WO2013060255A1 - 6m50型原料气压缩机增加打气量、节能减排的改造方法 - Google Patents
6m50型原料气压缩机增加打气量、节能减排的改造方法 Download PDFInfo
- Publication number
- WO2013060255A1 WO2013060255A1 PCT/CN2012/083351 CN2012083351W WO2013060255A1 WO 2013060255 A1 WO2013060255 A1 WO 2013060255A1 CN 2012083351 W CN2012083351 W CN 2012083351W WO 2013060255 A1 WO2013060255 A1 WO 2013060255A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- piston
- cylinders
- cylinder
- existing
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B41/00—Pumping installations or systems specially adapted for elastic fluids
- F04B41/06—Combinations of two or more pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/10—Adaptations or arrangements of distribution members
Definitions
- 6M50 type raw material gas compressor to increase the amount of gas, energy saving and emission reduction
- the invention relates to a method for reforming a compressor, in particular to a modification method for increasing the amount of air blown, energy saving and emission reduction of a 6M50 type raw material gas compressor.
- the 6M50 raw material gas compressor is a commonly used raw material gas compressor. It is usually one of the key equipments in China's chemical industry (see Figure 1), and it must be guaranteed to operate normally 24 hours a day.
- the 6M50 type feed gas compressor includes a main motor 100, a multi-stage compression cylinder block 101, a piston in the multi-stage compression cylinder, and a gas valve 102 on the cylinder block 101; the piston and the gas valve 102 are pressurized
- the important components of the reduction performance are also extremely vulnerable parts.
- the piston of the existing 6M50 type feed gas compressor is usually a split structure (see Figures 2 and 3), which includes a piston left portion 201 and a piston right portion 202, and the piston left portion 201 and the piston right portion 202 outer edge matching card. And forming an inner annular cavity 203; the piston left portion 201 and the piston right portion 202 are respectively provided with a matching left annular connecting portion 204 and a right annular connecting portion 205, the left annular connecting portion 204 and the right circular connecting portion
- the portion 205 is fixedly connected by the pin 206, and the center of the connecting portions 204 and 205 is a circular hole structure for fixing the piston rod;
- the piston of this structure has the following defects: 1) the pin 206 is easily broken when the pressure is large; 2) During operation, the concentricity of the left part 201 of the piston and the right part 202 of the piston is low, the vibration of the fuselage is large, and the bearing bush is damaged frequently; 3) In the process of compressing the raw material gas, the
- Table 1 Main technical parameters of 6M50 raw material gas compressor
- the existing 6M50 type raw material gas compressor still has a 15 ⁇ 17% clearance volume between the piston and the cylinder block at the maximum piston range, which is usually called the clearance fillet clearance volume.
- the clearance fillet clearance volume 15 ⁇ 17% clearance volume between the piston and the cylinder block at the maximum piston range.
- the technical problem to be solved by the present invention is to provide a 6M50 type raw material gas compressor to increase the amount of air pumping, energy saving and emission reduction; the method can solve the problem of serious wear and frequent replacement of the piston, and can also solve the large vibration of the fuselage.
- the bearing bush is damaged frequently; more importantly, the method solves the "large horse-drawn car" phenomenon of the existing 6M50 type raw material gas compressor, and can fully exert the output efficiency required by the design.
- the method for improving the energy consumption and emission reduction of the 6M50 type raw material gas compressor of the present invention comprises the following steps:
- the split type is changed to the integral type; that is, the piston is no longer divided into two parts; the piston is an integral piston, the piston body of the piston is a unitary structure, and the piston body is provided with an annular cavity;
- the transformation into a one-piece type solves the problem of pin breakage when the pressure is high, because the integral type does not need to be fixed by the pin shaft; it solves the low concentricity of the left part of the piston and the right part of the piston during operation, the vibration of the fuselage is large, the bearing bush
- the problem of frequent damage solves the problem that the raw material gas easily enters the annular cavity from the gap between the left part of the piston and the right part of the piston in the process of compressing the raw material gas, so that the raw material gas cannot enter the annular cavity, and will not The exhaust gas temperature is high, and the piston ring and the support ring are not seriously worn and frequently replaced.
- the piston thickness of each cylinder is increased by about 0.5 ⁇ 0.8% based on the existing piston thickness design standard.
- the anti-fouling valve of each stage of the cylinder of the invention increases the amount of air pumping, thereby saving national resources, including the valve seat 2021, the valve piece 2022, the spring 2023, the lift limiter 2024, etc.; the valve seat 2021, the valve piece 2022, the spring 2023, the liter
- the path limiter 2024 is sequentially connected and fixed by a bolt 2025 and a nut 2026; one end of the spring 2023 is fixed to the lift
- the other end of the limiter 2024 is placed on the back surface of the valve plate 2022, and the front surface of the valve plate 2022 is abutted against the valve seat 2021 to form a sealing surface.
- the present invention is a valve for the suction valve and the exhaust valve on each cylinder.
- the lift is increased by 11.5 ⁇ 13.6% based on the existing valve lift design standards;
- the present invention has the equivalent flow area of the intake valve and the exhaust valve on each cylinder.
- the existing equivalent circulation area design standard is increased by 14.7 ⁇ 15.1%.
- the spring wire diameter of the spring is increased by 15 to 17% based on the existing diameter design standard.
- the valve sheet is a PEEK (polyether ether ketone resin) engineering plastic valve sheet.
- Compressor valves have long been made of metal materials. Practice has shown that in the harsh working conditions, metal valve plates have a certain performance level to some extent in terms of safety or work efficiency. Defects often cause losses to work and the economy; this is mainly due to the cyclical impact of the valve discs in the compressor air valve group during the intense air movement, the bending fatigue and the working high temperature environment of the corrosive medium, the valve The sheet generates stress and is destroyed by several columns and has a short service life.
- the PEEK engineering plastic valve sheet has a tensile strength of >75 MPa, a bending strength of >180 MPa, a flexural modulus of elasticity > 7.5 Gpa, a non-notched impact strength of >35 KJ/M 2 , a notched impact strength of >20 KJ/M 2 , Heat distortion temperature > 200 ° C, Rockwell hardness > 100 HRM, density 1.45 g / cm 3 , melting point 334 ° C.
- the PEEK engineering plastic valve sheet has the following advantages: the plastic valve sheet has the advantages of small density, small elastic modulus, reduced impact force, reduced fatigue strength, and prolonged valve life; good comprehensive performance, resulting in good sealing performance and air leakage.
- valve piece With good wear resistance and flexibility, the valve piece is not easy to break, even if it breaks, its crack propagation speed is slow, and the split piece will not cause damage to the cylinder when it falls into the cylinder;
- the flow characteristics are better than the metal valve piece, because The energy loss caused by airflow friction is reduced, and the general valve energy consumption can be reduced by 5%-15%.
- the self-lubricating property is good, and it can be used in the condition of slip lubrication and oil-free lubrication; the noise is low and the movement is stable during operation.
- the reforming method of the invention comprises the modification of the piston structure, the modification of the piston size, the modification of the valve lift and the modification of the equivalent flow area of the gas valve; the piston modification and the valve valve transformation work synergistically, so as to match and increase the air volume, thereby achieving
- the individual changes can not achieve the purpose of the present invention, wherein the valve modification plays a major role; at the same time, the comprehensive performance of the valve is greatly improved by the modification of the valve piece.
- the invention solves the problem that the piston is seriously worn and frequently replaced, and at the same time, the vibration of the fuselage is large, and the bearing bush is damaged frequently; the method also solves the phenomenon of the “large horse-drawn trolley” of the existing 6M50 type raw material gas compressor, Give full play to the output efficiency required by the design; that is, it can increase the amount of compressor air pumping and achieve the effect of energy saving and emission reduction.
- Figure 1 is a schematic view showing the overall structure of a conventional 6M50 type raw material gas compressor
- Figure 3 is a schematic view showing the installation structure of the existing piston
- Figure 4 is a schematic view showing the structure of the piston of the present invention.
- Figure 5 is a side view of Figure 4.
- Figure 6 is a schematic structural view of a conventional intake valve
- Figure 7 is a schematic structural view of a conventional exhaust valve
- Figure 8 is a schematic structural view of the intake valve of the present invention.
- Figure 9 is a schematic structural view of an exhaust valve of the present invention.
- the company's 6M50(66)-511/35.5-BX feed gas compressor is a commonly used feed gas compressor (see Figure 1), which consists of a main motor 100, a four-stage compression cylinder block 101, in four a piston is provided in the stage compression cylinder, and a gas valve 102 is disposed on the cylinder block 101; the gas valve 102 includes an intake valve (see FIG. 6) and an exhaust valve (see FIG. 7);
- the valve and the exhaust valve both include a valve seat 1021, a valve piece 1022, a spring 1023, a lift limiter 1024, and the like; the valve seat 1021, the valve piece 1022, the spring 1023, and the lift limiter 1024 sequentially pass the bolt 1025 and the nut.
- valve piece 1026 is fixedly connected; one end of the spring 1023 is fixed on the lift limiter 1024, and the other end is placed on the back surface of the valve piece 1022, and the front surface of the valve piece 1022 is pressed against the valve seat 1021 to form a sealing surface.
- the gas valve is in a closed state, and the valve plate 1022 is pressed against the sealing surface of the valve seat 1021 by the spring 1023; when the air pressure passing through the valve seat 1021 is greater than the sum of the spring force and the air pressure on the back surface of the valve plate 1022
- the valve piece 1022 is moved against the elastic force of the spring 1023, the valve seat 1021 and the valve piece 1022 are in a non-sealed state, and the air path is opened; according to the prior design, the valve lift of the intake valve and the exhaust valve on the first cylinder 2.2cm, 2.2cm, the valve lift of the suction and exhaust valves on the second cylinder is 2.2cm, 2.2cm, and the lift of the suction and exhaust valves on the third cylinder is 2.0.
- the lift of the valve plate is 2.0cm and 2.0cm; the equivalent flow area of the first cylinder intake valve and the exhaust valve are 115cm 2 and 115cm 2 respectively ; the equivalent flow area of the second cylinder intake valve and exhaust valve is 96.5cm respectively.
- the equivalent flow area of the third cylinder intake valve and exhaust valve are 67.7cm 2 and 67.7cm 2 respectively ;
- the equivalent flow area of the fourth cylinder intake valve and exhaust valve are 72cm 2 and 72cm 2 respectively ;
- the number of springs of the intake and exhaust valves on the first cylinder is 54, and the number of springs of the intake and exhaust valves on the second cylinder is 45, and the intake and exhaust valves on the third cylinder
- the number of springs is 33, and the number of springs of the intake and exhaust valves on the fourth cylinder is 30.
- the valve lift of the intake valve and the exhaust valve of the existing gas valve 102 is adapted to the existing atmospheric exhaust amount, and the number of springs used is large, but the spring often has a fracture phenomenon. It should be noted that, in the design standard of the 6M50 type raw material gas compressor, the number of cylinders, the lift of the valve plate, the equivalent flow area of the valve, the number of springs, etc. are not completely the same, but the modification method of the present invention is the same, The embodiment is only one specific embodiment.
- the modification method of the present invention is as follows:
- the thickness of the first-stage cylinder piston is changed from the existing 597mm to 602mm; the thickness of the secondary cylinder piston is changed from the existing 597mm to 602mm; the thickness of the three-stage cylinder piston is changed from the existing 595mm to 598mm; The cylinder piston thickness is changed from the existing 595mm to 598mm.
- the above transformation aims to increase the rigidity of the piston and reduce the clearance volume of the first-stage piston transition fillet, and provide the suction efficiency of the cylinder.
- the modified The first-stage inspiratory volume can be increased by about 5m 3 /min;
- the intake valve and the exhaust valve of the four-stage cylinder respectively include a valve seat 2021, a valve piece 2022, a spring 2023, a lift limiter 2024, and the like; the valve seat 2021, the valve piece 2022, the spring 2023, and the lift limiter 2024 is connected and fixed by bolt 2025 and nut 2026 in sequence; one end of the spring 2023 is fixed on the lift limiter 2024, and the other end is placed on the back surface of the valve plate 2022, and the front surface of the valve plate 2022 is closely attached to the valve seat 2021 to form a sealing surface.
- the invention transforms the lift of the valve of the intake valve and the exhaust valve on the first cylinder to 2.5 cm and 2.5 cm, respectively, and the lift of the valve of the intake valve and the exhaust valve on the second cylinder are respectively modified into 2.5cm, 2.5cm, the lift of the suction valve and the exhaust valve on the third cylinder are respectively changed to 2.3cm, 2.3cm, and the lift of the suction valve and the exhaust valve on the fourth cylinder are respectively
- the transformation is 2.3cm, 2.3cm; the equivalent flow area of the first cylinder intake valve and exhaust valve is changed to 132cm 2 and 132cm 2 respectively ; the equivalent flow area of the second cylinder intake valve and exhaust valve is transformed into ll lcm 2 respectively 111cm 2 ; the equivalent flow area of the third cylinder intake valve and exhaust valve was changed to 77.8cm 2 77.8cm 2 ;
- the equivalent flow area of the fourth cylinder intake valve and exhaust valve was changed to 82.8cm 2 and 82.8cm 2 respectively
- the valve piece adopts PEEK (polyether ether ketone resin) engineering plastic valve piece; the tensile strength of the EEK engineering plastic valve piece is >75Mpa, bending strength > 180Mpa, bending elastic modulus > 7.5Gpa, unnotched impact strength ⁇ 35KJ/M 2 , notched impact strength > 20KJ/M 2 , heat distortion temperature > 200°C, Rockwell hardness > 100HRM, density 1.45g/cm3, melting point 334 °C.
- PEEK polyether ether ketone resin
- the operating cycle of the modified compressor has not increased from 3439.2 hours to 5405.4 hours, which has improved the continuous operation rate of the equipment, reduced the power consumption of opening and stopping, and reduced the gas venting loss and equipment maintenance cost. , providing a reliable guarantee for the safe, stable and long-term operation of the compressor;
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressor (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Abstract
公开了一种6M50型原料气压缩机增加打气量、节能减排的改造方法,该方法包括如下步骤:1)将压缩机的各级气缸中的活塞从分体式改为整体式;活塞的活塞体为整体式结构,活塞体内设有环形空腔;2)将各级气缸的活塞的厚度较现有各级气缸的活塞标准的基础上增加约0.5-0.8%;3)将各级气缸上的吸气阀和排气阀的阀片升程提高11.5-13.6%;4)将各级气缸上的吸气阀和排气阀的当量流通面积在现有标准基础上提高约14.7-15.1%。该改造方法解决了活塞磨损严重、更换频繁并且机身振动大、轴瓦损坏频繁大的问题,并具有能充分发挥出设计要求的输出功率、增加压缩机打气量和达到节能减排的优点。
Description
6M50型原料气压缩机增加打气量、 节能减排的改造方法 技术领域
本发明涉及一种压縮机的改造方法, 尤其是涉及 6M50型原料气压縮机增加打气量、 节能减排的改造方法。
背景技术
6M50型原料气压縮机是一种常用的原料气压縮机, 在我国化工企业中通常是关键设 备之一 (参见附图 1 ), 必须要保证其每天 24小时正常运转。 通常, 6M50型原料气压縮 机包括主电机 100、 多级压縮气缸体 101, 在多级压縮气缸中设有活塞, 在气缸体 101上 设有气阀 102; 该活塞和气阀 102是压縮机效能体现的重要部件, 也是极易损坏的部件。
现有 6M50型原料气压縮机的活塞通常是分体式结构 (参见附图 2、 3 ), 它包括活塞 左部 201和活塞右部 202, 该活塞左部 201和活塞右部 202外边缘匹配卡合, 形成内部有 环形空腔 203 ; 所述活塞左部 201和活塞右部 202中心分别设有匹配的左环形连接部 204 和右环形连接部 205,所述左环形连接部 204和右环形连接部 205通过销轴 206固定连接, 连接部 204和 205的中心为圆孔结构, 用于固定活塞杆; 这种结构的活塞, 具有如下缺陷: 1 ) 在压力较大时销轴 206容易断裂; 2) 运行过程中活塞左部 201和活塞右部 202的同心 度低, 机身震动大, 轴瓦损坏频繁; 3 ) 在压縮原料气的过程中, 原料气容易从活塞左部 201和活塞右部 202连接处的缝隙进入环形空腔 203, 造成原料气在环形空腔 203内无法 泻出, 排气温度超高, 活塞环、 支撑环等磨损严重, 频繁更换。
根据现有的 6M50型原料气压縮机的国家标准设计, 其主要技术参数如下表 1 :
表 1 : 6M50型原料气压縮机的主要技术参数
名称 项目 6M50型原料气压縮机
排气量 m3/min 511
进气压力 MPa 0.16
进气温度 35
输出压力 MPa 3.55
活塞行程 mm 360
转速 r/min 333
活塞平均速度 m/s 3.996
气 一级 Φ1320
缸 二级 Φ800
mm 三级 Φ660
四级 Φ460
轴功率 kW 5000
电机功率 kW 5500
实际上, 现有的 6M50型原料气压縮机在活塞最大量程处, 活塞和气缸缸体之间仍有 占缸体体积 15〜17%余隙容积, 通常称为过渡圆角的余隙容积。 当压縮机运行时, 过渡圆 角的余隙容积中的气量无法顺利排出, 电机效率仅在 74%左右, 导致"大马拉小车"现象, 能量损失巨大。 综上, 现有压縮机排气量未达到原厂家设计要求。
发明内容
本发明要解决的技术问题是提供一种 6M50型原料气压縮机增加打气量、 节能减排的 改造方法; 该方法能解决活塞磨损严重、 频繁更换的问题, 同时也能解决机身震动大, 轴 瓦损坏频繁; 更为关键的是, 本方法解决了现有的 6M50型原料气压縮机的"大马拉小车" 现象, 能充分发挥出设计要求的输出效率。
为解决上述技术问题,本发明一种 6M50型原料气压縮机的增加打气量节能减排的改 造方法, 包括如下步骤:
1)原来活塞分体式的结构容易气走在活塞里面, 从而导致温度过高、振动力大活塞环 容易破损, 影响轴瓦振动大, 容易烧掉因此将压縮机的各级气缸中的活塞从分体式改为整 体式; 即活塞不再分为左右两部分; 所述活塞为整体式活塞, 该活塞的活塞体为整体式结 构, 所述活塞体内设有环形空腔; 将活塞从分体式改造为整体式, 解决了在压力较大时销 轴断裂的问题, 因为整体式根本不用销轴固定; 解决了运行过程中活塞左部和活塞右部的 同心度低、 机身震动大、 轴瓦损坏频繁的问题; 解决了在压縮原料气的过程中, 原料气容 易从活塞左部和活塞右部连接处的缝隙进入环形空腔的问题, 使得原料气无法进入环形空 腔内, 不会造成排气温度高, 不会造成活塞环、 支撑环等的严重磨损, 频繁更换。
2) 同时, 为了解决过渡圆角的余隙容积的问题, 将各级气缸的活塞厚度在现有活塞 厚度设计标准的基础上增加约 0.5〜0.8%。
3 ) 仅仅增加活塞的总厚度并不能解决更多气量排出的问题, 因为, 气缸气阀的升程 限制了出气量的大小。 本发明各级气缸的防污气阀增加打气量从而节约国家资源包括阀座 2021、阀片 2022、弹簧 2023、升程限制器 2024等;所述阀座 2021、阀片 2022、弹簧 2023、 升程限制器 2024依次通过螺栓 2025和螺母 2026连接固定; 弹簧 2023的一端固定在升程
限制器 2024上, 另一端顶在阀片 2022背面上, 将阀片 2022正面紧贴在阀座 2021上形成 一个密封面; 本发明将各级气缸上的吸气阀和排气阀的阀片升程在现有阀片升程设计标准 的基础上增加 11.5〜 13.6%;
4) 仅仅增加气阀的升程还不能全部解决问题, 还需要进气阀和排气阀当量流通面积 进行改造, 本发明将各级气缸上的吸气阀和排气阀的当量流通面积在现有当量流通面积设 计标准的基础上增加 14.7〜15.1%
进一步地, 所述弹簧的弹簧丝直径在现有直径设计标准的基础上增加 15〜17%。 进一步地, 所述阀片为 PEEK (聚醚醚酮树脂) 工程塑料阀片。 压縮机阀片长期以来 为金属材料制成, 实践表明, 金属阀片在恶劣的工作状态下, 无论在安全性或在工作效率 上,所表现的性能状态在一定的程度上都存在着相当的缺陷,往往给工作与经济带来损失; 这主要是因为压縮机气阀组中的阀片在剧烈的气流运动中受到循环冲击, 弯曲疲劳及腐蚀 介质的工作高温环境的影响, 对阀片产生应力而数列破坏、 使用寿命短。
进一步地, 所述 PEEK工程塑料阀片的拉伸强度〉 75Mpa、 弯曲强度〉 180Mpa、 弯 曲弹性模量〉 7.5Gpa、 无缺口冲击强度〉 35KJ/M2、 有缺口冲击强度〉 20KJ/M2、 热变形温 度〉 200°C、 洛氏硬度〉 100HRM、 密度 1.45g/cm3、 熔点 334°C。 所述 PEEK工程塑料阀 片具有如下优点: 塑料阀片的密度小, 弹性模量小, 冲击力减少, 疲劳强度随之降低, 阀 的寿命大大延长; 综合性能好, 致使密封性能好, 漏气减少; 具有良好的耐磨性和柔韧性, 阀片不易断裂, 即使断裂, 其裂纹的传播速度较慢, 裂片掉入气缸也不会造成气缸的损坏; 通流特性优于金属阀片, 因气流摩擦引起的能量损耗降低, 一般气阀能耗降低可达 5%-15%; 自润滑性好, 可用于有滑润滑和无油润滑的工况; 运行时噪音较低、 运动平稳。
要注意的是,本发明的上述改造步骤之间并无前后的依次顺序, 是单独改造后综合的 有机整体。
本发明的改造方法, 包括活塞结构的改造、 活塞尺寸的改造、 气阀升程的改造和气阀 当量流通面积的改造; 活塞改造与气阀改造协同发生作用, 才能匹配起来增加打气量, 从 而达到节能减排的目的, 单独的改变并不能达到本发明的目的, 其中气阀改造起到主要作 用; 同时, 通过阀片的改造, 使气阀的综合效能大大提高。
本发明具有如下有益效果:
本发明解决了活塞磨损严重、频繁更换的问题, 同时也能解决机身震动大, 轴瓦损坏 频繁; 本方法也解决了现有的 6M50型原料气压縮机的"大马拉小车"现象, 能充分发挥出 设计要求的输出效率; 即能增加压縮机打气量, 达到节能减排的效果。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明
图 1为现有 6M50型原料气压縮机整体结构示意图;
图 2为现有活塞分解结构示意图;
图 3为现有活塞安装结构示意图;
图 4为本发明的活塞结构示意图;
图 5为图 4的侧视图;
图 6为现有进气阀结构示意图;
图 7为现有排气阀结构示意图;
图 8为本发明进气阀结构示意图;
图 9为本发明排气阀结构示意图;
具体实施方式
实施例 1
山西天脊集团高平化工有限公司压縮机车间有九台 6M50(66)-511/35.5-BX型原料气压 縮机, 2005年开车投用后, 机身震动大, 轴瓦损坏频繁, 二、 三段超压严重, 三四段排气 温度超高, 活塞环、 支撑环等磨损严重, 频繁更换, 排气量不能达到原厂家设计要求; 本 发明对该公司的机号 1、 2、 6、 8、 9号机组进行了改造; 剩余的 4台机组没有列入改造 计划。
该公司的 6M50(66)-511/35.5-BX型原料气压縮机是一种常用的原料气压縮机(参见附 图 1 ), 它包括主电机 100、 四级压縮气缸体 101, 在四级压縮气缸中设有活塞, 在气缸体 101上设有气阀 102; 所述气阀 102包括进气阀 (参见附图 6) 和排气阀 (参见附图 7); 所述进气阀和排气阀都包括有阀座 1021、 阀片 1022、 弹簧 1023、 升程限制器 1024等; 所 述阀座 1021、 阀片 1022、 弹簧 1023、 升程限制器 1024依次通过螺栓 1025和螺母 1026连 接固定; 弹簧 1023的一端固定在升程限制器 1024上, 另一端顶在阀片 1022背面上, 将 阀片 1022正面紧贴在阀座 1021上形成一个密封面。常态下,气阀处于关闭状态,阀片 1022 在弹簧 1023的作用下顶在阀座 1021的密封面上; 当阀座 1021上通过的气流压力大于弹 簧弹力和阀片 1022背面的气压之和时, 阀片 1022克服弹簧 1023的弹力移动, 阀座 1021 和阀片 1022处于非密封状态, 气路被打通; 根据现有设计, 第 1气缸上的吸气阀和排气 阀的阀片升程是 2.2cm、 2.2cm,第 2气缸上的吸气阀和排气阀的阀片升程是 2.2cm、 2.2cm, 第 3气缸上的吸气阀和排气阀的阀片升程是 2.0cm、 2.0cm, 第 4气缸上的吸气阀和排气阀
的阀片升程是 2.0cm、 2.0cm; 第 1气缸进气阀和排气阀当量流通面积分别为 115cm2、 115cm2; 第 2气缸进气阀和排气阀当量流通面积分别为 96.5cm2、 96.5cm2; 第 3气缸进气 阀和排气阀当量流通面积分别为 67.7cm2、 67.7cm2; 第 4气缸进气阀和排气阀当量流通面 积分别为 72cm2、 72cm2; 第 1气缸上的吸气阀和排气阀的弹簧数为 54个, 第 2气缸上的 吸气阀和排气阀的弹簧数为 45个, 第 3气缸上的吸气阀和排气阀的弹簧数为 33个, 第 4 气缸上的吸气阀和排气阀的弹簧数为 30个。 现有的气阀 102的吸气阀和排气阀的阀片升 程和现有的大气排气量相适应, 使用的弹簧数较多, 但是弹簧经常会出现断裂现象。 要注 意的是, 6M50型号原料气压縮机的在设计标准上, 气缸数、 阀片升程、 气阀当量流通面 积、 弹簧数等并不完全相同, 但本发明的改造方法是相同的, 本实施例仅仅是一个具体实 施方式。
本发明的改造方法如下:
1 ) 将四级气缸的活塞从分体式改造为整体式, 参见附图 2-4;
2)将一级气缸活塞厚度从现有的 597mm改造为 602mm; 将二级气缸活塞厚度从现有 的 597mm改造为 602mm; 将三级气缸活塞厚度从现有的 595mm改造为 598mm; 将四级 气缸活塞厚度从现有的 595mm改造为 598mm; 上述改造目的是增加活塞的刚性及减少一 级活塞过渡圆角的余隙容积, 提供气缸的吸气效率, 相同的工况条件下, 改造后的一级吸 气量可以增加 5m3/min左右;
3 ) 四级气缸的吸气阀和排气阀分别包括阀座 2021、 阀片 2022、 弹簧 2023、 升程限制 器 2024等; 所述阀座 2021、 阀片 2022、 弹簧 2023、 升程限制器 2024依次通过螺栓 2025 和螺母 2026连接固定;弹簧 2023的一端固定在升程限制器 2024上,另一端顶在阀片 2022 背面上, 将阀片 2022正面紧贴在阀座 2021上形成一个密封面; 本发明将第 1气缸上的吸 气阀和排气阀的阀片升程分别改造为 2.5cm、 2.5cm, 第 2气缸上的吸气阀和排气阀的阀片 升程分别改造为 2.5cm、2.5cm,第 3气缸上的吸气阀和排气阀的阀片升程分别改造为 2.3cm、 2.3cm, 第 4气缸上的吸气阀和排气阀的阀片升程分别改造为 2.3cm、 2.3cm; 将第 1气缸 进气阀和排气阀当量流通面积分别改造为 132cm2、 132cm2; 第 2气缸进气阀和排气阀当量 流通面积分别改造为 l l lcm2、 111cm2; 第 3气缸进气阀和排气阀当量流通面积分别改造为 77.8cm2 77.8cm2; 第 4气缸进气阀和排气阀当量流通面积分别改造为 82.8cm2、 82.8cm2; 经过改造后的气阀增加了 26m3/min左右打气量;
4) 将第 1气缸上的吸气阀和排气阀的弹簧数设为 25个, 第 2气缸上的吸气阀和排气 阀的弹簧数设为 21个, 第 3气缸上的吸气阀和排气阀的弹簧数设为 20个, 第 4气缸上的
吸气阀和排气阀的弹簧数设为 17个; 所述弹簧的弹簧丝直径较现有弹簧丝直径增加 15%, 现有弹簧的弹簧丝直径通常为 0.9〜l.lmm;
5 ) 所述阀片采用 PEEK (聚醚醚酮树脂) 工程塑料阀片; 该 EEK工程塑料阀片的拉 伸强度〉75Mpa、弯曲强度〉 180Mpa、弯曲弹性模量〉 7.5Gpa、无缺口冲击强度〉 35KJ/M2、 有缺口冲击强度〉 20KJ/M2、 热变形温度〉 200°C、 洛氏硬度〉 100HRM、 密度 1.45g/cm3、 熔点 334 °C。
通过上述改造后的考核情况
1 ) 改造后各机组功率如下: (单位: KW)
机号 1、 2、 6、 8、 9
未改造前 5000 4900 5000 4900 4980 (单位: KW);
改造后 5200 5000 5300 5200 5200 (单位: KW);
2) 改造后各段压力均正常, 二、 三级气缸出口压力下降明显, 三、 四级气缸排气量 明显增加, 一回一能够全关, (注明: 一回一关不死的原因气量在里面膨胀大大浪费了国 家资源) 二、 三级气缸未出现超压现象、 消除了系统瓶颈, 解决了高闪气不能全部回收的 问题。
3 ) 解决了缸套、 活塞环、 气阀阀片、 弹簧等频繁更换, 经常停机维修, 零配件消耗 成本过高的问题。
4) 改造前需开 8机运行, 改造后机组排气量明显增加, 开 7机即能充分满足运行需
5 ) 改造后的压縮机运行周期, 从原来最长不超过 3439.2小时, 提高到 5405.4小时, 提高了设备连续运转率, 降低了开、 停车电耗, 减少了气体放空损耗和设备的维护费用, 为压縮机的安全、 稳定、 长周期运行提供了可靠的保证;
6) 能耗与节能减排效果计算, 按改造前使用 8台机组, 改造后使用七台机组计算: 改前平均电流 268A, 功率 4800KW。 改后平均电流 295A, 功率 5100KW。 每小时电耗差:
4800x8-5100x7=2700千瓦时
全年按 330工作日计可节电
2700x24x330=21384000千瓦时
按国家发改委供电耗标煤计算, 可节约标煤
21384000x0.36÷1000=7698吨
并减排相应的二氧化碳和二氧化硫等。
显然, 本发明的上述实施例仅仅是为清楚地说明本发明所作的举例, 而并非是对本发 明的实施方式的限定。 对于所属领域的普通技术人员来说, 在上述说明的基础上还可以做 出其它不同形式的变化或变动。 这里无法对所有的实施方式予以穷举。 凡是属于本发明的 技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。
Claims
1、 6M50型原料气压縮机的增加打气量节能减排的改造方法, 其特征在于, 包括如下 步骤:
1 ) 将压縮机的各级气缸中的活塞从分体式改为整体式; 所述活塞的活塞体为整体式 结构, 所述活塞体内设有环形空腔;
2) 将各级气缸的活塞厚度在现有活塞厚度设计标准的基础上增加约 0.5〜0.8%;
3 )各级气缸的吸气阀和排气阀都包括阀座 2021、 阀片 2022、 弹簧 2023、 升程限制器 2024; 所述阀座 2021、 阀片 2022、 弹簧 2023、 升程限制器 2024依次通过螺栓 2025和螺 母 2026连接固定; 弹簧 2023的一端固定在升程限制器 2024上, 另一端顶在阀片 2022背 面上, 将阀片 2022正面紧贴在阀座 2021上形成一个密封面; 将各级气缸上的吸气阀和排 气阀的阀片升程在现有阀片升程设计标准的基础上增加 11.5〜13.6%;
4) 将各级气缸上的吸气阀和排气阀的当量流通面积在现有当量流通面积设计标准的 基础上增加 14.7〜15.1%。
2、 根据权利要求 1 所述的改造方法, 其特征在于: 所述弹簧的弹簧丝直径在现有直 径设计标准的基础上增加 15〜17%。
3、 根据权利要求 1所述的改造方法, 其特征在于: 所述阀片为 PEEK工程塑料阀片。
4、 根据权利要求 3所述的改造方法, 其特征在于: 所述 PEEK工程塑料阀片的拉伸 强度〉 75Mpa、 弯曲强度〉 180Mpa、 弯曲弹性模量〉7.5Gpa、 无缺口冲击强度〉 35KJ/M2、 有缺口冲击强度〉 20KJ/M2、 热变形温度〉 200°C、 洛氏硬度〉 100HRM、 密度 1.45g/cm3、 熔点 334 °C。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110332306.3 | 2011-10-27 | ||
CN201110332306.3A CN102338064B (zh) | 2011-10-27 | 2011-10-27 | 6m50型原料气压缩机增加打气量、节能减排的改造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013060255A1 true WO2013060255A1 (zh) | 2013-05-02 |
Family
ID=45513965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/083351 WO2013060255A1 (zh) | 2011-10-27 | 2012-10-23 | 6m50型原料气压缩机增加打气量、节能减排的改造方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102338064B (zh) |
WO (1) | WO2013060255A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102338064B (zh) * | 2011-10-27 | 2014-05-07 | 上海上隆压缩机制造有限公司 | 6m50型原料气压缩机增加打气量、节能减排的改造方法 |
CN104265599B (zh) * | 2014-08-29 | 2016-09-07 | 上海上隆压缩机制造有限公司 | 一种往复式原料气压缩机 |
CN104358673A (zh) * | 2014-11-21 | 2015-02-18 | 柳州凯通机械有限公司 | 级差式压缩机活塞 |
CN113982887A (zh) * | 2021-10-22 | 2022-01-28 | 上海隆鸿压缩机制造有限公司 | 低压6m50-(66)-511型氮氢气压缩机节能改造方法 |
CN113982888A (zh) * | 2021-10-27 | 2022-01-28 | 上海隆鸿压缩机制造有限公司 | 高压6m50-(76)-312型氮氢气压缩机节能改造方法 |
CN113864162A (zh) * | 2021-10-28 | 2021-12-31 | 上海隆鸿压缩机制造有限公司 | 高压4m40-186型二氧化碳压缩机节能改造方法 |
CN113982889A (zh) * | 2021-11-01 | 2022-01-28 | 上海隆鸿压缩机制造有限公司 | 高压6m32e-254型二氧化碳压缩机节能改造方法 |
CN113864163A (zh) * | 2021-11-03 | 2021-12-31 | 上海隆鸿压缩机制造有限公司 | 高压4m32g-186二氧化碳压缩机节能改造方法 |
CN114483528A (zh) * | 2022-01-20 | 2022-05-13 | 上海上隆压缩机制造有限公司 | 高压s6m50-312型氮氢气压缩机节能改造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85108356A (zh) * | 1985-11-08 | 1987-05-13 | 陈克明 | 气体循环压缩机的节能改造方法 |
JPH02242048A (ja) * | 1989-03-15 | 1990-09-26 | Mitsubishi Heavy Ind Ltd | 冷凍装置 |
JP2007032463A (ja) * | 2005-07-28 | 2007-02-08 | Ishikawajima Harima Heavy Ind Co Ltd | 多段往復圧縮機 |
CN201696258U (zh) * | 2010-03-27 | 2011-01-05 | 周震贤 | 压缩机用节能气阀 |
CN102102654A (zh) * | 2009-12-22 | 2011-06-22 | 沈阳申元气体压缩机厂 | 7m50系列氮氢气压缩机 |
CN201902311U (zh) * | 2010-12-20 | 2011-07-20 | 上海日立电器有限公司 | 一种压缩机用双层排气阀片 |
CN102338064A (zh) * | 2011-10-27 | 2012-02-01 | 上海上隆压缩机制造有限公司 | 6m50型原料气压缩机增加打气量、节能减排的改造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2586015Y (zh) * | 2002-11-13 | 2003-11-12 | 宁波亿日科技实业有限公司 | 一种开关气缸的活塞 |
CN201090402Y (zh) * | 2007-09-27 | 2008-07-23 | 周定国 | 压缩机防腐防堵塞气阀 |
-
2011
- 2011-10-27 CN CN201110332306.3A patent/CN102338064B/zh not_active Expired - Fee Related
-
2012
- 2012-10-23 WO PCT/CN2012/083351 patent/WO2013060255A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85108356A (zh) * | 1985-11-08 | 1987-05-13 | 陈克明 | 气体循环压缩机的节能改造方法 |
JPH02242048A (ja) * | 1989-03-15 | 1990-09-26 | Mitsubishi Heavy Ind Ltd | 冷凍装置 |
JP2007032463A (ja) * | 2005-07-28 | 2007-02-08 | Ishikawajima Harima Heavy Ind Co Ltd | 多段往復圧縮機 |
CN102102654A (zh) * | 2009-12-22 | 2011-06-22 | 沈阳申元气体压缩机厂 | 7m50系列氮氢气压缩机 |
CN201696258U (zh) * | 2010-03-27 | 2011-01-05 | 周震贤 | 压缩机用节能气阀 |
CN201902311U (zh) * | 2010-12-20 | 2011-07-20 | 上海日立电器有限公司 | 一种压缩机用双层排气阀片 |
CN102338064A (zh) * | 2011-10-27 | 2012-02-01 | 上海上隆压缩机制造有限公司 | 6m50型原料气压缩机增加打气量、节能减排的改造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102338064B (zh) | 2014-05-07 |
CN102338064A (zh) | 2012-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013060255A1 (zh) | 6m50型原料气压缩机增加打气量、节能减排的改造方法 | |
CN201661684U (zh) | 复合摩擦式密封装置 | |
CN201027612Y (zh) | 全无油润滑级差活塞式空气压缩机 | |
CN203570535U (zh) | 一种无油润滑活塞压缩机气阀 | |
CN201090402Y (zh) | 压缩机防腐防堵塞气阀 | |
CN202078672U (zh) | 高品质呼吸空气供给系统 | |
CN102418701B (zh) | 一种星轮构件及包括该星轮构件的单螺杆压缩机 | |
CN215409072U (zh) | 一种高转速大功率活塞式压缩机活塞 | |
CN202468036U (zh) | 新型排气制动阀及采用该制动阀的汽车 | |
CN205841130U (zh) | 一种液动空压器 | |
CN2802102Y (zh) | 渣浆泵的过流件 | |
CN205446849U (zh) | 一种分体式阀箱 | |
CN202301041U (zh) | 一种星轮构件及包括该星轮构件的单螺杆压缩机 | |
CN202789546U (zh) | 旋转压缩机的消音装置 | |
CN202301029U (zh) | 一种压缩过程全程多点喷液冷却的单级中压单螺杆压缩机 | |
CN101538624B (zh) | 高炉泥炮活塞总成 | |
CN205423398U (zh) | 一种窑下出料板阻尼连接杆 | |
CN201202821Y (zh) | 一种新型燃气蝶阀 | |
CN202274010U (zh) | 分体式气压离合器 | |
CN210859114U (zh) | 用于气体增压泵的浮动活塞 | |
CN219452917U (zh) | 一种板式组合密封系统 | |
CN104265599B (zh) | 一种往复式原料气压缩机 | |
CN201574924U (zh) | 压缩机活塞杆结构 | |
CN221879350U (zh) | 一种多功能环保复合光杆调芯防喷装置 | |
CN201606213U (zh) | 往复机支撑环 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12842921 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12842921 Country of ref document: EP Kind code of ref document: A1 |