WO2013058376A1 - 溶射用Mo粉末およびそれを用いたMo溶射膜並びにMo溶射膜部品 - Google Patents

溶射用Mo粉末およびそれを用いたMo溶射膜並びにMo溶射膜部品 Download PDF

Info

Publication number
WO2013058376A1
WO2013058376A1 PCT/JP2012/077146 JP2012077146W WO2013058376A1 WO 2013058376 A1 WO2013058376 A1 WO 2013058376A1 JP 2012077146 W JP2012077146 W JP 2012077146W WO 2013058376 A1 WO2013058376 A1 WO 2013058376A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
thermal spraying
component
particles
secondary particles
Prior art date
Application number
PCT/JP2012/077146
Other languages
English (en)
French (fr)
Inventor
斉 青山
勉 森岡
憲治 友清
孝浩 奥畑
山口 悟
佳代 中野
佐藤 英樹
Original Assignee
株式会社 東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝マテリアル株式会社 filed Critical 株式会社 東芝
Priority to CN201280042145.7A priority Critical patent/CN103781934B/zh
Priority to JP2013539707A priority patent/JP5890843B2/ja
Publication of WO2013058376A1 publication Critical patent/WO2013058376A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof

Definitions

  • the present invention relates to a thermal spraying Mo powder, a Mo sprayed film using the same, and a Mo sprayed film component.
  • Thermal spraying is a film forming method in which a material is heated and melted and sprayed onto a substrate (workpiece) to form a film.
  • a combustion flame or plasma is used as a heat source for heating.
  • Thermal spraying methods include flame spraying, explosion spraying, electric spraying, high-speed flame spraying, and the like.
  • a cold spray method for forming a film without melting a material has been developed.
  • thermal spraying can be applied to any material that melts
  • various materials such as metal, ceramics, cermet, and plastic are used. Therefore, the use is also various, and an abrasion-resistant film
  • the thermal spraying is performed by processing the thermal spray material into powder or wire (wire shape, rod shape) and supplying it to a heating source.
  • a method using a linear thermal spray material is referred to as “wire flame spraying”
  • a method using a powdered molten material is referred to as “powder flame spraying”. I'm calling.
  • the hot wire flame spraying method has an advantage that a linear spray material can be continuously supplied to the combustion flame, so that the supply amount can be easily controlled to be uniform and a uniform sprayed film can be easily obtained.
  • the thermal spray material since the thermal spray material must be processed into a wire, it is suitable for materials that are relatively easy to process such as carbon steel, aluminum, and zinc. However, when applied to hard refractory metals such as molybdenum and tungsten, the cost increases. It was a factor.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-300555 (Patent Document 1) is disclosed as a thermal spraying powder.
  • Mo powder having an average particle diameter of 10 ⁇ m or less is obtained by thermal spraying powder of 5 to 75 ⁇ m or 45 to 250 ⁇ m by granulation sintering.
  • the amount supplied to the thermal spray nozzle can be increased, so the amount of film formation can be increased.
  • the particles simply obtained by the granulation sintering method were large particles (secondary particles) having an aspect ratio of about 2 to 3. Secondary particles with a large aspect ratio have poor fluidity, and when supplied to a thermal spray nozzle, the amount of instantaneous spray powder supplied varies, making it difficult to obtain a film with a uniform thickness. There was a problem.
  • the present invention is intended to solve such problems, and an object thereof is to provide a thermal spraying Mo powder capable of obtaining a uniform thermal sprayed film, an Mo film using the same, and an Mo film component.
  • the Mo powder for thermal spraying according to the present invention is an Mo powder for thermal spraying having an average primary particle size of 1 ⁇ m or more and 10 ⁇ m or less, and an average particle size of secondary particles of 20 ⁇ m or more and 200 ⁇ m or less.
  • the ratio of the secondary particles having .5 is 80% by mass or more and 100% by mass or less.
  • the density of the secondary particles may be 5.0 kg / cm 3 or less.
  • the Mo purity may be 99.0% or more.
  • the thermal spraying Mo powder may be a mixture of Mo powder and second component powder.
  • the second component powder may be a carbide component or a Ni component.
  • the second component powder may be contained in an amount of 1 to 35% by mass.
  • the thermal spraying Mo powder may be subjected to a degreasing process or a sintering process.
  • the fluidity of the thermal spraying Mo powder may be 50 sec / 50 g or less.
  • the cross section of the secondary particles may have a structure in which the cross section of the secondary particles is continuous with the Mo powder and / or the second component powder.
  • a Mo sprayed film component including the Mo sprayed film is also provided.
  • the Mo sprayed film component is at least one selected from the group consisting of an automotive component, an aircraft component, a power generator component, an X-ray tube component, a thermoelectric conversion device, and a mold. It can be a seed.
  • the Mo sprayed film may have an average film thickness of 5 to 500 ⁇ m.
  • the thermal spraying Mo powder according to the present invention by increasing the proportion of secondary particles having an aspect ratio in the range of 1.0 to 1.5, the supply amount of thermal spraying powder to the thermal spraying nozzle can be easily controlled. Therefore, a uniform high melting point metal sprayed film can be obtained.
  • the use of secondary particles to which primary particles are bonded can prevent an increase in cost.
  • the figure which shows one embodiment of the Mo powder for thermal spraying by this invention The figure which shows another embodiment of the Mo powder for thermal spraying by this invention. Sectional drawing of the secondary particle of the Mo powder for thermal spraying by one embodiment of this invention. The figure which shows an example of Mo sprayed film components.
  • the Mo powder for thermal spraying according to the present invention is an Mo powder for thermal spraying having an average primary particle size of 1 ⁇ m or more and 10 ⁇ m or less, and an average particle size of secondary particles of 20 ⁇ m or more and 200 ⁇ m or less.
  • the ratio of the secondary particles having .5 is 80% by mass or more and 100% by mass or less.
  • primary particles indicate one Mo powder (one grain) or one second component powder (one grain), and secondary particles are particles in which a plurality of primary particles are solidified.
  • secondary particles are particles in which a plurality of primary particles are solidified. Show.
  • the term “primary particles are solidified” indicates a state in which the particles are aggregated and solidified, a state in which the particles are bonded via an adhesive or a binder, or a case where primary particles are granulated.
  • FIG. 1 shows an example of a state in which primary particles and secondary particles are mixed.
  • reference numeral 1 denotes primary particles of the thermal spraying Mo powder
  • reference numeral 2 denotes secondary particles of the thermal spraying Mo powder.
  • the Mo powder for thermal spraying according to the present invention may be composed of Mo metal alone, or may be a mixture of Mo powder and second component powder.
  • the second component powder is not particularly limited as long as it is other than metal Mo.
  • the carbide include molybdenum carbide, tungsten carbide, and silicon carbide.
  • the Ni component powder, the Co component powder, and the rare earth element component powder include various metals such as simple metals, alloys, and compounds. Among these, molybdenum carbide or Ni component is preferable as the second component powder.
  • Molybdenum carbide has an effect of adsorbing impurity oxygen (including oxygen at the time of thermal spraying in the atmosphere) in the thermal spraying process. Further, since molybdenum carbide also has an effect as a lubricant, it is possible to improve the wear resistance of the sprayed film. Further, since the Ni component has good corrosion resistance, the corrosion resistance of the sprayed film can be improved.
  • the second component powder is not limited to one type, and may be two or more types. The mixing amount of the second component powder is preferably in the range of 1 to 35% by mass when the total value of the Mo powder and the second component powder is 100% by mass. If it is this range, the characteristic of 2nd component can be provided taking advantage of the goodness of Mo in a sprayed film.
  • Mo powder it is meant to include a mixture of Mo powder and a second component powder in addition to those composed of Mo powder alone.
  • the Mo purity is preferably 99.0% or more (mass%). If the Mo purity is less than 99.0%, the melting point of the Mo powder may vary due to the presence of impurities.
  • the average particle size of the primary particles is less than 1 ⁇ m, the powder is too fine and the handleability is poor, and if it exceeds 10 ⁇ m, the size of the secondary particles may be unnecessarily large. Further, when the average particle size of the secondary particles is less than 20 ⁇ m, the effect of forming the secondary particles is small. When the average particle size exceeds 200 ⁇ m, the size is too large, resulting in variations in the material supply amount in the thermal spraying process. In addition, the temperature of the flame flame is different between the surface and the center of the flame, and even if the Mo powder is supplied to the same flame flame, the melting method is different between the large powder and the small powder. If the melting of the Mo powder (and the second component powder) is not uniform, an unmelted structure is formed in the obtained sprayed film, and the film quality varies. Therefore, it is preferable that there are no very large particles.
  • secondary particles having an aspect ratio of 1.0 to 1.5 are contained in an amount of 80% by mass to 100% by mass.
  • an enlarged photograph is used, and the vertical and horizontal maximum lengths of secondary particles appearing in the enlarged photograph (SEM photograph) as shown in FIG.
  • the aspect ratio is obtained by (A / B or B / A), where the smaller of the maximum vertical length A and the maximum horizontal length B is the denominator and the larger is the numerator. Since the smaller one of the maximum vertical length A and the maximum horizontal length B is used as the denominator, the minimum value is 1.0.
  • An aspect ratio of 1.5 or less indicates that the secondary particles are almost spherical. When the aspect ratio is larger than 1.5, the size of individual secondary particles varies greatly.
  • the proportion of secondary particles having an aspect ratio of 1.0 to 1.5 is 80% by mass or more. It is preferable that all the secondary particles have an aspect ratio in the range of 1.0 to 1.5.
  • the Mo sprayed film composed of the Mo powder alone or the Mo sprayed film provided with the characteristics of the second component powder while maintaining the characteristics of the Mo sprayed film needs to be a sprayed film having a uniform film quality. .
  • the sprayed film is a technique for forming a film by melting Mo powder with a flame flame and spraying it at a high speed.
  • the thermal spraying Mo powder is melted by the thermal spray flame, if the size of the Mo powder varies, the method of melting the Mo powder varies.
  • a small Mo powder is a primary particle which did not become a secondary particle, or a small secondary particle even if it is a secondary particle.
  • the area ratio (total area ratio of particles having a major axis of 5 ⁇ m or less / 5% total area ratio of particles exceeding 5 ⁇ m) is preferably 0 to 10%.
  • an SEM photograph (enlarged photograph) having a unit area of 1000 ⁇ m ⁇ 1000 ⁇ m is taken, and the longest diagonal line of each powder is measured as the major axis L.
  • FIG. 2 shows an example of measuring the major axis.
  • the major axis L is distributed to particles of 5 ⁇ m or less and more than 5 ⁇ m, and the respective areas are obtained and totaled.
  • the major axis L and the area are determined for a total of 200 or more particles to determine the area ratio (total area ratio of particles having a major axis of 5 ⁇ m or less / 5% total area ratio of particles exceeding 5 ⁇ m).
  • the area ratio of small particles By reducing the area ratio of small particles (primary particles that did not become secondary particles or small secondary particles) having a major axis L of 5 ⁇ m or less to 10% or less, variation in melting when injected into a spray flame flame is reduced. be able to.
  • the area ratio should be 10% or less, further 5% or less, and most preferably 0%. In other words, all the particles are made into secondary particles having a major axis L exceeding 5 ⁇ m.
  • the density of a secondary particle is 5.0 kg / cm ⁇ 3 > or less. So far, the control by the external shape such as the particle size and aspect ratio of the primary particles and the secondary particles has been described. However, the secondary particles are formed by sterically bonding the primary particles. Therefore, it is also important to control the density of secondary particles.
  • the secondary particles of the thermal spraying Mo powder are dispersed into primary particles when put into the thermal spray flame.
  • the scattered primary particles are melted, sprayed at a high speed, and deposited on the substrate to form a sprayed film.
  • the density of the secondary particles is preferably 5.0 kg / cm 3 or less, more preferably 3.0 kg / cm 3 or less.
  • the lower limit value of the density is not particularly limited, but if the density is too low, the shape maintaining property of the secondary particles is deteriorated and the primary particles are scattered before being supplied to the flame spray flame. On the other hand, when the density is too low, secondary particles with hollow inside are formed. If there are too many cavities, the material supply will vary. That is, even if the secondary particles have the same particle size and aspect ratio, if the density is different, the amount of primary particles forming the secondary particles is different, resulting in variations in the amount of material supply. Therefore, the density of the secondary particles is preferably 1.0 g / cm 3 or more. The density of the secondary particles is more preferably 1.0 to 3.0 g / cm 3 . In addition, the density of secondary particles shall be performed by the Archimedes method.
  • the cross section of the secondary particles has a structure in which Mo powder and / or second component powder are continuous.
  • the secondary particles when the secondary particles are supplied to the spray flame flame, the secondary particles are scattered to the primary particles, and the scattered primary particles are melted and deposited on the base material to form a sprayed film.
  • the cross-section of the secondary particles Since the cross-section of the secondary particles has a structure in which the primary particles are continuous, the ratio of the primary particles can be made uniform in the process in which the scattered primary particles are sprayed onto the base material. If the ratio of the primary particles is uniform in the step of spraying onto the base material, the film quality of the finished sprayed film can be made uniform.
  • FIG. 3 shows an example of a structure in which Mo powders (and second component powders) are connected. When the cross section of the secondary particle is viewed, it has a structure in which Mo powder or Mo powder and second component powder (primary particles) are connected from one end to the other end.
  • the thermal spraying Mo powder according to the present invention is preferably subjected to a degreasing treatment or a sintering treatment. If it is Mo powder for thermal spraying of this invention, fluidity
  • the degreasing treatment is a treatment in which the resin binder in the secondary particles is burned off by heat treatment at 600 to less than 1000 ° C.
  • the sintering process is a method in which the resin binder is burned away by heating to 1000 to 1400 ° C. and the bonding strength between the primary particles is strengthened. If the degreasing treatment temperature is less than 600 ° C., the degreasing treatment takes too much time and the productivity is lowered. On the other hand, when the sintering temperature is higher than 1400 ° C., the binding force of the primary particles becomes too strong, and the secondary particles are difficult to be dispersed into the primary particles when put into the spray flame flame.
  • the thermal spraying Mo powder according to the present invention fine primary particles are processed into secondary particles, and the aspect ratio of the secondary particles is set to a predetermined size, so that the handleability is good. . Therefore, the supply amount to the thermal spray flame can be stabilized. Furthermore, when the secondary particles are supplied to the spray flame flame and dispersed on the base material to form a film on the base material, the supply amount of the primary particles to the base material can be stabilized. Therefore, a uniform Mo sprayed film can be obtained. In addition, since Mo powder is more easily melted than Mo wire and Mo rod as in the prior art, the film deposition rate can be increased with the same flame spray flame.
  • the film formation amount can be made uniform while enabling a significant cost reduction compared to the case of using a wire.
  • the density and fluidity not only the film formation amount can be made uniform, but also handleability such as automation of the film formation process can be improved.
  • FIG. 4 shows an example of a thermal sprayed part.
  • reference numeral 4 represents a sprayed film
  • reference numeral 5 represents a substrate.
  • the sprayed parts are not particularly limited as long as they are parts having a sprayed film, but examples include wear-resistant films, corrosion-resistant films, heat-resistant films, automotive parts, industrial machine parts, film forming apparatus parts, etc. It can be applied to various fields.
  • the film thickness of the sprayed film is not particularly limited, and is 10 to 500 ⁇ m.
  • the manufacturing method will not be specifically limited, However, The following method is mentioned as a manufacturing method for improving a yield.
  • Mo powder having an average primary particle size of 1 to 10 ⁇ m is prepared. Further, when obtaining a mixture of Mo powder and second component powder as the thermal spraying Mo powder, Mo powder and second component powder having an average primary particle size of 1 to 10 ⁇ m are prepared.
  • the primary particle size is the FSSS particle size.
  • the purity of the Mo powder is preferably 99.0 wt% or more, more preferably 99.9 wt% or more.
  • the prepared Mo powder (and the second component powder) is put into a stirring device such as a rotary atomizer and sufficiently stirred.
  • Mo powder when simply described as “Mo powder”, it is meant to include a mixture of a Mo powder and a second component powder in addition to a Mo powder alone.
  • a granulating process is performed by adding a resin binder.
  • the resin binder is preferably at least one of polyvinyl alcohol powder, polyethylene glycol powder or carbomethylmethylcellulose powder. Since these resin binders are burned off when heated to 600 ° C. or higher, it is easy to control the density of secondary particles. Moreover, since it can be mixed with Mo powder in powder form, it can mix uniformly. It is preferable to apply a spray dryer system, a rolling granulation system, etc. to a granulation process. By performing the granulation step, the primary particles can be processed into secondary particles.
  • degreasing or sintering is performed as necessary.
  • the degreasing treatment is a treatment in which the resin binder in the secondary particles is burned off by heat treatment at 600 to less than 1000 ° C.
  • the sintering process is a method in which the resin binder is burned away by heating to 1000 to 1400 ° C. and the bonding strength between the primary particles is strengthened.
  • the density of the secondary particles can be adjusted, and the cross section can be made to have a structure in which Mo powders (primary particles) are connected.
  • the aspect ratio of the secondary particles can be improved by the ratio of the aspect ratio of 1.0 to 1.5 by optimizing the conditions of the granulation process.
  • the thermal spraying Mo powder obtained by such a production method is excellent in handling properties because of its excellent fluidity.
  • Examples A1 to A5 Comparative Example A1>
  • a molybdenum powder having a purity of 99.9% by mass or more was prepared as a raw material powder.
  • the molybdenum powder was pulverized by a rotary atomizer. Next, it was mixed with a resin binder (polyvinyl alcohol resin binder) to prepare a Mo powder slurry.
  • a resin binder polyvinyl alcohol resin binder
  • secondary particles of Mo powder were obtained by granulating the Mo powder slurry using a spray dryer.
  • degreasing treatment or sintering treatment was performed as shown in the table.
  • the spray dryer was prepared by changing the conditions of the spray dryer (rotation speed, supply amount, etc.) and changing the proportion of secondary particles having an aspect ratio of 1.0 to 1.5.
  • the area ratio total area ratio of particles having a major axis of 5 ⁇ m or less / 5% total area ratio of particles exceeding 5 ⁇ m
  • the density of secondary particles are Mo powder.
  • the fluidity was examined to see if they were connected. The results are shown in Tables 1 and 2.
  • the area ratio (total area ratio of particles having a major axis of 5 ⁇ m or less / total area ratio of particles exceeding 5 ⁇ m) was determined as follows. First, the thermal spraying Mo powder was spread on a glass plate, and an enlarged photograph having a unit area of 1000 ⁇ m ⁇ 1000 ⁇ m was taken. The maximum diameter of each thermal spraying Mo powder shown in the enlarged photograph was measured, and the area ratio was determined by dividing the maximum diameter into those having a maximum diameter of 5 ⁇ m or less and exceeding 5 ⁇ m.
  • the density of secondary particles was analyzed by Archimedes method.
  • the cross-section of the secondary particles is determined by checking whether the Mo powders are connected to each other by cutting the secondary particles and taking a cross-sectional photograph to determine whether the Mo powders (primary particles) are connected at an arbitrary diagonal line. did.
  • the fluidity was measured using an extrusion plastometer according to JIS-K-6760, and how many seconds it took for 50 g of the thermal spraying Mo powder to be extruded.
  • a sprayed film was formed using the thermal spraying Mo powders of Examples A1 to A5 and Comparative Example A1 obtained as described above.
  • a film was formed in the atmosphere using a powder frame spraying device.
  • a Mo plate having a length of 10 cm, a width of 10 cm, and a thickness of 1 mm was used as the substrate.
  • the variation in film thickness was examined when a sprayed film of 2 cm in length and 2 cm in width was sprayed over a certain time on a substrate.
  • Three 2 ⁇ 2 cm sprayed films were provided, and the difference between the maximum value and the minimum value of the film thickness was determined as follows, and this was used as the dispersion of the sprayed film.
  • Variation of sprayed film (%) [(maximum value of film thickness ⁇ minimum value of film thickness) / (maximum value of film thickness + minimum value of film thickness)] ⁇ 100 (%) Further, the surface roughness Ra of each sprayed film was obtained. The results are shown in Table 3.
  • the sprayed film using the thermal spraying Mo powders of Examples A1 to A5 had a dispersion of the sprayed film as small as 6% or less. Moreover, the surface roughness (Ra) was small, and a film with uniform film quality was obtained despite the film formation in the atmosphere. In particular, those subjected to degreasing treatment and sintering treatment exhibited excellent characteristics.
  • Example B1 ⁇ Examples B1 to B5, Comparative Example B1> Implementation was carried out except that the raw material powder used was a mixture of molybdenum powder having a purity of 99.9% by mass or more and each second component powder shown in Table 4 (primary particle diameter and blending ratio are shown in Table 4).
  • Mo powder for thermal spraying was produced.
  • the area ratio total area ratio of particles having a major axis of 5 ⁇ m or less / total area ratio of particles exceeding 5 ⁇ m
  • the cross section was examined for fluidity as to whether or not the Mo powder was continuous. The results are shown in Tables 4 and 5.
  • the sprayed film using the thermal spraying Mo powders of Examples B1 to B5 had a dispersion of the sprayed film as small as 6% or less. Moreover, the surface roughness (Ra) was small, and a film with uniform film quality was obtained despite the film formation in the atmosphere. In particular, those subjected to degreasing treatment and sintering treatment exhibited excellent characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Powder Metallurgy (AREA)

Abstract

 取扱い性が良好で成膜性のよい溶射用Mo粉末を提供する。一次粒子の平均粒径が1μm以上、10μm以下、二次粒子の平均粒径が20μm以上、200μm以下である溶射用Mo粉末において、アスペクト比1.0~1.5を有する二次粒子が含まれる割合が、80質量%以上、100質量%以下である溶射用Mo粉末とする。

Description

溶射用Mo粉末およびそれを用いたMo溶射膜並びにMo溶射膜部品
 本発明は、溶射用Mo粉末およびそれを用いたMo溶射膜並びにMo溶射膜部品に関する。
 溶射とは、材料を加熱・溶融して、基材(被施工物)に吹き付けて被膜を形成する成膜方法である。加熱の熱源としては、燃焼炎やプラズマなどが使われている。溶射方式は、フレーム溶射、爆発溶射、電気式溶射、高速フレーム溶射などがあり、近年は材料を溶融しないで被膜を形成するコールドスプレー法も開発されている。
 溶射は、溶融する材料であれば適用できるため、金属、セラミックス、サーメットやプラスチックなどの様々の材料が使われている。そのため、その用途も様々であり、耐摩耗性膜、耐食性膜、耐熱性膜などが挙げられ、自動車部品、産業機械部品、成膜装置用部品など種々の分野に適用されている。
 ところで、溶射は、溶射材料を粉末または線材(ワイヤー状、棒状)に加工して、加熱源に供給することにより行われる。フレーム溶射を例に挙げると、線状の溶射材料を使う方式を、溶線式フレーム溶射(wire flame spraying)と呼び、粉末状の溶融材料を使う方式を、粉末式フレーム溶射(powder flame spraying)と呼んでいる。溶線式フレーム溶射法は、燃焼炎に線状溶射材料を連続的に供給できることから、供給量を一定にコントロールし易く、均一な溶射膜が得易いといった利点がある。
 しかしながら、溶射材料を線材に加工しなければならないことから、炭素鋼、アルミニウムや亜鉛など比較的加工し易い材料には向くが、モリブデンやタングステンなどの硬い高融点金属に適用する場合はコストアップの要因となっていた。
 このため、高融点金属を溶射するときは粉末式フレーム溶射が適用されることが多かった。溶射用粉末として、例えば、特開2004-300555号公報(特許文献1)が開示されている。特許文献1では、平均粒径10μm以下のMo粉末を、造粒焼結法によって5~75μmや45~250μmの溶射用粉末を得ている。
特開2004-300555号公報
 造粒焼結法により粒径を大きくすることにより、溶射ノズル(燃焼炎)への供給量を増やすことができるため、成膜量を増やすことはできる。しかしながら、単に造粒焼結法により得られた粒子はアスペクト比が2~3程度の大きな粒子(二次粒子)であった。アスペクト比の大きな二次粒子は、流動性が悪く、溶射ノズルに供給する際に、瞬間的な溶射用粉末の供給量にバラツキが生じてしまうため、厚さが均一な膜が得られ難いといった問題が生じていた。
 本発明は、このような問題を解決するためのもので、均一な溶射膜を得ることができる溶射用Mo粉末およびそれを用いたMo膜、並びにMo膜部品を提供することを目的としている。
 本発明による溶射用Mo粉末は、一次粒子の平均粒径が1μm以上、10μm以下、二次粒子の平均粒径が20μm以上、200μm以下である溶射用Mo粉末において、アスペクト比1.0~1.5を有する二次粒子が含まれる割合が、80質量%以上、100質量%以下であることを特徴とするものである。
 また、本発明の態様においては、単位面積1000μm×1000μmのSEM写真において、面積比(長径5μm以下の粒子の合計面積比/5μmを超える粒子の合計面積比)が0~10%であってもよい。
 また、本発明の態様においては、二次粒子の密度が5.0kg/cm以下であってもよい。
 また、本発明の態様においては、Mo純度が99.0%以上であってもよい。
 また、本発明の態様においては、前記溶射用Mo粉末が、Mo粉末と第二成分粉末とを混合したものであってもよい。
 また、本発明の態様においては、前記第二成分粉末が炭化物成分またはNi成分であってもよい。
 また、本発明の態様においては、前記第二成分粉末が1~35質量%含まれていてもよい。
 また、本発明の態様においては、前記溶射用Mo粉末が、脱脂処理または焼結処理が施されていてもよい。
 また、本発明の態様においては、前記溶射用Mo粉末の流動性が50sec/50g以下であってもよい。
 また、本発明の態様においては、二次粒子の断面は二次粒子の断面は、Mo粉末および/または第二成分粉末が連なっている構造を有していてもよい。
 本発明の別の態様にいては、上記溶射用Mo粉末を用いて溶射して形成されたMo溶射膜も提供される。
 また、本発明の別の態様においては、上記Mo溶射膜を備えたMo溶射膜部品も提供される。
 また、本発明の態様においては、Mo溶射膜部品が、自動車用部品、航空機用部品、発電機器力用部品、X線管用部品、熱電変換機器、および金型からなる群より選択される少なくとも1種であってよい。
 また、本発明の態様においては、前記Mo溶射膜の平均膜厚が5~500μmであってもよい。
 本発明による溶射用Mo粉末は、アスペクト比が1.0~1.5の範囲にある二次粒子の割合を多くすることにより、溶射ノズルへの溶射用粉末の供給量を一定に管理し易くなるため、均一な高融点金属溶射膜を得ることができる。また、一次粒子を接着した二次粒子を使うことにより、コストアップを防ぐこともできる。
本発明による溶射用Mo粉末の一実施態様を示す図。 本発明による溶射用Mo粉末の別の実施態様を示す図。 本発明の一実施態様による溶射用Mo粉末の二次粒子の断面図。 Mo溶射膜部品の一例を示す図。
 本発明による溶射用Mo粉末は、一次粒子の平均粒径が1μm以上、10μm以下、二次粒子の平均粒径が20μm以上、200μm以下である溶射用Mo粉末において、アスペクト比1.0~1.5を有する二次粒子が含まれる割合が、80質量%以上、100質量%以下であることを特徴とするものである。
 本発明において、一次粒子とは、Mo粉末1個(一粒)または第二成分粉末1個(一粒)のことを示し、二次粒子とは、複数の一次粒子が固まった粒子のことを示す。一次粒子が固まるとは、凝集して固まった状態や、接着剤またはバインダなどを介して接着した状態や、一次粒子を造粒したものを示す。
 図1は、一次粒子と二次粒子とが混在した状態の一例を示したものである。図中、符号1が溶射用Mo粉末の一次粒子であり、符号2が溶射用Mo粉末の二次粒子である。
 本発明による溶射用Mo粉末は、Mo金属単体からなるものであってもよく、また、Mo粉末と第二成分粉末とを混合したものであってもよい。溶射用Mo粉末に第二成分粉末が含まれる場合、第二成分粉末としては、金属Mo以外であれば特に限定されるものではなく、炭化物粉末、Ni成分粉末、Co成分粉末、希土類元素成分粉末などが挙げられる。また、炭化物としては、炭化モリブデン、炭化タングステン、炭化珪素などが挙げられる。また、Ni成分粉末、Co成分粉末、希土類元素成分粉末としては、金属単体、合金、化合物など様々なものが含まれる。これらのなかでも、第二成分粉末としては、炭化モリブデンまたはNi成分が好ましい。炭化モリブデンは、溶射工程において不純物酸素(大気中で溶射した際の酸素を含む)を吸着する効果がある。また、炭化モリブデンは潤滑剤としての効果もあることから溶射膜の耐摩耗性を向上させることもできる。また、Ni成分は、耐食性が良いことから溶射膜の耐食性を向上させることができる。また、第二成分粉末は1種のみに限らず、2種以上であってもよい。また、第二成分粉末の混合量は、Mo粉末と第二成分粉末の合計値を100質量%としたとき、1~35質量%の範囲であることが好ましい。この範囲であれば、溶射膜におけるMoの良さを活かして第二成分の特性を付与することができる。以下、単に「Mo粉末」と記載する場合は、Mo粉末単体からなるものの他、Mo粉末と第二成分粉末とを混合したものも含む意味とする。
 Mo純度は99.0%以上(質量%)であることが好ましい。Mo純度が99.0%未満であると不純物の存在によりMo粉末の融点にばらつきが生じてしまうおそれがある。
 本発明においては、一次粒子の平均粒径が1μm未満では粉末が細かすぎて取扱い性が悪くなり、10μmを超えて大きいと二次粒子のサイズが必要以上に大きくなってしまうおそれがある。また、二次粒子の平均粒径が20μm未満では二次粒子とする効果が小さく、200μmを超えるとサイズが大きすぎるため溶射工程における材料供給量のばらつきを招く。また、溶射フレーム炎は、炎の表面と中心とでは温度が異なっており、同じフレーム炎にMo粉末を供給しても、大きな粉末と小さな粉末とでは溶け方が異なる。Mo粉末(および第二成分粉末)の溶け方が均一でないと得られる溶射膜に未溶融組織ができ膜質にばらつきが生じる。そのため、あまり大きな粒子がない方が好ましい。
 また本発明においては、アスペクト比1.0~1.5を有する二次粒子が80質量%以上、100質量%以下含まれるものである。アスペクト比の測定は、拡大写真を使い、図1に示したように拡大写真(SEM写真)に写る二次粒子の縦と横の最大長さを、それぞれA、Bとする。縦最大長さAと、横最大長さBとの小さい方を分母、大きい方を分子として(A/BまたはB/A)にてアスペクト比を求めるものとする。縦最大長さAと横最大長さBとの小さい方を分母にするので最小値は1.0となる。アスペクト比が1.5以下であるということは、二次粒子がほぼ球体であることを示している。アスペクト比が1.5を超えて大きいと、個々の二次粒子のサイズのばらつきが大きくなる。サイズばらつきが大きいと溶射フレーム炎への材料供給量にばらつきが生じ、溶射膜の膜厚にばらつきが生じて均一な膜が形成し難くなる。また、前述の通り、溶射フレーム炎は表面と中心では温度が異なるため、あまりアスペクト比の大きな二次粒子があると二次粒子の溶け方にばらつきが生じ、溶射膜中に未溶融組織ができて膜質に不均一な部分ができてしまう。そのため、本発明においては、アスペクト比1.0~1.5を有する二次粒子が含まれる割合を80質量%以上にしている。すべての二次粒子がアスペクト比1.0~1.5の範囲であることが好ましい。
 以上のように、Mo粉末単体からなるMo溶射膜、またはMo溶射膜の特性を維持しながら第二成分粉末の特性を付与したMo溶射膜は、その膜質が均一な溶射膜である必要がある。均一な溶射膜を形成するために二次粒子を用い、その二次粒子のアスペクト比を制御することが重要である。さらに均一な溶射膜を得るためには、小さな粒子の存在をできるだけ少なくすることも必要である。溶射膜は、Mo粉末をフレーム炎で溶かして高速で噴射して成膜する技術である。本発明においては、溶射フレーム炎で溶射用Mo粉末を溶かすため、Mo粉末のサイズがばらつくと、Mo粉末の溶け方にばらつきが生じるため、あまり小さなMo粉も少ない方がよい。小さなMo粉末とは、二次粒子にならなかった一次粒子や、二次粒子であっても小さな二次粒子である。
 そのため、単位面積1000μm×1000μmのSEM写真において、面積比(長径5μm以下の粒子の合計面積比/5μmを超える粒子の合計面積比)が0~10%であることが好ましい。面積比は、まず、単位面積1000μm×1000μmのSEM写真(拡大写真)を撮り、個々の粉末の最も長い対角線を長径Lとして測定する。図2に長径を測定する一例を示した。拡大写真を使うことにより、粉末を二次元で捉えることができる。そこに写る一次粒子または二次粒子の長径Lを測定する。長径Lが5μm以下と5μmを超える粒子に振り分け、それぞれの面積を求め合計する。合計200粒以上の粒子について長径L、面積を求めて面積比(長径5μm以下の粒子の合計面積比/5μmを超える粒子の合計面積比)を求める。
 長径Lが5μm以下の小さな粒子(二次粒子にならなかった一次粒子または小さな二次粒子)が面積比で10%以下と少なくすることにより、溶射フレーム炎に投入したときの溶融ばらつきを低減することができる。溶融ばらつきを低減するためには、面積比を10%以下、さらには5%以下、最も好ましくは0%にすることである。つまり、すべての粒子を長径Lが5μmを超える二次粒子にすることである。
 また、二次粒子の密度が5.0kg/cm以下であることが好ましい。これまでは、一次粒子および二次粒子の粒径やアスペクト比などの外観形状による制御について説明してきた。しかしながら、二次粒子は一次粒子が立体的に結合して形成されたものである。そのため、二次粒子の密度を制御することも重要である。
 溶射用Mo粉末の二次粒子は、溶射フレーム炎に投入したとき、一次粒子にばらける。ばらけた一次粒子が溶融し、高速で噴射されて基材上に堆積され溶射膜となる。そのため、二次粒子の密度があまり高いと溶射フレーム炎に投入した際に一次粒子にばらけて分散し難くなる。二次粒子のまま溶射膜として堆積されると、未溶融組織ができて膜質の異なるものとなってしまう。そのため、二次粒子の密度は5.0kg/cm以下、さらには3.0kg/cm以下であることが好ましい。密度の下限値は特に限定されるものではないが、あまり密度が低いと二次粒子の形状維持性が悪くなり、溶射フレーム炎に供給する前に一次粒子にばらけてしまう。また、密度があまり低いと内部が空洞の二次粒子となる。あまり空洞が多いと材料供給量のばらつきがおきてしまう。つまり、粒径やアスペクト比が同じ二次粒子であっても、密度が異なれば、二次粒子を形成する一次粒子の量が異なり、結果として材料供給量のばらつきを生じてしまう。そのため、二次粒子の密度は1.0g/cm以上であることが好ましい。二次粒子の密度はより好ましくは1.0~3.0g/cmである。なお、二次粒子の密度はアルキメデス法にて行うものとする。
 また、二次粒子の断面は、Mo粉末および/または第二成分粉末が連なっている構造であることが好ましい。前述のとおり、二次粒子は溶射フレーム炎に供給された際に一次粒子にばらけて、ばらけた一次粒子が溶融し、基材に堆積され溶射膜となる。二次粒子の断面が一次粒子の連なった構造となることにより、ばらけた一次粒子が基材に噴射されていく工程において一次粒子の存在割合を均一にすることができる。基材に噴射される工程で一次粒子の存在割合が均一であると、できあがった溶射膜の膜質を均一にすることができる。図3は、Mo粉末(および第二成分粉末)が連なった構造の一例を示したものである。二次粒子の断面を見たときに、端からもう一方の端までMo粉末ないし、Mo粉末および第二成分粉末(一次粒子)が連なった構造を具備するものである。
 また、本発明による溶射用Mo粉末は、脱脂処理または焼結処理が施されていることが好ましい。本発明の溶射用Mo粉末であれば流動性を50sec/50g以下にすることができる。脱脂処理または焼結処理をすることにより、流動性を30sec/50g以下と向上させることができる。なお、本発明において、流動性の測定は、JIS-K-6760に準じた押し出し形プラストメーターを用い、溶射用Mo粉末50gが押し出されるまでに何秒かかるかで測定するものとする。
 脱脂処理は、600~1000℃未満にて熱処理して、二次粒子中の樹脂バインダを焼失させる処理である。また、焼結処理は1000~1400℃に加熱して樹脂バインダを焼失させると共に一次粒子同士の結合力を強化させる方法である。脱脂処理温度が600℃未満では脱脂処理に時間がかかりすぎて製造性が低下する。一方、焼結処理温度が1400℃を超えて高いと、一次粒子の結合力が強くなりすぎて溶射フレーム炎に投入した際に、二次粒子が一次粒子にばらけ難くなる。
 以上のように、本発明による溶射用Mo粉末であれば、細かい一次粒子を二次粒子に加工した上で、その二次粒子のアスペクト比を所定のサイズにしているので取扱い性が良好である。そのため、溶射フレーム炎への供給量を安定的にすることができる。さらに、溶射フレーム炎に供給して、二次粒子が一次粒子にばらけて基材上に成膜される際に、基材への一次粒子の供給量を安定化させることができる。そのため、均一なMo溶射膜を得ることができる。また、従来のようにMo線材やMo棒材よりもMo粉末の方が溶融しやすいので同じ溶射フレーム炎であれば成膜速度も上げることができる。
 また、本発明の溶射用Mo粉末を用いれば、線材を用いるよりも大幅なコストダウンを可能とした上で、成膜量の均一化が図れる。また、密度や流動性の制御により成膜量の均一化のみならず、成膜工程の自動化など取扱い性も向上する。
 このような溶射用Mo粉末を溶射して基材上に成膜することにより、様々なMo溶射膜を得ることができる。また、このような溶射膜を備えた様々な溶射部品に適用できる。図4に溶射部品の一例を示した。図中、符号4は溶射膜、符号5は基材、を表す。溶射部品は、溶射膜を有する部品であれば特に限定されるものではないが、耐摩耗性膜、耐食性膜、耐熱性膜などが挙げられ、自動車部品、産業機械部品、成膜装置用部品など種々の分野に適用可能である。また、溶射膜の膜厚は、特に限定されるものではなく、10~500μmが例示される。
 次に、本発明による溶射用Mo粉末の製造方法について説明する。本発明の溶射用Mo粉末は、上記構成を具備すれば、その製造方法は特に限定されるものではないが、歩留まり良くえるための製法として次の方法が挙げられる。
 まず、一次粒子径が平均粒径1~10μmのMo粉末を用意する。また、溶射用Mo粉末としてMo粉末と第二成分粉末とを混合したものを得る場合には、一次粒子径が平均粒径1~10μmのMo粉末および第二成分粉末を用意する。一次粒子径はFSSS粒径とする。また、Mo粉末の純度は99.0wt%以上、さらには99.9wt%以上であることが好ましい。用意したMo粉末(および第二成分粉末)を回転式アトマイザーなどの攪拌装置に入れて十分な攪拌を行う。なお、以下、単に「Mo粉末」と記載する場合は、Mo粉末単体からなるものの他、Mo粉末と第二成分粉末とを混合したものも含む意味とする。
 次に、樹脂バインダを添加して造粒工程を行う。樹脂バインダは、ポリビニルアルコール粉末、ポリエチンレングリコール粉末またはカルボメキシメチルセルロース粉末の少なくとも1種以上が好ましい。これら樹脂バインダは600℃以上に加熱すると焼失するので二次粒子の密度を制御し易い。また、粉末状でMo粉末と混合することができるので均一に混合することができる。造粒工程は、スプレードライヤー方式や転動造粒方式などを適用することが好ましい。造粒工程を行うことにより、一次粒子を二次粒子に加工することができる。
 また、必要に応じ、脱脂処理または焼結処理を行う。脱脂処理は、600~1000℃未満にて熱処理して、二次粒子中の樹脂バインダを焼失させる処理である。また、焼結処理は1000~1400℃に加熱して樹脂バインダを焼失させると共に一次粒子同士の結合力を強化させる方法である。このような処理を行うと二次粒子の密度を調製した上で、その断面がMo粉末(一次粒子)が連なった構造とすることができる。 また、二次粒子のアスペクト比は、造粒工程の条件を適正化することによりアスペクト比1.0~1.5の割合を向上させることができる。また、必要に応じ、ふるい分け等により形状分級することも効果的である。特に、アスペクト比が1.5以下と1.6以上では傾斜面を転がる速度が異なるので、この現象を利用して形状分級する方法も効果的である。このような製造方法により得られた溶射用Mo粉末は、流動性に優れることから取り扱い性が良好である。
 本発明を、実施例によりさらに詳細に説明するが、本発明がこれら実施例の内容に限定されるものではない。
<実施例A1~A5、比較例A1>
 原料粉末として純度99.9質量%以上のモリブデン粉末(一次粒子径は表1に示す)を用意した。モリブデン粉末を回転式アトマイザーにより粉砕工程を行った。次に、樹脂バインダ(ポリビニルアルコール樹脂バインダ)と混合して、Mo粉末スラリーを調製した。
 次に、Mo粉末スラリーをスプレードライヤーを使って造粒することにより、Mo粉末の二次粒子を得た。また、表に示すように脱脂処理または焼結処理を行った。スプレードライヤーの条件(回転速度、供給量など)を変えて、アスペクト比1.0~1.5の二次粒子の割合を変えたものを用意した。
 各実施例および比較例の溶射用Mo粉末に関して、面積比(長径5μm以下の粒子の合計面積比/5μmを超える粒子の合計面積比)、二次粒子の密度、二次粒子の断面はMo粉末が連なっているか否か、流動性を調べた。その結果を表1、2に示す。
 なお、面積比(長径5μm以下の粒子の合計面積比/5μmを超える粒子の合計面積比)は、以下のようにして求めた。先ず、溶射用Mo粉末をガラス板上に広げ、単位面積1000μm×1000μmの拡大写真を撮った。その拡大写真に写る個々の溶射用Mo粉末の最大径を測定し、その最大径が5μ以下と5μmを超えるもので分けて面積比を求めた。
 また、二次粒子の密度はアルキメデス法にて分析したものである。また、二次粒子の断面はMo粉末が連なっているか否かは、二次粒子を切断して断面写真を撮り、任意の対角線にてMo粉末(一次粒子)が連なっているか否かを問測定した。また、流動性はJIS-K-6760に準じた押し出し形プラストメーターを用い、溶射用Mo粉末50gが押し出されるまでに何秒かかるかで測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および2に示される通り、実施例A1~A5の溶射用Mo粉末は流動性が優れていた。
 次に、上記のようにして得られた実施例A1~A5および比較例A1の溶射用Mo粉末を用いて溶射膜を形成した。粉末式フレーム溶射装置(powder flame spraying device)を用いて大気中にて成膜した。基材として縦10cm×横10cm×厚さ1mmのMo板を用いた。基材上に縦2cm×横2cmの溶射膜を一定時間かけて溶射処理をしたときの膜厚のバラツキを調べた。2×2cmの溶射膜を3か所設け、下記のように、膜厚の最大値と最小値の差を求めこれを溶射膜のバラツキとした。
 溶射膜のバラツキ(%)=[(膜厚の最大値-膜厚の最小値)/(膜厚の最大値+膜厚の最小値)]×100(%)
 また、各溶射膜の表面粗さRaを求めた。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から分かる通り、実施例A1~A5の溶射用Mo粉末を用いた溶射膜は、溶射膜のバラツキが6%以下と小さかった。また、表面粗さ(Ra)が小さく、大気中で成膜したにも関わらず膜質が均一なものが得られた。特に脱脂処理や焼結処理したものは優れた特性を示した。
<実施例B1~B5、比較例B1>
 原料粉末として、純度99.9質量%以上のモリブデン粉末と、表4に示す各第二成分粉末(一次粒子径および配合比率は表4に示す)とを混合したものを使用した以外は、実施例A1と同様にして溶射用Mo粉末を作製した。得られた溶射用Mo粉末について、実施例A1と同様にして、面積比(長径5μm以下の粒子の合計面積比/5μmを超える粒子の合計面積比)、二次粒子の密度、二次粒子の断面はMo粉末が連なっているか否か、流動性を調べた。その結果を表4、5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4および5に示される通り、実施例B1~B5の溶射用Mo粉末は流動性が優れていた。
 次に、得られた実施例B1~B5および比較例B1の溶射用Mo粉末を用いて、実施例A1と同様にして溶射膜を形成し、溶射膜のバラツキ(%)および溶射膜の表面粗さRaを求めた。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6から分かる通り、実施例B1~B5の溶射用Mo粉末を用いた溶射膜は、溶射膜のバラツキが6%以下と小さかった。また、表面粗さ(Ra)が小さく、大気中で成膜したにも関わらず膜質が均一なものが得られた。特に脱脂処理や焼結処理したものは優れた特性を示した。
 1…溶射用Mo粉末(一次粒子)
 2…溶射用Mo粉末(二次粒子)
 L…溶射用Mo粉末(二次粒子)の粒径
 3…Mo粉末および/または第二成分粉末が連なった部分
 4…溶射膜
 5…基材

Claims (14)

  1.  一次粒子の平均粒径が1μm以上、10μm以下、二次粒子の平均粒径が20μm以上、200μm以下である溶射用Mo粉末において、アスペクト比1.0~1.5を有する二次粒子が含まれる割合が、80質量%以上、100質量%以下であることを特徴とする、溶射用Mo粉末。
  2.  単位面積1000μm×1000μmのSEM写真において、面積比(長径5μm以下の粒子の合計面積比/5μmを超える粒子の合計面積比)が0~10%である、請求項1記載の溶射用Mo粉末。
  3.  二次粒子の密度が5.0kg/cm以下である、請求項1または2に記載の溶射用Mo粉末。
  4.  Mo純度が99.0%以上である、請求項1~3のいずれか1項に記載の溶射用Mo粉末。
  5.  前記溶射用Mo粉末が、Mo粉末と第二成分粉末とを混合したものである、請求項1~3のいずれか1項に記載の溶射用Mo粉末。
  6.  前記第二成分粉末が炭化物成分またはNi成分である、請求項5に記載の溶射用Mo粉末。
  7.  前記第二成分粉末が1~35質量%含まれてなる、請求項5または6に記載の溶射用Mo粉末。
  8.  脱脂処理または焼結処理が施されている、請求項1~7のいずれか1項に記載の溶射用Mo粉末。
  9.  流動性が50sec/50g以下である、請求項1~8のいずれか1項に記載の溶射用Mo粉末。
  10.  二次粒子の断面は、Mo粉末および/または第二成分粉末が連なっている構造を有する、請求項1~9のいずれか1項に記載の溶射用Mo粉末。
  11.  請求項1~10のいずれか1項に記載の溶射用Mo粉末を用いて溶射して形成されたMo溶射膜。
  12.  請求項11に記載のMo溶射膜を備えたMo溶射膜部品。
  13.  Mo溶射膜部品が、自動車用部品、航空機用部品、発電機器力用部品、X線管用部品、熱電変換機器、および金型からなる群より選択される少なくとも1種である、請求項12に記載のMo溶射膜部品。
  14.  前記Mo溶射膜の平均膜厚が5~500μmである、請求項12または13に記載のMo溶射膜部品。
PCT/JP2012/077146 2011-10-20 2012-10-19 溶射用Mo粉末およびそれを用いたMo溶射膜並びにMo溶射膜部品 WO2013058376A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280042145.7A CN103781934B (zh) 2011-10-20 2012-10-19 喷涂用Mo粉末及采用它的Mo喷涂膜以及Mo喷涂膜部件
JP2013539707A JP5890843B2 (ja) 2011-10-20 2012-10-19 溶射用Mo粉末およびそれを用いたMo溶射膜並びにMo溶射膜部品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011230621 2011-10-20
JP2011230620 2011-10-20
JP2011-230621 2011-10-20
JP2011-230620 2011-10-20

Publications (1)

Publication Number Publication Date
WO2013058376A1 true WO2013058376A1 (ja) 2013-04-25

Family

ID=48141019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077146 WO2013058376A1 (ja) 2011-10-20 2012-10-19 溶射用Mo粉末およびそれを用いたMo溶射膜並びにMo溶射膜部品

Country Status (3)

Country Link
JP (1) JP5890843B2 (ja)
CN (1) CN103781934B (ja)
WO (1) WO2013058376A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015194678A1 (ja) * 2014-06-20 2017-06-15 株式会社フジミインコーポレーテッド 粉末積層造形に用いる粉末材料およびそれを用いた粉末積層造形法
JP2017531736A (ja) * 2014-07-03 2017-10-26 プランゼー エスエー 層の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108342677A (zh) * 2018-03-13 2018-07-31 中国神华能源股份有限公司 铁路车辆的车轮及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113369A (ja) * 1981-12-28 1983-07-06 Showa Denko Kk 溶射用粉末材料およびその製造方法
JPH04231450A (ja) * 1990-05-23 1992-08-20 Gte Prod Corp 溶射コーティング用ニッケル合金及びモリブデンの粉末を調製するための改善方法
JP2004300555A (ja) * 2003-03-31 2004-10-28 Fujimi Inc 溶射用粉末及びそれを用いた溶射皮膜の形成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690716A (en) * 1994-09-09 1997-11-25 Osram Sylvania Inc. Thermal spray powder
JP5881605B2 (ja) * 2010-07-12 2016-03-09 株式会社東芝 溶射用高融点金属粉末およびそれを用いた高融点金属溶射膜並びに溶射部品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113369A (ja) * 1981-12-28 1983-07-06 Showa Denko Kk 溶射用粉末材料およびその製造方法
JPH04231450A (ja) * 1990-05-23 1992-08-20 Gte Prod Corp 溶射コーティング用ニッケル合金及びモリブデンの粉末を調製するための改善方法
JP2004300555A (ja) * 2003-03-31 2004-10-28 Fujimi Inc 溶射用粉末及びそれを用いた溶射皮膜の形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAKATSU MAGOME, JIS TSUKAIKATA SERIES YOSHA GIJUTSU MANUAL, 30 October 1998 (1998-10-30), pages 32 - 33 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015194678A1 (ja) * 2014-06-20 2017-06-15 株式会社フジミインコーポレーテッド 粉末積層造形に用いる粉末材料およびそれを用いた粉末積層造形法
JP2017214658A (ja) * 2014-06-20 2017-12-07 株式会社フジミインコーポレーテッド 粉末積層造形に用いる粉末材料およびそれを用いた粉末積層造形法
JP2017531736A (ja) * 2014-07-03 2017-10-26 プランゼー エスエー 層の製造方法
US10415141B2 (en) 2014-07-03 2019-09-17 Plansee Se Process for producing a layer

Also Published As

Publication number Publication date
JP5890843B2 (ja) 2016-03-22
CN103781934B (zh) 2017-12-15
JPWO2013058376A1 (ja) 2015-04-02
CN103781934A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
Sun et al. Review of the methods for production of spherical Ti and Ti alloy powder
KR102048062B1 (ko) 티탄계 분말 및 그 용제품, 소결품
Sun et al. A novel method for production of spherical Ti-6Al-4V powder for additive manufacturing
CN109338137B (zh) 制备含氮化铬的喷涂粉末的方法
CN101223294A (zh) 用于制造钛合金结构的方法
KR102432787B1 (ko) Ods 합금 분말, 플라즈마 처리에 의한 이의 제조 방법, 및 그 용도
Sun et al. Selective laser melting of an Al–Fe–V–Si alloy: microstructural evolution and thermal stability
CN104762584B (zh) 反应喷涂陶瓷固溶体基陶瓷‑金属共晶纳米复合涂层的制备方法
Gui et al. Aluminum hybrid composite coatings containing SiC and graphite particles by plasma spraying
Tarasi et al. Enhancement of amorphous phase formation in alumina–YSZ coatings deposited by suspension plasma spray process
WO2009151032A1 (ja) Al基合金スパッタリングターゲット材の製造方法
EP1711342B1 (en) Wear resistant materials
JP5890843B2 (ja) 溶射用Mo粉末およびそれを用いたMo溶射膜並びにMo溶射膜部品
KR20150123219A (ko) 소결용 알루미늄 원료, 소결용 알루미늄 원료의 제조 방법 및 다공질 알루미늄 소결체의 제조 방법
JP2017082314A (ja) スパッタリングターゲット及びスパッタリングターゲットの製造方法
EP2505689A1 (en) Cermet coating, spraying particles for forming same, method for forming cermet coating, and article with coating
JP5881605B2 (ja) 溶射用高融点金属粉末およびそれを用いた高融点金属溶射膜並びに溶射部品
GB2563333A (en) Manufacture of metal articles
Eguiluz et al. Dispersion of Ni nanoparticles into Ti (C, N) colloidal filaments for 3D printing by FFF
Lu et al. Phase evolution of plasma sprayed Al2O3− 13% TiO2 coatings derived from nanocrystalline powders
JP2012112012A (ja) Hvaf溶射用粉末及び溶射皮膜の形成方法
CN102943185A (zh) 一种氧化铝弥散强化铜的制备方法
JP6520523B2 (ja) 酸化物焼結体、その製造方法及びスパッタリングターゲット
WO2021214106A1 (en) Additive manufacturing powders for use in additive manufacturing processes resulting in improved stability of steel melt-track
KR101280285B1 (ko) 구형 텅스텐 복합 분말, 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539707

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841083

Country of ref document: EP

Kind code of ref document: A1