WO2013058380A1 - 接着剤組成物並びに接続構造体及びその製造方法 - Google Patents

接着剤組成物並びに接続構造体及びその製造方法 Download PDF

Info

Publication number
WO2013058380A1
WO2013058380A1 PCT/JP2012/077150 JP2012077150W WO2013058380A1 WO 2013058380 A1 WO2013058380 A1 WO 2013058380A1 JP 2012077150 W JP2012077150 W JP 2012077150W WO 2013058380 A1 WO2013058380 A1 WO 2013058380A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
adhesive composition
substrate
electrode
conductive particles
Prior art date
Application number
PCT/JP2012/077150
Other languages
English (en)
French (fr)
Inventor
恭久 石田
藤縄 貢
松田 和也
柳川 俊之
忠恭 藤枝
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2013058380A1 publication Critical patent/WO2013058380A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0266Size distribution
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Definitions

  • the present invention relates to an adhesive composition, a connection structure, and a manufacturing method thereof.
  • an adhesive is used for connection between a liquid crystal display and TCP (Tape Carrier Package, tape carrier package), connection between FPC (Flexible Printed Circuits) and TCP, and connection between FPC and printed wiring board.
  • An anisotropic conductive adhesive having conductive particles dispersed therein is used.
  • anisotropically conductive adhesives for example, epoxy resin adhesives are excellent in workability, but usually require heating at about 140 to 180 ° C. for a connection time of about 20 seconds, and about 10 seconds. In the connection time, heating of about 180 to 210 ° C. is necessary.
  • the present invention has been made in view of such a situation.
  • a connection structure obtained by electrically connecting an electrode and a conductor via conductive particles the particle indentation formed on the electrode can be easily formed.
  • An object of the present invention is to provide an adhesive composition that can be observed.
  • an object of this invention is to provide the connection structure obtained using such an adhesive composition, and its manufacturing method.
  • the present inventors have adjusted the ratio of the maximum diameter to the minimum diameter in the particle size distribution of the conductive particles within a predetermined range in the adhesive composition containing the resin composition and the plurality of conductive particles.
  • the present inventors have found that the above problem can be solved by adjusting the storage elastic modulus of the cured product of the adhesive composition to a predetermined range.
  • the adhesive composition according to the present invention is an adhesive composition containing a resin composition and a plurality of conductive particles, wherein the maximum diameter in the particle size distribution of the plurality of conductive particles is a, and the minimum diameter Where b is the ratio a / b of the maximum diameter a to the minimum diameter b is 5.0 or more, and the cured product obtained by heating the adhesive composition at 180 ° C. for 40 seconds at 40 ° C.
  • the storage elastic modulus is 1.0 GPa or less, and the storage elastic modulus at 200 ° C. of the cured product is 3.0 MPa or more.
  • the particle indentation formed on the electrode can be easily observed in the connection structure obtained by electrically connecting the electrode and the conductor via the conductive particles. Further, in the adhesive composition according to the present invention, when the connection structure obtained using the adhesive composition is stored under high temperature and high humidity, the connection resistance is suppressed from increasing, Reliability can also be improved.
  • the present inventors speculate as follows about the factors that allow easy observation of particle indentations.
  • the cause of the effect is not limited to the following contents. That is, in the adhesive composition according to the present invention, since the difference between the storage elastic modulus at 40 ° C. and the storage elastic modulus at 200 ° C. in the cured product is small, the shape of the cured product of the adhesive composition containing the resin composition Is suppressed from changing. This makes it easier to maintain the initial particle indentation caused by the conductive particles being pressed against the electrodes. Thus, it is presumed that the observation of the particle indentation is facilitated by reducing the difference in storage elastic modulus and adjusting the ratio a / b to the specific range.
  • the plurality of conductive particles may include particles having a compression hardness of 4000 kgf / mm 2 or less when the particle diameter at 20 ° C. is displaced by 40%.
  • the average particle diameter of the plurality of conductive particles is preferably 3 ⁇ m or more. In this case, the particle indentation can be observed more easily.
  • the shape of the adhesive composition according to the present invention may be a film. In this case, the connection work between the electrode and the conductor can be easily performed.
  • the adhesive composition according to the present invention electrically connects the first circuit electrode disposed on the main surface of the first substrate and the second circuit electrode disposed on the main surface of the second substrate. May be used to connect the electrode of the solar cell having the electrode disposed on the main surface of the first substrate and the wiring member. .
  • the present inventors have found that it is particularly difficult to observe the particle indentation in the conventional adhesive composition when the substrate having the electrode on the main surface is a flexible substrate.
  • the first substrate may be a flexible substrate. According to the adhesive composition of the present invention, particle indentation can be easily observed even when a flexible substrate is used.
  • a connection structure includes a first circuit member having a first substrate and a first circuit electrode disposed on a main surface of the first substrate, a second substrate, and the second substrate.
  • a second circuit member having a second circuit electrode disposed on the main surface of the second substrate, and a connection member disposed between the first circuit electrode and the second circuit electrode,
  • a connection member contains the hardened
  • the connection structure which concerns on another side surface of this invention is a photovoltaic cell which has an electrode arrange
  • a connecting member disposed therebetween, the connecting member containing a cured product of the adhesive composition, and the electrode and the wiring member are electrically connected.
  • the particle indentation can be easily observed and the connection reliability can be improved.
  • the first substrate may be a flexible substrate. According to the connection structure according to the present invention, particle indentation can be easily observed even when a flexible substrate is used.
  • the manufacturing method of the connection structure according to the present invention includes a first circuit member having a first circuit electrode disposed on a main surface of the first substrate and the first substrate, a second circuit board, and the second circuit board.
  • the adhesive composition is disposed between the second circuit member having the second circuit electrode disposed on the main surface of the second substrate, and the first circuit member and the second circuit member are interposed therebetween. And heating and pressurizing the adhesive composition to electrically connect the first circuit electrode and the second circuit electrode.
  • grain indentation formed in an electrode is provided in the connection structure obtained by electrically connecting an electrode and a conductor via a conductive particle. be able to.
  • the connection state of the connection structure can be easily confirmed.
  • the connection structure obtained by using such an adhesive composition and its manufacturing method can be provided.
  • (meth) acrylate means acrylate and the corresponding methacrylate.
  • (Meth) acrylic resin means acrylic resin and methacrylic resin corresponding to it.
  • the adhesive composition according to this embodiment contains a resin composition and a plurality of conductive particles dispersed in the resin composition.
  • the resin composition is an insulating and curable resin composition, and contains a curable component having a property of being cured by external energy such as heat or energy rays.
  • a curable component is not particularly limited, and is, for example, a component containing a radical polymerizable substance (radical polymerizable component) and a radical polymerization initiator.
  • a radical polymerizable substance is a substance having a functional group that is polymerized by radicals.
  • examples of such radically polymerizable substances include (meth) acrylate compounds, maleimide compounds, styrene derivatives, and the like. These can be used individually by 1 type or in mixture of 2 or more types. Further, the radical polymerizable substance can be used in any state of a monomer and an oligomer, and a monomer and an oligomer may be mixed and used.
  • Examples of (meth) acrylate compounds include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and trimethylol.
  • a (meth) acrylic resin
  • a maleimide compound is a compound having at least one maleimide group.
  • maleimide compounds include phenylmaleimide, 1-methyl-2,4-bismaleimidebenzene, N, N′-m-phenylenebismaleimide, N, N′-p-phenylenebismaleimide, N, N′-4, 4-biphenylenebismaleimide, N, N′-4,4- (3,3-dimethylbiphenylene) bismaleimide, N, N′-4,4- (3,3-dimethyldiphenylmethane) bismaleimide, N, N ′ -4,4- (3,3-diethyldiphenylmethane) bismaleimide, N, N'-4,4-diphenylmethane bismaleimide, N, N'-4,4-diphenylpropane bismaleimide, N, N'-4, 4-diphenyl ether bismaleimide, N, N′-4,4-diphenylsulfone bis
  • a styrene derivative is a compound in which a hydrogen atom in the ⁇ -position or aromatic ring of styrene is substituted with a substituent.
  • a compound having a phosphate ester structure can be used as the radical polymerizable substance.
  • a compound having a phosphoric ester structure is obtained as a reaction product of phosphoric anhydride and 2-hydroxyethyl (meth) acrylate.
  • 2-methacryloyloxyethyl acid phosphate, 2-acryloyloxyethyl acid For example, phosphorate.
  • These can be used individually by 1 type or in mixture of 2 or more types.
  • radical polymerization initiators include curing agents that decompose by heating to generate free radicals, such as organic peroxides and azo compounds.
  • the radical polymerization initiator is appropriately selected depending on the intended connection temperature, connection time, storage stability, and the like.
  • an organic peroxide having a half-life of 10 hours at a temperature of 40 ° C. or more and a half-life of 1 minute at a temperature of 170 ° C. or less is preferable from the viewpoint of high reactivity and storage stability.
  • Specific examples of the radical polymerization initiator include diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hydroperoxide, and silyl peroxide.
  • Diacyl peroxides include isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic peroxide , Benzoylperoxytoluene, benzoyl peroxide and the like.
  • Peroxydicarbonates include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, di-2-ethoxymethoxyperoxydicarbonate, di- (2-Ethylhexylperoxy) dicarbonate, dimethoxybutylperoxydicarbonate, di (3-methyl-3methoxybutylperoxy) dicarbonate and the like.
  • Peroxyesters include cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t -Hexylperoxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-di ( 2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2 -Ethylhexanonate, t-butylperoxyisobutyrate, 1,1-bis (t-butylperoxy) cyclohex
  • Peroxyketals include 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1- Bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, 2,2-bis (t-butylperoxy) decane, etc. Can be mentioned.
  • Dialkyl peroxides include ⁇ , ⁇ '-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t- Examples thereof include butyl cumyl peroxide.
  • hydroperoxide examples include diisopropylbenzene hydroperoxide and cumene hydroperoxide.
  • silyl peroxides include t-butyltrimethylsilyl peroxide, bis (t-butyl) dimethylsilyl peroxide, t-butyltrivinylsilyl peroxide, bis (t-butyl) divinylsilyl peroxide, and tris (t-butyl).
  • examples thereof include vinylsilyl peroxide, t-butyltriallylsilyl peroxide, bis (t-butyl) diallylsilyl peroxide, and tris (t-butyl) allylsilyl peroxide.
  • the radical polymerization initiator is not limited to a radical polymerization initiator that generates radicals by heating.
  • a radical polymerization initiator that generates radicals only by light irradiation may be used, or an initiator that generates radicals by ultrasonic waves or electromagnetic waves may be used.
  • radical polymerization initiators can be used singly or in combination of two or more, and may be used in combination with a decomposition accelerator, an inhibitor or the like.
  • the use time can be extended by using these radical polymerization initiators coated with a polyurethane-based or polyester-based polymer material and microencapsulated.
  • the blending amount of the radical polymerization initiator is preferably 0.1 parts by mass or more with respect to 100 parts by mass of the radical polymerizable substance in order to obtain a sufficient reaction rate.
  • the blending amount of the radical polymerization initiator is preferably 40 parts by mass or less and more preferably 30 parts by mass or less with respect to 100 parts by mass of the radical polymerizable substance.
  • the blending amount of the radical polymerization initiator is 0.1 parts by mass or more, a sufficient reaction rate is easily obtained, and good adhesive strength and small connection resistance tend to be easily obtained.
  • the blending amount of the radical polymerization initiator is 40 parts by mass or less, a decrease in the fluidity of the adhesive, an increase in connection resistance, and a decrease in the storage stability of the adhesive tend to be suppressed.
  • the curable component is not limited to a component containing a radical polymerizable substance and a radical polymerization initiator, and may be a component containing an epoxy resin and a latent curing agent.
  • the resin composition may further contain a film forming material (film forming component) in addition to the curable component.
  • a film-forming material is a film that is easy to handle and / or mechanical properties that are not easily torn, cracked, or sticky when the liquid is solidified and the composition is made into a film shape. The film can be handled as a film in a normal state.
  • the film forming material include phenoxy resin, polyvinyl formal resin, polystyrene resin, polyvinyl butyral resin, polyester resin, polyamide resin, xylene resin, polyurethane resin, and polyester urethane resin.
  • a phenoxy resin and a polyester urethane resin are preferable because they are excellent in adhesive strength, compatibility, heat resistance, and mechanical strength. These can be used individually by 1 type or in mixture of 2 or more types.
  • the content of the film-forming material in the resin composition is not particularly limited, for example, 5 parts by mass or more is preferable and 20 parts by mass or more is more preferable with respect to 100 parts by mass of the curable component.
  • content in particular of the film forming material in a resin composition is not restrict
  • the resin composition contains a polymerization inhibitor such as hydroquinone and methyl ether hydroquinone, and / or a filler, a softening agent, an accelerator, an anti-aging agent, a colorant, and a coupling agent, if necessary. May be.
  • the content of the resin composition in the adhesive composition is not particularly limited, but is preferably 50% by mass or more and more preferably 70% by mass or more based on the total amount of the adhesive composition.
  • the content of the resin composition in the adhesive composition is not particularly limited, but is preferably 99% by mass or less, more preferably 97% by mass or less, based on the total amount of the adhesive composition.
  • the conductive particles include particles made of a conductive material such as a metal such as Au, Ag, Ni, Cu or solder, or carbon.
  • a conductive material such as a metal such as Au, Ag, Ni, Cu or solder, or carbon.
  • composite particles obtained by coating non-conductive glass, ceramic, plastic, or the like with a conductive material such as the metal can be used.
  • the surface of the conductive particles or composite particles is coated with insulating particles, or an insulating layer made of an insulating material is formed on the surface of the conductive particles or composite particles by a method such as hybridization. The provided one can also be used. By using such conductive particles, short circuit due to contact between adjacent conductive particles is less likely to occur.
  • the average particle diameter of the conductive particles is preferably 3 ⁇ m or more, and more preferably 4 ⁇ m or more. When the average particle diameter of the conductive particles is 3 ⁇ m or more, the particle indentation tends to be suppressed, and the connection state of the connection structure tends to be easily confirmed with an optical sensor.
  • the average particle size of the conductive particles is preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less. When the average particle diameter of the conductive particles is 20 ⁇ m or less, the particle indentation is suppressed from becoming non-uniform (sparse) and the connection resistance tends to be suppressed from increasing.
  • the average particle size of the conductive particles can be obtained based on the volume-based particle size distribution using a laser diffraction particle size distribution measuring apparatus (for example, laser diffraction type SALD-2100 manufactured by Shimadzu Corporation).
  • a laser diffraction particle size distribution measuring apparatus for example, laser diffraction type SALD-2100 manufactured by Shimadzu Corporation.
  • the following conditions can be adopted.
  • ⁇ Measuring range of particle size distribution 0.03-1000 ⁇ m
  • Measurement environment 25 °C / 50% RH
  • Sample concentration The sample is introduced so that the peak value of the light intensity distribution of the measuring device is around 30 to 40% of the vertical axis.
  • Laser intensity output 3 mW (wavelength 680 nm, semiconductor laser)
  • Refractive index Nickel 123 1.70-0.2i
  • the ratio (a / b) of the maximum diameter a to the minimum diameter b is 5.0 or more.
  • the ratio (a / b) is less than 5.0, the particle indentation is small, and it is difficult to confirm the connection state with an optical sensor.
  • the ratio (a / b) is preferably 10 or less. When the ratio (a / b) is 10 or less, unevenness in the particle indentation tends to be suppressed.
  • the maximum value a of the conductive particles is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more.
  • the maximum value “a” of the conductive particles is preferably 20 ⁇ m or less from the viewpoint of short circuit due to contact between adjacent conductive particles.
  • the minimum value b of the conductive particles is preferably 5 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • the minimum value b of the conductive particles is preferably 1 ⁇ m or more from the viewpoint of suppressing an increase in connection resistance.
  • the particle size distribution for obtaining the ratio (a / b) can be measured using a laser diffraction type particle size distribution measuring apparatus (for example, a laser diffraction type SALD-2100 manufactured by Shimadzu Corporation). It is a volume-based particle size distribution measured by (wavelength 680 nm).
  • the measurement range in the particle size distribution is, for example, 0.03 to 1000 ⁇ m.
  • the above-described conditions relating to the average particle diameter of the conductive particles can be employed.
  • FIG. 1 is a diagram showing an example of a particle size distribution of conductive particles obtained using the above measuring apparatus and measuring conditions.
  • the maximum value a of the conductive particles is 14 ⁇ m
  • the minimum value b of the conductive particles is 2.7 ⁇ m.
  • the ratio (a / b) is 5.2.
  • the adhesive composition according to the present embodiment may include particles having a predetermined compression hardness as the conductive particles.
  • the compression hardness (compression elastic modulus, 40% K value) of the conductive particles when the particle size (particle diameter) at 20 ° C. of the conductive particles is 40% compression displaced is not particularly limited, but will be described later.
  • the cured product obtained by heating the adhesive composition at 180 ° C. for 40 seconds has a storage elastic modulus at 40 ° C. of 1.0 GPa or less, and the cured elastic product at 200 ° C. has a storage elastic modulus of 3.0 MPa or more. If present, particle indentation can be expressed even when conductive particles having a compression hardness of 4000 kgf / mm 2 or less are used.
  • the storage elastic modulus at 40 ° C. of the cured product is 1.0 GPa or less and the storage elastic modulus at 200 ° C. of the cured product is 3.0 MPa or more, conductive particles having a compression hardness of 3000 kgf / mm 2 or less are used. Particle indentation can be developed even in such a case.
  • the compressive hardness of the conductive particles is the average value of the compressive strengths of a plurality of conductive particles (for example, a plurality of conductive particles having a particle size in the range of ⁇ 1 ⁇ m giving a particle size distribution). For example, it is an average value of 50 particles), and is measured using a micro hardness tester (Fischerscope H100C, manufactured by Fisher Instrument Co., Ltd.) while compressing and displacing conductive particles by 40% at 20 ° C., for example. Can do. Specifically, it can be measured by the following method.
  • the conductive particles are compressed under the conditions of a compression rate of 2.6 mN / sec and a maximum test load of 10 g using a smooth indenter end face of a diamond cylinder having a diameter of 50 ⁇ m. And the load value (kgf) and compression displacement (mm) at this time are measured. From the obtained measured value, the compression hardness can be obtained by the following formula.
  • K value (kgf / mm 2 ) (3/2 1/2 ) ⁇ F ⁇ S ⁇ 3/2 ⁇ R ⁇ 1/2
  • F represents the load value (kgf) when the conductive particles are 40% compressively displaced
  • S represents the compressive displacement (mm) when the conductive particles were 40% compressed
  • R represents the conductive The radius (mm) of the particle is shown.
  • the content of the conductive particles is preferably 2% by mass or more, more preferably 3% by mass or more based on the total amount of the resin composition.
  • the content of the conductive particles is preferably 30% by mass or less, more preferably 20% by mass or less, based on the total amount of the resin composition, from the viewpoint of insulation.
  • the adhesive composition is suitably used as an anisotropic conductive adhesive that exhibits anisotropy of electrical connection.
  • the adhesive composition may further contain other conductive materials in addition to the conductive particles.
  • conductive materials include particulate or short fiber carbon, and metal filaments such as Au-plated Ni wires.
  • the storage elastic modulus at 200 ° C. of the cured product obtained by heating the adhesive composition at 180 ° C. for 40 seconds is 3.0 MPa or more. When the storage elastic modulus at 200 ° C. is less than 3.0 MPa, it becomes difficult to observe the particle indentation.
  • the storage elastic modulus at 200 ° C. of the cured product is preferably 10 MPa or less, and more preferably 9.0 MPa or less. When the storage elastic modulus at 200 ° C. is 10 MPa or less, it tends to be suppressed that the adhesive force between the substrate and the adhesive composition is reduced.
  • the storage elastic modulus at 40 ° C. of the cured product obtained by heating the adhesive composition at 180 ° C. for 40 seconds is preferably 10 MPa or more, and more preferably 100 MPa or more.
  • the storage elastic modulus at 40 ° C. of the cured product is 1.0 GPa or less, and preferably 0.9 GPa or less.
  • the storage elastic modulus at 40 ° C. exceeds 1.0 GPa, it becomes difficult to observe the particle indentation and the resistance value in the reliability test tends to increase.
  • the storage elastic modulus at 40 ° C. of the cured product obtained by heating the adhesive composition at 180 ° C. for 40 seconds is 1.0 GPa or less
  • the storage elastic modulus at 200 ° C. of the cured product is 3 Since the difference between the storage elastic modulus of 40 ° C. and the storage elastic modulus of 200 ° C. in the cured product is small by being 0.0 MPa or more, the shape of the cured product of the adhesive composition including the resin composition is in this temperature range. The particle indentation can be easily observed even when a reliability test is performed.
  • the conductive particles have a compressive hardness (compression elastic modulus, 40% K value) of 4000 kgf / mm 2 or less. In addition, it is possible to easily observe the particle indentation after the reliability test.
  • the storage elastic modulus of the cured product is preferably 3.0 MPa to 10 MPa at 200 ° C. and 10 MPa to 1.0 GPa at 40 ° C.
  • the storage elastic modulus of the cured product can be measured by, for example, a viscoelasticity measuring device RSA-II manufactured by Rheometric.
  • the storage elastic modulus of the cured product can be adjusted by the blending amount of a radical polymerizable substance (for example, polyfunctional acrylate). For example, when the amount of the radical polymerizable substance (for example, polyfunctional acrylate) increases, the storage elastic modulus tends to increase.
  • the adhesive composition can be suitably used for connection between circuit electrodes and connection between a circuit electrode and a conductor such as a wiring member.
  • the adhesive composition includes the first circuit electrode of the first circuit member having the first circuit electrode disposed on the main surface of the first substrate and the second substrate, and the second circuit electrode.
  • the adhesive composition includes the first circuit electrode of the first circuit member having the first circuit electrode disposed on the main surface of the first substrate and the second substrate, and the second circuit electrode.
  • the adhesive composition can be used in the form of a film (that is, an adhesive film).
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of an adhesive film.
  • the adhesive film 1 shown in FIG. 2 is formed by forming the above-described adhesive composition into a film shape.
  • the adhesive film may have a multilayer structure including two or more layers.
  • the adhesive film is suitably used as an anisotropic conductive film.
  • the adhesive film is, for example, a mixed liquid obtained by adding a solvent or the like to the adhesive composition on a peelable substrate such as a fluororesin film, a polyethylene terephthalate film, or a release paper, or the above on a substrate such as a nonwoven fabric It can be obtained by impregnating the mixed solution and placing it on a peelable substrate and removing the solvent.
  • the adhesive composition may not be formed in a film shape, and may be in a paste shape.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of a circuit connection structure.
  • the circuit connection structure 100 includes a first circuit member 10 and a second circuit member 20 that face each other, and a connection member 30.
  • the circuit member 10 includes a first circuit board 11 and a first circuit electrode 12 disposed on the main surface 11 a of the circuit board 11. Note that an insulating layer (not shown) may be formed on the main surface 11a of the circuit board 11 according to circumstances.
  • the circuit member 20 includes a second circuit board 21 and a second circuit electrode 22 disposed on the main surface 21 a of the circuit board 21. In addition, an insulating layer (not shown) may be formed on the main surface 21a of the circuit board 21 in some cases. At least one of the circuit board 11 and the circuit board 21 may be a flexible circuit board (flexible board).
  • the circuit member 10 and the circuit member 20 are not particularly limited as long as electrodes that require electrical connection are formed, but the electrode height of at least one of the circuit members is preferably 5 to 14 ⁇ m. .
  • the circuit member a glass or plastic substrate on which electrodes are formed of ITO or the like used for a liquid crystal display, a printed wiring board, a ceramic wiring board, a flexible wiring board, a semiconductor silicon chip, TCP, 2 Examples thereof include layer FPC, and these can be used in combination as necessary.
  • the connecting member 30 is disposed between the circuit member 10 and the circuit member 20, and is disposed between the circuit electrode 12 and the circuit electrode 22.
  • the connecting member 30 is formed using the adhesive composition, and contains a cured product of the adhesive composition.
  • the connection member 30 contains an insulating material 31 and conductive particles 33.
  • the insulating substance 31 contains a cured product of the resin composition in the adhesive composition.
  • the conductive particles 33 are disposed not only between the circuit electrode 12 and the circuit electrode 22 facing each other, but also between the main surface 11a and the main surface 21a.
  • the circuit electrode 12 and the circuit electrode 22 are electrically connected via the conductive particles 33, so that the connection resistance between the circuit electrode 12 and the circuit electrode 22 is sufficiently reduced. .
  • the flow of current between the circuit electrode 12 and the circuit electrode 22 can be made smooth, and the function of the circuit can be sufficiently exhibited.
  • the conductive particles 33 have the above-described blending ratio, it is possible to obtain anisotropy of electrical connection.
  • connection member 30 is formed using the adhesive composition, long-term reliability of electrical characteristics between the circuit electrode 12 and the circuit electrode 22 is ensured even when the connection time is shortened. be able to. That is, the adhesive strength of the connection member 30 to the circuit member 10 and the circuit member 20 is sufficiently high, the connection resistance is sufficiently low, and this state can be maintained for a long period of time.
  • FIG. 4 is a schematic cross-sectional view (process diagram) showing a process of the method for manufacturing a connection structure.
  • the circuit member 10 and the circuit connection material 40 described above are prepared (see FIG. 4A).
  • an adhesive film formed by forming the adhesive composition into a film shape is used as the circuit connection material 40.
  • the circuit connection material 40 contains an adhesive component 31 a and conductive particles 33.
  • the circuit connection material containing the conductive particles 33 may be called ACA (Anisotropic Conductive Adhesive).
  • ACA Adhesive
  • the thickness of the adhesive film used as the circuit connecting material 40 is preferably 10 to 50 ⁇ m.
  • the thickness of the adhesive film is 10 ⁇ m or more, the circuit connecting material between the circuit electrode 12 and the circuit electrode 22 tends to be suppressed from being insufficiently filled.
  • the thickness of the adhesive film is 50 ⁇ m or less, the adhesive component 31a between the circuit electrode 12 and the circuit electrode 22 can be prevented from being sufficiently removed, and the conduction between the circuit electrode 12 and the circuit electrode 22 is suppressed. It tends to be easy to secure.
  • the circuit connection material 40 is placed on the main surface 11a of the circuit member 10 on which the circuit electrode 12 is formed.
  • the circuit connection material 40 is attached on a support (not shown)
  • the circuit connection material 40 is placed on the circuit member 10 so that the circuit connection material 40 side faces the circuit member 10. .
  • the circuit connecting material 40 is in the form of a film, the handling is easy. Therefore, in this embodiment, the circuit connection material 40 can be easily interposed between the circuit member 10 and the circuit member 20, and the connection work between the circuit member 10 and the circuit member 20 can be easily performed.
  • the circuit connection material 40 is pressurized in the directions of arrows A and B in FIG. 4A to temporarily connect the circuit connection material 40 to the circuit member 10 (see FIG. 4B).
  • the heating temperature is a temperature at which the adhesive composition constituting the circuit connecting material 40 is not cured, that is, a temperature lower than the temperature at which the radical polymerization initiator generates free radicals, for example.
  • the circuit member 20 is placed on the circuit connection material 40 so that the main surface 21a on which the circuit electrode 22 is formed faces the circuit member 20 side.
  • the circuit connection material 40 is attached on a support (not shown), the circuit member 20 is placed on the circuit connection material 40 after the support is peeled off.
  • the circuit member 10 and the circuit member 20 are fully connected. That is, first, the circuit member 10 and the circuit member 20 are disposed with the circuit electrode 12 and the circuit electrode 22 facing each other, and the circuit connection material 40 is disposed between the circuit member 10 and the circuit member 20. Then, the circuit connection material 40 is heated and pressurized via the circuit member 10 and the circuit member 20 to be cured, and the circuit member 10 and the circuit member 20 are connected and the circuit electrode 12 and the circuit electrode 22 are electrically connected.
  • the heating temperature at this time is a temperature at which the adhesive composition constituting the circuit connecting material 40 can be cured, that is, a temperature at which, for example, the radical polymerization initiator can generate free radicals.
  • a temperature at which, for example, the radical polymerization initiator can generate free radicals Thereby, free radicals are generated in the radical polymerization initiator, and polymerization of the radical polymerizable substance is started.
  • the circuit connection material 40 is cured and the main connection is performed, whereby a circuit connection structure 100 as shown in FIG. 3 is obtained.
  • the heating temperature in this connection is appropriately selected depending on the intended use, the constituent components of the adhesive composition, the material of the circuit member, and the like.
  • the heating temperature is preferably 130 ° C. or higher, and more preferably 140 ° C. or higher, from the viewpoint of low temperature rapid curability.
  • the heating temperature is preferably 200 ° C. or less, and more preferably 190 ° C. or less, from the viewpoint of low temperature rapid curability.
  • the pressurizing pressure is, for example, 1 to 8 MPa.
  • the crimping time is, for example, 4 to 15 seconds. Even if it is determined that the curing reaction has sufficiently progressed due to the change in hue, post-curing may be performed after that as necessary.
  • the conductive particles 33 can be brought into contact with both the circuit electrode 12 and the circuit electrode 22 facing each other, and the connection resistance between the circuit electrode 12 and the circuit electrode 22 can be reduced. It can be sufficiently reduced.
  • the adhesive component 31a is cured to become the insulating substance 31, and the circuit member 10
  • the circuit member 20 is firmly connected via the connection member 30.
  • the connection member 30 is comprised by the hardened
  • the connection resistance between the circuit electrode 12 and the circuit electrode 22 can be sufficiently reduced.
  • the circuit connection structure 100 can maintain such a state for a long period of time. Therefore, the circuit connection structure 100 is excellent in the long-term reliability of the electrical characteristics between the circuit electrode 12 and the circuit electrode 22.
  • the manufacturing method of the circuit connection structure is not limited to the above.
  • the adhesive component 31a contains a radical polymerization initiator that generates radicals only by light irradiation
  • the circuit connection material 40 is heated during the curing process. Instead of light irradiation, light irradiation may be performed.
  • the circuit connection structure is manufactured using the adhesive film as the circuit connection material 40, it may replace with an adhesive film and may use the circuit connection material which is not formed in the film form. Good. Even in this case, if the solution obtained by dissolving the circuit connection material in the solvent is applied to either the main surface 11a or the main surface 21a and dried, the circuit connection material is placed between the circuit member 10 and the circuit member 20. Can intervene.
  • the adhesive composition according to this embodiment can also be suitably used for a solar cell module in which a plurality of solar cells are electrically connected.
  • the solar cell module will be described.
  • FIG. 5 is a schematic cross-sectional view showing an embodiment of a solar cell module.
  • a solar cell module 200 shown in FIG. 5 includes solar cells 210a and 210b, a wiring member 220, and a connection member 230.
  • the solar cells 210a and 210b have a substrate 212, a surface electrode 214 disposed on one surface 212a of the substrate 212, and a back electrode 216 disposed on the other surface 212b of the substrate 212.
  • the substrate 212 is made of, for example, Si single crystal, polycrystal, or amorphous. Further, the substrate 212 may be a flexible substrate.
  • the one surface 212a is a light receiving surface.
  • the wiring member 220 is a member for electrically connecting the solar battery cell 210a and another member, and for example, electrically connects one solar battery cell to another solar battery cell.
  • the front electrode 214 of the solar battery cell 210 a and the back electrode 216 of the solar battery cell 210 b are electrically connected by the wiring member 220.
  • connection member 230 is disposed between the solar battery cell 210a and the wiring member 220, and between the solar battery cell 210b and the wiring member 220, and electrically connects the solar battery cells 210a and 210b and the wiring member 220. Connected. The solar cells 210 a and 210 b are electrically connected to the wiring member 220 through the connection member 230.
  • connection member 230 contains a cured product of the adhesive composition according to the present embodiment, and contains an insulating material that is a cured product of the resin composition and conductive particles.
  • the surface electrode 214 and the wiring member 220 of the solar battery cell 210a can be electrically connected through conductive particles. Further, the back electrode 216 of the solar battery cell 210b and the wiring member 220 can also be electrically connected via the conductive particles.
  • the solar cell module 200 uses the solar battery cells 210a and 210b and the wiring member 220 in place of the circuit member 10 and the circuit member 20 in the method for manufacturing the circuit connection structure 100 described above, whereby the circuit connection structure 100 described above. It can be manufactured by the same method as the manufacturing method.
  • the connecting member 230 is formed of a cured product of the above adhesive composition. Therefore, even if it is a case where connection time is shortened, the long-term reliability of the electrical property between the photovoltaic cell 210a, 210b and the wiring member 220 is securable. That is, the bonding strength of the connection member 230 to the solar battery cell 210a and the wiring member 220 is sufficiently high, the connection resistance is sufficiently low, and this state can be maintained for a long period of time.
  • the adhesive composition includes a radical polymerizable substance and a radical polymerization initiator as curable components, low temperature rapid curing is possible, so that the solar cell module 200 is connected to the solar cells 210a and 210b at the time of connection. Can be manufactured without deteriorating, and it is possible to have higher reliability than before.
  • Ni conductive particles having a compression hardness and an average particle diameter shown in Table 1 were blended and dispersed in an amount of 6% by mass with respect to the binder resin to obtain a dispersion.
  • 7.5 parts by mass of benzoyl peroxide product name: Nyper BMT-K, manufactured by NOF Corporation
  • 4-TEMPO product name: LA-7RD, manufactured by Asahi Denka Kogyo Co., Ltd.
  • An anisotropic conductive film having an adhesive layer thickness of 35 ⁇ m is obtained by applying this dispersion liquid on one side of a surface-treated PET film having a thickness of 50 ⁇ m using a coating apparatus and drying it with hot air at 70 ° C. for 5 minutes. Obtained.
  • Ni conductive particles having a compression hardness and an average particle diameter shown in Table 1 were blended and dispersed in an amount of 6% by mass with respect to the binder resin to obtain a dispersion.
  • 3 parts by mass of benzoyl peroxide product name: HTP, manufactured by NOF Corporation
  • 4-TEMPO product name: LA-7RD, manufactured by Asahi Denka Kogyo Co., Ltd.
  • An anisotropic conductive film with an adhesive layer thickness of 35 ⁇ m is obtained by applying this dispersion liquid to a PET film with a thickness of 50 ⁇ m on one side using a coating apparatus and drying with hot air at 70 ° C. for 5 minutes. Obtained.
  • the anisotropic conductive films obtained in the examples and comparative examples were cut to a width of 2.0 mm and a length of 4 cm, and the adhesive surface was PWB-TEG substrate (wiring pitch 300 ⁇ m, plate thickness 1.0 mm, base material E -67, copper thickness 35 ⁇ m, plating thickness (Ni: 5 ⁇ m or more, Au: 0.05 ⁇ m or more), surface treatment: electroless flash gold plating, manufactured by Hitachi Chemical Electronics Co., Ltd.) at 65 ° C., 1 MPa for 1 second
  • the adhesive was transferred to a PWB-TEG substrate by heating and pressing. Next, the PET film was peeled off.
  • a flexible wiring board (tin plating flexible wiring board thickness of 38 ⁇ m having a wiring pitch of 300 ⁇ m and wiring part thickness of 8 ⁇ m) is placed on the transferred adhesive so that the wiring part overlaps, and then 350 ⁇ m thick silicone rubber (product name: HC-35DS (manufactured by Shin-Etsu Chemical Co., Ltd.) is used as a cushioning material, and heated and pressurized at 175 ° C. and 3 MPa for 5 seconds from the side of the flexible wiring board with a heat tool, and the flexible wiring board and PWB- are passed through an anisotropic conductive film. A connection body to which the TEG substrate was connected was obtained.
  • silicone rubber product name: HC-35DS (manufactured by Shin-Etsu Chemical Co., Ltd.) is used as a cushioning material, and heated and pressurized at 175 ° C. and 3 MPa for 5 seconds from the side of the flexible wiring board with a heat tool, and the flexible wiring board and PWB
  • the storage modulus at 40 ° C. and 200 ° C. of the cured product obtained by heating the anisotropic conductive adhesive at 180 ° C. for 40 seconds was measured using a rheometric viscoelasticity measuring device RSA-II in a tensile mode. Measured with The temperature increase rate was measured at 5 ° C./min.
  • the resistance value between adjacent circuits of the FPC including the connection part of the evaluation connection body described above was measured with a multimeter (device name: TR6845, manufactured by Advantest) to obtain an initial resistance value. Thereafter, the connecting body for evaluation was put into a test tank at 85 ° C. and 85% RH for 500 hours. Then, the resistance value was measured again, and the amount of change in the resistance value from the initial stage was confirmed. The resistance value between adjacent circuits was measured at 45 points, and the average value of the resistance value variation was obtained.
  • the evaluation criteria for reliability are as follows. A: Change in resistance value is less than 1.0 ⁇ B: Change in resistance value is 1.0 ⁇ or more and less than 2.0 ⁇ C: Change in resistance value is 2.0 ⁇ or more
  • Examples 1 to 6 show that the particle indentation can be clearly observed and has higher reliability.
  • SYMBOLS 1 Adhesive film (film adhesive composition), 10 ... 1st circuit member, 11 ... 1st circuit board, 11a ... Main surface, 12 ... 1st circuit electrode, 20 ... 2nd circuit Member, 21 ... second circuit board, 21a ... main surface, 22 ... second circuit electrode, 30 ... connecting member, 31 ... insulating substance, 31a ... adhesive component, 33 ... conductive particles, 40 ... circuit connecting material DESCRIPTION OF SYMBOLS 100 ... Circuit connection structure 200 ... Solar cell module 210a, 210b ... Solar cell 212 ... Substrate 214 ... Front electrode 216 ... Back electrode 220 ... Wiring member 230 ... Connection member

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)

Abstract

 本発明に係る接着剤組成物は、樹脂組成物と、複数の導電粒子と、を含有し、複数の導電粒子の粒度分布における最大径をaとし、最小径をbとした場合に、最小径bに対する最大径aの比率a/bが5.0以上であり、当該接着剤組成物を180℃、40秒間加熱することにより得られる硬化物の40℃における貯蔵弾性率が1.0GPa以下であり、上記硬化物の200℃における貯蔵弾性率が3.0MPa以上である。

Description

接着剤組成物並びに接続構造体及びその製造方法
 本発明は、接着剤組成物並びに接続構造体及びその製造方法に関する。
 従来、液晶ディスプレイとTCP(Tape Carrier Package、テープキャリアーパッケージ)との接続、FPC(Flexible Printed Circuits、フレキシブル回路基板)とTCPとの接続、及び、FPCとプリント配線板との接続には、接着剤中に導電粒子を分散させた異方導電性接着剤が使用されている。このような異方導電性接着剤のうち例えばエポキシ樹脂系接着剤は、作業性に優れるものの、通常、20秒程度の接続時間では140~180℃程度の加熱が必要であり、10秒程度の接続時間では180~210℃程度の加熱が必要である。
 近年、異方導電性接着剤の分野では、生産効率向上のために10秒以下への接続時間の短縮化が求められてきており、低温速硬化性に優れたラジカル硬化型の異方導電性接着剤が検討されている(例えば、下記特許文献1参照)。
 現在、このような導電粒子を分散させた異方導電性接着剤を用いてFPCとプリント配線板又はガラス基板等とを電気的に接続した接続構造体の接続状態を確認するため、圧着時に導電粒子がFPCの回路電極に押し付けられることにより生じたFPCの回路電極の変形(粒子圧痕)が、CCDカメラ又はCMOSセンサ等の光学センサを用いて観察されている(例えば、下記特許文献2参照)。
国際公開第98/44067号 特開2008-91843号公報
 ところで、近年、基板の主面上に配置された電極と、配線部材又は他の電極等の導電体とを導電粒子を介して電気的に接続するに際して、導電粒子を含有する従来の接着剤組成物では、導電粒子が電極に押し付けられることにより生じる電極の粒子圧痕の観察が容易でない場合がある。そのため、電極と導電体とが接続されて得られる接続構造体の接続状態を容易に確認する観点から、粒子圧痕の観察を容易化することが望ましい。
 本発明は、このような実情に鑑みてなされたものであり、導電粒子を介して電極と導電体とが電気的に接続されて得られる接続構造体において、電極に形成される粒子圧痕を容易に観察できる接着剤組成物を提供することを目的とする。また、本発明は、このような接着剤組成物を用いて得られる接続構造体及びその製造方法を提供することを目的とする。
 本発明者らは、鋭意検討した結果、樹脂組成物と、複数の導電粒子と、を含有する接着剤組成物において、導電粒子の粒度分布における最小径に対する最大径の比率を所定の範囲に調整すると共に、接着剤組成物の硬化物の貯蔵弾性率を所定の範囲に調整することで、上記課題を解決し得ることを見出した。
 すなわち、本発明に係る接着剤組成物は、樹脂組成物と、複数の導電粒子と、を含有する接着剤組成物であって、複数の導電粒子の粒度分布における最大径をaとし、最小径をbとした場合に、最小径bに対する最大径aの比率a/bが5.0以上であり、当該接着剤組成物を180℃、40秒間加熱することにより得られる硬化物の40℃における貯蔵弾性率が1.0GPa以下であり、上記硬化物の200℃における貯蔵弾性率が3.0MPa以上である。
 本発明に係る接着剤組成物では、導電粒子を介して電極と導電体とが電気的に接続されて得られる接続構造体において、電極に形成される粒子圧痕を容易に観察できる。また、本発明に係る接着剤組成物では、当該接着剤組成物を用いて得られた接続構造体を高温高湿下で保存した場合において、接続抵抗が増大することが抑制されるため、接続信頼性を向上させることもできる。
 粒子圧痕を容易に観察できる要因について、本発明者らは以下のように推測している。但し、効果の要因は下記の内容に限定されるものではない。すなわち、本発明に係る接着剤組成物では、硬化物における40℃の貯蔵弾性率と200℃の貯蔵弾性率との差が小さいことから、樹脂組成物を含む接着剤組成物の硬化物の形状が変化することが抑制されている。これにより、導電粒子が電極に押し付けられることにより生じた初期の粒子圧痕が維持され易くなる。このように貯蔵弾性率の差を小さくすると共に、比率a/bを上記特定の範囲に調整することにより、粒子圧痕の観察が容易化したものと推測される。
 ところで、柔らかい導電粒子を用いると、電極の変形が小さいために粒子圧痕を光学センサで観察し難い場合がある。これに対し、本発明者らは、導電粒子の圧縮硬度が小さい場合においても、本発明に係る接着剤組成物では、粒子圧痕を容易に観察できると共に接続信頼性を向上させることができることを見出した。すなわち、本発明において、上記複数の導電粒子は、20℃における粒子径が40%変位するときの圧縮硬度が4000kgf/mm以下である粒子を含んでいてもよい。
 複数の導電粒子の平均粒径は、3μm以上であることが好ましい。この場合、粒子圧痕を更に容易に観察できる。
 本発明に係る接着剤組成物の形状は、フィルム状であってもよい。この場合、電極と導電体との接続作業を容易に行うことができる。
 本発明に係る接着剤組成物は、第1の基板の主面上に配置された第1の回路電極と、第2の基板の主面上に配置された第2の回路電極とを電気的に接続するために用いられてもよく、第1の基板の主面上に配置された電極を有する太陽電池セルの当該電極と、配線部材とを電気的に接続するために用いられてもよい。
 また、本発明者らは、従来の接着剤組成物において、電極を主面に有する基板がフレキシブル基板である場合に、粒子圧痕を観察することが特に難しいことを見出した。一方、本発明に係る接着剤組成物では、第1の基板がフレキシブル基板であってもよい。本発明に係る接着剤組成物によれば、フレキシブル基板を用いた場合においても粒子圧痕を容易に観察できる。
 本発明の一側面に係る接続構造体は、第1の基板及び当該第1の基板の主面上に配置された第1の回路電極を有する第1の回路部材と、第2の基板及び当該第2の基板の主面上に配置された第2の回路電極を有する第2の回路部材と、第1の回路電極及び第2の回路電極の間に配置された接続部材と、を備え、接続部材が、上記接着剤組成物の硬化物を含有し、第1の回路電極及び第2の回路電極が電気的に接続されている。また、本発明の別の側面に係る接続構造体は、第1の基板及び当該第1の基板の主面上に配置された電極を有する太陽電池セルと、配線部材と、電極及び配線部材の間に配置された接続部材と、を備え、接続部材が、上記接着剤組成物の硬化物を含有し、電極及び配線部材が電気的に接続されている。本発明に係る接続構造体では、粒子圧痕を容易に観察できると共に接続信頼性を向上させることができる。
 本発明に係る接続構造体では、第1の基板がフレキシブル基板であってもよい。本発明に係る接続構造体によれば、フレキシブル基板を用いた場合においても粒子圧痕を容易に観察できる。
 本発明に係る接続構造体の製造方法は、第1の基板及び当該第1の基板の主面上に配置された第1の回路電極を有する第1の回路部材と、第2の基板及び当該第2の基板の主面上に配置された第2の回路電極を有する第2の回路部材との間に上記接着剤組成物を配置し、第1の回路部材及び第2の回路部材を介して接着剤組成物を加熱及び加圧して、第1の回路電極及び第2の回路電極を電気的に接続する工程を備える。本発明に係る接続構造体の製造方法によれば、粒子圧痕を容易に観察可能であると共に接続信頼性を向上させることが可能な接続構造体を得ることができる。
 本発明によれば、導電粒子を介して電極と導電体とが電気的に接続されて得られる接続構造体において、電極に形成される粒子圧痕を容易に観察可能な接着剤組成物を提供することができる。このような接着剤組成物では、接続構造体の接続状態を容易に確認することができる。また、このような接着剤組成物では、接続信頼性を向上させて高い接続信頼性を得ることができる。さらに、本発明によれば、このような接着剤組成物を用いて得られる接続構造体及びその製造方法を提供することができる。
導電粒子の粒度分布の一例を示す図である。 接着剤フィルムの一実施形態を示す模式断面図である。 回路接続構造体の一実施形態を示す模式断面図である。 回路接続構造体の製造方法の工程を示す模式断面図である。 太陽電池モジュールの一実施形態を示す模式断面図である。
 以下、場合により図面を参照しながら本発明の好適な実施形態について詳細に説明する。但し、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。なお、以下の説明において、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、以下の説明において、(メタ)アクリレートとは、アクリレート及びそれに対応するメタクリレートを意味するものとする。(メタ)アクリル樹脂とは、アクリル樹脂及びそれに対応するメタクリル樹脂を意味するものとする。
[接着剤組成物]
 本実施形態に係る接着剤組成物は、樹脂組成物と、当該樹脂組成物に分散した複数の導電粒子と、を含有している。
(樹脂組成物)
 樹脂組成物は、絶縁性かつ硬化性の樹脂組成物であり、熱又はエネルギー線等の外部エネルギーにより硬化する性質を有する硬化性成分を含有している。かかる硬化性成分は、特に制限されないが、例えば、ラジカル重合性物質(ラジカル重合性成分)及びラジカル重合開始剤を含む成分である。
 ラジカル重合性物質は、ラジカルにより重合する官能基を有する物質である。かかるラジカル重合性物質としては、(メタ)アクリレート化合物、マレイミド化合物、スチレン誘導体等が挙げられる。これらは、1種を単独で、又は2種以上を混合して使用することができる。また、ラジカル重合性物質は、モノマ及びオリゴマのいずれの状態でも使用することができ、モノマとオリゴマとを混合して使用してもよい。
 (メタ)アクリレート化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、テトラメチロールメタンテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジシクロペンテニルアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニル(メタ)アクリレートトリシクロデカニル(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタン(メタ)アクリレート、イソシアヌール酸エチレンオキシド変性ジアクリレート、ビス(アクリロキシエチル)イソシアヌレート、ジメチロールトリシクロデカンジアクリレートが挙げられる。これらは、1種を単独で、又は2種以上を混合して使用することができる。上記(メタ)アクリレート化合物をラジカル重合させることで、(メタ)アクリル樹脂が得られる。
 マレイミド化合物は、マレイミド基を少なくとも1個有する化合物である。マレイミド化合物としては、例えばフェニルマレイミド、1-メチル-2,4-ビスマレイミドベンゼン、N,N’-m-フェニレンビスマレイミド、N,N’-p-フェニレンビスマレイミド、N,N’-4,4-ビフェニレンビスマレイミド、N,N’-4,4-(3,3-ジメチルビフェニレン)ビスマレイミド、N,N’-4,4-(3,3-ジメチルジフェニルメタン)ビスマレイミド、N,N’-4,4-(3,3-ジエチルジフェニルメタン)ビスマレイミド、N,N’-4,4-ジフェニルメタンビスマレイミド、N,N’-4,4-ジフェニルプロパンビスマレイミド、N,N’-4,4-ジフェニルエーテルビスマレイミド、N,N’-4,4-ジフェニルスルホンビスマレイミド、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン、2,2-ビス(3-s-ブチル-3,4-(4-マレイミドフェノキシ)フェニル)プロパン、1,1-ビス(4-(4-マレイミドフェノキシ)フェニル)デカン、4,4’-シクロヘキシリデン-ビス(1-(4-マレイミドフェノキシ)フェノキシ)-2-シクロヘキシルベンゼン、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)ヘキサフルオロプロパンが挙げられる。これらは、1種を単独で、又は2種以上を混合して使用することができる。
 スチレン誘導体は、スチレンのα位又は芳香族環における水素原子が置換基で置換された化合物である。
 また、ラジカル重合性物質としては、リン酸エステル構造を有する化合物を用いることができる。リン酸エステル構造を有する化合物は、無水リン酸と2-ヒドロキシエチル(メタ)アクリレートの反応物として得られ、具体的には、2-メタクリロイロキシエチルアシッドフォスヘート、2-アクリロイロキシエチルアシッドフォスヘート等が挙げられる。これらは、1種を単独で、又は2種以上を混合して使用することができる。
 ラジカル重合開始剤としては、有機過酸化物及びアゾ系化合物等のように、加熱により分解して遊離ラジカルを発生する硬化剤が挙げられる。ラジカル重合開始剤は、目的とする接続温度、接続時間、保存性等により適宜選定される。ラジカル重合開始剤としては、高反応性と保存安定性の点から、半減期10時間の温度が40℃以上、且つ、半減期1分の温度が170℃以下の有機過酸化物が好ましい。ラジカル重合開始剤の具体例としては、例えば、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイドが挙げられる。
 ジアシルパーオキサイドとしては、イソブチルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、3,5,5-トリメチルへキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニツクパーオキサイド、ベンゾイルパーオキシトルエン、ベンゾイルパーオキサイド等が挙げられる。
 パーオキシジカーボネートとしては、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロへキシル)パーオキシジカーボネート、ジ-2-エトキシメトキシパーオキシジカーボネート、ジ(2-エチルへキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート、ジ(3-メチル-3メトキシブチルパーオキシ)ジカーボネート等が挙げられる。
 パーオキシエステルとしては、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロへキシル-1-メチルエチルパーオキシネオデカノエート、t-へキシルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルへキサノネート、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、1-シクロへキシル-1-メチルエチルパーオキシ-2-エチルヘキサノネート、t-へキシルパーオキシ-2-エチルへキサノネート、t-ブチルパーオキシ-2-エチルへキサノネート、t-ブチルパーオキシイソブチレート、1,1-ビス(t-ブチルパーオキシ)シクロへキサン、t-へキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルへキサノネート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(m-トルオイルパーオキシ)へキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルへキシルモノカーボネート、t-へキシルパーオキシベンゾエート、t-ブチルパーオキシアセテート等が挙げられる。
 パーオキシケタールとしては、1,1-ビス(t-へキシルパーオキシ)-3,3,5-トリメチルシクロへキサン、1,1-ビス(t-へキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロへキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、2,2-ビス(t-ブチルパーオキシ)デカン等が挙げられる。
 ジアルキルパーオキサイドとしては、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)へキサン、t-ブチルクミルパーオキサイド等が挙げられる。
 ハイドロパーオキサイドとしては、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド等が挙げられる。
 シリルパーオキサイドとしては、t-ブチルトリメチルシリルパーオキサイド、ビス(t-ブチル)ジメチルシリルパーオキサイド、t-ブチルトリビニルシリルパーオキサイド、ビス(t-ブチル)ジビニルシリルパーオキサイド、トリス(t-ブチル)ビニルシリルパーオキサイド、t-ブチルトリアリルシリルパーオキサイド、ビス(t-ブチル)ジアリルシリルパーオキサイド、トリス(t-ブチル)アリルシリルパーオキサイド等が挙げられる。
 なお、ラジカル重合開始剤は、加熱によりラジカルを発生するラジカル重合開始剤に限られない。例えば、ラジカル重合開始剤としては、光照射のみによりラジカルを発生する開始剤を用いてもよく、超音波又は電磁波等によりラジカルを発生する開始剤を用いてもよい。
 これらのラジカル重合開始剤は、1種を単独で、又は2種以上を混合して使用することができ、分解促進剤、抑制剤等と併用してもよい。また、これらのラジカル重合開始剤をポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロカプセル化したものを用いることにより、可使時間を延長させることができる。
 ラジカル重合開始剤の配合量は、十分な反応率を得るために、ラジカル重合性物質100質量部に対して、0.1質量部以上が好ましい。ラジカル重合開始剤の配合量は、十分な反応率を得るために、ラジカル重合性物質100質量部に対して、40質量部以下が好ましく、30質量部以下がより好ましい。ラジカル重合開始剤の配合量が0.1質量部以上であると、十分な反応率が得られ易く、良好な接着強度及び小さな接続抵抗が得られ易くなる傾向にある。一方、ラジカル重合開始剤の配合量が40質量部以下であると、接着剤の流動性の低下、接続抵抗の上昇、及び、接着剤の保存安定性の低下が抑制される傾向にある。
 また、硬化性成分は、ラジカル重合性物質及びラジカル重合開始剤を含む成分に限られず、エポキシ樹脂及び潜在性硬化剤を含む成分であってもよい。
 上記樹脂組成物は、硬化性成分に加えて、フィルム形成材(フィルム形成成分)を更に含有してもよい。フィルム形成材とは、液状物を固形化し、構成組成物をフィルム形状とした場合に、取り扱いの容易性、及び/又は、容易に裂けたり、割れたり、べたついたりしない機械特性等をフィルムに対して付与することに有効であり、通常の状態でフィルムとしての取り扱いができるものである。かかるフィルム形成材としては、フェノキシ樹脂、ポリビニルホルマール樹脂、ポリスチレン樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、ポリアミド樹脂、キシレン樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂等が挙げられる。これらの中でも、接着強度、相溶性、耐熱性、機械強度に優れることからフェノキシ樹脂及びポリエステルウレタン樹脂が好ましい。これらは、1種を単独で、又は2種以上を混合して使用することができる。
 樹脂組成物におけるフィルム形成材の含有量は、特に制限されるものではないが、例えば、硬化性成分100質量部に対し、5質量部以上が好ましく、20質量部以上がより好ましい。樹脂組成物におけるフィルム形成材の含有量は、特に制限されるものではないが、例えば、硬化性成分100質量部に対し、80質量部以下が好ましく、60質量部以下がより好ましい。
 また、上記樹脂組成物は、必要によっては、ハイドロキノン及びメチルエーテルハイドロキノン類等の重合禁止剤、及び/又は、充填材、軟化剤、促進剤、老化防止剤、着色剤、カップリング剤を含有してもよい。
 接着剤組成物における樹脂組成物の含有量は、特に制限されるものではないが、接着剤組成物全量を基準として、50質量%以上が好ましく、70質量%以上がより好ましい。接着剤組成物における樹脂組成物の含有量は、特に制限されるものではないが、接着剤組成物全量を基準として、99質量%以下が好ましく、97質量%以下がより好ましい。
(導電粒子)
 導電粒子としては、Au、Ag、Ni、Cu又ははんだ等の金属あるいはカーボンなどの導電物質からなる粒子が挙げられる。また、導電粒子は、非導電性のガラス、セラミック、プラスチック等を上記金属等の導電物質で被覆した複合粒子も使用できる。さらに、導電粒子としては、上記導電粒子又は複合粒子の表面を絶縁性粒子により被覆したもの、あるいは、ハイブリダイゼーション等の方法により上記導電粒子又は複合粒子の表面に絶縁性の材料からなる絶縁層が設けられたものを用いることもできる。このような導電粒子を用いることで、隣接する導電粒子同士の接触による短絡が生じにくくなる。
 導電粒子の平均粒径は、3μm以上が好ましく、4μm以上がより好ましい。導電粒子の平均粒径が3μm以上であると、粒子圧痕が小さくなることが抑制される傾向があり、接続構造体の接続状態を光学センサで確認し易くなる傾向がある。導電粒子の平均粒径は、20μm以下が好ましく、10μm以下がより好ましい。導電粒子の平均粒径が20μm以下であると、粒子圧痕が不均一(まばら)になることが抑制されると共に、接続抵抗が高くなることが抑制される傾向がある。導電粒子の平均粒径は、レーザ回折式粒度分布測定装置(例えば、株式会社島津社製、レーザ回折式SALD-2100)を用いて、体積基準の粒度分布に基づき得ることができる。測定条件としては、例えば、下記の条件を採用することができる。
 ・粒度分布の測定範囲:0.03~1000μm
 ・測定環境:25℃/50%RH
 ・試料濃度:測定器の光強度分布のピーク値が縦軸の30~40%付近になるように試料を投入する。
 ・レーザ強度:出力3mW(波長680nm、半導体レーザ)
 ・屈折率:ニッケル123の場合 1.70-0.2i
 導電粒子の粒度分布における最大径をaとし、最小径をbとした場合に、最小径bに対する最大径aの比率(a/b)は、5.0以上である。比率(a/b)が5.0未満では、粒子圧痕が小さく、光学センサで接続状態を確認することが困難となる。比率(a/b)は、10以下が好ましい。比率(a/b)が10以下であると、粒子圧痕にムラが発生することが抑制される傾向がある。
 導電粒子の最大値aは、5μm以上が好ましく、10μm以上がより好ましい。導電粒子の最大値aは、隣接する導電粒子同士の接触による短絡が生じにくくなる観点から、20μm以下が好ましい。導電粒子の最小値bは、5μm以下が好ましく、3μm以下がより好ましい。導電粒子の最小値bは、接続抵抗が高くなることが抑制される観点から、1μm以上が好ましい。
 比率(a/b)を得るための粒度分布は、レーザ回折式粒度分布測定装置(例えば、株式会社島津社製、レーザ回折式SALD-2100)を用いて測定することが可能であり、半導体レーザ(波長680nm)により測定した体積基準の粒度分布である。粒度分布における測定範囲は、例えば0.03~1000μmである。測定条件としては、導電粒子の平均粒径に関する上記条件を採用することができる。
 図1は、上記測定装置及び測定条件を用いて得られる導電粒子の粒度分布の一例を示す図である。図1に示す頻度分布では、導電粒子の最大値aは14μmであり、導電粒子の最小値bは2.7μmである。図1において比率(a/b)は5.2である。
 本実施形態に係る接着剤組成物は、導電粒子として、所定の圧縮硬度を有する粒子を含んでいてもよい。導電粒子の20℃における粒子径(粒子直径)が40%圧縮変位したときの導電粒子の圧縮硬度(圧縮弾性率、40%K値)は、特に限定されるのもではないが、後述するように接着剤組成物を180℃、40秒間加熱することにより得られる硬化物の40℃における貯蔵弾性率が1.0GPa以下であり且つ上記硬化物の200℃における貯蔵弾性率が3.0MPa以上であれば、圧縮硬度4000kgf/mm以下の導電粒子を用いた場合であっても粒子圧痕を発現することができる。また、硬化物の40℃における貯蔵弾性率が1.0GPa以下であり且つ上記硬化物の200℃における貯蔵弾性率が3.0MPa以上であれば、圧縮硬度3000kgf/mm以下の導電粒子を用いた場合であっても粒子圧痕を発現することができる。
 なお、導電粒子の圧縮硬度は、複数の導電粒子(例えば、上記粒度分布を与える複数の導電粒子の平均粒径±1μmの範囲の粒径を有する複数の導電粒子)における圧縮強度の平均値(例えば、粒子50個の平均値)であり、例えば、導電粒子を20℃において40%圧縮変位させつつ微小硬さ試験機(フィッシャースコープH100C、株式会社フィッシャー・インストルメント製)を用いて測定することができる。具体的には、下記の方法により測定することができる。まず、微小硬さ試験機を用いて、直径50μmのダイアモンド製円柱の平滑圧子端面で、圧縮速度2.6mN/秒及び最大試験荷重10gの条件下で導電粒子を圧縮する。そして、このときの荷重値(kgf)及び圧縮変位(mm)を測定する。得られた測定値から、圧縮硬度を下記式により求めることができる。
 K値(kgf/mm)=(3/21/2)×F×S-3/2×R-1/2
[式中、Fは、導電粒子が40%圧縮変位したときの荷重値(kgf)を示し、Sは、導電粒子が40%圧縮変位したときの圧縮変位(mm)を示し、Rは、導電粒子の半径(mm)を示す。]
 導電粒子の含有量は、安定した接続抵抗を得るため、樹脂組成物全量を基準として2質量%以上が好ましく、3質量%以上がより好ましい。導電粒子の含有量は、絶縁性の観点から、樹脂組成物全量を基準として30質量%以下が好ましく、20質量%以下がより好ましい。導電粒子の含有量を上記割合に調整することで、上記接着剤組成物は、電気的接続の異方性を示す異方導電性接着剤として好適に用いられる。
 接着剤組成物は、上記導電粒子に加えて、他の導電材料を更に含有していてもよい。このような導電材料としては、粒子状又は短繊維状のカーボン、及び、AuめっきNi線等の金属線条などが挙げられる。
 接着剤組成物を180℃、40秒間加熱することにより得られた硬化物の200℃における貯蔵弾性率は、3.0MPa以上である。200℃における貯蔵弾性率が3.0MPa未満であると、粒子圧痕を観察し難くなる。上記硬化物の200℃における貯蔵弾性率は、10MPa以下が好ましく、9.0MPa以下がより好ましい。200℃における貯蔵弾性率が10MPa以下であると、基板と接着剤組成物との接着力が低下することが抑制される傾向がある。
 接着剤組成物を180℃、40秒間加熱することにより得られた硬化物の40℃における貯蔵弾性率は、10MPa以上が好ましく、100MPa以上がより好ましい。40℃における貯蔵弾性率が10MPa以上であると、粒子圧痕が発現し易くなる傾向があると共に抵抗値が大きくなり難い傾向がある。上記硬化物の40℃における貯蔵弾性率は、1.0GPa以下であり、0.9GPa以下が好ましい。40℃における貯蔵弾性率が1.0GPaを超えると、粒子圧痕を観察し難くなると共に信頼試験での抵抗値が大きくなり易い。
 本実施形態では、接着剤組成物を180℃、40秒間加熱することにより得られる硬化物の40℃における貯蔵弾性率が1.0GPa以下であり且つ上記硬化物の200℃における貯蔵弾性率が3.0MPa以上であることにより、硬化物における40℃の貯蔵弾性率と200℃の貯蔵弾性率との差が小さいことから、樹脂組成物を含む接着剤組成物の硬化物の形状をこの温度範囲において維持し続けることが可能であり、信頼性試験を行なった場合であっても粒子圧痕の観察を容易に行うことができる。上記硬化物の40℃の貯蔵弾性率と200℃の貯蔵弾性率の差は、997MPa以下が好ましく、900MPa以下がより好ましい。40℃の貯蔵弾性率と200℃の貯蔵弾性率の差が997MPa以下であると、導電粒子の圧縮硬度(圧縮弾性率、40%K値)が4000kgf/mm以下の粒子の場合であっても、信頼性試験後の粒子圧痕の観察を容易に行うことができる。
 上記硬化物の貯蔵弾性率は、200℃において3.0MPa以上10MPa以下、且つ、40℃において10MPa以上1.0GPa以下であることが好ましい。上記硬化物の貯蔵弾性率は、例えば、レオメトリック社製の粘弾性測定装置RSA-IIにより測定できる。硬化物の貯蔵弾性率は、ラジカル重合性物質(例えば多官能アクリレート)の配合量により調整することが可能である。例えば、ラジカル重合性物質(例えば多官能アクリレート)の配合量が増加すると、貯蔵弾性率が増加する傾向にある。
 上記接着剤組成物は、回路電極間の接続、及び、回路電極と配線部材等の導電体との接続に好適に用いることができる。例えば、上記接着剤組成物は、第1の基板及び当該第1の基板の主面上に配置された第1の回路電極を有する第1の回路部材の当該第1の回路電極と、第2の基板及び当該第2の基板の主面上に配置された第2の回路電極を有する第2の回路部材の当該第2の回路電極とを、対向配置させた状態で電気的に接続するための使用、及び、電極を有する太陽電池セルの当該電極と、配線部材とを、電気的に接続するための使用に好適である。
 上記接着剤組成物は、形状がフィルム状の形態(すなわち接着剤フィルム)として用いることが可能である。図2は、接着剤フィルムの一実施形態を示す模式断面図である。図2に示す接着剤フィルム1は、上述した接着剤組成物をフィルム状に形成してなるものである。このように接着剤組成物をフィルム状とすると、取扱性に優れ一層便利である。なお、接着剤フィルムは、2種以上の層からなる多層構成としてもよい。接着剤組成物における導電粒子の含有量を上記割合に調整することで、接着剤フィルムは、異方導電性フィルムとして好適に用いられる。
 接着剤フィルムは、例えば、接着剤組成物に溶剤等を加えた混合液を、フッ素樹脂フィルム、ポリエチレンテレフタレートフィルム、剥離紙等の剥離性基材上に塗布、又は、不織布等の基材に上記混合液を含浸させて剥離性基材上に載置し、溶剤を除去することによって得ることができる。なお、接着剤組成物は、フィルム状に形成されていなくてもよく、ペースト状であってもよい。
[接続構造体]
 上記接着剤組成物を用いて得られる接続構造体の好適な実施形態について説明する。図3は、回路接続構造体の一実施形態を示す概略断面図である。図3に示すように、回路接続構造体100は、相互に対向する第1の回路部材10及び第2の回路部材20と、接続部材30とを備えている。
 回路部材10は、第1の回路基板11と、回路基板11の主面11a上に配置された第1の回路電極12とを備えている。なお、回路基板11の主面11a上には、場合により絶縁層(図示せず)が形成されていてもよい。回路部材20は、第2の回路基板21と、回路基板21の主面21a上に配置された第2の回路電極22とを備えている。また、回路基板21の主面21a上にも、場合により絶縁層(図示せず)が形成されていてもよい。回路基板11及び回路基板21の少なくとも一方は、フレキシブル回路基板(フレキシブル基板)であってもよい。
 回路部材10及び回路部材20は、電気的接続を必要とする電極が形成されているものであれば特に制限されないが、少なくとも一方の回路部材の電極の高さは5~14μmであることが好ましい。回路部材としては、具体的には、液晶ディスプレイに用いられているITO等で電極が形成されているガラス又はプラスチック基板、プリント配線板、セラミック配線板、フレキシブル配線板、半導体シリコンチップ、TCP、2層FPC等が挙げられ、これらは必要に応じて組み合わせて用いることができる。本実施形態では、プリント配線板、あるいは、ポリイミド等の有機物からなる材質をはじめ銅、アルミニウム等の金属又はITO(indium tin oxide)、窒化ケイ素(Si)、二酸化ケイ素(SiO)等の無機材質のように多種多様な表面状態を有する回路部材を用いることができる。
 接続部材30は、回路部材10及び回路部材20の間に配置されており、回路電極12及び回路電極22の間に配置されている。接続部材30は、上記接着剤組成物を用いて形成されたものであり、上記接着剤組成物の硬化物を含有する。接続部材30は、絶縁性物質31及び導電粒子33を含有している。絶縁性物質31は、接着剤組成物における樹脂組成物の硬化物を含有している。
 導電粒子33は、対向する回路電極12及び回路電極22の間のみならず、主面11a及び主面21aの間にも配置されている。回路接続構造体100においては、回路電極12と回路電極22とが導電粒子33を介して電気的に接続されることにより、回路電極12及び回路電極22の間の接続抵抗が十分に低減される。これにより、回路電極12及び回路電極22の間の電流の流れを円滑にすることができ、回路の持つ機能を十分に発揮することができる。また、導電粒子33を上述した配合割合とした場合には、電気的接続の異方性を得ることが可能である。
 接続部材30は、上記接着剤組成物を用いて形成されたものであるため、接続時間を短縮した場合であっても、回路電極12及び回路電極22間の電気特性の長期信頼性を確保することができる。つまり、回路部材10及び回路部材20に対する接続部材30の接着強度が十分に高く、且つ、接続抵抗が十分低く、さらに、この状態を長期間にわたって持続させることができる。
[接続構造体の製造方法]
 上述した回路接続構造体100の製造方法について図4を参照しつつ説明する。図4は、接続構造体の製造方法の工程を示す模式断面図(工程図)である。
 まず、上述した回路部材10と、回路接続材料40を用意する(図4(a)参照)。本実施形態においては、回路接続材料40として、上記接着剤組成物をフィルム状に成形してなる接着剤フィルムが用いられている。回路接続材料40は、接着剤成分31aと、導電粒子33とを含有する。導電粒子33を含有する回路接続材料は、ACA(Anisotropic Conductive Adhesive)と呼ばれることもある。接着剤成分31aとしては、上記接着剤組成物における樹脂組成物が用いられる。
 回路接続材料40として用いられる接着剤フィルムの厚さは、10~50μmであることが好ましい。接着剤フィルムの厚さが10μm以上であると、回路電極12及び回路電極22間に回路接続材料が充填不足となることが抑制される傾向がある。他方、接着剤フィルムの厚さが50μm以下であると、回路電極12及び回路電極22間の接着剤成分31aを十分に排除しきれなくなることが抑制され、回路電極12及び回路電極22間の導通の確保が容易となる傾向がある。
 次に、回路接続材料40を回路部材10の回路電極12が形成されている主面11a上に載せる。なお、回路接続材料40が支持体(図示せず)上に付着している場合には、回路接続材料40側を回路部材10に向けるようにして、回路接続材料40を回路部材10上に載せる。この場合、回路接続材料40がフィルム状であると、取り扱いが容易である。そのため、本実施形態では、回路部材10と回路部材20との間に回路接続材料40を容易に介在させることができ、回路部材10と回路部材20との接続作業を容易に行うことができる。
 そして、回路接続材料40を、図4(a)の矢印A方向及び矢印B方向に加圧し、回路接続材料40を回路部材10に仮接続する(図4(b)参照)。このとき、加熱しながら加圧してもよい。但し、加熱温度は、回路接続材料40を構成する接着剤組成物が硬化しない温度、すなわち、例えばラジカル重合開始剤が遊離ラジカルを発生する温度よりも低い温度とする。
 続いて、図4(c)に示すように、回路電極22が形成されている主面21aを回路部材20側に向けるようにして回路部材20を回路接続材料40上に載せる。なお、回路接続材料40が支持体(図示せず)上に付着している場合には、支持体を剥離してから回路部材20を回路接続材料40上に載せる。
 次に、回路部材10及び回路部材20を本接続する。すなわち、まず、回路電極12及び回路電極22を対向配置した状態で回路部材10及び回路部材20を配置すると共に、回路部材10及び回路部材20の間に回路接続材料40を配置する。そして、回路部材10及び回路部材20を介して回路接続材料40を加熱及び加圧して硬化させ、回路部材10及び回路部材20を接続すると共に回路電極12及び回路電極22を電気的に接続する。
 更に具体的には、回路接続材料40を加熱しながら、図4(c)の矢印A方向及び矢印B方向に回路部材10,20を介して回路接続材料40を加圧する。このときの加熱温度は、回路接続材料40を構成する接着剤組成物が硬化し得る温度、すなわち、例えばラジカル重合開始剤が遊離ラジカルを発生可能な温度とする。これにより、ラジカル重合開始剤において遊離ラジカルが発生し、ラジカル重合性物質の重合が開始される。これにより、回路接続材料40が硬化処理され、本接続が行われ、図3に示すような回路接続構造体100が得られる。
 本接続における加熱温度は、使用する用途、接着剤組成物の構成成分、回路部材の材質等によって適宜選択される。加熱温度は、低温速硬化性の観点から、130℃以上が好ましく、140℃以上がより好ましい。加熱温度は、低温速硬化性の観点から、200℃以下が好ましく、190℃以下がより好ましい。加圧圧力は、例えば、1~8MPaである。圧着時間は、例えば、4~15秒である。なお、色相の変化により硬化反応が十分に進行したと判定した場合であっても、必要に応じて、その後に後硬化を行ってもよい。
 上記の方法により得られた回路接続構造体100では、対向する回路電極12及び回路電極22の双方に導電粒子33を接触させることが可能であり、回路電極12及び回路電極22間の接続抵抗を十分に低減することができる。
 また、回路電極12と回路電極22との間の距離を十分に小さくした状態で、回路接続材料40を加熱することにより、接着剤成分31aが硬化して絶縁性物質31となり、回路部材10と回路部材20とが接続部材30を介して強固に接続される。そして、回路接続構造体100において接続部材30は、上記樹脂組成物を含む回路接続材料の硬化物により構成されていることから、回路部材10及び回路部材20に対する接続部材30の接着強度が十分に高くなり、かつ、回路電極12及び回路電極22間の接続抵抗を十分に低減することができる。また、回路接続構造体100は、そのような状態を長期間にわたって持続することができる。したがって、回路接続構造体100は、回路電極12及び回路電極22間の電気特性の長期信頼性に優れる。
 なお、回路接続構造体の製造方法は上記に限られるものではなく、光照射のみによりラジカルを発生するラジカル重合開始剤を接着剤成分31aが含有する場合、回路接続材料40の硬化処理に際して、加熱に代えて光照射を行えばよい。また、上記実施形態では、回路接続材料40として接着剤フィルムを用いて回路接続構造体を製造しているが、接着剤フィルムに代えて、フィルム状に形成されていない回路接続材料を用いてもよい。この場合でも、回路接続材料を溶媒に溶解させて得られた溶液を、主面11a及び主面21aのいずれかに塗布し乾燥させれば、回路部材10及び回路部材20間に回路接続材料を介在させることができる。
[太陽電池モジュール]
 本実施形態に係る接着剤組成物は、複数の太陽電池セルが電気的に接続された太陽電池モジュールにも好適に用いることができる。以下、太陽電池モジュールについて説明する。
 図5は、太陽電池モジュールの一実施形態を示す模式断面図である。図5に示す太陽電池モジュール200は、太陽電池セル210a,210bと、配線部材220と、接続部材230とを備えている。
 太陽電池セル210a,210bは、基板212と、基板212の一方面212a上に配置された表面電極214と、基板212の他方面212b上に配置された裏面電極216とを有している。基板212は、例えば、Siの単結晶、多結晶又は非結晶からなる。また、基板212は、フレキシブル基板であってもよい。一方面212aは、受光面である。
 配線部材220は、太陽電池セル210aと他の部材とを電気的に接続するための部材であり、例えば、一の太陽電池セルと他の太陽電池セルとを電気的に接続する。図5においては、配線部材220により、太陽電池セル210aの表面電極214と、太陽電池セル210bの裏面電極216とが電気的に接続されている。
 接続部材230は、太陽電池セル210a及び配線部材220の間、並びに、太陽電池セル210b及び配線部材220の間にそれぞれ配置されており、太陽電池セル210a,210bと配線部材220とを電気的に接続している。太陽電池セル210a,210bは、接続部材230を介して配線部材220と電気的に接続している。
 接続部材230は、本実施形態に係る接着剤組成物の硬化物を含有しており、上記樹脂組成物の硬化物である絶縁性物質と、導電粒子とを含有している。太陽電池セル210aの表面電極214と配線部材220とは、導電粒子を介して電気的に接続することができる。また、太陽電池セル210bの裏面電極216と配線部材220もまた、導電粒子を介して電気的に接続することができる。
 太陽電池モジュール200は、上述した回路接続構造体100の製造方法における回路部材10及び回路部材20に代えて、太陽電池セル210a,210b及び配線部材220を用いることにより、上述した回路接続構造体100の製造方法と同様の方法で製造することができる。
 太陽電池モジュール200は、接続部材230が上記接着剤組成物の硬化物により構成されている。これにより、接続時間を短縮した場合であっても、太陽電池セル210a,210bと配線部材220間の電気特性の長期信頼性を確保することができる。つまり、太陽電池セル210a及び配線部材220に対する接続部材230の接着強度が十分に高く、且つ、接続抵抗が十分低く、さらに、この状態を長期間にわたって持続させることができる。さらに、上記接着剤組成物が硬化性成分としてラジカル重合性物質及びラジカル重合開始剤を含むものである場合、低温速硬化が可能となることから、太陽電池モジュール200は、接続時に太陽電池セル210a,210bを劣化させることなく製造することができ、従来よりも高い信頼性を有することが可能である。
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。
<実施例1~6,比較例1>
(バインダ樹脂の調製)
 ラジカル重合性成分として、反応性ウレタンアクリレート(製品名:UN-5500、根上工業株式会社製)29質量部、ビス(アクリロキシエチル)イソシアヌレート(製品名:M-215、東亞合成株式会社製)15質量部、ジメチロールトリシクロデカンジアクリレート(製品名:DCP-A、共栄社化学株式会社製)15質量部、及び、2-メタクリロイロキシエチルアシッドフォスヘート(製品名:P-2M、共栄社化学株式会社製)3質量部と、フィルム形成成分として、ポリエステルウレタン樹脂(製品名:UR-8240、東洋紡績株式会社製)をトルエン/メチルエチルケトン=50/50の混合溶剤に溶解して得られた40質量%の溶液40質量部と、エチレン-酢酸ビニル共重合体(製品名:エバフレックスEV-40W)をトルエンに溶解して得られた30質量%の溶液30質量部とを混合した後に攪拌してバインダ樹脂を得た。
(異方導電性フィルムの調製)
 表1に記載の圧縮硬度及び平均粒径のNi導電粒子をバインダ樹脂に対して6質量%配合分散させ、分散液を得た。この分散液に遊離ラジカル発生剤としてベンゾイルパーオキサイド(製品名:ナイパーBMT-K、日本油脂株式会社製)7.5質量部を添加した。また、重合禁止剤として、4-TEMPO(製品名:LA-7RD、旭電化工業株式会社製)0.2質量部を分散液に添加した。
 厚み50μmのPETフィルムにおける表面処理した片面に、塗工装置を用いてこの分散液を塗布し、70℃で5分間熱風乾燥することにより、接着剤層の厚みが35μmの異方導電性フィルムを得た。
<比較例2,3>
(バインダ樹脂の調製)
 ラジカル重合性成分として、反応性ウレタンアクリレート(製品名:UN-5500、根上工業株式会社製)25質量部、ビス(アクリロキシエチル)イソシアヌレート(製品名:M-215、東亞合成株式会社製)10質量部、ジメチロールトリシクロデカンジアクリレート(製品名:DCP-A、共栄社化学株式会社製)10質量部、及び、2-メタクリロイロキシエチルアシッドフォスヘート(製品名:P-2M、共栄社化学株式会社製)3質量部と、フィルム形成成分として、ポリエステルウレタン樹脂(製品名:UR-8240、東洋紡績株式会社製)をトルエン/メチルエチルケトン=50/50の混合溶剤に溶解して得られた40質量%の溶液45質量部と、エチレン-酢酸ビニル共重合体(製品名:エバフレックスEV-40W)をトルエンに溶解して得られた30質量%の溶液10質量部とを混合した後に攪拌してバインダ樹脂を得た。
(異方導電性フィルムの調製)
 表1に記載の圧縮硬度及び平均粒径のNi導電粒子をバインダ樹脂に対して6質量%配合分散させ、分散液を得た。この分散液に遊離ラジカル発生剤としてベンゾイルパーオキサイド(製品名:HTP、日本油脂株式会社製)3質量部を添加した。また、重合禁止剤として、4-TEMPO(製品名:LA-7RD、旭電化工業株式会社製)0.2質量部を分散液に添加した。
 片面を表面処理した厚み50μmのPETフィルムに、塗工装置を用いてこの分散液を塗布し、70℃で5分間熱風乾燥することにより、接着剤層の厚みが35μmの異方導電性フィルムを得た。
<評価用接続体の作製>
 実施例及び比較例で得られた異方導電性フィルムを幅2.0mm、長さ4cmに切断し、その接着剤面をPWB-TEG基板(配線ピッチ300μm、板厚1.0mm、基材E-67、銅厚35μm、めっき厚み(Ni:5μm以上、Au:0.05μm以上)、表面処理:無電解フラッシュ金めっき、日立化成エレクトロニクス株式会社製)の配線部分に65℃、1MPaで1秒間加熱加圧して、接着剤をPWB-TEG基板に転写した。次いで、PETフィルムを剥離した。
 次いで、フレキシブル配線板(配線ピッチ300μm、配線部厚み8μmのすずめっきフレキシブル配線板厚み38μm)を、転写した接着剤上に配線部が重なるように置いた後、350μm厚みのシリコーンゴム(製品名:HC-35DS 信越化学工業株式会社製)をクッション材とし、フレキシブル配線板側から、ヒートツールによって175℃、3MPaで5秒間加熱加圧して、異方導電性フィルムを介してフレキシブル配線板及びPWB-TEG基板を接続した接続体を得た。
<各種評価>
(圧縮硬度の評価)
 微小硬さ試験機(フィッシャースコープH100C、株式会社フィッシャー・インストルメント製)を用いて、20℃における導電粒子の粒子径が40%変位したときの導電粒子の圧縮硬度(40%K値)を測定した。
(導電粒子の平均粒径、最大径/最小径の評価)
 株式会社島津社製のレーザ回折式SALD-2100を用い、半導体レーザ(波長680nm)による粒度分布に基づき導電粒子の平均粒径、粒子の最大径及び粒子の最小径を測定した。なお、粒度分布の測定範囲は、0.03~1000μmとした。その他の測定条件としては、下記の条件を採用した。
 ・測定環境:25℃/50%RH
 ・試料濃度:測定器の光強度分布のピーク値が縦軸の30~40%付近になるように試料を投入した。
 ・レーザ強度:出力3mW(波長680nm、半導体レーザ)
 ・屈折率:ニッケル123 1.70-0.2i
(貯蔵弾性率の評価)
 異方導電性接着剤を180℃、40秒間加熱することにより得られた硬化物の40℃及び200℃における貯蔵弾性率を、レオメトリック社製粘弾性測定装置RSA-IIを用いて、引張りモードで測定した。なお、昇温速度は5℃/minで測定した。
(信頼性の評価)
 上述の評価用接続体の接続部を含むFPCの隣接回路間の抵抗値をマルチメータ(装置名:TR6845、アドバンテスト社製)で測定し初期の抵抗値とした。その後、85℃85%RHの試験槽に評価用接続体を500時間投入した。そして、再度抵抗値を測定し、初期からの抵抗値の変化量を確認した。なお、隣接回路間の抵抗値を45点測定し、抵抗値の変化量の平均値を求めた。なお、信頼性の評価基準は以下のとおりである。
 A:抵抗値の変化が1.0Ω未満
 B:抵抗値の変化が1.0Ω以上2.0Ω未満
 C:抵抗値の変化が2.0Ω以上
(粒子圧痕の評価)
 株式会社ニコン社製エクリプスL200を用い、微分干渉顕モードで、上述の評価用接続体のフレキシブル配線板の配線部分における粒子圧痕を観察した。なお、粒子圧痕の評価基準は以下のとおりである。
 A:粒子圧痕が鮮明に観察できる
 B:粒子圧痕が鮮明でなく観察し難い
 C:粒子圧痕が観察できない
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、実施例1~6は、粒子圧痕が鮮明に観察可能であり、更に高信頼性を有していることを示している。
 1…接着剤フィルム(フィルム状の接着剤組成物)、10…第1の回路部材、11…第1の回路基板、11a…主面、12…第1の回路電極、20…第2の回路部材、21…第2の回路基板、21a…主面、22…第2の回路電極、30…接続部材、31…絶縁性物質、31a…接着剤成分、33…導電粒子、40…回路接続材料、100…回路接続構造体、200…太陽電池モジュール、210a,210b…太陽電池セル、212…基板、214…表面電極、216…裏面電極、220…配線部材、230…接続部材。

Claims (11)

  1.  樹脂組成物と、複数の導電粒子と、を含有する接着剤組成物であって、
     前記複数の導電粒子の粒度分布における最大径をaとし、最小径をbとした場合に、最小径bに対する最大径aの比率a/bが5.0以上であり、
     当該接着剤組成物を180℃、40秒間加熱することにより得られる硬化物の40℃における貯蔵弾性率が1.0GPa以下であり、前記硬化物の200℃における貯蔵弾性率が3.0MPa以上である、接着剤組成物。
  2.  前記複数の導電粒子が、20℃における粒子径が40%変位するときの圧縮硬度が4000kgf/mm以下である粒子を含む、請求項1に記載の接着剤組成物。
  3.  前記複数の導電粒子の平均粒径が3μm以上である、請求項1又は2に記載の接着剤組成物。
  4.  形状がフィルム状である、請求項1~3のいずれか一項に記載の接着剤組成物。
  5.  第1の基板の主面上に配置された第1の回路電極と、第2の基板の主面上に配置された第2の回路電極とを電気的に接続するために用いられる、請求項1~4のいずれか一項に記載の接着剤組成物。
  6.  第1の基板の主面上に配置された電極を有する太陽電池セルの当該電極と、配線部材とを電気的に接続するために用いられる、請求項1~4のいずれか一項に記載の接着剤組成物。
  7.  前記第1の基板がフレキシブル基板である、請求項5又は6に記載の接着剤組成物。
  8.  第1の基板及び当該第1の基板の主面上に配置された第1の回路電極を有する第1の回路部材と、
     第2の基板及び当該第2の基板の主面上に配置された第2の回路電極を有する第2の回路部材と、
     前記第1の回路電極及び前記第2の回路電極の間に配置された接続部材と、を備え、
     前記接続部材が、請求項1~4のいずれか一項に記載の接着剤組成物の硬化物を含有し、
     前記第1の回路電極及び前記第2の回路電極が電気的に接続されている、接続構造体。
  9.  第1の基板及び当該第1の基板の主面上に配置された電極を有する太陽電池セルと、
     配線部材と、
     前記電極及び前記配線部材の間に配置された接続部材と、を備え、
     前記接続部材が、請求項1~4のいずれか一項に記載の接着剤組成物の硬化物を含有し、
     前記電極及び前記配線部材が電気的に接続されている、接続構造体。
  10.  前記第1の基板がフレキシブル基板である、請求項8又は9に記載の接続構造体。
  11.  第1の基板及び当該第1の基板の主面上に配置された第1の回路電極を有する第1の回路部材と、第2の基板及び当該第2の基板の主面上に配置された第2の回路電極を有する第2の回路部材との間に請求項1~4のいずれか一項に記載の接着剤組成物を配置し、前記第1の回路部材及び前記第2の回路部材を介して前記接着剤組成物を加熱及び加圧して、前記第1の回路電極及び前記第2の回路電極を電気的に接続する工程を備える、接続構造体の製造方法。
     
PCT/JP2012/077150 2011-10-20 2012-10-19 接着剤組成物並びに接続構造体及びその製造方法 WO2013058380A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-230988 2011-10-20
JP2011230988A JP2015003935A (ja) 2011-10-20 2011-10-20 接着剤組成物並びに接続構造体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2013058380A1 true WO2013058380A1 (ja) 2013-04-25

Family

ID=48141023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077150 WO2013058380A1 (ja) 2011-10-20 2012-10-19 接着剤組成物並びに接続構造体及びその製造方法

Country Status (2)

Country Link
JP (1) JP2015003935A (ja)
WO (1) WO2013058380A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007181A (ja) * 2013-06-25 2015-01-15 日立化成株式会社 太陽電池用接続材料、これを用いた太陽電池モジュール及びその製造方法
JPWO2019050006A1 (ja) * 2017-09-11 2020-08-20 日立化成株式会社 回路接続用接着剤フィルム及びその製造方法、回路接続構造体の製造方法、並びに、接着剤フィルム収容セット

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6654815B2 (ja) * 2015-06-09 2020-02-26 デクセリアルズ株式会社 異方性導電接続方法、セラミック基板の製造方法
CN116348563A (zh) * 2020-09-28 2023-06-27 株式会社力森诺科 电路连接用黏合剂薄膜、含无机填料组合物、以及电路连接结构体及其制造方法
WO2024009589A1 (ja) * 2022-07-08 2024-01-11 ナミックス株式会社 導電性ペースト、電気回路、可撓性電気回路体及び成形体の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241054A (ja) * 1997-10-28 1999-09-07 Sony Chem Corp 異方導電性接着剤および接着用膜
JP2002322456A (ja) * 2001-04-23 2002-11-08 Asahi Glass Co Ltd 異方性導電ペースト
JP2003176473A (ja) * 2001-12-11 2003-06-24 Matsushita Electric Ind Co Ltd 接合材料、接合材料の設計方法および接合構造体
JP2009256466A (ja) * 2008-04-16 2009-11-05 Sekisui Chem Co Ltd 電子部品用接着剤
JP2011068913A (ja) * 2010-12-24 2011-04-07 Sony Chemical & Information Device Corp 異方性導電接着フィルム、接続構造体及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241054A (ja) * 1997-10-28 1999-09-07 Sony Chem Corp 異方導電性接着剤および接着用膜
JP2002322456A (ja) * 2001-04-23 2002-11-08 Asahi Glass Co Ltd 異方性導電ペースト
JP2003176473A (ja) * 2001-12-11 2003-06-24 Matsushita Electric Ind Co Ltd 接合材料、接合材料の設計方法および接合構造体
JP2009256466A (ja) * 2008-04-16 2009-11-05 Sekisui Chem Co Ltd 電子部品用接着剤
JP2011068913A (ja) * 2010-12-24 2011-04-07 Sony Chemical & Information Device Corp 異方性導電接着フィルム、接続構造体及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007181A (ja) * 2013-06-25 2015-01-15 日立化成株式会社 太陽電池用接続材料、これを用いた太陽電池モジュール及びその製造方法
JPWO2019050006A1 (ja) * 2017-09-11 2020-08-20 日立化成株式会社 回路接続用接着剤フィルム及びその製造方法、回路接続構造体の製造方法、並びに、接着剤フィルム収容セット

Also Published As

Publication number Publication date
JP2015003935A (ja) 2015-01-08

Similar Documents

Publication Publication Date Title
US7785708B2 (en) Adhesive film for circuit connection, and circuit connection structure
JP5247968B2 (ja) 回路接続材料、及びこれを用いた回路部材の接続構造
TWI445722B (zh) 導體間的電連接材料和包括此電連接材料的太陽能電池
KR101970376B1 (ko) 접착제 조성물 및 접속체
WO2012026470A1 (ja) 回路接続材料及びこれを用いた回路部材の接続方法
WO2013058380A1 (ja) 接着剤組成物並びに接続構造体及びその製造方法
WO2013161713A1 (ja) 回路接続材料、回路接続構造体、接着フィルム及び巻重体
TW201015588A (en) Circuit connection material and circuit connection structure
JP5029372B2 (ja) 異方導電性接着剤、異方導電性フィルムおよび回路接続構造体の製造方法
KR20210134875A (ko) 접착제 조성물 및 접속체
TWI639670B (zh) 接著劑組成物、使用其的膜狀接著劑及電路連接材料、電路構件的連接結構及其製造方法、電路連接材料的使用以及太陽電池模組
JP2013028675A (ja) 回路接続材料及びそれを用いた回路接続構造体
JP7006029B2 (ja) 回路接続用接着剤組成物及び構造体
JP2008133411A (ja) 電気接続用接着フィルム
KR20150041748A (ko) 회로 접속 재료, 회로 부재의 접속 구조체 및 회로 부재의 접속 구조체의 제조 방법
JP4696360B2 (ja) 接着剤組成物、それを用いた回路端子の接続方法及び回路端子の接続構造
JP6102105B2 (ja) フィルム状回路接続材料及び回路接続構造体
JP2022000530A (ja) 接着剤組成物及び構造体
JP2013227420A (ja) 回路接続材料、回路接続構造体、接着フィルム及び巻重体。
KR102467385B1 (ko) 접속 구조체, 회로 접속 부재 및 접착제 조성물
JP5067101B2 (ja) 接着剤組成物
CN107636107B (zh) 粘接剂组合物以及连接体
JP2012057161A (ja) 回路接続用接着フィルム及び回路接続構造体
JP2012204059A (ja) 回路接続材料及びそれを用いた回路接続構造体
JP5387592B2 (ja) 回路接続材料、及び回路部材の接続構造の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP