile rubber latex after crosslinking and the uncrosslinked emulsion polybutadiene rubber latex were irradiated.
  • the solid content weight ratio was changed to 80:20 to obtain a solid modified rubber master batch B.
  • the modified rubber masterbatch B obtained above is used as a masterbatch, and is added to a block of raw rubber (oil-filled latex polystyrene-butadiene rubber SBR1712) to be kneaded to obtain a rubber compound, and the formulation is composed of a weight.
  • the parts are shown in Table 5.
  • the preparation and vulcanization method of the rubber compound are as described above.
  • the vulcanized rubber samples were then made into standard splines and tested for various mechanical properties. The results are shown in Table 6.
  • a simple oil-filled emulsion polystyrene-butadiene rubber raw rubber (oil-filled emulsion polystyrene-butadiene rubber SBR1712) was subjected to the same kneading and vulcanization process as in the second step of Example 3, and kneaded and vulcanized.
  • the composition of the compound with the compound is shown in Table 5.
  • the properties of vulcanized rubber are shown in Table 6.
  • the rolling resistance index, the abrasion index, and the wet skid index of the rubberized composite of the present invention can be simultaneously improved, and the effect is remarkable, so that the prepared vulcanized rubber not only has a low rolling property. Resistance and excellent wet skid resistance with excellent wear resistance.
  • the reason for this is that the irradiated crosslinked butadiene rubber particles having a crosslinked structure are dispersed in a continuous phase styrene-butadiene rubber matrix at a fine particle diameter of 50 to 200 nm. This property of the rubber composition of the present invention is particularly suitable for use as a tread rubber for automobiles.
  • Milk polybutadiene ⁇ J ⁇ milk SBR1502 solid content 20 wt%, combined with styrene content 23 wt%, Mooney viscosity 50, produced by Qilu Petrochemical Company rubber plant.
  • Polybutadiene rubber Blocky raw rubber, grade: BR9000, produced by Sinopec Yanshan Petrochemical Company.
  • Nitrile rubber milk The grade is nitrile -26, produced by Zhaoyuan Tianyuan Chemical Co., Ltd.
  • Carbon black 234 Tianjin Dolphin Carbon Black Co., Ltd.
  • Accelerator TBBS N-tert-butyl-2-benzothiazole hypoxanthine, Zhengzhou Jinshan Chemical Plant Calcium Chloride: Commercially available
  • the coagulant solution was prepared according to the formulation of Table 7, and then added to the coagulant solution according to the same amount of the latex as the coagulant. After stirring for 15 minutes, it was filtered, washed and dried to obtain a solid rubber band. share).
  • Table 7 is the parts by weight Preparation of rubber compound and method of vulcanization:
  • the crosslinking assistant trisylhydrin propane triacrylate was added in an amount of 3% by weight of the nitrile latex, and the irradiation was carried out.
  • the irradiation dose was 3.0 Mrad, and the radiation-crosslinked nitrile rubber latex was obtained.
  • the average particle diameter of the irradiated crosslinked nitrile rubber particles in the latex was 100 nm, and the gel content was 91%.
  • the irradiated cross-linked nitrile rubber latex is added to the uncrosslinked milk polybutadiene latex SBR1502 according to a certain solid content ratio, wherein the irradiation of the nitrile rubber leg solid content and the untreated
  • the weight ratio of the emulsion of the emulsion to the emulsion was 80:20.
  • the solidified modified rubber master batch was obtained by coagulation according to the previous method.
  • the composition of the coagulant solution is the same as in Table 7.
  • the modified rubber masterbatch obtained above is used as a masterbatch, and is added to a block of raw rubber (polybutan rubber BR9000) for mixing with other related additives to obtain a rubber compound, and the formulation thereof is in parts by weight. See Table 8, the preparation of the rubber compound and the vulcanization method are as described above. Then, the vulcanized rubber samples were made into standard splines, and various mechanical properties were tested. The results are shown in Table 9. Comparative example 3
  • the simple polybutadiene rubber raw rubber (polybutadiene rubber BR9000) was subjected to the same kneading and vulcanization process as in the second step of Example 7, and kneaded and vulcanized.
  • the composition of the compound with the compound is shown in Table 8.
  • the properties of vulcanized rubber are shown in Table 9.
  • a fine particle size of 200 nm ⁇ a continuous phase of polybutadiene rubber.
  • This property of the rubber composition of the present invention is particularly suitable for use as a tread rubber for automobiles.
  • other additives are added to adjust the overall comprehensive performance of the rubber composition, thereby providing more room for adjustment of the tread tape for preparing different performance requirements.
  • Milk polybutadiene ⁇ J ⁇ milk SBR1502 solid content 20 wt%, combined with styrene content 23 wt%, Mooney viscosity 50, produced by Qilu Petrochemical Company rubber plant.
  • Solution polymerization method prepared by solution polymerization method: block raw rubber, grade: T2000R, produced by Shanghai PetroChina Shanghai Gaoqiao Petrochemical Company.
  • Nitrile rubber milk The grade is nitrile -26, produced by Zhaoyuan Tianyuan Chemical Co., Ltd.
  • Carbon black 234 Tianjin Dolphin Carbon Black Co., Ltd.
  • Accelerator TBBS N-tert-butyl-2-benzothiazole hypoxanthine, Zhengzhou Jinshan Chemical Plant Calcium Chloride: Commercially available
  • the coagulant solution was prepared according to the formulation of Table 10, and then added to the coagulant solution according to the same amount of rubber latex as the coagulant. After stirring for 15 minutes, it was filtered, washed, and dried to obtain a solid rubber stock. ).
  • Table 10 is the parts by weight of the mixture and the method of vulcanization:
  • the crosslinking assistant trisylhydrin propane triacrylate was added in an amount of 3% by weight of the nitrile latex, and the irradiation was carried out.
  • the irradiation dose was 3.0 Mrad, and the radiation-crosslinked nitrile rubber latex was obtained.
  • the average particle diameter of the irradiated crosslinked nitrile rubber particles in the latex was 100 nm, and the gel content was 91%.
  • the irradiated cross-linked nitrile rubber latex is added to the uncrosslinked according to a certain solid content ratio.
  • the weight ratio of the nitrile rubber leg solid content of the irradiation and the uncrosslinked milk polybutadiene rubber latex was 80:20.
  • the solidified modified rubber component 1 was obtained by coagulation according to the previous method.
  • the composition of the coagulant solution is the same as that of Table 10.
  • the modified rubber component obtained above is used as a masterbatch, and is added to a block of raw rubber (solubilized styrene-butadiene rubber T2000R) for mixing with other related additives to obtain a rubber compound, and the formulation thereof is in parts by weight. See Table 11, the preparation of the rubber compound and the vulcanization method are as described above. Then, the vulcanized rubber samples were made into standard splines, and various mechanical properties were tested. The results are shown in Table 12. Comparative example 4
  • the purely solution-polymerized styrene-butadiene rubber (T2000R) was mixed and vulcanized in the same mixing and vulcanization process as in the second step of Example 8.
  • the composition of the compound with the compound is shown in Table 11.
  • the properties of vulcanized rubber are shown in Table 12.
  • Rolling resistance refers to 100 100
  • the solution of styrene-butadiene rubber itself is characterized by good rolling resistance.
  • the rubber composition of the present invention can improve the wear index and resistance while maintaining the low rolling resistance of the solution-polymerized styrene-butadiene rubber itself.
  • the slippery index makes the prepared vulcanizate not only have low rolling resistance and excellent wet skid resistance, but also has excellent wear resistance, which is caused by irradiation of crosslinked crosslinked nitrile rubber particles.
  • the fine particle diameter of 50 to 200 nm is dispersed in the continuous phase of the solution-polymerized styrene-butadiene rubber matrix.
  • This property of the rubber composition of the present invention is particularly suitable for use as a tread rubber for automobiles. It is also possible to add other auxiliaries to adjust the overall overall performance of the rubber composition according to the specific requirements of the three parameters in actual application, thereby providing more room for adjustment of tread tapes for different performance requirements.

Abstract

一种改性橡胶母料及制法和由其制备的橡胶组合物及其制备方法和其硫化胶。所述改性橡胶组分包含未交联橡胶和分散在其中的具有交联结构的橡胶粒子;其中具有交联结构的橡胶粒子为合成橡胶粒子或/和天然橡胶粒子,平均粒径为20-500nm,凝胶含量为60%重量或更高;其中未交联橡胶为丁苯橡胶;所述具有交联结构的橡胶粒子与未交联橡胶的重量比为大于20:80,小于或等于80:20。所述橡胶组合物包含有共混的改性橡胶组分和基础橡胶;以基础橡胶为100重量份计,改性橡胶组分为1至70份;所述橡胶组合物的硫化胶不仅具有较低的滚动阻力和优异的耐湿滑性,同时具有优异的耐磨性,可以用于制备高性能汽车胎面胶。

Description

Figure imgf000003_0001
的制备方法 技术领域
本发明涉及橡胶领域, 进一步地讲, 涉及一种改性橡胶母料和制法, 及 由改性橡胶母料改性的橡胶组合物及其制备方法和其硫化胶。 背景技术
汽车越来越成为现代生活不可或缺的工具, 而汽车所用的动力差 来自 于石油, 石油资源是有限的, 同时汽车工业的快速 ^ϋ Ι也面临二氧化碳排放 减量压力, 如何降低汽车燃油消耗变得越来越迫切。 降低燃油消耗, 不仅可 以降低汽车运行成本, 而且可以减少二氧化碳排放量和緩解石油资源的紧张 状况。 汽车燃油消耗除了受汽车自身设计因素影响外, 轮胎滚动阻力也是重 要因素之一,轮胎滚动阻力燃油消耗占汽车燃油消耗的 14 ~ 17%,轮胎滚动 阻力每降低 10%, 通常可以降低燃油消耗 1 ~ 2%。 因此, 降低轮胎滚动阻 力被作为降低燃油消耗的重要措施之一。
但是在降低轮胎胶料(主要 面胶)滚动阻力研究中遇到了 4 手的 问题。 即滚动阻力、 湿滑性能、 耐磨性能相互矛盾的所谓的 "魔三角"问题。 简单的增加软化剂用量, 可以提高轮胎的抗湿滑性, 但其耐磨性降低和滚动 阻力增加。 提高补强填料(炭黑或白炭黑)的用量, 可以在一定程度上降低 滚动阻力, 却使补强填料在胶料中 m^^t均匀, 并使抗湿滑性降低。 加大 硫化剂的用量, 即提高交联密度, 和增加补强填料用量的效果一样, 降低滚 动阻力同时使抗湿滑性变差。 为了实现三方面性能的平衡, 除了对轮胎结构 设计进行优化外, 国内外还对胶料(以胎面胶为主)配方进行了广泛' ^的 研究。 一方面合成适用的橡胶原料(如溶聚丁苯橡胶 SSBR、 反式聚异戊二 烯 TPI、丁二烯-异戊二烯-苯乙烯集成橡胶 SIBR、 高乙烯基顺丁橡胶 HVBR 等), 另一方面着手寻求具有较好综合性能的改性剂和实用配方。 在配方研 究中已获得了一些进展, 比较有代表性的是: 溶聚丁苯橡胶(SSBR ) 等与 炭黑和白炭黑并用或倒易 (反转)炭黑体系, 体系特点是主配方基本不变, 只是在补强填料上有所不同, 容易在工业上实现; 其缺点是需要使用较多的 ^偶联剂且炼胶时设备负荷大, 硫化胶的耐磨性也不理想。
采用直接聚合方法或过氧化物等化学交联方法制备的橡胶凝胶在配方 适当时, 可以改善硫化胶的性能。 例如, 欧洲专利 EP405216 和德国专利 DE4220563 中分别报道了在橡股组合物中分别加人氯丁橡股凝股和顺丁橡 胶凝胶来提高硫化胶的耐磨性和疲劳温升, 但是损失了耐湿滑性。
所以艮多专利开始采用改性的橡胶凝胶来改善橡胶硫化胶的性能, 例如 美国专利 US6184296使用经过表面改性的顺丁和丁苯橡胶凝胶(凝胶中胶乳 粒子溶胀指数 4 ~ 5, 粒径 60 ~ 450nm ), 使天然橡胶 ( R )配方体系硫化胶 的滚动阻力降低, 且强力性能未受影响。
美国专利 US6133364中, 把氯曱差 乙烯接枝到丁^ ^胶^ 面上, 然后将其用于 NR配方体系中,使硫化胶的滚动阻力降低,而抗湿滑性提高。
美国专利 US6207757 用氯曱基苯乙烯改性的丁苯橡胶皿达到了降低 NR配方体系硫化胶滚动阻力的作用, 同时提高了轮胎的牵引性能和耐用性。
美国专利 US6242534把含羧基和氨基的丁苯橡胶凝胶一并用于 NR配方 体系, 不仅降低了体系硫化胶的滚动阻力, 提高了抗湿滑性, 而且明显提高 了定伸应力。
欧洲专利 EP1431075用丁苯橡胶凝胶和增塑淀粉来改善丁苯橡胶 ( SBR ) 与顺丁橡胶(BR )并用的白炭黑体系的性能, 结果耐磨性得到了改进, 滚动 阻力降低, 疏化股的比重也较小。
美国专利 US6699935 用共聚改性丁苯橡胶凝股使改性丁苯橡胶配方体 系具有低滚动阻力兼有出色的抗湿滑性与耐磨性。
上述专利文献提到的橡胶凝胶全部采用化学交联方法交联, 这种方法需 吏用价格较高的交联单体且能耗较大, 并且主要涉及天然橡胶配方体系或 丁^^胶的白炭黑体系及改性丁^ ^胶配方体系。 而且重要的是必须将交联 后得到的橡胶凝胶在进行改性后才可以达到滚动阻力、 抗湿滑性与耐磨性的 同时提高。 而且虽然在这些专利中有报道橡胶皿的粒径, 但是当这些橡胶 皿^:到硫化胶中时, 能否还能达到最初级粒径的分散, 能否真正发挥纳 米级橡胶皿的改性作用, 没有在任何专利中报道。 发明内容
针对现有技术的问题, 本发明的目的之一是提供一种改性橡胶母料, 也 可称为改性橡胶组分。 由该母料制备的橡胶组合物的硫化胶不仅具有较低的 滚动阻力和优异的耐湿滑性, 同时具有优异的耐磨性, 可以作为优良的汽车 胎面胶使用。
本发明的另一个目的是提供所述改性橡胶母料的制法。
本发明的再一个目的是提供包含有所述改性橡胶母料的橡胶组合物。 本发明的第四个目的是提供所述橡^ a合物的制备方法。
本发明的第五个目的是提供所述橡胶组合物的硫化胶。
本发明进一步涉及如下实施方案:
1、 一种改性橡胶母料, 包含未交联橡胶和^ 其中的具有交联结构 的橡胶粒子;其中具有交联结构的橡胶粒子为合成橡胶粒子或 /和天然橡胶粒 子, 平均粒径为 20 ~ 500nm, 优选 50 ~ 200nm, 更优选 70~200nm,
量为 60%重量或更高, 优选为 75%重量或更高; 其中未交联橡胶为丁苯橡 胶; 所述具有交联结构的橡胶粒子与未交联橡胶的重量比为大于 20: 80, 小 于或等于 80: 20。
2、 根据实施方案 1 所述的改性橡胶母料, 其特征在于所述具有交联结 构的橡胶粒子为以下任何一种或几种: 天然橡胶粒子、 丁苯橡胶粒子、 羧基 丁苯橡胶粒子、 丁腈橡胶粒子、 羧基丁腈橡胶粒子、 氯丁橡胶粒子、 聚丁二 烯橡胶粒子、 硅橡胶粒子、 丙烯酸酯橡胶粒子、 丁苯吡橡胶粒子, 优选以下 任何一种或几种: 丁腈橡股粒子、 丁苯吡橡胶粒子、 丁苯橡胶粒子、 羧基丁
^^胶粒子,更优选以下^ 何一种或几种:丁苯吡橡胶粒子、丁腈橡胶粒子, 更优选丁腈橡胶粒子。
3、 根据实施方案 1或 2所述的改性橡胶母料, 其特征在于所述具有交 联结构的橡胶粒子为均相结构。
4、 根据实施方案 1 ~ 3之任一项所述的改性橡胶母料, 其特征在于所述 具有交联结构的橡胶粒子与未交联橡胶的重量比为 30: 70-80: 20, 优选为 40: 60-80: 20。
5、 根据实施方案 1 ~ 4之任一项所述的改性橡胶母料, 其特征在于所述 改性橡胶母料由包括将未交联橡胶胶乳与具有交联结构的橡胶粒子的胶乳 在内的组分混合均匀后凝并而得; 其中具有交联结构的橡胶粒子的胶乳为经 过辐照交^得到的橡皿乳。
6、一种才艮据实施方案 1至 5之任一项所述的改性橡胶母料的制备方法, 包括以下步骤:
( 1 )将合成橡胶或 /和天然橡胶胶乳经过辐照交联, 使胶乳中的合成橡 胶或 /和天然橡胶粒子具有交联结构, 达到所述凝胶含量, 并使胶乳中的合成 橡胶或 /和天然橡胶粒子固定在所述平均粒径范围内;
( 2 )然后按所述具有交联结构的橡胶粒子与所述未交联橡胶的重量比 计,取上述辐照交联的合成橡胶或 /和天然橡胶胶乳与所述未交联橡胶的胶乳 进行混合至均匀;
( 3 )将以上所得混合胶乳进行共凝并得所述改性橡胶母料。
7、 根据实施方案 6所述的制备方法, 其特征在于所述合成橡胶或 /和天 然橡胶胶乳是以下^ ί壬何一种或几种: 天然橡胶胶乳、 丁苯橡胶胶乳、 幾羞丁 ^^皿乳、 丁腈橡胶胶乳、 羧基丁腈橡胶胶乳、 氯丁橡胶胶乳、 聚丁二烯 橡胶胶乳、 硅橡胶胶乳或丙烯酸酯橡胶胶乳、 丁苯吡橡胶胶乳等, 优选以下 任何一种或几种: 丁腈橡胶股乳、 丁苯吡橡胶胶乳、 丁苯橡胶胶乳、 羧基丁
^^皿乳,更优选以下任何一种或几种:丁苯吡橡胶胶乳、丁腈橡胶胶乳, 更优选丁腈橡腿乳。
8、 一种橡胶组合物, 包含有共混的实施方案 1至 5之任一项所述的改 性橡胶母料和^ eli橡胶; 以^ eli橡胶为 loo重量份计, 所述改性橡胶母料为
1~70重量份, 优选 1~40重量份, 更优选 1~30重量份。
9、 根据实施方案 8所述的橡胶组合物, 其特征在于所述^橡胶为以 下 4壬何一种或几种: 天然橡胶、 改性天然橡胶、 合成橡胶; 优选为以下任何 一种或几种: 天然橡胶、 乳液聚合方法(乳聚法)制备的苯乙烯 /丁二烯共 聚物或其充油产品; 还可以是溶液聚合方法(溶聚法)制备的苯乙烯 /丁二 烯共聚物或其充油产品; 现有技术中以丁二烯为单体通过任何聚合方法制备 的任何结构的聚丁二烯橡胶或其充油产品等, 更优选为以下任何一种或几种: 乳液聚合方法(乳聚法)制备的苯乙烯 /丁二烯共聚物或其充油产品; 还可 以是溶液聚合方法(溶聚法)制备的苯乙烯 /丁二烯共聚物或其充油产品; 现有技术中以丁二烯为单体通过任何聚合方法制备的任何结构的聚丁二烯 橡胶或其充油产品等。
10、 一种根据实施方案 8或 9所述的橡胶组合物的制备方法, 包括按所 述量将所述改性橡胶母料和所述^ ί橡胶混炼得到橡胶组合物。
11、根据实施方案 10所述的制备方法,其特征在于所述改性橡胶母料的 制备方法包括以下步骤:
( 1 )将合成橡胶或 /和天然橡胶胶乳经过辐照交联, 使胶乳中的合成橡 胶或 /和天然橡胶粒子具有交联结构, 达到所述凝胶含量, 并使胶乳中的合成 橡胶或 /和天然橡胶粒子固定在所述平均粒径范围内;
( 2 )然后按所述具有交联结构的橡胶粒子与所述未交联橡胶的重量比 计,取上述辐照交联的合成橡胶或 /和天然橡胶胶乳与所述未交联橡胶的胶乳 进行混合至均匀;
( 3 )将以上所得混合胶乳进行共凝并得所述改性橡胶母料。
12、 一种根据实施方案 8或 9所述橡胶组合物制备的硫化胶。 一、 关于改性橡胶母料 本申请人于 2000年 9月 18日提交的国际专利申请 WO01/40356 (优先权 曰 1999年 12月 3曰 )以 申请人于 2001年 6月 15曰递交的国际专利申 请 WO 01/98395 (优先权日 2000年 6月 15日)中公开了一种全硫化粉末橡 胶。 提出当采用辐照方法交联橡皿乳后, 由于辐照交联使得橡皿乳中的 胶乳粒子(橡胶粒子)达到一定的凝胶含量, 其胶乳粒子的粒径固定下来, 不会在之后的干燥过程中粘连或凝并。 发明 研究中发现, 将这种辐照交 联后的橡胶胶乳和未交联的丁苯橡胶胶乳混合, 之后共凝并得到一种交联的 橡胶粒子改性丁苯橡胶的橡胶组合物。 其中由于辐照交联的具有交联结构的 橡胶粒子之间不会粘连和凝并, 而普通的未交联丁苯橡胶胶乳的胶乳粒子会 凝并, 因此具有交联结构的橡胶粒子便会以其原始粒子的粒径^ 未交联 的丁^ ^皿乳凝并后得到的生^^体中, 而且^:均匀程度要比直接将全 硫化粉末橡胶与生胶混炼得到的混合物中好得多。 由此得到一种改性橡胶母 料。
将该改性橡胶母料作为固体母胶,再和未交联的块状橡胶通过密炼机、双 辊研磨机、 螺杆挤出机等共混工艺得到混炼胶。 如此得到的混炼胶, 也可以 保证辐照交联的具有交联结构的橡胶粒子在未交联的橡胶基体中达到所述 的粒径范围内的分散状况。 在此组合物中再加入常用的橡胶加工助剂混炼、 硫化后得到硫化胶。 由于辐照交联后的橡胶粒子已经具有交联结构, 不需要 考虑分^ f的硫化, 这样就解决了不同橡胶组成的组合物的共硫化问题; 同 时辐照交联的具有交联结构的橡胶粒子依然以非常小的原始粒径非常均匀 地^ 橡胶为基体的硫化橡胶中, 所以最终得到的硫化胶不仅具有较低的 滚动阻力和优异的耐湿滑性, 同时具有优异的耐磨性。
具体来讲, 本发明的一种改性橡胶母料, 包含未交联橡胶和分散在其中 的具有交联结构的橡胶粒子。 未交联橡胶为连续相, 具有交联结构的橡胶粒 子为分 ^ f。 所述具有交联结构的橡胶粒子与未交联橡胶的重量比大于 20 : 80,小于或等于 80: 20;优选重量比为 30: 70-80: 20,更优选为 40: 60-80 : 20。
所述具有交联结构的橡胶粒子为合成橡胶粒子或 /和天然橡胶粒子,例如 可以是以下任何一种或几种: 天然橡胶粒子、 丁苯橡胶粒子、 羧基丁苯橡胶 粒子、 丁腈橡胶粒子、 羧基丁腈橡胶粒子、 氯丁橡胶粒子、 聚丁二烯橡胶粒 子、 硅橡胶粒子或丙烯酸酯橡胶粒子、 丁苯吡橡胶粒子等, 优选以下任何一 种或几种: 丁腈橡胶粒子、 丁苯吡橡胶粒子、 丁苯橡胶粒子、 羧基丁苯橡胶 粒子, 更优选以下任何一种或几种: 丁苯吡橡胶粒子、 丁腈橡胶粒子, 更优 选丁腈橡胶粒子。 平均粒径为 20 ~ 500nm, 优选为 50至 200nm, 更优选 70 至 200nm; 凝胶含量为 60%重量或更高, 优选为 75%重量或更高, 优选为 80%重量或更高。 以上所述改性橡胶母料中具有交联结构的橡胶粒子为均相 结构。 而且不进行任何接枝改性、 表面改性。 所述未交联橡胶为现有技术中 各种丁苯橡胶,优选现有技术中的乳聚丁苯橡胶,即乳液聚合方法(乳聚法) 制备的苯乙烯 /丁二烯共聚物。
本发明所述的改性橡胶母料的制法, 是包括将未交联橡胶胶乳与具有交 联结构的橡胶粒子的胶乳在内的组分混合均匀后凝并而得: 其中具有交联结 构的橡胶粒子的胶乳为经过辐照交联后得到的橡胶胶乳。 具体地讲, 所述改性橡胶母料的制法, 包括以下步骤:
( 1 )将橡胶胶乳经过辐照交联, 使胶乳中的橡胶粒子具有交联结构, 达到所述皿含量, 并^ ^乳中的橡股粒子固定在所述平均粒径范围内;
( 2 )然后按所述具有交联结构的橡胶粒子与所述未交联橡胶的重量比 计, 取上述辐照交联的橡胶胶乳与所述未交联橡胶的胶乳进行混合至均匀;
( 3 )将以上所得混合胶乳进行共凝并得所述改性橡胶母料 以上所述的改性橡胶母料的制备方法, 其中未交联橡胶的胶乳为丁苯橡 皿乳。 所述丁^^皿乳为现有技术中常见的合成橡皿乳, 包括现有技 术中乳液聚合方法直接制备的乳聚丁苯胶乳和任何现有方法制备的将丁苯 块;^乳化后得到的胶乳; 优选为现有技术中乳液聚合方法直接制备的乳聚 丁苯胶乳。辐照交联之前的橡胶胶乳可以是天然橡胶或 /和现有合成技术制备 的合成橡胶胶乳, 例如可以是以下任何一种或几种: 天然橡胶胶乳、 丁苯橡 皿乳、 羧基丁苯橡胶胶乳、 丁腈橡胶胶乳、 羧基丁腈橡胶胶乳、 氯丁橡胶 胶乳、 聚丁二烯橡胶胶乳、 硅橡胶胶乳或丙烯酸酯橡胶胶乳、 丁苯吡橡胶胶 乳等, 优选以下任何一种或几种: 丁腈橡胶胶乳、 丁苯吡橡胶胶乳、 丁苯橡 皿乳、羧基丁苯橡胶胶乳,更优选以下任何一种或几种:丁苯吡橡胶胶乳、 丁腈橡胶胶乳, 更优选丁腈橡胶胶乳。 其中辐照交联橡皿乳的固含量与丁
^^皿乳的固含量的重量比大于 20: 80, 小于或等于 80: 20; 优选重量 比为 30: 70-80: 20, 更优选为 40: 60-80: 20。
以上所述步骤(1 ) 中橡胶胶乳的辐照交联采自按照国际专利申请 WO01/40356 (优先权日 1999年 12月 3 日)所公开的全硫化粉末橡胶的制 备方法中相同的辐照交联橡胶胶乳的方法。 所得的辐照交联后的橡胶胶乳也 同 WO01/40356中辐照后未干燥之前的橡 乳。
具体来讲, 在橡胶胶乳可以不使用交联助剂, 也可以使用交联助剂。 所 用的交联助剂选自单官能团交联助剂、 二官能团交联助剂、 三官能团交联助 剂、 四官能团交联助剂或多官能团交联助剂及其任意组合。 所述的单官能团 交联助剂的实例包括(但不限于): (曱基) 丙烯酸辛酯、 (曱基) 丙烯酸异 辛酯、(曱基)丙烯酸缩水甘油酯; 所述的二官能团交联助剂的实例包括(但 不限于): 1, 4-丁二醇二(曱基)丙烯酸酯、 1, 6-己二醇二(曱基)丙烯酸 酯、 二乙二醇二(曱基) 丙烯酸酯、 三乙二醇二(曱基) 丙烯酸酯、 新戊二 醇二(曱基)丙烯酸酯、 二乙烯基苯; 所述的三官能团交联助剂的实例包括 (但不限于): 三羟曱基丙烷三(曱基) 丙烯酸酯、 季戊四醇三(曱基) 丙 烯酸酯; 所述的四官能团交联助剂的实例包括(但不限于): 季戊四醇四(曱 基) 丙烯酸酯、 乙氧化季戊四醇四(曱基) 丙烯酸酯; 所述的多官能团交联 助剂的实例包括(但不限于): 二季戊四醇五(曱基)丙烯酸酯。在本文中, " (曱基) 丙烯酸酯,,指丙烯酸酯或曱基丙烯酸酯。 这些交联助剂可以以任意 组合的方式使用, 只要它们在辐照下有助于交联即可。 以上所述交联助剂的加入量一般为胶乳中干胶重量的 0.1至 10%重量。 优选为 0.5至 9 %重量, 更优选为 0.7至 7 %重量。
所述辐照用的高能射线源选自钴源、紫外或高能电子加速器,优选钴源。 辐照的剂量可以为 0.1 ~ 30Mrad, 优选 0.5 ~ 20Mrad。 一般情况下, 辐照剂 量应使得橡胶胶乳辐照交联后的橡胶粒子凝胶含量达到 60%重量或更高,优 选 75%重量或更高, 更优选 80%重量或更高。
由此, 由该种辐照交联后的橡胶胶乳同通常的未交联的丁苯橡胶胶乳混 合后凝并而得的改性橡胶母料中, 分散在未交联丁苯生胶构成的连续相中的 橡胶粒子分^ f, 也具有 WO01/40356所公开的全硫化粉末橡胶的特性。 即 该种具有交联结构的橡胶粒子是凝胶含量达 60%重量或更高, 更优为 75% 重量或更高, 更优选 80%重量或更高的橡胶粒子。该种具有交联结构的橡胶 粒子中的每一个微粒都是均相的, 即单个微粒在组成上都是均质的, 在现有 显微技术的观察下 ^内没有发现分层、 分相等不均相的现象。 该具有交联 结构的橡胶粒子是通过将相应的橡胶胶乳辐照交联而将橡胶粒子粒径固定 的, 其粒径与原始橡胶胶乳中的胶乳粒子的粒径一致。 原始橡皿乳中的橡 胶粒子(胶乳粒子 )的平均粒径一般为 20至 500nm,优选为 50 至 200nm, 更优选 70至 200nm。 经过辐照交联后的具有交联结构的橡胶粒子的平均粒 径一般也为 20至 500nm, 优选为 50至 200nm, 更优选 70至 200nm。 由于 该方法中利用两种胶乳混合均匀而凝并, 辐照交联后的橡胶股乳中橡胶粒子 已经交联, 具有一定的凝胶含量, 不会在胶乳凝并过程中粘连或是凝并, 而 且可以在未交联的丁^^胶中^:均匀,因此,最后得到的改性橡胶母料中, 其中作为分^ |f的具有交联结构的橡胶粒子的平均粒径也在 20至 500nm, 优选为 50 至 200nm, 更优选 70至 200nm的范围内。
本发明按照所述重量比将未交联丁苯橡胶胶乳、 辐照交联后的橡胶胶乳 混合后共凝并, 制备得到所述改性橡胶母料。 其制备过程中, 在两种橡胶胶 乳混合步骤所用的混^殳备就是常用的混^殳备, 选自现有技术中的高速搅 拌机, 捏合机等等城混^:备。 胶乳的凝并 和设备就采用现有橡胶工 业中常用的胶乳凝并条件和设备。
二、 关于橡 合物 本申请人于 2000年 9月 18日提交的国际专利申请 WO01/40356 (优先权 曰 1999年 12月 3曰 )以 申请人于 2001年 6月 15曰递交的国际专利申 请 WO 01/98395 (优先权日 2000年 6月 15日)中公开了一种全硫化粉末橡 胶。 提出当采用辐照方法交联橡皿乳后, 由于辐照交联使得橡皿乳中的 胶乳粒子(橡胶粒子)达到一定的凝胶含量, 其胶乳粒子的粒径固定下来, 不会在之后的干燥过程中粘连或凝并。 发明 研究中发现, 将这种辐照交 联后的橡胶胶乳和未交联的丁苯橡胶胶乳混合, 之后共凝并得到一种交联的 橡胶粒子改性丁苯橡胶的橡胶组合物。 其中由于辐照交联的具有交联结构的 橡胶粒子之间不会粘连和凝并, 而普通的未交联丁苯橡胶胶乳的胶乳粒子会 凝并, 因此具有交联结构的橡胶粒子便会以其原始粒子的粒径^ 未交联 的丁^ ^皿乳凝并后得到的生^^体中, 而且^:均匀程度要比直接将全 硫化粉末橡胶与生胶混炼得到的混合物中好得多。
Figure imgf000011_0001
分。
将该改性橡胶组份作为固体母胶,再和未交联的块状橡胶通过密炼机、双 磨机、 螺杆挤出机等共混工艺得到混炼胶。 如此得到的混炼胶, 也可以 保证辐照交联的具有交联结构的橡胶粒子在未交联的橡胶基体中达到所述 的粒径范围内的分散状况。 在此组合物中再加入常用的橡胶加工助剂混炼、 硫化后得到硫化胶。 由于辐照交联后的橡胶粒子已经具有交联结构, 不需要 考虑分^ f的硫化, 这样就解决了不同橡胶组成的组合物的共硫化问题; 同 时辐照交联的具有交联结构的橡胶粒子依然以非常小的原始粒径非常均匀 地分散在以橡胶为基体的硫化橡胶中, 所以最终得到的硫化胶不仅具有较低 的滚动阻力和优异的耐湿滑性, 同时具有优异的耐磨性。
具体来讲, 本发明的一种橡胶组合物, 包含有共混的改性橡胶组分和基 础橡胶; 以基础橡胶为 100重量份计, 改性橡胶组分为 1至 70份, 优选为 1 至 40份, 更优选为 1至 30份。
所述 橡胶为以下 4ί何一种或几种: 天然橡胶、 改性天然橡胶、 合成 橡胶, 优选为现有技术中可以应用于制备汽车轮胎尤其是可以制备汽车胎面 胶的合成橡胶或天然橡胶, 例如可以为以下任何一种或几种: 天然橡胶、 乳 液聚合方法(乳聚法)制备的苯乙烯 /丁二烯共聚物或其充油产品; 还可以 是溶液聚合方法(溶聚法)制备的苯乙烯 /丁二烯共聚物或其充油产品; 现 有技术中以丁二烯为单体通过任何聚合方法制备的任何结构的聚丁二烯橡 胶或其充油产品等, 优选为以下任何一种或几种: 乳液聚合方法(乳聚法) 制备的苯乙烯 /丁二烯共聚物或其充油产品; 还可以是溶液聚合方法(溶聚 法)制备的苯乙烯 /丁二烯共聚物或其充油产品; 现有技术中以丁二烯为单 体通过任何聚合方法制备的任何结构的聚丁二烯橡胶或其充油产品等。 以上 所述的橡胶组合物的制备方法中, 所述改性橡胶组分包含未交联橡胶和分散 在其中的具有交联结构的橡胶粒子; 所述具有交联结构的橡胶粒子与未交联 橡胶的重量比为大于 20: 80, 小于或等于 80: 20; 优选重量比为 30: 70-80 : 20, 更优选为 40: 60-80: 20。
其中未交联橡胶为现有技术中的各种丁苯橡胶, 优选为现有技术中的乳 聚丁苯橡胶, 即乳液聚合方法(乳聚法)制备的苯乙烯 /丁二烯共聚物。
其中具有交联结构的橡胶粒子为合成橡胶粒子或 /和天然橡胶粒子,例如 可以是以下任何一种或几种: 天然橡胶粒子、 丁苯橡胶粒子、 羧基丁苯橡胶 粒子、 丁腈橡胶粒子、 羧基丁腈橡胶粒子、 氯丁橡胶粒子、 聚丁二烯橡胶粒 子、 硅橡胶粒子或丙烯酸酯橡胶粒子、 丁苯吡橡胶粒子等, 优选以下任何一 种或几种: 丁腈橡胶粒子、 丁苯吡橡胶粒子、 丁苯橡胶粒子、 羧基丁苯橡胶 粒子, 更优选以下任何一种或几种: 丁腈橡胶粒子、 丁苯吡橡胶粒子, 更优 选丁腈橡胶粒子。 平均粒径为 20 ~ 500nm, 优选为 50至 200nm, 更优选 70 至 200nm; 凝胶含量为 60%重量或更高, 优选为 75%重量或更高, 优选为 80%重量或更高。 所述改性橡胶组分中具有交联结构的橡胶粒子为均相结构, 不进行任何接枝改性、 表面改性。 本发明所述橡 合物中的改性橡^ i分的制备, 是包括将未交联橡胶 胶乳与具有交联结构的橡胶粒子的胶乳在内的组分混合后凝并而得: 其中具 有交联结构的橡胶粒子的胶乳为经过辐照交联后得到的橡胶胶乳。 具体地讲, 所述改性橡胶组分的制备方法, 包括以下步骤:
( 1 )将橡胶胶乳经过辐照交联, 使胶乳中的橡胶粒子具有交联结构, 达到所述皿含量, 并^ ^乳中的橡股粒子固定在所述平均粒径范围内;
( 2 )然后按所述具有交联结构的橡胶粒子与所述未交联橡胶的重量比 计, 取上述辐照交联的橡胶胶乳与未交联的丁苯橡胶胶乳进行混合至均匀;
( 3 )将以上所得混合胶乳进行共凝并得所述改性橡胶组分 以上所述的改性橡胶组分的制备方法, 其中未交联丁苯橡胶胶乳为现有 技术中常见的合成橡皿乳, 包括现有技术中乳液聚合方法直接制备的乳聚 丁苯胶乳和任何现有方法制备的丁苯块状胶乳化后得到的胶乳; 优选为现有 技术中乳液聚合方法直接制备的乳聚丁苯胶乳。 辐照交联之前的橡皿乳为 现有技术中常见的合成橡胶胶乳或 /和天然橡胶胶乳,例如可以是以下任何一 种或几种: 天然橡胶胶乳、 丁苯橡胶胶乳、 羧基丁苯橡胶胶乳、 丁腈橡胶胶 乳、 羧基丁腈橡胶胶乳、 氯丁橡胶胶乳、 聚丁二烯橡胶胶乳、 硅橡胶胶乳或 丙烯酸酯橡胶胶乳、 丁苯吡橡胶胶乳等, 优选以下任何一种或几种: 丁腈橡 皿乳、 丁苯吡橡皿乳、 丁^^皿乳、 丁^^皿乳, 更优选以下 任何一种或几种: 丁苯吡橡股股乳、 丁腈橡胶胶乳, 更优选丁腈橡胶胶乳。 其中辐照交联的橡胶股乳的固含量与丁^^皿乳的固含量的重量比为大 于 20: 80, 小于或等于 80: 20; 优选重量比为 30: 70-80: 20, 更优选为 40 : 60-80: 20。
以上所述步骤 (1 ) 中橡胶胶乳的辐照交联采自按照国际专利申请 WO01/40356 (优先权日 1999年 12月 3 日)所公开的全硫化粉末橡胶的制 备方法中相同的辐照交联橡胶胶乳的方法。 所得的辐照交联后的橡胶胶乳也 同 WO01/40356中辐照后未干燥之前的橡 乳。
具体来讲, 在橡胶胶乳可以不使用交联助剂, 也可以使用交联助剂。 所 用的交联助剂选自单官能团交联助剂、 二官能团交联助剂、 三官能团交联助 剂、 四官能团交联助剂或多官能团交联助剂及其任意组合。 所述的单官能团 交联助剂的实例包括(但不限于): (曱基) 丙烯酸辛酯、 (曱基) 丙烯酸异 辛酯、(曱基)丙烯酸缩水甘油酯; 所述的二官能团交联助剂的实例包括(但 不限于): 1, 4-丁二醇二(曱基)丙烯酸酯、 1, 6-己二醇二(曱基)丙烯酸 酯、 二乙二醇二(曱基) 丙烯酸酯、 三乙二醇二(曱基) 丙烯酸酯、 新戊二 醇二(曱基)丙烯酸酯、 二乙烯基苯; 所述的三官能团交联助剂的实例包括 (但不限于): 三羟曱基丙烷三(曱基) 丙烯酸酯、 季戊四醇三(曱基) 丙 烯酸酯; 所述的四官能团交联助剂的实例包括(但不限于): 季戊四醇四(曱 基) 丙烯酸酯、 乙氧化季戊四醇四(曱基) 丙烯酸酯; 所述的多官能团交联 助剂的实例包括(但不限于): 二季戊四醇五(曱基)丙烯酸酯。在本文中, " (曱基) 丙烯酸酯,,指丙烯酸酯或曱基丙烯酸酯。 这些交联助剂可以以任意 组合的方式使用, 只要它们在辐照下有助于交联即可。 以上所述交联助剂的加入量一般为胶乳中干胶重量的 0.1至 10%重量。 优选为 0.5至 9 %重量, 更优选为 0.7至 7 %重量。
所述辐照用的高能射线源选自钴源、紫外或高能电子加速器,优选钴源。 辐照的剂量可以为 0.1 ~ 30Mrad, 优选 0.5 ~ 20Mrad。 一般情况下, 辐照剂 量应使得橡胶胶乳辐照交联后的橡胶粒子凝胶含量达到 60%重量或更高,优 选 75%重量或更高, 更优选 80%重量或更高。
由此, 由该种辐照交联后的橡胶胶乳同通常的未交联的丁苯橡胶胶乳混 合后凝并而得的改性橡胶组分中, 分散在未交联生胶构成的连续相中的辐照 交联橡胶粒子分^ ,也具有 WO01/40356所公开的全硫化粉末橡胶的特性。 即该种具有交联结构的橡胶粒子是凝胶含量达 60%重量或更高, 优为 75% 重量或更高更优选为 80%或更高的橡胶粒子。该种具有交联结构的橡胶粒子 中的每一个微粒都是均相的, 即单个 ^在组成上都是均质的, 在现有显微 技术的观察下 ^内没有发现分层、 分相等不均相的现象。 该具有交联结构 的橡胶粒子是通过将相应的橡胶胶乳辐照交联而将橡胶粒子粒径固定的, 其 粒径与原始橡胶胶乳中的胶乳粒子的粒径一致。 原始橡胶胶乳中的橡胶粒子 (胶乳粒子)的平均粒径一般为 20至 500nm, 优选为 50至 200nm, 更优 选 70至 200nm。 经过辐照交联后的具有交联结构的橡胶粒子的平均粒径一 般也为 20至 500腿, 优选为 50至 200腿, 更优选 70至 200腿。 由于该方 法中利用两种股乳混合均匀而凝并, 辐照交联后的橡胶股乳中橡股粒子已经 交联, 具有一定的凝胶含量, 不会在胶乳凝并过程中粘连或是凝并, 而且可 以在未交联的丁苯橡胶中分散均匀, 因此, 最后得到的改性橡胶组分中, 其 中作为分^ 的具有交联结构的橡胶粒子的平均粒径也在 20至 500nm, 优 选为 50 至 200nm, 更优选 70至 200nm的范围内。
本发明按照所述重量比将未交联丁苯橡胶胶乳、 辐照交联后的橡胶胶乳 混合后共凝并, 制备得到所述改性橡胶组分。 其制备过程中, 在两种橡胶胶 乳混合步骤所用的混^殳备就是常用的混^殳备, 选自现有技术中的高速搅 拌机, 捏合机等等城混^:备。 胶乳的凝并 和设备就采用现有橡胶工 业中常用的胶乳凝并条件和设备。 本发明所述的橡胶组合物的制备包括: 先制备所述改性橡胶组分, 即将 橡胶胶乳采用辐照的方法交联, 使胶乳中的橡胶粒子具有交联结构, 然后将 辐照交联后的橡胶胶乳和与未交联的丁苯橡胶胶乳在常用混合设备上混合 后, 采用橡胶胶乳常用的凝并方法凝并得到所述改性橡胶组分; 然后再将该 改性橡 j^ a分作为固体母胶, 与其他橡胶常用助剂一起采用橡胶工业中常用 的橡胶混炼方法与未交联的块状基础橡胶, 进行混炼得到所述橡胶组合物。 具体来说, 本发明的橡胶组合物的制备方法, 包括以下步骤:
( 1 )将橡胶胶乳经过辐照交联, 使胶乳中的橡胶粒子具有交联结构, i^JiJ所述皿含量, 并^ ^乳中的橡胶粒子固定在所述平均粒径范围内, 如 在 20至 500nm, 优选为 50至 200nm, 更优选 70至 200nm的范围内;
( 2 )然后按所述具有交联结构的橡胶粒子与未交联丁苯橡胶的重量比 计, 取上述辐照交联的橡胶胶乳与未交联的丁苯橡胶胶乳进行混合至均匀; 其中橡皿乳的固含量与丁苯橡胶胶乳的固含量的重量比为大于 20: 80,小 于或等于 80: 20; 优选重量比为 30: 70-80: 20, 更优选为 40: 60-80: 20;
( 3 )将以上所得混合胶乳进行共凝并得所述改性橡胶组分;
( 4 )将上述所得改性橡胶组分按所述量和所述基础橡胶混炼得到橡胶 的组合物; 其中以^ el?橡胶为 loo重量 十, 改性橡 JK a分为 ι至 70份, 优选为 1至 40份, 更优选为 1至 30份。 本发明所述的橡^ a合物还可含有橡胶加工领域中常用的填充剂。 下述 黑、 白炭黑、金属氧化物、硅酸盐:碳酸盐、硫酸盐、氢氧化物、玻璃纤维、 或玻璃微珠等中一种或其混合物。其中所述金属氧化物优选氧化钛、氧化铝、 氧化镁、 氧化钙、 氧化钡和氧化锌等中的至少一种。 本发明的橡胶组合物中 还可以含有例如交联剂、 硫化促进剂、 抗氧化剂、 热稳定剂、 光稳定剂、 臭 氧稳定剂、 加工助剂、 增塑剂、 软化剂、 防粘连剂、 发泡剂、 染料、 颜料、 蜡、增量剂、有机酸、阻燃剂、和偶联剂等橡 工硫化过程中常用的助剂。 所用助剂用量均为常规用量, 或根据实际情况的要求进行调整。
橡胶块胶混炼的时候加入, 即通过橡胶通常的混炼工艺加入, 设备可采用橡 胶工业中常用的方法和常用混炼设备, 可以使用开炼机、 密炼机、 单螺杆挤 出 双螺軒桥出机等。 由本发明所述的橡胶组合物制备的硫化胶, 是将以上所述的本发明的橡 胶组合物采用橡胶领域常用的硫化体系及工艺进行混炼和硫化得到的硫化 胶。
本发明橡^ a合物制备硫化胶不受硫化体系的影响, 可在常规的^ 硫 化体系或非 * 硫化体系中硫化。 本发明橡^ a合物制备的硫化胶不受硫化 工艺的影响, 可以平板硫化、 注压硫化、 硫化罐硫化、 个体硫化; ML化、 共 熔盐硫化、 沸腾床硫化、 微波硫化以及高能射线硫化等。 用的方法和常用混炼设备, 可以使用开炼机、 密炼机、 单螺杆挤出机或双螺 杆挤出机等。
具体来讲, 如前所述本发明所述的改性橡胶组分的 态是: 所述的 未交联丁苯橡胶为连续相, 所述的具有交联结构的橡胶粒子为分^ f, 且以
20至 500nm的细小粒径分散。 由改性橡胶组分与基础橡胶混炼后得到的橡 胶组合物制得的硫化胶, 依然具有相同的 见结构, 即改性橡^ a分中的具 有交联结构的橡胶粒子仍然以 20至 500nm的细小粒径分 橡胶基体中。
在本发明橡^ i合物中的改性橡胶组分, 由于通过辐照交联使得橡胶胶 乳中的橡胶粒子以原始胶乳粒子的粒径固定下来, 所以在凝并过程中辐照交 联的橡胶粒子作为分 ^ f, 以 20至 500nm的细小粒径均匀分^ 作为连续 相的未交联丁苯橡胶中。 将此改性橡胶组分作为母胶与基础橡胶混炼, 得到 橡胶组合物, 再由该橡胶组合物制得的硫化胶, 依然具有相同的微观结构, 即改性橡胶组分中的具有交联结构的橡胶粒子仍然以 20至 500nm的细小粒 径分^ 橡^^体中。 具有这样的微观形态, 才可以使具有交联结构的橡胶 粒子发挥纳米效应, 同时解决了不同橡胶在硫化过程中存在的共硫化问题, 滑性, 同时具有优异的耐磨性, 可 作^高性能汽车胎面胶使用, 另外还可 以才艮据实际应用时对这三个参数的具体要求, 通过添加其他助剂来调节橡胶 组合物的总体综合性能, 从而给制备不同性能需求的汽车胎面胶带来更大的 调节余地。 本发明的橡胶组合物及其硫化胶的制备方法简单, 操作容易, 工艺条件 均为通常条件, 易于广泛应用。
具体实施方法:
下面用实施例进一步描述了本发明, 但是本发明的范围不受这些实施例 的限制。 本发明的范围由后附的权利要求书确定。
(一 ) 实施例中实验数据用以下仪器设备及测定方法测定:
( 1 )滚动阻力: 使用 RSS-II橡胶滚动阻力试验机(北京万汇一方科技 ^ Ι有限公司 )测定滚动功率损失。
在给定负荷下, 恒速运动的圆轮状橡胶试样与轮鼓密切接触作相对运动。 橡胶试样与轮鼓接触的表面在压力负荷下产生变形, 变形从开始接触点到中 间点逐渐增大; 再从中间点到离开点逐渐减少至零。 由于各种橡胶配方的粘 弹特性, 橡胶试样在开始接触点到中间点变形期间的合力将比中间点到离开 点复原期间的合力高, 这个与负荷力平行的力即为橡胶试样的功率损耗值 ( J/r )。 据此可以表征该橡胶配方的滚动阻力。
滚动阻力指数(%): 将纯橡胶的滚动阻力测定值为基数, 其它改性胶 的测定值占纯橡股滚动阻力测定值之百分数即为滚动阻力指数。
( 2 )耐磨性能测试: 按照 GB/T 1689-1998, 采用 WML-76型阿克隆磨 耗试验机测定硫化胶的磨耗值。
原理是: 将试样与砂轮在一定的倾斜角度和一定的负荷作用下进行摩擦, 测定一定里程的磨耗体积。 磨耗体积计算如下:
mrm2
V=
P
V—试样磨耗体积, cm3
m「试样磨损前质量, g
m2―试样磨损后盾量, g
p—试样密度, cm3
试样磨耗指数计算: vt
磨耗指数= X100%
vs-标准配方橡胶的磨耗体积。
¼--改性橡胶的磨耗体积。
磨耗指数(%): 将纯橡胶的磨耗体积测定值为基数, 其它改性胶的磨 耗体积测定值占纯橡股测定值的百分数即为磨耗指数。
( 3 )动态力学性能试验(测定湿滑): 采用美国 Rheometric Scientific 公司生产的 DMTA IV (动态机械热分析仪)测试, 试验条件为 ΙΟΗζ, 0.5% 应变, 升温速度 2。C/min。
胶料在湿表面上的摩擦与滞后损失有关,通常采用 0。C下的 tanS表征抗 湿滑性能。 0。C下的 tanS值越大,轮胎在湿路面上的牵引性能越好。
抗湿滑指数(%): 将纯橡胶的抗湿滑测定值 tanS为基数, 其它改性胶 的抗湿滑测定值占纯橡胶抗湿滑测定值的百分数即为抗湿滑指数。
( 4 )力学性能: 按有关标准要求测定。
( 5 ) 辐照交联橡胶胶乳的凝胶含量的测定: 将胶乳按照一定的条件进 行辐照交联后, 进行喷雾干燥, 得到全硫化粉末橡胶, 然后按照国际专利申 请 WO01/40356 (优先权日 1999年 12月 3日 ) 中公开的方法测定全硫化粉 末橡胶的皿含量, 就是该辐照交 ^橡皿乳的皿含量。
(二)改性橡胶母料及乳聚丁 j^a合物的实施例^比例
原料:
乳聚丁 ^ J^乳 SBR1502:固含量 20 wt %,结合苯乙烯含量 23 wt %, 门尼粘度 50, 齐鲁石化公司橡胶厂生产。
乳聚丁苯橡胶: 块状生胶, 牌号: SBR1500, 南通申华化学工业有限公 司生产。
丁腈橡皿乳: 牌号为丁腈 -26, 肇东市天源化工有 司生产。
炭黑: 234天津海豚炭黑有限公司
氧化锌: 市售 旨酸: 市售
硫磺: 临沂市罗庄化工厂
促进剂 TBBS: N-叔丁基 -2-苯并噻唑次黄酰胺, 郑州金山化工厂 氯化钙: 市售
淀粉: 市售
甘油: 市售
5%石碳酸液: 市售
股乳凝并方法:
按照表 1 的配方配置凝并剂溶液,然后按照与凝并剂溶 同重量的橡 皿乳加入到该凝并剂溶液中, 搅拌 15分钟后, 过滤、 洗涤、 干燥, 得到 固态橡股(生股)。
表 1
Figure imgf000019_0001
注: 表 1中均为重量份数 混炼胶的制备及硫化的方法:
一段工艺:
在 Banbury密炼机(英国 Farrel Bridge公司产品)中进行,容积 1.57L, 转子转速 80r.mii!-1; 其过程为: 单独加入乳聚丁苯橡胶生胶或者加入本发 明所述的改性橡胶组分、 乳聚丁苯橡胶生胶、 炭黑和其他助剂 (硫磺、 促进 剂、 除外)等, 放下上顶栓, 混炼 3min。 排胶(温度在 150 ~ 160。C;)。
工艺:
将上述一段混炼胶加入硫磺、 促进剂后在 XK-160型开炼机(上海橡胶 厂产品)上薄通六次,之后下片。然后在 160。C下按正硫化时间 T9。硫化, 然后将硫化橡胶样片制成标准样条, 进行各项力学性能测试, 其结果如表 3 所示。 混炼胶的配方见表 2, 单位是重量份数。 实施例 1
1、 改性橡 分的制备:
( 1 )辐照交联丁腈橡胶股乳的制备:
在固含量为 45%wt的丁腈橡皿乳(丁腈 -26 ) 中, 按丁腈胶乳固含量 的 3 %wt加入交联助剂三羟曱基丙烷三丙烯酸酯后, 进行辐照交联, 辐照剂 量为 3.0Mrad, 得到辐照交联的丁腈橡皿乳, 胶乳中辐照交联的丁腈橡胶 粒子的平均粒径 lOOnm, 凝胶含量为 91%。
( 2 )胶乳混合与凝并:
将辐照交联后的丁腈橡胶胶乳按照一定的固含量比例加入到未交联的 乳聚丁^^腿乳 SBR1502中,其中辐照交^ ^的丁腈橡腿乳固含量和未 交联的乳聚丁^^皿乳固含量重量比为 50:50。搅拌器中高速搅拌 15分钟 后, 按照前 乳凝并方法凝并得到固态的改性橡胶组分 A。 其中凝并剂溶 液的组成同表 1。
2、 乳聚丁 ^ j^ a合物及其硫化胶制备:
将上述所得改性橡胶组分 A作为母胶,并与其他相关助剂添加到块状生 胶(乳聚丁苯橡胶 SBR1500 )中进行混炼, 得到混炼胶, 其配方组成以重量 份数计见表 2, 混炼胶的制备及硫化方法同前所述。 然后将硫化橡胶样片制 成标准样条, 进行各项力学性能测试, 其结果如表 3所示。
实施例 2
1、 改性橡 分的制备:
按照和实施例 1相同的方法进行辐照交联丁腈橡胶胶乳的制备和胶乳混 合与凝并, 只是辐照交联后的丁腈橡胶胶乳固含量和未交联的乳聚丁苯橡胶 胶乳固含量重量比变为 80:20, 得到固态的改性橡^ ^分8。
2、 乳聚丁 ^ j^ a合物及其硫化胶制备:
将上述所得改性橡胶组分 B作为母胶,并与其他相关助剂添加到块状生 胶(乳聚丁苯橡胶 SBR1500 )中进行混炼, 得到混炼胶, 其配方组成以重量 份数计见表 2, 混炼胶的制备及硫化方法同前所述。 然后将硫化橡胶样片制 成标准样条, 进行各项力学性能测试, 其结果如表 3所示。
比较例 1
将单纯的乳聚丁^^胶生胶(乳聚丁^^胶 SBR1500 )采用同实施例 1 步骤 2中相同混炼及硫化工艺, 进行混炼和硫化。 具^^&合物的混炼胶 配方组成列于表 2。 硫化胶性能见表 3。
表 2 比较例和实施例配方
Figure imgf000021_0001
表 3比较例和实施例的主要性能
Figure imgf000021_0002
λ ^ 3结果可以看出, 采用本发明的橡胶组合物其硫化胶的滚动阻力指 数、 磨耗指数、 抗湿滑指数可以得到同时的提高, 使所制备的硫化胶不仅具 有较低的滚动阻力和优异的耐湿滑性, 同时具有优异的耐磨性, 其原因就是 辐照交联后的具有交联结构的丁腈橡胶粒子以 50至 200nm的细小粒径分散 在连续相的乳聚丁苯橡胶基体中。 本发明的橡胶组合物的这种特性特别适合 用作汽车用胎面胶。 由于本发明的橡胶组合物 "魔三角,,的三个参数都得到提 高, 可以根据实际应用时的对这三个参数的具体要求, 提过添加其他助剂来 调节橡胶组合物的总体综合性能, 从而给制备不同性能需求的胎面胶带来更 大的调节余地。
(三)改性橡胶母料及充油乳聚丁苯橡胶组合物实施例及对比例 原料:
乳聚丁 ^ J^乳 SBR1502:固含量 20 wt %,结合苯乙烯含量 23 wt %, 门尼粘度 50, 齐鲁石化公司橡胶厂生产。
充油乳聚丁^ ^胶: 充油块状生胶, 牌号: SBR1712, 中国石化齐鲁石 化分公司生产。
丁腈橡皿乳: 牌号为丁腈 -26, 肇东市天源化工有 司生产。
炭黑: 234天津海豚炭黑有限公司
氧化锌: 市售
旨酸: 市售
硫磺: 临沂市罗庄化工厂
促进剂 TBBS: N-叔丁基 -2-苯并噻唑次黄酰胺, 郑州金山化工厂 氯化钙: 市售
淀粉: 市售
甘油: 市售
5%石碳酸液: 市售
股乳凝并方法:
按照表 4 的配方配置凝并剂溶液,然后按照与凝并剂溶 同重量的橡 皿乳加入到该凝并剂溶液中, 搅拌 15分钟后, 过滤、 洗涤、 干燥, 得到 固态橡股(生股)。 表 4
Figure imgf000023_0001
注: 表 4中均为重量份数 混炼胶的制备及硫化的方法:
一段工艺:
在 Banbury密炼机(英国 Farrel Bridge公司产品)中进行,容积 1.57L, 转子转速 80r.mii!-1; 其过程为: 单独加入充油乳聚丁^^胶生胶或者加入 本发明所述的改性橡胶母料、 充油乳聚丁苯橡胶生胶、 炭黑和其他助剂 (硫 磺、促进剂、除外)等,放下上顶栓,混炼 3min。排胶(温度在 150 ~ 160°C )。
工艺:
将上述一段混炼胶加入硫磺、 促进剂后在 XK-160型开炼机(上海橡胶 厂产品)上薄通六次,之后下片。然后在 160。C下按正硫化时间 T9。硫化, 然后将硫化橡胶样片制成标准样条, 进行各项力学性能测试, 其结果如表 6 所示。 混炼胶的配方见表 5, 单位是重量份数。
实施例 3至 4
1、 改性橡胶母料的制备:
( 1 )辐照交联丁腈橡胶股乳的制备:
在固含量为 45%wt的丁腈橡皿乳(丁腈 -26 ) 中, 按丁腈胶乳固含量 的 3 %wt加入交联助剂三羟曱基丙烷三丙烯酸酯后, 进行辐照交联, 辐照剂 量为 3.0Mrad, 得到辐照交联的丁腈橡皿乳, 胶乳中辐照交联的丁腈橡胶 粒子的平均粒径 lOOnm, 凝胶含量为 91%。
( 2 )胶乳混合与凝并:
将辐照交联后的丁腈橡胶胶乳按照一定的固含量比例加入到未交联的 乳聚丁^^腿乳 SBR1502中,其中辐照交^ ^的丁腈橡腿乳固含量和未 交联的乳聚丁^^皿乳固含量重量比为 50:50。搅拌器中高速搅拌 15分钟 后, 按照前 乳凝并方法凝并得到固态的改性橡胶母料 A。 其中凝并剂溶 液的组成同表 4。 2、 充油乳聚丁^ j^ a合物及其硫化胶制备:
将上述所得改性橡胶母料 A作为母胶,并与其他相关助剂添加到块状生 胶(充油乳聚丁苯橡胶 SBR1712 )中进行混炼, 得到混炼胶, 其配方组成以 重量份数计见表 5, 混炼胶的制备及硫化方法同前所述。 然后将硫化橡胶样 片制成标准样条, 进行各项力学性能测试, 其结果如表 6所示。 实施例 5至 6
1、 改性橡胶母料的制备:
按照和实施例 3相同的方法进行辐照交联丁腈橡胶胶乳的制备和胶乳混 合与凝并, 只是辐照交联后的丁腈橡胶胶乳固含量和未交联的乳聚丁苯橡胶 胶乳固含量重量比变为 80:20, 得到固态的改性橡胶母料 B。
2、 充油乳聚丁^ j^ a合物及其硫化胶制备:
将上述所得改性橡胶母料 B作为母胶,并与其他相关助剂添加到块状生 胶(充油乳聚丁苯橡胶 SBR1712 )中进行混炼, 得到混炼胶, 其配方组成以 重量份数计见表 5, 混炼胶的制备及硫化方法同前所述。 然后将硫化橡胶样 片制成标准样条, 进行各项力学性能测试, 其结果如表 6所示。
比较例 2
将单纯的充油乳聚丁苯橡胶生胶 (充油乳聚丁苯橡胶 SBR1712 )采用同 实施例 3步骤 2中相同混炼及硫化工艺, 进行混炼和硫化。 具^^&合物 的混炼胶配方组成列于表 5。 硫化胶性能见表 6。
表 5 比较例和实施例配方 材料名称 比较例 2 实施例 3实施例 4实施例 5实施例 6
*SBR1712 100 100 100 100 100
改性橡胶母料 A 11 16
改性橡胶母料 B 7 10
3#炭黑 50 50 50 50 50
氧化锌 3 3 3 3 3
硬脂酸 1 1 1 1 1
1.75 1.75 1.75 1.75 1.75
TBBS 1 1 1 1 1 合计 156.75 156.75 156.75 156.75 156.75
表 6比较例和实施例的主要性能
Figure imgf000025_0001
结果可以看出, 采用本发明的橡胶 a合物其疏化胶的滚动阻力指 数、 磨耗指数、 抗湿滑指数可以同时得到改善, 而且效果明显, 使所制备的 硫化胶不仅具有较低的滚动阻力和优异的耐湿滑性, 同时具有优异的耐磨性。 其原因就是辐照交联后的具有交联结构的丁腈橡胶粒子以 50至 200nm的细 小粒径分散在连续相的丁苯橡胶基体中。 本发明的橡胶组合物的这种特性特 别适合用作汽车用胎面胶。 由于本发明的橡胶组合物"魔三角"的三个参数都 得到改善, 可以才艮据实际应用时的对这三个参数的具体要求, 提过添加其他 助剂来调节橡胶组合物的总体综合性能, 从而给制备不同性能需求的胎面胶 带来更大的调节余地。
(四)改性橡胶母料及聚丁二烯橡胶组合物实施例及对比例
原料:
乳聚丁 ^ J^乳 SBR1502:固含量 20 wt %,结合苯乙烯含量 23 wt %, 门尼粘度 50, 齐鲁石化公司橡胶厂生产。
聚丁二婦橡胶: 块状生胶, 牌号: BR9000, 中国石化燕山石化分公司生 产。
丁腈橡皿乳: 牌号为丁腈 -26, 肇东市天源化工有 司生产。
炭黑: 234天津海豚炭黑有限公司
氧化锌: 市售
旨酸: 市售
硫磺: 临沂市罗庄化工厂
促进剂 TBBS: N-叔丁基 -2-苯并噻唑次黄酰胺, 郑州金山化工厂 氯化钙: 市售
淀粉: 市售
甘油: 市售
5%石碳酸液: 市售 股乳凝并方法:
按照表 7 的配方配置凝并剂溶液,然后按照与凝并剂溶 同重量的橡 皿乳加入到该凝并剂溶液中, 搅拌 15分钟后, 过滤、 洗涤、 干燥, 得到 固态橡股(生股)。
表 7
Figure imgf000026_0001
注: 表 7中均为重量份数 混炼胶的制备及硫化的方法:
一段工艺:
在 Banbury密炼机(英国 Farrel Bridge公司产品)中进行,容积 1.57L, 转子转速 80r.mii!-1; 其过程为: 单独加入聚丁二烯橡胶生胶或者加入本发 明所述的改性橡胶母料、 聚丁二烯橡胶生胶、 炭黑和其他助剂 (硫磺、 促进 剂、 除外)等, 放下上顶栓, 混炼 3min。 排胶(温度在 150 ~ 160。C;)。
工艺:
将上述一段混炼胶加入硫磺、 促进剂后在 XK-160型开炼机(上海橡胶 厂产品)上薄通六次,之后下片。然后在 160。C下按正硫化时间 T9。硫化, 然后将硫化橡胶样片制成标准样条, 进行各项力学性能测试, 其结果如表 9 所示。 混炼胶的配方见表 8, 单位是重量份数。 实施例 7
1、 改性橡胶母料的制备:
( 1 )辐照交联丁腈橡胶胶乳的制备:
在固含量为 45%wt的丁腈橡皿乳(丁腈 -26 ) 中, 按丁腈胶乳固含量 的 3 %wt加入交联助剂三羟曱基丙烷三丙烯酸酯后, 进行辐照交联, 辐照剂 量为 3.0Mrad, 得到辐照交联的丁腈橡皿乳, 胶乳中辐照交联的丁腈橡胶 粒子的平均粒径 lOOnm, 凝胶含量为 91%。
( 2 )胶乳混合与凝并:
将辐照交联后的丁腈橡胶胶乳按照一定的固含量比例加入到未交联的 乳聚丁^^腿乳 SBR1502中,其中辐照交^ ^的丁腈橡腿乳固含量和未 交联的乳聚丁^^皿乳固含量重量比为 80:20。搅拌器中高速搅拌 15分钟 后, 按照前 ^^乳凝并方法凝并得到固态的改性橡胶母料。 其中凝并剂溶液 的组成同表 7 。
2、 聚丁二烯橡^ E合物及其硫化胶制备:
将上述所得改性橡胶母料作为母胶, 并与其他相关助剂添加到块状生胶 (聚丁二婦橡胶 BR9000 ) 中进行混炼, 得到混炼胶, 其配方组成以重量份 数计见表 8, 混炼胶的制备及硫化方法同前所述。 然后将硫化橡胶样片制成 标准样条, 进行各项力学性能测试, 其结果如表 9所示。 比较例 3
将单纯的聚丁二烯橡胶生胶(聚丁二烯橡胶 BR9000 )采用同实施例 7 步骤 2中相同混炼及硫化工艺, 进行混炼和硫化。 具^^&合物的混炼胶 配方组成列于表 8。 硫化胶性能见表 9。
比较例和实施例配方
Figure imgf000028_0001
表 9比较例和实施例的主要性能
Figure imgf000028_0002
抗湿滑指 100 112
滚动阻力指数 /% 100 98.8 从表 9结果可以看出, 聚丁二烯橡胶本身的特点就是耐磨性能特别好, 但抗湿滑性不佳, 本发明的橡胶组合物在维持了聚丁二烯橡胶本身的较好的 耐磨性能的情况下, 还能够显著提高抗湿滑指数, 同时降低滚动阻力, 使所 制备的硫化胶不仅具有较低的滚动阻力和优异的耐湿滑性, 同时具有优异的 耐磨性,其原因就是辐照交 的具有交联结构的丁腈橡胶粒子以 50至
200nm的细小粒径^ 连续相的聚丁二烯橡 ^^体中。本发明的橡^ E合 物的这种特性特别适合用作汽车用胎面胶。, 并且可以根据实际应用时的对 这三个参数的具体要求, 提过添加其他助剂来调节橡胶组合物的总体综合性 能, 从而给制备不同性能需求的胎面胶带来更大的调节余地。
(五)改性橡胶母料及溶聚丁苯橡胶组合物实施例及对比例
原料:
乳聚丁 ^ J^乳 SBR1502:固含量 20 wt %,结合苯乙烯含量 23 wt %, 门尼粘度 50, 齐鲁石化公司橡胶厂生产。
溶液聚合方法制备的溶聚丁^^胶: 块状生胶, 牌号: T2000R, 中国石 化上海高桥石化分公司生产。
丁腈橡皿乳: 牌号为丁腈 -26, 肇东市天源化工有 司生产。
炭黑: 234天津海豚炭黑有限公司
氧化锌: 市售
旨酸: 市售
硫磺: 临沂市罗庄化工厂
促进剂 TBBS: N-叔丁基 -2-苯并噻唑次黄酰胺, 郑州金山化工厂 氯化钙: 市售
淀粉: 市售
甘油: 市售
5%石碳酸液: 市售 股乳凝并方法:
按照表 10 的配方配置凝并剂溶液, 然后按照与凝并剂溶 同重量的 橡胶胶乳加入到该凝并剂溶液中, 搅拌 15分钟后, 过滤、 洗涤、 干燥, 得 到固态橡股(生股)。
表 10
Figure imgf000030_0001
注: 表 10中均为重量份数 混炼胶的制备及硫化的方法:
一段工艺:
在 Banbury密炼机(英国 Farrel Bridge公司产品)中进行,容积 1.57L, 转子转速 80r.mii!-1; 其过程为: 单独加入溶聚丁苯橡胶生胶或者加入本发 明所述的改性橡胶组分、 溶聚丁苯橡胶生胶、 炭黑和其他助剂 (硫磺、 促进 剂、 除外)等, 放下上顶栓, 混炼 3min。 排胶(温度在 150 ~ 160。C;)。
工艺:
将上述一段混炼胶加入硫磺、 促进剂后在 XK-160型开炼机(上海橡胶 厂产品)上薄通六次,之后下片。然后在 160。C下按正硫化时间 T9。硫化, 然后将硫化橡胶样片制成标准样条, 进行各项力学性能测试, 其结果如表 12 所示。 混炼胶的配方见表 11, 单位是重量份数。
实施例 8
1、 改性橡胶组分的制备:
( 1 )辐照交联丁腈橡胶股乳的制备:
在固含量为 45%wt的丁腈橡皿乳(丁腈 -26 ) 中, 按丁腈胶乳固含量 的 3 %wt加入交联助剂三羟曱基丙烷三丙烯酸酯后, 进行辐照交联, 辐照剂 量为 3.0Mrad, 得到辐照交联的丁腈橡皿乳, 胶乳中辐照交联的丁腈橡胶 粒子的平均粒径 lOOnm, 凝胶含量为 91%。
( 2 )胶乳混合与凝并:
将辐照交联后的丁腈橡胶胶乳按照一定的固含量比例加入到未交联的 乳聚丁^^腿乳 SBR1502中,其中辐照交^ ^的丁腈橡腿乳固含量和未 交联的乳聚丁苯橡胶胶乳固含量重量比为 80:20。搅拌器中高速搅拌 15分钟 后, 按照前^^乳凝并方法凝并得到固态的改性橡胶组分 1。 其中凝并剂溶 液的组成同表 10
2、 溶聚丁 合物及其硫化胶制备:
将上述所得改性橡胶组分作为母胶, 并与其他相关助剂添加到块状生胶 (溶聚丁苯橡胶 T2000R ) 中进行混炼, 得到混炼胶, 其配方组成以重量份 数计见表 11, 混炼胶的制备及硫化方法同前所述。 然后将硫化橡胶样片制成 标准样条, 进行各项力学性能测试, 其结果如表 12所示。 比较例 4
将单纯的溶聚丁苯橡胶生胶(溶聚丁^^胶 T2000R )采用同实施例 8 步骤 2中相同混炼及硫化工艺, 进行混炼和硫化。 具^^&合物的混炼胶 配方组成列于表 11。 硫化胶性能见表 12。
比较例和实施例配方
Figure imgf000031_0001
表 12比较例和实施例的主要性能 比较例 实施例 8
项 目 测试标准
4
^JL (邵尔 A ) 66 68 GB/T531.1-2008 300%定伸应力
17.0 -- GB/T528-1998
/MPa
拉伸强 L/MPa 22.7 ― GB/T528-1998
拉断伸长率 /% 375 346 GB/T528 压缩疲劳温升 /。C 41.4 37.3 GB/T1687-1993 回弹性 /% 56 55 GB/T1681-2009
磨耗指 100 94.9 GB/T 1689-1998
抗湿滑指数 /% 100 133
滚动阻力指 100 100
12结果可以看出,溶聚丁苯橡胶本身的特点就是滚动阻力性能好, 本发明的橡胶组合物在维持了溶聚丁苯橡胶本身低的滚动阻力的情况下, 还 能够提高磨耗指数、 抗湿滑指数, 使所制备的硫化胶不仅具有较低的滚动阻 力和优异的耐湿滑性, 同时具有优异的耐磨性, 其原因就是辐照交联后的具 有交联结构的丁腈橡胶粒子以 50至 200nm的细小粒径分散在连续相的溶聚 丁苯橡胶基体中。 本发明的橡胶组合物的这种特性特别适合用作汽车用胎面 胶。 还可以根据实际应用时的对这三个参数的具体要求, 提过添加其他助剂 来调节橡胶组合物的总体综合性能, 从而给制备不同性能需求的胎面胶带来 更大的调节余地。

Claims

& 禾' J 要
1、一种改性橡胶母料, 包含未交联橡胶和分散在其中的具有交联结构 的橡胶粒子;其中具有交联结构的橡胶粒子为合成橡胶粒子或 /和天然橡胶 粒子, 平均粒径为 20 ~ 500nm, 优选 50 ~ 200nm, 更优选 70~200nm, 凝 胶含量为 60%重量或更高,优选为 75%重量或更高;其中未交联橡胶为丁 ^^胶;所述具有交联结构的橡胶粒子与未交联橡胶的重量比为大于 20: 80, 小于或等于 80: 20。
2、根据权利要求 1所述的改性橡胶母料,其特征在于所述具有交联结 构的橡胶粒子为以下任何一种或几种: 天然橡胶粒子、 丁苯橡胶粒子、 羧 基丁苯橡胶粒子、 丁腈橡胶粒子、 羧基丁腈橡胶粒子、 氯丁橡胶粒子、 聚 丁二烯橡胶粒子、 硅橡胶粒子、 丙烯酸酯橡胶粒子、 丁苯吡橡胶粒子, 优 选以下 4ί何一种或几种:丁腈橡胶粒子、丁苯吡橡胶粒子、丁苯橡胶粒子、 丁苯橡胶粒子, 更优选以下任何一种或几种: 丁苯吡橡胶粒子、 丁腈 橡胶粒子, 更优选丁腈橡胶粒子。
3、根据权利要求 1或 2所述的改性橡胶母料,其特征在于所述具有交 联结构的橡胶粒子为均相结构。
4、 根据权利要求 1 ~ 3之任一项所述的改性橡胶母料, 其特征在于所 述具有交联结构的橡胶粒子与未交联橡胶的重量比为 30: 70-80: 20, 优 选为 40: 60-80: 20。
5、 根据权利要求 1 ~ 4之任一项所述的改性橡胶母料, 其特征在于所 述改性橡胶母料由包括将未交联橡胶胶乳与具有交联结构的橡胶粒子的胶 乳在内的组分混合均匀后凝并而得; 其中具有交联结构的橡胶粒子的胶乳 为经过辐照交联后得到的橡胶胶乳。
6、一种才艮据权利要求 1至 5之任一项所述的改性橡胶母料的制备方法, 包括以下步猓:
( 1 )将合成橡胶或 /和天然橡胶胶乳经过辐照交联, 使胶乳中的合成 橡胶或 /和天然橡胶粒子具有交联结构, 达到所述凝胶含量, 并使胶乳中的 合成橡胶或 /和天然橡胶粒子固定在所述平均粒径范围内;
( 2 )然后按所述具有交联结构的橡胶粒子与所述未交联橡胶的重量比 计,取上述辐照交联的合成橡胶或 /和天然橡胶胶乳与所述未交联橡胶的胶 乳进行混合至均匀;
( 3 )将以上所得混合胶乳进行共凝并得所述改性橡胶母料。
7、 根据权利要求 6所述的制备方法, 其特征在于所述合成橡胶或 /和 天然橡胶胶乳是以下任何一种或几种: 天然橡胶胶乳、 丁苯橡胶胶乳、 羧 基丁苯橡胶胶乳、 丁腈橡胶胶乳、 羧基丁腈橡胶胶乳、 氯丁橡胶胶乳、 聚 丁二烯橡胶胶乳、 硅橡胶胶乳或丙烯酸酯橡胶胶乳、 丁苯吡橡胶胶乳等, 优选以下任何一种或几种: 丁腈橡胶胶乳、 丁苯吡橡胶胶乳、 丁苯橡胶胶 乳、 幾羞丁苯橡胶胶乳, 更优选以下任何一种或几种: 丁苯吡橡胶胶乳、 丁腈橡皿乳, 更优选丁腈橡皿乳。
8、一种橡胶组合物, 包含有共混的权利要求 1至 5之任一项所述的改 性橡胶母料和基础橡胶; 以基础橡胶为 100重量份计, 所述改性橡胶母料 为 1~70重量份, 优选 1-40重量份, 更优选 1-30重量份。
9、根据权利要求 8所述的橡^ a合物,其特征在于所^ eli橡胶为以 下 4壬何一种或几种: 天然橡胶、 改性天然橡胶、 合成橡胶; 例如可以是下 列中的任何一种或几种: 天然橡胶、 溶聚丁苯橡胶或其充油产品、 乳聚丁 ^^胶或其充油产品、 聚丁二烯橡胶或其充油产品, 优选下列中的任何一 种或几种: 溶聚丁苯橡胶或其充油产品、 乳聚丁苯橡胶或其充油产品、 聚 丁二烯橡胶或其充油产品。
10、 一种根据权利要求 8或 9所述的橡胶组合物的制备方法, 包括按 所述量将所述改性橡胶母料和所述^ ί橡胶混炼得到橡胶组合物。
11、根据权利要求 10所述的制备方法,其特征在于所述改性橡胶母料 的制备方法包括以下步猓:
( 1 )将合成橡胶或 /和天然橡胶胶乳经过辐照交联, 使胶乳中的合成 橡胶或 /和天然橡胶粒子具有交联结构, 达到所述凝胶含量, 并使胶乳中的 合成橡胶或 /和天然橡胶粒子固定在所述平均粒径范围内;
( 2 )然后按所述具有交联结构的橡胶粒子与所述未交联橡胶的重量比 计,取上述辐照交联的合成橡胶或 /和天然橡胶胶乳与所述未交联橡胶的胶 乳进行混合至均匀;
( 3 )将以上所得混合胶乳进行共凝并得所述改性橡胶母料。
12、 一种根据权利要求 8或 9所述橡胶组合物制备的硫化胶。
PCT/CN2012/083574 2011-10-26 2012-10-26 一种改性橡胶母料及其所制备的橡胶组合物及其硫化胶和他们的制备方法 WO2013060288A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AU2012327629A AU2012327629B2 (en) 2011-10-26 2012-10-26 Modified rubber masterbatch, rubber composition prepared therewith and vulcanized rubber and preparation method thereof
US14/354,233 US9290643B2 (en) 2011-10-26 2012-10-26 Modified rubber masterbatch, and rubber composition and vulcanized rubber produced therefrom, and the preparation processes for them
KR1020147013129A KR101698947B1 (ko) 2011-10-26 2012-10-26 개질된 고무 마스터배치, 그것으로 제조된 고무 조성물, 그 제조 방법 및 가황 고무
RU2014121083A RU2608764C2 (ru) 2011-10-26 2012-10-26 Модифицированная каучуковая маточная смесь, и резиновая смесь и вулканизированная резина, изготовленная из нее, и способы их изготовления
MX2014005050A MX343657B (es) 2011-10-26 2012-10-26 Mezcla madre de caucho modificado, composicion de caucho y caucho vulcanizado producido a partir de la misma, y los procesos de preparacion para los mismos.
IN3426DEN2014 IN2014DN03426A (zh) 2011-10-26 2012-10-26
BR112014009912-0A BR112014009912B1 (pt) 2011-10-26 2012-10-26 Mistura-padrão de borracha modificada, processo de preparação da mistura-padrão de borracha modificada, composição de borracha, processo de preparação da composição de borracha e borracha vulcanizada
JP2014537481A JP6091511B2 (ja) 2011-10-26 2012-10-26 修飾ゴムマスターバッチ、並びにゴム組成物及びそれを使用して製造される加硫ゴム及びその調製方法
EP12844199.5A EP2772513B1 (en) 2011-10-26 2012-10-26 Modified rubber masterbatch, rubber composition prepared therewith and vulcanized rubber and preparation method thereof
CA2853523A CA2853523C (en) 2011-10-26 2012-10-26 Modified rubber masterbatch, and rubber composition and vulcanized rubber produced therefrom, and the preparation processes for them
SG11201401845PA SG11201401845PA (en) 2011-10-26 2012-10-26 Modified rubber masterbatch, rubber composition prepared therewith and vulcanized rubber and preparation method thereof
ZA2014/03789A ZA201403789B (en) 2011-10-26 2014-05-23 Modified rubber masterbatch, and rubber composition and vulcanized rubber produced therefrom, and the preparation processes for them

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201110330604.9A CN103073760B (zh) 2011-10-26 2011-10-26 一种改性橡胶组分及制法和一种乳聚丁苯橡胶组合物及其制法和其硫化胶
CN201110330604.9 2011-10-26
CN201110330561.4A CN103073759B (zh) 2011-10-26 2011-10-26 一种改性橡胶组分及制法和一种溶聚丁苯橡胶组合物及其制法和其硫化胶
CN201110330561.4 2011-10-26
CN201210229274.9A CN103524813B (zh) 2012-07-03 2012-07-03 一种改性橡胶母料及制法和一种充油溶聚丁苯橡胶组合物及其制法及其硫化胶
CN201210229516.4 2012-07-03
CN201210229510.7A CN103524814B (zh) 2012-07-03 2012-07-03 一种改性橡胶母料及制法和一种聚丁二烯橡胶组合物及其制备方法及其硫化胶
CN201210229510.7 2012-07-03
CN201210229274.9 2012-07-03
CN201210229516.4A CN103524810B (zh) 2012-07-03 2012-07-03 一种改性橡胶母料及制法和一种充油乳聚丁苯橡胶组合物及其制法及其硫化胶

Publications (1)

Publication Number Publication Date
WO2013060288A1 true WO2013060288A1 (zh) 2013-05-02

Family

ID=48167126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083574 WO2013060288A1 (zh) 2011-10-26 2012-10-26 一种改性橡胶母料及其所制备的橡胶组合物及其硫化胶和他们的制备方法

Country Status (14)

Country Link
US (1) US9290643B2 (zh)
EP (1) EP2772513B1 (zh)
JP (1) JP6091511B2 (zh)
KR (1) KR101698947B1 (zh)
AU (1) AU2012327629B2 (zh)
BR (1) BR112014009912B1 (zh)
CA (1) CA2853523C (zh)
IN (1) IN2014DN03426A (zh)
MX (1) MX343657B (zh)
PL (1) PL2772513T3 (zh)
RU (1) RU2608764C2 (zh)
SG (1) SG11201401845PA (zh)
WO (1) WO2013060288A1 (zh)
ZA (1) ZA201403789B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11413905B2 (en) 2016-05-19 2022-08-16 The Yokohama Rubber Co., Ltd. Tire rubber composition

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6106023B2 (ja) * 2013-05-17 2017-03-29 株式会社ブリヂストン タイヤの製造方法
CN109414959A (zh) 2016-06-29 2019-03-01 汉森和罗森塔尔公司 包含酯的组合物
CN107778590B (zh) * 2016-08-30 2020-05-12 中国石油化工股份有限公司 一种乳聚丁苯胶乳掺混使用调整物性的方法
WO2018061867A1 (ja) * 2016-09-29 2018-04-05 日本ゼオン株式会社 ラテックス組成物
KR101950707B1 (ko) 2016-11-10 2019-02-21 주식회사 엘지화학 스티렌-부타디엔 고무 컴파운드 및 이를 포함하는 타이어 비드 필러용 고무 조성물
CN106905569B (zh) * 2017-03-27 2018-11-16 北京化工大学 高性能氧化石墨烯/炭黑橡胶纳米复合材料的制备方法
CN108218905B (zh) * 2017-12-15 2020-03-24 同济大学 一种氨基化合物类橡胶添加剂及其制备和应用
JP7129289B2 (ja) * 2018-09-12 2022-09-01 Toyo Tire株式会社 ゴム組成物及び空気入りタイヤ
KR20220121397A (ko) * 2021-02-25 2022-09-01 엘에스전선 주식회사 가교 수지를 포함하는 분말형 첨가제 및 이를 포함하는 수지 조성물

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405216A1 (de) 1989-06-24 1991-01-02 Bayer Ag Kautschukmischungen enthaltend Schwefel-modifiziertes Polychloroprengel
DE4220563A1 (de) 1992-06-24 1994-01-13 Bayer Ag Kautschukmischungen enthaltend Polybutadien-Gel
US6133364A (en) 1998-08-01 2000-10-17 Continental Aktiengesellschaft Rubber composition, method of formulating the composition and vehicle tire made from the composition
US6184296B1 (en) 1997-01-17 2001-02-06 Bayer Ag Rubber mixtures containing surface-modified cross-linked rubber gels
US6207757B1 (en) 1998-08-01 2001-03-27 Continental Aktiengesellschaft Rubber composition, method of adding and blending the composition and vehicle tire made from the composition
US6242534B1 (en) 1998-08-01 2001-06-05 Continental Aktiengesellschaft Rubber composition, method of formulating and blending the same and article and tires made therefrom
WO2001040356A1 (fr) 1999-12-03 2001-06-07 China Petro-Chemical Corporation Caoutchouc en poudre entierement vulcanise a diametre de particules regulable, son procede de preparation et des utilisations
EP1149867A2 (en) * 2000-04-27 2001-10-31 JSR Corporation Crosslinked rubber particles and rubber compositions
WO2001098395A1 (fr) 2000-06-15 2001-12-27 China Petroleum & Chemical Corporation Silicone sous forme de fine poudre de sulfure, son procede de preparation et ses applications
CN1342183A (zh) * 1999-11-01 2002-03-27 东海橡胶工业株式会社 橡胶防振器及其生产方法
WO2002032990A2 (de) * 2000-10-20 2002-04-25 Bayer Aktiengesellschaft Kautschukgele und phenolharzedukte enthaltende kautschukmischungen
US6699935B2 (en) 2000-06-29 2004-03-02 Jsr Corporation Rubber composition
EP1431075A1 (en) 2002-12-19 2004-06-23 The Goodyear Tire & Rubber Company Pneumatic tire having a rubber component containing a rubber gel and starch composite
CN101787148A (zh) * 2009-01-22 2010-07-28 中国科学院化学研究所 含双亲性淀粉衍生物的绿色轮胎材料及其制备方法
CN102050973A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种轮胎胎面胶复合材料及其制备方法
CN102050972A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 一种改性橡胶组合物及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960005589B1 (ko) * 1993-05-25 1996-04-26 대림산업주식회사 마스터배치의 새로운 제조방법 및 그에 의해 제조된 마스터배치
DE19701488A1 (de) * 1997-01-17 1998-07-23 Bayer Ag SBR-Kautschukgele enthaltende Kautschukmischungen
EP1063259A1 (de) * 1999-06-26 2000-12-27 Bayer Ag Mikrogelhaltige Kautschukcompounds mit schwefelhaltigen Organosiliciumverbindungen
DE19939865A1 (de) * 1999-08-23 2001-03-01 Bayer Ag Agglomerierte Kautschukgele enthaltende Kautschukmischungen und Vulkanisate
DE19942620A1 (de) 1999-09-07 2001-03-08 Bayer Ag Mikrogelhaltige Kautschukmischungen mit verkappten bifunktionellen Mercaptanen und hieraus hergestellte Vulkanisate
DE19962862A1 (de) * 1999-12-24 2001-06-28 Bayer Ag Kautschukmischungen auf Basis von unvernetzten Kautschuken und vernetzten Kautschukpartikeln sowie multifunktionellen Isocyanaten
EP1149866A3 (en) * 2000-04-27 2003-04-23 JSR Corporation Rubber mixtures based on crosslinked rubber particles and non-crosslinked rubbers
JP2002012703A (ja) * 2000-04-27 2002-01-15 Jsr Corp ゴム組成物
KR100806662B1 (ko) * 2000-05-22 2008-02-28 소시에떼 드 테크놀로지 미쉐린 타이어 주행 트레드용 조성물 및 이의 제조방법
DE10035493A1 (de) * 2000-07-21 2002-01-31 Bayer Ag Verfahren zur Herstellung vernetzter Kautschukpartikel
CN1177895C (zh) 2001-10-12 2004-12-01 中国石油化工股份有限公司 一种增韧热固性树脂及其制备方法
CN1239587C (zh) * 2003-04-03 2006-02-01 中国石油化工股份有限公司 一种复合粉末及其制备方法和用途
KR20070015133A (ko) * 2004-02-27 2007-02-01 요코하마 고무 가부시키가이샤 고무 조성물 및 그것을 이용한 공기 주입 타이어
EP1902865A1 (en) 2006-09-21 2008-03-26 The Goodyear Tire & Rubber Company Pneumatic tire
DE102007020451A1 (de) * 2007-04-27 2008-10-30 Lanxess Deutschland Gmbh Verfahren zur Herstellung von Kautschukmischungen
CN103073760B (zh) 2011-10-26 2015-09-16 中国石油化工股份有限公司 一种改性橡胶组分及制法和一种乳聚丁苯橡胶组合物及其制法和其硫化胶
CN103073759B (zh) 2011-10-26 2016-02-24 中国石油化工股份有限公司 一种改性橡胶组分及制法和一种溶聚丁苯橡胶组合物及其制法和其硫化胶

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405216A1 (de) 1989-06-24 1991-01-02 Bayer Ag Kautschukmischungen enthaltend Schwefel-modifiziertes Polychloroprengel
DE4220563A1 (de) 1992-06-24 1994-01-13 Bayer Ag Kautschukmischungen enthaltend Polybutadien-Gel
US6184296B1 (en) 1997-01-17 2001-02-06 Bayer Ag Rubber mixtures containing surface-modified cross-linked rubber gels
US6133364A (en) 1998-08-01 2000-10-17 Continental Aktiengesellschaft Rubber composition, method of formulating the composition and vehicle tire made from the composition
US6207757B1 (en) 1998-08-01 2001-03-27 Continental Aktiengesellschaft Rubber composition, method of adding and blending the composition and vehicle tire made from the composition
US6242534B1 (en) 1998-08-01 2001-06-05 Continental Aktiengesellschaft Rubber composition, method of formulating and blending the same and article and tires made therefrom
CN1342183A (zh) * 1999-11-01 2002-03-27 东海橡胶工业株式会社 橡胶防振器及其生产方法
WO2001040356A1 (fr) 1999-12-03 2001-06-07 China Petro-Chemical Corporation Caoutchouc en poudre entierement vulcanise a diametre de particules regulable, son procede de preparation et des utilisations
EP1149867A2 (en) * 2000-04-27 2001-10-31 JSR Corporation Crosslinked rubber particles and rubber compositions
WO2001098395A1 (fr) 2000-06-15 2001-12-27 China Petroleum & Chemical Corporation Silicone sous forme de fine poudre de sulfure, son procede de preparation et ses applications
US6699935B2 (en) 2000-06-29 2004-03-02 Jsr Corporation Rubber composition
WO2002032990A2 (de) * 2000-10-20 2002-04-25 Bayer Aktiengesellschaft Kautschukgele und phenolharzedukte enthaltende kautschukmischungen
EP1431075A1 (en) 2002-12-19 2004-06-23 The Goodyear Tire & Rubber Company Pneumatic tire having a rubber component containing a rubber gel and starch composite
CN101787148A (zh) * 2009-01-22 2010-07-28 中国科学院化学研究所 含双亲性淀粉衍生物的绿色轮胎材料及其制备方法
CN102050972A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 一种改性橡胶组合物及其制备方法
CN102050973A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种轮胎胎面胶复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2772513A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11413905B2 (en) 2016-05-19 2022-08-16 The Yokohama Rubber Co., Ltd. Tire rubber composition

Also Published As

Publication number Publication date
CA2853523C (en) 2017-10-24
JP6091511B2 (ja) 2017-03-08
BR112014009912B1 (pt) 2021-10-26
MX343657B (es) 2016-11-16
EP2772513B1 (en) 2016-12-28
US20140296439A1 (en) 2014-10-02
AU2012327629A1 (en) 2014-05-22
RU2014121083A (ru) 2015-12-10
MX2014005050A (es) 2015-03-05
AU2012327629B2 (en) 2016-05-26
KR101698947B1 (ko) 2017-01-23
EP2772513A4 (en) 2015-09-02
ZA201403789B (en) 2015-11-25
US9290643B2 (en) 2016-03-22
SG11201401845PA (en) 2014-09-26
JP2014534312A (ja) 2014-12-18
EP2772513A1 (en) 2014-09-03
BR112014009912A2 (pt) 2017-04-25
PL2772513T3 (pl) 2017-09-29
KR20140084198A (ko) 2014-07-04
RU2608764C2 (ru) 2017-01-24
CA2853523A1 (en) 2013-05-02
IN2014DN03426A (zh) 2015-06-05

Similar Documents

Publication Publication Date Title
WO2013060288A1 (zh) 一种改性橡胶母料及其所制备的橡胶组合物及其硫化胶和他们的制备方法
TWI546343B (zh) A rubber composition and its preparation method and vulcanized rubber thereof
CN103073759B (zh) 一种改性橡胶组分及制法和一种溶聚丁苯橡胶组合物及其制法和其硫化胶
JP3392249B2 (ja) ゴム組成物及びその製法
JPWO2010123015A1 (ja) 樹脂伸展イソプレンゴムの製造方法、その方法で得られたゴム組成物及び空気入りタイヤ
CN103073760B (zh) 一种改性橡胶组分及制法和一种乳聚丁苯橡胶组合物及其制法和其硫化胶
JP3992523B2 (ja) ゴム組成物
WO2007088771A1 (ja) 油展天然ゴム及びその製造方法、並びにそれを用いたゴム組成物及びタイヤ
JP3996777B2 (ja) タイヤ用トレッドゴム
KR101752790B1 (ko) 타이어 트레드용 고무 조성물 및 이의 제조방법
CN103524810B (zh) 一种改性橡胶母料及制法和一种充油乳聚丁苯橡胶组合物及其制法及其硫化胶
JP2001323071A (ja) カーボンマスターバッチの製造方法
CN103524813A (zh) 一种改性橡胶母料及制法和一种充油溶聚丁苯橡胶组合物及其制法及其硫化胶
JP3392246B2 (ja) ゴム組成物及びその製法
JP2020002205A (ja) ゴム組成物の製造方法
CN103524814B (zh) 一种改性橡胶母料及制法和一种聚丁二烯橡胶组合物及其制备方法及其硫化胶
JP2020002206A (ja) ゴム組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2853523

Country of ref document: CA

Ref document number: 2014537481

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14354233

Country of ref document: US

Ref document number: MX/A/2014/005050

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012844199

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012844199

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147013129

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012327629

Country of ref document: AU

Date of ref document: 20121026

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014121083

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014009912

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014009912

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140425