WO2013058096A1 - 静電容量素子の製造方法 - Google Patents
静電容量素子の製造方法 Download PDFInfo
- Publication number
- WO2013058096A1 WO2013058096A1 PCT/JP2012/075485 JP2012075485W WO2013058096A1 WO 2013058096 A1 WO2013058096 A1 WO 2013058096A1 JP 2012075485 W JP2012075485 W JP 2012075485W WO 2013058096 A1 WO2013058096 A1 WO 2013058096A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- basic pattern
- green sheet
- sheet
- pattern
- rotated
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 109
- 238000000034 method Methods 0.000 title claims description 86
- 239000003990 capacitor Substances 0.000 title abstract description 119
- 238000010030 laminating Methods 0.000 claims abstract description 14
- 239000004020 conductor Substances 0.000 claims description 98
- 230000008569 process Effects 0.000 claims description 34
- 238000010304 firing Methods 0.000 claims description 21
- 238000007639 printing Methods 0.000 claims description 8
- 230000003014 reinforcing effect Effects 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000003825 pressing Methods 0.000 abstract description 2
- 238000003908 quality control method Methods 0.000 abstract description 2
- 238000005245 sintering Methods 0.000 abstract description 2
- 239000004065 semiconductor Substances 0.000 abstract 1
- 238000012986 modification Methods 0.000 description 59
- 230000004048 modification Effects 0.000 description 59
- 238000010586 diagram Methods 0.000 description 20
- 239000000463 material Substances 0.000 description 12
- 230000007306 turnover Effects 0.000 description 12
- 239000003989 dielectric material Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 230000002787 reinforcement Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052761 rare earth metal Inorganic materials 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 235000013980 iron oxide Nutrition 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 101150096058 Erfe gene Proteins 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002003 electrode paste Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G13/00—Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/4913—Assembling to base an electrical component, e.g., capacitor, etc.
Definitions
- the present disclosure relates to a method for manufacturing a capacitive element, and more particularly, to a method for manufacturing a capacitive element that improves the productivity by reducing the number of internal electrode patterns.
- variable capacitance device is presented.
- a manufacturing method of this variable capacitance device is a method in which a sheet member made of a dielectric material is prepared, and a metal fine material such as Pd, Pd / Ag, or Ni is provided on the sheet member.
- a conductive paste obtained by pasting powder is applied. Then, the conductive paste is applied (silk printing or the like) to one surface of a sheet member made of a dielectric material through a mask in which an opening corresponding to the shape of the internal electrode (for example, a rectangular shape) is formed.
- An internal electrode is formed.
- Patent Document 1 is mainly intended to further increase the degree of design freedom such as the internal capacitance and capacitance value of a variable capacitance device configured by connecting a plurality of variable capacitance capacitors in series. It did not present a specific improvement on the manufacturing method.
- a dielectric sheet (this sheet is hereinafter referred to as a “white sheet”) is prepared by mixing a single sheet with a dielectric powder and an organic binder. After that, by applying a base metal conductor powder such as Ni pasted to the white sheet through a mask in which an opening corresponding to the shape (for example, rectangular shape) of the internal electrode pattern is formed, A sheet coated with a conductor to be an electrode (hereinafter referred to as “green sheet (GS)”) is produced.
- GS green sheet
- a green sheet on which one electrode pattern is formed is used as a green sheet having a different pattern by rotating, for example, 180 °. That is, a green sheet having one type of electrode pattern is used as a green sheet having two types of internal electrode patterns.
- a process for manufacturing a green sheet with another electrode pattern is required. Therefore, the quality control of the manufacturing process and the enlargement of facilities for that purpose are required, and the increase in cost for that could not be solved.
- the purpose of the present disclosure is to reduce the number of internal electrode patterns of the green sheet as much as possible, and to produce a green sheet having a plurality of types of internal electrode patterns from a green sheet of one internal electrode pattern, It is to provide a more efficient method for manufacturing a capacitive element.
- a method of manufacturing a capacitive element of the present disclosure includes a dielectric sheet to which a conductor is not applied, and a mask having at least one basic pattern shape for applying the conductor on the dielectric sheet.
- the basic pattern green sheet and the basic pattern rotating green sheet are laminated, and at least one of the basic pattern green sheet and the basic pattern rotating green sheet is turned over to turn the basic pattern green sheet or the basic pattern rotating green. It includes a step of producing a basic pattern reverse green sheet different from the sheet.
- it includes a step of printing an external electrode on the side surface of the laminate of the basic pattern green sheet, the basic pattern rotating green sheet, the dielectric sheet, and the basic pattern reversing green sheet, and further performing a firing process, if necessary. It also includes a step of laminating a dielectric sheet for reinforcement on the upper and lower parts of the laminate of the basic pattern green sheet, the basic pattern rotating green sheet, the dielectric sheet, and the basic pattern inverted green sheet.
- a step of preparing a dielectric sheet and a mask having a predetermined pattern shape for applying a conductor on the dielectric sheet, and applying a conductor on the dielectric sheet via the mask To produce a basic pattern green sheet, to rotate the basic pattern green sheet by 90 ° to produce a basic pattern 90 ° rotated green sheet, and to rotate the basic pattern green sheet by 180 ° to rotate the basic pattern by 180 °
- a basic pattern green sheet, a basic pattern 90 ° rotating green sheet, a basic pattern 180 ° rotating green sheet, and a basic pattern 270 ° rotating green sheet are stacked, and the upper and lower portions of the four green sheets stacked.
- the manufacturing accuracy of the manufacturing method of the capacitive element in which a large number of capacitors are connected in series can be managed relatively easily. be able to.
- the method for manufacturing a capacitance element it is possible to reduce costs in terms of manufacturing equipment, and extremely high productivity can be achieved.
- FIG. 7 It is a figure which shows the example of the 4th green sheet used when manufacturing the electrostatic capacitance element of FIG. 7, and rotated the green sheet of the 2nd pattern shown to FIG. 5C 180 degree
- FIG. 16 is a diagram illustrating an example of a fourth green sheet that is used in the modification of the first embodiment of the present disclosure illustrated in FIG.
- FIG. 18 shows an example of a second pattern 180 ° rotated & flipped green sheet used for the second modification of the first embodiment of the present disclosure shown in FIG.
- FIG. 18 It is a figure for demonstrating the outline of the manufacturing method of the electrostatic capacitance element shown in FIG.
- process drawing shows the procedure of the manufacturing method of the electrostatic capacitance element shown in FIG.
- FIG. 18 shows the external view of the electrostatic capacitance element by which three capacitors are connected in series which is an example of 2nd Embodiment of this indication.
- FIG. 6 is a diagram illustrating a cross-sectional view of a capacitive element in which three capacitors are connected in series, which is an example of a second embodiment of the present disclosure. It is a figure which shows the equivalent circuit of the electrostatic capacitance element by which three capacitors are connected in series which is an example of 2nd Embodiment of this indication.
- FIG. 24 is a diagram illustrating an example of a basic pattern green sheet used in the second exemplary embodiment of the present disclosure illustrated in FIG. 23.
- FIG. 24 is a diagram illustrating an example of a basic pattern rotated 90 ° green sheet obtained by rotating a basic pattern by 90 °, which is used in the second exemplary embodiment of the present disclosure illustrated in FIG.
- FIG. 24 is a diagram illustrating an example of a basic pattern 180 ° rotated green sheet obtained by rotating a basic pattern by 180 °, which is used in the second exemplary embodiment of the present disclosure illustrated in FIG.
- FIG. 24 is a diagram illustrating an example of a basic pattern 270 ° rotated green sheet obtained by rotating the basic pattern by 270 ° ( ⁇ 90 °), which is used in the second exemplary embodiment of the present disclosure illustrated in FIG.
- FIG. 24 is a process chart showing the procedure of the method for manufacturing the capacitive element shown in FIG. 23.
- FIG. 31 is a process diagram illustrating the procedure of the method for manufacturing the capacitive element shown in FIG. 30. It is a figure which shows the external view of the electrostatic capacitance element which is the 3rd modification of 2nd Embodiment of this indication, and which connected nine 3 parallel 3 series capacitors using 10 green sheets. It is a figure which shows sectional drawing of the capacitive element to which nine 3 parallel 3 series capacitor
- FIG. 37 is a process chart showing the procedure of the method for manufacturing the capacitive element shown in FIG. It is a figure which shows the external view of the capacitive element with which seven capacitors produced in series using the 8 sheets of green sheets which are examples of 3rd Embodiment of this indication. It is a figure which shows the cross section of the capacitive element with which seven capacitors produced in series using the 8 sheets of green sheets which are examples of 3rd Embodiment of this indication. It is a figure which shows the equivalent circuit of the electrostatic capacitance element which is the example of 3rd Embodiment of this indication, and was produced using 8 sheets of green sheets, and the 7 capacitor
- FIG. 24 is a figure for demonstrating the outline of the manufacturing method of the electrostatic capacitance element shown in FIG. It is process drawing which shows the procedure of the manufacturing method of the electrostatic capacitance element shown in FIG.
- FIG. 1A is an external view showing an external appearance of a capacitive element in which a plurality of commonly used capacitors are connected in parallel.
- FIG. 1B shows a cross-sectional view taken along the dotted line XX ′.
- FIG. 1C shows an equivalent circuit of the capacitance element 10.
- the capacitive element 10 includes a capacitive element body 11 and external electrodes 12a and 12b.
- the capacitance element body 11 is formed by applying a paste-like conductor 13 that forms an electrode on a dielectric sheet 14.
- a plurality of (8 in FIG. 1B) green sheets made of the dielectric sheet 14 and a conductor 13 having a predetermined electrode pattern formed on the dielectric sheet 14 are laminated, and seven capacitors are connected in parallel.
- a capacitive element is produced.
- a sheet (white sheet) of only the dielectric material 14 in a state where the conductor 13 is not applied is provided for reinforcement on the upper and lower portions of the stacked green sheets.
- FIG. 2 shows two green sheets used in FIG. 1 (hereinafter sometimes simply abbreviated as “GS”).
- FIG. 2A is a green sheet of a basic pattern, which is a sheet obtained by applying a conductor 13a on a dielectric 14 and press-bonding it. The conductor 13a is connected to the external electrode 12a shown in FIG. 1A.
- 2B is a green sheet obtained by rotating the basic pattern GS of FIG. 2A by 180 °, and the conductor 13b on the green sheet is connected to the external electrode 12b of FIG. 1A.
- FIG. 3 is a diagram for explaining an outline of a method for manufacturing the capacitance element of FIG. 1.
- the four basic patterns GS15a shown in FIG. 2A and the four 180 ° rotated GS15b shown in FIG. 2B are alternately arranged in the vertical direction.
- Three sheets of dielectric-only sheets (white sheets) 17a and 17b are laminated on the upper and lower parts of the green sheet. Since the white sheet is used to reinforce the electrostatic capacitance element, the required number of sheets is appropriately determined in consideration of the thickness required for the electrostatic capacitance element and the size of the plane.
- FIG. 4A shows an external view of a capacitance element in which two capacitors manufactured using another pattern in addition to the basic pattern are connected in series.
- FIG. 4B shows a cross-sectional view taken along the dotted line XX ′.
- FIG. 4C shows an equivalent circuit thereof.
- the capacitance element 20 shown in FIG. 4 has two capacitors connected in series, so that the capacitance element body 21 is formed with three external electrodes 22a to 22c. Has been.
- the capacitance element body 21 includes a dielectric sheet 24 and three green sheets made of a conductor 23 coated on the dielectric sheet and pressure-bonded.
- FIG. 5 shows three green sheets with different conductors 23a-23c connected to different external electrodes 22a-22c.
- the capacitive element body 21 of FIG. 4A is manufactured separately from the basic pattern GS25a, the basic pattern 180 ° rotated GS25b produced by rotating the basic pattern GS by 180 °, and the basic pattern.
- the second pattern GS25c is line-symmetric with respect to the basic pattern GS25a and the vertical center line.
- the basic pattern GS25a has a conductor 23a and is connected to the external electrode 22a.
- the basic pattern 180 ° rotation GS25b has a conductor 23b and is connected to the external electrode 22b.
- the second pattern GS25c has a conductor 23c and is connected to the external electrode 22c.
- FIG. 6 is a diagram showing an example of a method of superimposing three green sheets when the capacitive element body 21 shown in FIG. 4 is manufactured.
- a basic pattern 180 ° rotation GS25b is provided on the basic pattern GS25a
- a second pattern GS25c is stacked on the basic pattern 180 ° rotation GS25b.
- the dielectric sheet 24b (see FIG. 5) between the conductor (electrode) 23a of the basic pattern GS25a and the conductor 23b of the basic pattern 180 ° rotation GS25b forms the first capacitor 26a
- the basic pattern 180 A dielectric sheet 24c see FIG.
- the white sheets 27a and 27b are stacked on the upper and lower portions of the three stacked green sheets, and the whole is subjected to pressure bonding and baking treatment, and the capacitance element 20 is manufactured.
- the pressure-bonding process may be a method of sealing the laminate with a plastic bag and applying hydrostatic pressure.
- the laminate is plate-like, and pressure is applied in both the width direction and the length direction in addition to the thickness direction, but the thickness direction (the stacking direction of the plate surfaces) is the width direction and the length direction. Since the area is larger, the laminate is pressed by the force applied in the thickness direction (stacking direction).
- the temperature is usually raised in two stages. That is, in the first stage, in order to remove the organic substances in the dielectric and internal electrode paste, a baking process is performed at a relatively low temperature (about 400 ° C. which is the thermal decomposition temperature of the organic substances).
- the second stage firing at a high temperature of about 1300 ° C. is performed for melting (or semi-melting) the metal forming the internal electrode and sintering the inorganic material constituting the dielectric.
- the switching of the temperature is not necessarily performed in these two stages (two temperatures), and the profile of the temperature change is appropriately devised as necessary.
- FIG. 7A shows an external view of a capacitive element 30 in which three capacitors are connected in series.
- FIG. 7B shows a cross-sectional view along XX ′.
- FIG. 7C shows an equivalent circuit thereof.
- the capacitive element 30 includes three capacitors 36a to 36c connected in series, and includes a capacitive element body 31 and four external electrodes 32a to 32d.
- the capacitance element body 31 includes four green sheets including a dielectric sheet 34 and a conductor 33 that is applied onto the dielectric sheet 34 and is pressure-bonded.
- the four green sheets used for manufacturing the capacitance element 30 include the fourth green sheet shown in FIG. 8 in addition to the three types of green sheets described in FIG.
- the green sheet shown in FIG. 8 is a second pattern 180 ° rotation GS35d obtained by rotating the second pattern GS25c of FIG. 5C by 180 °.
- the fourth green sheet 35d is formed of a dielectric 34d and a conductor 33d, and is connected to the external electrode 32d.
- the same green sheets as the green sheets of FIGS. 5A to 5C are described as GS35a, GS35b, and GS35c, consistent with the number of the second pattern 180 ° rotation GS35d.
- FIG. 9 is a diagram for explaining an outline of a method for manufacturing the capacitive element body 31 of FIG.
- the basic pattern 180 ° rotation GS35b having the conductor 33b is overlaid on the basic pattern GS35a having the conductor 33a.
- the second pattern GS35c having the conductor 33c is overlaid on the basic pattern 180 ° rotation GS35b, and the second pattern 180 ° rotation GS35d shown in FIG. 8 is further laminated thereon.
- the dielectric sheet 34b between the conductor 33a of the basic pattern GS35a and the conductor 33b of the basic pattern 180 ° rotation GS35b forms the first capacitor 36a
- the conductor 33b of the basic pattern 180 ° rotation GS35b The dielectric sheet 34c between the conductor 33c of the second pattern GS35c forms the second capacitor 36b.
- the dielectric sheet 34d between the conductor 33c of the second pattern GS35c and the conductor electrode 33d of the second pattern 180 ° rotation GS35d forms a third capacitor 36c (see the equivalent circuit in FIG. 7C). .
- a plurality of reinforcing white sheets 37a are stacked on the upper part of the second pattern 180 ° rotation GS35d arranged at the uppermost part, and similarly, a reinforcing white sheet is provided below the basic pattern GS35a arranged at the lowermost part.
- a plurality of sheets 37b are stacked.
- the four green sheets and the white sheets disposed above and below the green sheets are pressure-bonded and further baked to produce the capacitance element 30.
- FIG. 10A shows an external view of a capacitive element 40 in which two capacitors are connected in series, manufactured by the method for manufacturing a capacitive element according to the first embodiment of the present disclosure.
- FIG. 10B shows a cross-sectional view taken along the dotted line XX ′.
- FIG. 10C shows an equivalent circuit thereof.
- the capacitance element 40 is the same as the configuration of the capacitance element 20 shown in FIG. 4 except that the third green sheet is manufactured differently, but the conventional capacitance element shown in FIG. In order to distinguish it from 20, in FIG.
- the capacitive element 40 shown in FIG. 4 is a capacitive element in which two capacitors 46a and 46b are connected in series, and includes a capacitive element body 41 and three external electrodes 42a to 42a. 42c.
- the capacitance element body 41 is composed of a dielectric sheet 44 and three green sheets made of a conductor 43 that is coated on the dielectric sheet 44 and is crimped.
- the electrostatic capacitance element 40 shown in FIG. 10 also includes three green sheets, similar to the electrostatic capacitance element 20 of FIG. That is, as shown in FIGS. 11A to 11C, the capacitive element body 41 includes a basic pattern GS45a, a basic pattern 180 ° rotated GS45b obtained by rotating the basic pattern GS45a by 180 °, and a basic pattern manufactured by turning over the basic pattern. It has inside out GS45c.
- the basic pattern GS45a has a conductor 43a and is connected to the external electrode 42a.
- the basic pattern 180 ° rotation GS45b has a conductor 43b and is connected to the external electrode 42b.
- the basic pattern reversal GS45c has a conductor 43c and is connected to the external electrode 42c.
- the conductor portion is indicated by a dotted line throughout the drawing (see, for example, FIG. 11C).
- FIG. 12 shows an example of a method of superposing the three green sheets shown in FIG. 11 when manufacturing the capacitive element body 41 shown in FIG.
- the basic pattern 180 ° rotation GS45b is arranged above the basic pattern GS45a
- the basic pattern reversal GS45c is arranged above the basic pattern 180 ° rotation GS45b with a single white sheet 47c interposed therebetween.
- the dielectric sheet 44b between the conductor 43a of the basic pattern GS45a and the conductor 43b of the basic pattern 180 ° rotation GS45b forms a first capacitor 46a
- the conductor 43b of the basic pattern 180 ° rotation GS45b forms a white sheet 47c inserted between the conductor 43c of the basic pattern reversal GS45c to form a second capacitor 46b (see the equivalent circuit in FIG. 10C).
- FIG. 13 is a process diagram showing the manufacturing method by overlapping the green sheets shown in FIG. 12 step by step.
- a dielectric sheet 44 made of a desired dielectric material is prepared.
- a basic pattern mask (not shown) having an opening corresponding to the formation region is prepared in order to apply a basic pattern conductor to be an electrode on the dielectric sheet 44 (step S11).
- a dielectric paste is usually produced by mixing an organic binder as a paste with a dielectric made of inorganic particles.
- a dielectric sheet integrated with PET is formed by applying the dielectric paste to a desired thickness on a PET (polyethylene terephthalate) film.
- an organic binder (glue) is added to a conductor made of metal particles and mixed well to prepare a conductor (electrode) paste. And this conductor (electrode) paste is apply
- a ferroelectric material made of an ionic crystal material that is electrically polarized by displacing atoms of positive ions and negative ions is used.
- a ferroelectric material that generates this ionic polarization is represented by the chemical formula ABO 3 (where O is an oxygen element), where A and B are two predetermined elements.
- Examples of such a ferroelectric material include barium titanate (BaTiO 3 ), potassium niobate (KNbO 3 ), and lead titanate (PbTiO 3 ).
- PZT lead zirconate titanate obtained by mixing lead zirconate (PbZrO 3 ) with lead titanate (PbTiO 3 ) may be used.
- a ferroelectric material in which electronic polarization occurs can be used as a material for forming the dielectric sheet 44.
- this ferroelectric material an electronic polarization that is divided into a portion biased to a positive charge and a portion biased to a negative charge occurs.
- a rare earth iron oxide that exhibits ferroelectric characteristics by forming polarization by forming a charge surface of Fe 2+ and a charge surface of Fe 3+ .
- the rare earth element is RE and the iron group element is TM
- the material represented by the molecular formula (RE) ⁇ (TM) 2 ⁇ O 4 (O: oxygen element) has a high dielectric constant.
- rare earth elements include Y, Er, Yb, and Lu (particularly Y and heavy rare earth elements), and examples of iron group elements include Fe, Co, and Ni (particularly Fe).
- rare earth iron oxides (RE) ⁇ (TM) 2 ⁇ O 4 for example, ErFe 2 O 4, LuFe 2 O 4, YFe 2 O 4 is used.
- a conductive film is applied and pressure-bonded onto the dielectric sheet (step S12).
- the conductive film is applied as follows. That is, a conductive paste in which a metal powder such as Pt, Pb, Pb / Ag, Ni, Ni alloy or the like is made into a paste is prepared, and this conductive paste is printed on the dielectric sheet 44 through the mask prepared in step S11. (For example, silk printing). Thereby, the basic pattern GS45a in which the conductor electrode 43a having the basic pattern is formed on one surface of the dielectric sheet 44 is obtained.
- the obtained basic pattern GS45a is rotated by 180 ° to obtain a basic pattern 180 ° rotation GS45b (step S13). Subsequently, the basic pattern GS45a is turned over to obtain a basic pattern turnover GS45c (step S14).
- the basic pattern GS45a produced in step S12 and the basic pattern 180 ° rotation GS45b produced in step S13 are overlaid (step S15), and the white sheet 47c is overlaid thereon (step S16).
- the basic pattern reverse GS45c produced in step S14 is arranged to produce a laminated body (step S17).
- the white sheets 45a and 45b for reinforcement are laminated on the upper and lower parts of the laminate produced in step S17 by overlapping as many as necessary, respectively, and these are integrated by applying pressure bonding and firing treatment (step). S18).
- the external electrodes 42a to 42c are added to complete the capacitive element 40 (step S19).
- the external electrodes 42a to 42c are usually formed by mixing a base metal fine particle with a polymer material composed of a solvent and a binder to form a paste, and printing (coating) and baking the mixture.
- FIG. 14A shows an external view of the capacitive element 50 in which three capacitors 56a to 56c are connected in series.
- FIG. 14B shows a cross-sectional view taken along the dotted line XX ′.
- FIG. 14C shows the equivalent circuit.
- the difference from the capacitive element 40 of FIG. 10 is that an extra green sheet is required compared with the capacitive element 40 in order to increase the number of capacitors connected in series by one. . That is, as shown in FIG. 14B, four green sheets including the conductors 53a to 53d are required.
- FIG. 15 shows a fourth green sheet produced by rotating the basic pattern reverse GS shown in FIG. 11 by 180 °.
- the fourth green sheet is a basic pattern 180 ° rotated & flipped GS55d obtained by rotating the basic pattern GS45a of FIG. 11 180 ° and turning it upside down.
- the green sheets 45a to 45c of FIG. 11 are also used in the electrostatic capacitance element 50 of FIG. 14, but here the numbers of the green sheets are 55a to 55c in accordance with the newly used green sheet 55d.
- FIG. 16 shows a state in which white sheets are stacked on four green sheets in the capacitive element 50.
- the dielectric sheet 5 arranged between the conductor 53a of the basic pattern GS55a and the conductor 53b of the basic pattern 180 ° rotation GS55b. 4b forms the first capacitor 56a shown in the equivalent circuit of FIG. 14C.
- the third capacitor 56c shown in the equivalent circuit of FIG. 14C is formed by the dielectric sheet 54c disposed between the conductor 53c of the basic pattern reverse GS55c and the conductor 53d of the basic pattern 180 ° rotation & reverse GS55d.
- a white sheet 57c made of only a dielectric material to which no conductor is bonded is inserted between the 180 ° rotated GS55b and the basic pattern reverse GS55c.
- the second capacitor 56b shown in the equivalent circuit of FIG. 14C is formed by the conductor 53b of the basic pattern 180 ° rotation GS55b sandwiching the white sheet 57c, the conductor 53c of the basic pattern reverse GS55c, and the white sheet 57c.
- white sheets 57a and 57b are laminated for reinforcement on the upper and lower parts of the four laminated green sheets.
- step S11 to S16 the same steps as those in the flowchart of FIG. 13 are denoted by the same step symbols (steps S11 to S16). Since this has already been described with reference to FIG.
- FIG. 17 newly includes a production process of the basic pattern 180 ° rotation & turnover GS55d (see FIG. 15) shown in step S19. Then, a laminated body in which the basic pattern turnover GS55c and the basic pattern 180 ° rotation & turnover GS55d are stacked in random order on the white sheet 57c prepared in step S16 is manufactured (step S20).
- step S20 the laminated body produced in step S20 is overlaid on the laminated body produced in step S15 (step S21), and a plurality of reinforcing white sheets 57a are provided above and below the laminated body produced in step S21. , 57b are arranged, and pressure bonding and baking are performed (step S22). Finally, the external electrodes 52a to 52d are printed on the laminate processed in Step 22, and the firing process is performed, whereby the capacitance element 50 is manufactured (Step S23).
- FIG. 18A shows an external view of a capacitive element 60 in which seven capacitors 66a to 66g are connected in series.
- FIG. 18B shows a cross-sectional view taken along the dotted line XX ′.
- FIG. 18C shows the equivalent circuit.
- the capacitive element 60 of FIG. 18 is a capacitive element in which seven capacitors 66a to 66g are connected in series. Therefore, if a terminal for connecting to the electrode between the capacitors is included, eight external electrodes are included.
- FIG. 19 and 20 show four green sheets each having a first pattern and four green sheets having a second pattern.
- FIG. 19A shows a green sheet (GS) 65a that is the basis of the first pattern.
- the first pattern GS65a is rotated by 180 °
- the first pattern 180 ° rotation GS65b shown in FIG. 19B is obtained
- the first pattern GS65c shown in FIG. 19C is obtained.
- FIG. 19D shows a first pattern 180 ° rotation & turnover GS65d produced by further turning the first pattern 180 ° rotation GS65b of FIG. 19B.
- FIG. 20 shows four green sheets 65e to 65h having the second pattern.
- the portion of the conductor forming the electrode of the capacitor is substantially the same as that of the first pattern, and the lead line portion for connecting to the external electrode is shown in FIG. Different from the green sheet of 1 pattern.
- FIG. 20E shows a second pattern GS65e that is the basis of the second pattern.
- a second pattern 180 ° rotation GS65f shown in FIG. 20F is obtained, and when the second pattern GS65e is turned over, the second pattern GS65g shown in FIG. 20G is obtained.
- FIG. 20H is a second pattern 180 ° rotation & reverse GS65h produced by turning over the second pattern 180 ° rotation GS65f of FIG. 20F.
- the green sheets 65a to 65d related to the first pattern shown in FIGS. 19A to 19D are connected to the external electrodes 62a to 62d shown in FIG. 18A.
- the green sheets 65e to 65h related to the second pattern are connected to the external electrodes 62e to 62h shown in FIG. 18A. Since the external electrodes 62a to 62h are insulated by intervening dielectrics, as shown in FIG. 18C, a series-connected capacitive element 60 in which external terminals are attached to all seven capacitors is manufactured. Can do.
- FIG. 21 shows an outline of a method of superposing eight green sheets when manufacturing the capacitive element 60 in which the seven capacitors 66a to 66g shown in FIG. 18 are connected in series.
- four green sheets of a first pattern GS65a, a first pattern 180 ° rotation GS65b, a second pattern GS65e, and a second pattern 180 ° rotation GS65f are stacked in any order.
- a white sheet 67c is disposed on the laminated green sheet.
- the second pattern GS65g, the second pattern 180 ° rotation & reverse GS65h, the first pattern 180 ° rotation & reverse GS65d, and Four green sheets of the first pattern reverse GS65c are stacked in any order.
- a plurality of white sheets 67a and 67b are stacked on the upper and lower portions.
- FIG. 22 is a process diagram showing the procedure of the method for manufacturing the capacitive element 60 shown in FIG. Although there are portions that overlap with the process diagrams of FIGS. 13 and 17, here, the entire process will be briefly described from the beginning.
- a dielectric sheet 64 made of a desired dielectric material and a first electrode for forming a conductor electrode on the dielectric sheet 64 are provided.
- Two types of masks, a pattern and a second pattern, are prepared (step S30).
- a conductive paste in which a metal powder is made into a paste is prepared, and this conductive paste is applied onto the dielectric sheet 64 through the first pattern mask prepared in step S30.
- a first pattern GS65a (FIG. 19A) in which the first pattern of conductive electrodes 63a is formed on one surface of the dielectric sheet 64 is obtained (step S31).
- the obtained first pattern GS65a is rotated by 180 ° to obtain a first pattern 180 ° rotation GS65b (FIG. 19B) (step S32).
- the first pattern GS65a is turned over to turn over the first pattern GS65c ( FIG. 19C) is obtained (step S33).
- the first pattern 180 ° Rotation & turning over GS65d (FIG. 19D) is obtained (step S34).
- a conductive paste made of a metal powder in the form of a paste is applied to the dielectric sheet 64 with the second pattern. Apply through a special mask.
- a second pattern GS65e (FIG. 20E) in which the conductor electrode 63e of the second pattern is formed on one surface of the dielectric sheet 64 is obtained (step S35).
- the second pattern GS65e is rotated by 180 ° to obtain a second pattern 180 ° rotation GS65f (FIG. 20F) (step S36).
- the second pattern GS65g (FIG. 20G)
- a second pattern 180 ° rotation & reverse GS65h (FIG. 20H) is obtained (steps S37 and S38).
- the first pattern GS65a (FIG. 19A), the first pattern 180 ° rotation GS65b (FIG. 19B), the second pattern GS65e (FIG. 20E), and the second pattern 180 ° rotation GS65f (FIG. 20F) were stacked in any order.
- a laminated body is produced (step S39).
- a dielectric-only white sheet 67c on which no conductor pattern is printed is prepared.
- the first pattern GS65c (FIG. 19C), the first pattern 180 ° rotation & GS65d ( FIG. 19D), a stacked body in which the second pattern reversal GS65g (FIG. 20G) and the second pattern 180 ° rotation & reversal GS65h (FIG. 20H) are stacked in random order is produced (step S40).
- step S40 the laminate produced in step S40 is overlaid on the laminate produced in step S39, and a plurality of white sheets 67a and 67b are further overlaid on the upper and lower portions of the laminate, followed by pressure bonding and firing treatment. This is performed (step S41).
- step S41 the external electrodes 62a to 62h are printed on the laminate produced in step S41 and fired, thereby obtaining the capacitive element 60 in which the seven capacitors 66a to 66g shown in FIG. 18 are connected in series ( Step S42).
- FIG. 23A shows an external view of a capacitive element 70 in which three capacitors 76a to 76c are connected in series.
- FIG. 23B shows a cross-sectional view taken along the dotted line XX ′.
- FIG. 23C shows an equivalent circuit thereof.
- the external electrodes 72a to 72d are present at substantially the same position on the four side surfaces of the capacitive element body 71 having a rectangular parallelepiped shape.
- the conductors 73a to 73d shown in the sectional view are connected to these external electrodes 72a to 72d.
- the connection relationship between the three capacitors 76a to 76c and the external electrodes 72a to 72d as shown in the equivalent circuit is shown. can get.
- 24A to 24D show four green sheets 75a to 75d having a basic pattern.
- the portions of the conductors 73a to 73d that form the electrodes of the capacitor are relatively small in area with respect to the areas of the dielectrics 74a to 74d, but the areas of the conductors 73a to 73d are large.
- the length can be arbitrarily determined according to the application in which the capacitive element 70 is used. For example, when the capacitive element 70 is mounted on a communication card and used, the areas of the conductors 73a to 73d are smaller than the areas of the dielectrics 74a to 74d, as shown in FIGS. Is said to be more effective.
- B, C, and D are obtained by rotating the basic pattern GS75a shown in A by 90 °, 180 °, and 270 °, respectively.
- These three green sheets (GS) are hereinafter referred to as a basic pattern 90 ° rotation GS75b, a basic pattern 180 ° rotation GS75c, and a basic pattern 270 ° rotation GS75d.
- the number N of green sheets ( 1, 2, 3,. ⁇ ⁇ )
- FIG. 25 shows an outline of a method of superimposing the above-mentioned four green sheets (GS) in order to manufacture the capacitive element 70 in which the three capacitors 76a to 76c shown in FIG. 23 are connected in series.
- GS green sheets
- the basic pattern GS75a, the basic pattern 90 ° rotation GS75b, the basic pattern 180 ° rotation GS75c, and the basic pattern 270 ° rotation GS75d are stacked in random order, and a plurality of white sheets 77a and 77b are stacked on the upper and lower portions.
- FIG. 26 is a process diagram showing the procedure of the method for manufacturing the capacitive element 70 shown in FIG. The process is the same as that described above until the step of preparing the dielectric sheet and the conductive film coating mask in step S50 and the basic pattern GS75a (FIG. 24A) in step S51 are fabricated.
- the basic pattern GS75a produced in step S51 is rotated by 90 ° to produce a basic pattern 90 ° rotated GS75b (FIG. 24B) (step S52).
- the basic pattern GS75a is rotated 180 ° to produce a basic pattern 180 ° rotated GS75c (FIG. 24C) (step S53), and further rotated 270 ° to produce a basic pattern 270 ° rotated GS75d (FIG. 24D) (FIG. 24D).
- Step S54 ).
- a stacked body is formed by stacking the four green sheets (GS) thus manufactured in random order (step S55), and a plurality of white sheets 77a and 77b are stacked on the upper and lower portions of the stacked body. Crimping and firing are performed (step S56). Finally, the external electrodes 72a to 72d are printed on the laminate produced in step S56 and subjected to a firing process, thereby completing the manufacture of the capacitive element 70 (step S57).
- FIG. 27A shows an external view of a capacitive element 80 in which three capacitors 86a, 86b, 86c connected in parallel are connected in series.
- FIG. 27B shows a cross-sectional view taken along the dotted line XX ′.
- FIG. 27C shows an equivalent circuit thereof.
- FIG. 27D shows an internal circuit.
- the external electrodes 82a to 82d of the first modification are the same as the external electrodes 72a to 72d in FIG.
- the conductors 83a to 83d shown in the sectional view are connected to these external electrodes 82a to 82d.
- a green sheet (GS) made of conductors 83a to 83d and dielectric sheets 84a to 84d, one basic pattern GS85a, two basic patterns 90 ° rotated GS85b, 2 Seven green sheets of a basic pattern 180 ° rotated GS85c and two basic patterns 270 ° GS85d are prepared.
- the basic pattern GS85a is placed at the center.
- a basic pattern 180 ° rotation GS85c, a basic pattern 90 ° rotation GS85b, and a basic pattern 270 ° rotation GS85c are arranged in this order on top and bottom.
- three green sheets are laminated on the upper and lower sides of one basic pattern GS85a.
- a plurality of white sheets 87a and 87b are stacked on the upper and lower portions of the seven green sheets stacked in this way.
- two capacitors 86a are produced by one basic pattern GS75a and two basic patterns 180 ° rotation GS85c, and two basic patterns 180 ° rotation GS85c.
- Two capacitors 86b are produced by two basic patterns 90 ° rotation GS85b.
- two capacitors 86c are produced from the two basic patterns 90 ° rotated GS85b and the two basic patterns 270 ° rotated GS85d.
- six capacitors are stacked.
- the obtained electrostatic capacitance element 80 is obtained.
- FIG. 29 is a process diagram showing a specific manufacturing process of the capacitance element 80.
- Steps S50 to S54 are the same as the manufacturing process of the capacitive element 70 shown in FIG.
- the basic pattern GS85a, the basic pattern 180 ° rotation GS85c, the basic pattern 90 ° rotation GS85b, and the basic pattern 270 ° rotation GS85d are stacked in this order on the basic pattern GS85a.
- a laminated body is generated (step S58).
- the basic pattern 180 ° rotation GS85c, the basic pattern 90 ° rotation GS85b, and the basic pattern 270 ° rotation GS85d are stacked in this order on the lower part of the layered body manufactured in step S58 to form a layered body (step S59). That is, as shown in FIG. 28, the basic pattern GS85a is used as a common green sheet, and the basic pattern 180 ° rotation GS85c, the basic pattern 90 ° rotation GS85b, and the basic pattern 270 ° rotation GS85d are sequentially arranged above and below the green sheet. A laminate in which seven green sheets are laminated is obtained.
- step S61 a plurality of white sheets 87a and 87b are stacked on the upper and lower portions of the laminate of the seven green sheets prepared in step S59, and subjected to pressure bonding and firing processing. Finally, the external electrodes 82a to 82d are attached. Printing and baking are performed, and the manufacturing process of the capacitive element 80 is completed (step S61).
- FIG. 30 is different from the first modification shown in FIG. 27 only in the cross-sectional view taken along the line XX ′. That is, the capacitance element 80 shown in FIG. 27 has seven conductors (one for 83a and two for 83b to 83d) as shown in FIG. 27B, whereas the capacitance shown in FIG. In the element 80A, eight conductors (two each of 83a to 83d) are provided.
- FIG. 31 shows an example of the arrangement relationship of the eight green sheets coated with the eight conductors described above.
- Two basic patterns GS85a are stacked in the central portion.
- the conductor electrode 83a of the basic pattern GS85a is an electrode connected to the external electrode 82a.
- two capacitors 86a are produced by two basic patterns GS85a and two basic patterns 180 ° rotated GS85c, similarly to the case of FIG.
- Two capacitors 86b are produced by one basic pattern 180 ° rotation GS85c and two basic patterns 90 ° rotation GS85b.
- two capacitors 86c are produced from the two basic patterns 90 ° rotated GS85b and the two basic patterns 270 ° rotated GS85d.
- a capacitive element 80A in which six capacitors (two each of 86a, 86b, 86c) are stacked is obtained.
- FIG. 32 is a process diagram showing a specific manufacturing process of the capacitance element 80A. Steps S50 to S54 are the same as the manufacturing steps of the capacitive element 80 shown in FIG. First, three green sheets of a basic pattern 180 ° rotation GS85c, a basic pattern 90 ° rotation GS85b, and a basic pattern 270 ° rotation GS85c are arranged on the top of one basic pattern GS85a to form a laminate (step S63). . On the other hand, three green sheets of a basic pattern 180 ° rotation GS85c, a basic pattern 90 ° rotation GS85b, and a basic pattern 270 ° rotation GS85d are arranged below another basic pattern GS85a to form a laminate (step) S64).
- step S65 the laminates produced in steps S63 and S64 are overlapped (step S65), and a plurality of white sheets 87a and 87b are further laminated on the upper and lower portions, and pressure bonding and firing are performed (step S66).
- step S66 printing and firing of the external electrodes 82a to 82d (see FIG. 30A) are performed on the laminate produced in step S66, and the production of the capacitive element 80A is completed (step S67).
- FIG. 33 differs from the first modification shown in FIG. 27 and the second modification shown in FIG. 30 in three pieces as shown in the internal circuit. The point is that three capacitors 86a, 86b, 86c in parallel are connected in series. For this reason, in the third modification example, as shown in FIG. 33B, ten conductors (two 83a and 83d and three three 83b and 83c, respectively) forming electrodes are provided.
- FIG. 34 shows a method of overlaying 10 green sheets (GS) constituting the capacitance element 80B of FIG.
- a total of ten green sheets are used: two basic patterns GS85a and basic patterns 270 ° rotation GS85d, and basic patterns 90 ° rotation GS85b and basic patterns 180 ° rotation GS85c.
- two stacked bodies are generated in which green sheets of the basic pattern 180 ° rotation GS85c, the basic pattern 90 ° rotation GS85b, and the basic pattern 270 ° rotation GS85c are arranged in this order on top of the two basic patterns GS85a.
- the basic pattern GS85a of the laminate arranged at the upper part and the basic pattern of the laminate arranged at the lower part By using the 270 ° rotation GS85d in common, another stack of the basic pattern GS85a, the basic pattern 180 ° rotation GS85c, the basic pattern 90 ° rotation GS85b, and the basic pattern ° rotation GS85c can be formed.
- Each of the three laminated bodies laminated in this manner is obtained by connecting capacitors 86a to 86c in series, and the green sheets constituting the three laminated bodies are connected to the external electrodes 82a to 82d.
- two capacitors 86a are produced by two basic patterns GS85a and three basic patterns 180 ° rotated GS85c, and three basic patterns 180 ° rotated GS85c and three basic patterns.
- Three capacitors 86b are produced by the 90 ° rotation GS85b.
- Three capacitors 86c are produced from the three basic patterns 90 ° rotated GS85b and the two basic patterns 270 ° rotated GS85d.
- FIG. 35 is a process diagram showing a specific manufacturing process of the capacitive element 80B.
- Steps S50 to S54 are the same as the manufacturing process of the capacitive element 80A shown in FIG.
- two stacked bodies are formed by stacking the basic pattern 180 ° rotation GS85c, the basic pattern 90 ° rotation GS85b, and the basic pattern 270 ° rotation GS85d above the basic pattern GS85a (step S68). ).
- a laminate of the basic pattern 90 ° rotation GS85b and the basic pattern 180 ° rotation GS85c is inserted between the two laminates produced in step S68 (step S69).
- step S69 a plurality of white sheets 87a and 87b are laminated on the upper and lower parts of the laminate produced in step S69, and pressure bonding and firing are performed (step S70). Finally, external electrodes 82a to 82d (see FIG. 33A). ) Is printed and fired to produce a capacitive element 80B (step S71).
- a capacitance element 80C as the fourth modification shown in FIG. 36 and a capacitance element 80B shown in FIG. 33 are the same in external view and internal circuit, and are different in the XX ′ sectional view ( Only the number of conductor electrodes 83a to 83d shown in B) is shown. That is, in FIG. 33B, as described above, there are 10 conductor electrodes (2 each for 83a and 83d, and 3 each for 83b and 83c), whereas in FIG. 36B, 12 conductor electrodes ( 83a to 83d are each three).
- FIG. 37 shows a method of superposing 12 green sheets (GS) constituting the capacitive element 80C of FIG.
- GS green sheets
- Each of these three laminated bodies is formed by connecting three capacitors 86a to 86c shown in the internal circuit of FIG. 36D in series, which are connected to the external electrodes 82a to 82d. Corresponding capacitors are connected in parallel. As a result, as shown in the internal circuit, a capacitive element 80C having three parallel three series capacitors is manufactured.
- FIG. 37 The difference between FIG. 37 and FIG. 34 is that in FIG. 34, the basic pattern GS85a and the basic pattern 27 are different. In contrast to two 0 ° rotation GS85d, three green sheets are used in FIG. Therefore, in FIG. 37, three capacitors 86a are produced by three basic patterns GS85a and three basic patterns 180 ° rotation GS85c, and three basic patterns 180 ° rotation GS85c and three basic patterns 90 are formed. ° Three capacitors 86b are produced by the rotation GS85b. Three capacitors 86c are produced from the three basic patterns 90 ° rotated GS85b and the three basic patterns 270 ° rotated GS85d. As a result, as shown in the internal circuit of FIG. 36D, the electrostatic capacity is formed by stacking nine capacitors (three each of 86a, 86b, 86c) in which three capacitors connected in parallel are connected in series. Element 80C is obtained.
- FIG. 38 is a process diagram showing a specific manufacturing process of the capacitive element 80C.
- Steps S50 to S54 are the same as the manufacturing steps of the capacitive elements 80, 80A, 80B of the first to third modifications (see FIGS. 29, 32, and 35).
- two basic patterns GS85a prepared in step S51 are prepared, and a stacked body in which the basic pattern GS85a, the basic pattern 180 ° rotation GS85c, the basic pattern 90 ° rotation GS85b, and the basic pattern ° rotation GS85d are stacked on each of the basic patterns GS85a. Two pieces are produced (step S72).
- step S73 Another basic pattern GS85a is prepared, and a laminated body in which a basic pattern 180 ° rotation GS85c, a basic pattern 90 ° rotation GS85b, and a basic pattern 270 ° rotation GS85d are sequentially stacked below this basic pattern GS85a. Individually manufactured (step S73).
- step S73 one laminate produced in step S73 is inserted to produce a laminate in which 12 green sheets are laminated (step S74). Then, a plurality of white sheets 87a and 87b are arranged on the upper and lower portions of the laminate produced in step S74, and crimping and firing are performed (step S75). Finally, external electrodes 82a to 82d (see FIG. 36A). ) Is printed and fired to complete the capacitance element 80C (step S76).
- FIG. 39A shows an external view of a capacitive element 90 in which seven capacitors 96a to 96g are connected in series.
- FIG. 39B shows an XX ′ sectional view.
- FIG. 39C shows an equivalent circuit thereof.
- two external electrodes 92a to 92h are arranged side by side on the four side surfaces of the rectangular capacitive body 91.
- FIGS. 24A to 24D Of the green sheets coated with eight conductors (electrodes) used in the third embodiment (see FIG. 39B), four green sheets are already the green sheets shown in FIGS. 24A to 24D. Is the same. In FIG. 24, four green sheets 75a to 75d having a basic pattern are shown, but in the third embodiment, the same green sheets are shown as green sheets 95a to 95d.
- the capacitive element 90 of the third embodiment in addition to the four green sheets shown in FIGS. 24A to 24D, four green sheets 95e to 95h shown in FIGS. 40E to H are used. .
- the green sheets 95e to 95h are flipped green sheets 75a to 75d (hereinafter referred to as “95a to 95d”) shown in FIGS. 24A to 24D.
- the green sheets shown in FIGS. 40E to 40H are referred to as a basic pattern reverse GS95e, a basic pattern 90 ° rotation & reverse GS95f, a basic pattern 180 ° rotation & reverse GS95g, and a basic pattern 270 ° rotation & reverse GS95h.
- FIG. 41 shows an example of a method of superimposing the above eight green sheets (GS) in order to manufacture the capacitive element 90 in which the seven capacitors 96a to 96g shown in FIG. 39 are connected in series. It is. That is, the basic pattern GS95a, the basic pattern 90 ° rotation GS95b, the basic pattern 180 ° rotation GS95c, and the basic pattern 270 ° rotation 95d are stacked in any order.
- a white sheet 97c is arranged on the laminated green sheet, and further, a basic pattern turnover GS95e, a basic pattern 90 ° rotation & turnover GS95f, a basic pattern 180 ° turn & turnover GS95g, and basic Pattern 270 ° rotation & reverse GS95h are stacked in random order. Then, a plurality of white sheets 97a and 97b are laminated for reinforcement on the upper and lower parts of the eight green sheets thus laminated, and the whole is subjected to pressure bonding and firing.
- FIG. 42 is a process diagram showing a specific manufacturing process of the capacitance element 90.
- Steps S50 to S54 are the same as those described in the method of manufacturing the capacitive element 70 according to the second embodiment in FIG. That is, in steps S51 to S54, after the basic pattern GS95a is produced, the basic pattern GS95a is rotated by 90 °, the basic pattern 90 ° rotated GS95b, the 180 ° rotated basic pattern 180 ° rotated GS95c, and the basic pattern 270 rotated 270 °. ° Rotating GS95d is produced.
- a basic pattern GS95e which is a green sheet with the basic pattern GS95a turned upside down, a basic pattern 180 ° rotated GS95c with the basic pattern 180 ° rotated GS95c turned over & a reverse GS95f, and a basic pattern 270 ° rotated GS95d with the basic pattern rotated 270 ° GS & Turn over GS95h is prepared (steps S80 to S83).
- the basic pattern GS95a is first taken out of the eight types of green sheets thus produced, and the basic pattern 180 ° rotation GS95c, the basic pattern 90 ° rotation GS95b, and the basic pattern 270 ° rotation GS95d are arranged in any order.
- the stacked laminate is produced (step S84).
- one white sheet 97c is placed on the laminate produced in Step S84 (Step S85).
- the basic pattern 270 ° rotation & reverse GS95h, basic pattern 90 ° rotation & reverse GS95f, basic pattern 180 ° rotation & reverse GS95g, and basic pattern reverse GS95e are arranged in random order on the top of the white sheet 97c arranged in step S85.
- the stacked laminate is produced (step S86).
- a plurality of white sheets 97a and 97b are arranged on the upper and lower parts of the eight green sheets laminated in this way, and a pressure bonding and firing process is performed (step S87).
- the external electrodes 92a to 92h are printed and baked to manufacture the capacitance element 90 (step S88).
- the manufacturing method of the capacitive element disclosed in the present specification mainly focuses on stacking a green sheet produced by applying a conductive film to a dielectric sheet. If so, a wide range of uses other than the electrostatic capacitance element can be considered.
- this indication can also take the following structures. (1) Preparing a dielectric sheet not coated with a conductor, and a mask having at least one basic pattern shape for conductor coating on the dielectric sheet; Applying a conductor on the dielectric sheet through the mask to produce a basic pattern green sheet; Producing a basic pattern rotating green sheet obtained by rotating the basic pattern green sheet; Laminating the basic pattern green sheet and the basic pattern rotating green sheet; The basic pattern green sheet, or the basic pattern rotating green sheet of at least one green sheet is turned over to produce a basic pattern inverted green sheet different from the basic pattern green sheet or the rotating green sheet; Laminating the basic pattern green sheet and the basic pattern rotating green sheet on the laminated body with the basic pattern inverted green sheet through a dielectric sheet not coated with a conductor; A step of pressure-bonding and firing the laminate of the basic pattern green sheet, the basic pattern rotating green sheet, the dielectric sheet, and the basic pattern reverse green sheet; The manufacturing method of the capacitive element containing this.
- a reinforcing dielectric sheet not coated with a conductor is laminated on the upper and lower parts of the laminate of the basic pattern green sheet, the basic pattern rotating green sheet, the dielectric sheet, and the basic pattern reverse green sheet.
- the manufacturing method of the electrostatic capacitance element as described in (1) including the process to carry out.
- the method further includes a step of printing an external electrode on a side surface of a laminate of the basic pattern green sheet, the basic pattern rotating green sheet, the dielectric sheet, and the basic pattern reverse green sheet and performing a baking process (1) ) Or (2).
- the basic pattern inverted green sheet is a basic pattern inverted green sheet and / or a basic pattern 180 ° rotated & inverted green sheet produced by inverting one or both of the basic pattern green sheet and the basic pattern 180 ° rotated pattern green sheet.
- Two basic pattern green sheets for preparing the basic pattern green sheet are prepared, two basic pattern green sheets, two basic pattern 180 ° rotated green sheets obtained by rotating the basic pattern green sheet by 180 °, Each of the two basic pattern green sheets and the two basic pattern 180 ° rotated green sheets are turned over to produce the basic pattern inverted green sheet and / or the basic pattern 180 ° rotated & inverted green sheet.
- the basic pattern rotating green sheet includes a basic pattern 90 ° rotating green sheet obtained by rotating the basic pattern green sheet by 90 °, a basic pattern 180 ° rotating green sheet obtained by rotating the basic pattern green sheet by 180 °, and the basic pattern green sheet.
- the inverted green sheet is a basic pattern inverted green sheet obtained by inverting the basic pattern green sheet and the three types of basic pattern rotating green sheets, and a basic pattern 90 ° rotated & inverted green sheet obtained by inverting the basic pattern 90 ° rotated green sheet.
- the green sheets to be stacked are the basic pattern green sheet, the basic pattern 90 ° rotated green sheet, the basic pattern 180 ° rotated green sheet, the basic pattern 270 ° rotated green sheet, the basic pattern inverted green sheet, the basic pattern (1)
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Ceramic Capacitors (AREA)
Abstract
Description
そして、その導電ペーストを内部電極の形状(例えば、矩形状)に対応する開口部が形成されたマスクを介して、誘電体材料からなるシート部材の一方の表面に塗布(シルク印刷等)して内部電極を形成する。
その後、この白シートに、内部電極パターンの形状(例えば、矩形状)に対応する開口部が形成されたマスクを介してペースト化したNi等の卑金属の導電体粉を塗布することにより、コンデンサの電極となる導電体が塗布されたシート(以下、このシートを「グリーンシート(GS)」と呼ぶ。)を作製する。
トの種類が多くなることによって、これを積み重ねる工程が増え、そのための設備投資も増えるので、生産性が劣るという問題があった。
1.静電容量素子の製造方法の一般的な方法(図1~9)
2.本開示の第1の実施形態例に係る静電容量素子の製造方法(図10~13)
2-1 第1の変形例(図14~17)
2-2 第2の変形例(図18~22)
3.本開示の第2の実施形態例に係る静電容量素子の製造方法(図23~26)
3-1 第1の変形例(図27~29)
3-2 第2の変形例(図30~32)
3-3 第3の変形例(図33~35)
3-4 第4の変形例(図36~38)
4.本開示の第3の実施形態例に係る静電容量素子の製造方法(図39~42)
まず、本開示の第1の実施形態例に係る静電容量素子の製造方法を説明する前に、本実施形態例の静電容量素子の製造方法の比較例として、従来から一般的に行われている静電容量素子の製造方法について、図1~9を参照して説明する。
静電容量素子10は、静電容量素子本体11と外部電極12a、12bから構成されている。そして、静電容量素子本体11は、誘電体シート14の上に電極を形成するペースト状の導電体13が塗布されて形成される。この誘電体シート14と、誘電体シート14上に形成される所定の電極パターンの導電体13とからなるグリーンシートが複数枚(図1Bでは8枚)積層されて、7個のコンデンサが並列接続された静電容量素子が作製される。図1では図示されていないが、通常は、積層されたグリーンシートの上部及び下部には、導電体13が塗布されない状態の誘電体14のみのシート(白シート)が補強用として設けられる。
なお、基本パターンGSと基本パターン180°回転GSとを交互に積層する方法では、グリーンシートの種類数N(=1,2,3・・・)と直列接続される単素子のコンデンサの数Kとの関係は、(1)式
K=2N-1 ・・・・・ (1)
が成立する。図1では、N=1、K=1である。
図4Aと図4Cに示すように、図4に示す静電容量素子20は、2個のコンデンサが直列接続されるので、静電容量素子本体21には、3つの外部電極22a~22cが形成されている。静電容量素子本体21は、図5で後述するように誘電体シート24と、この誘電体シート上に塗布され圧着された導電体23からなる3枚のグリーンシートを含む。
なお、圧着後に積層体の焼成処理が行われるが、この焼成処理では、通常2段階で温度を上昇させている。すなわち、第1段階では、誘電体及び内部電極用のペーストの有機物を除去するために、比較的低温(有機物の熱分解温度である400℃程度)での焼成処理が行われる。第2段階では、内部電極を形成する金属の溶融(または半溶融)と誘電体を構成する無機物の焼結のために、1300℃程度の高温での焼成が行われる。この温度の切換は、必ずしもこの2段階(2つの温度)で行われるものではなく、温度変化のプロファイルは必要に応じて適宜工夫されるものである。
静電容量素子30は、図7Cに示すように、3個のコンデンサ36a~36cが直列接続されたものであり、静電容量素子本体31と4つの外部電極32a~32dを有する。静電容量素子本体31は、誘電体シート34と、この誘電体シート34上に塗布され圧着される導電体33からなる4枚のグリーンシートからなる。
図10Aに、本開示の第1の実施形態例に係る静電容量素子の製造方法で製造した、2個のコンデンサが直列接続された静電容量素子40の外観図を示す。図10Bに、点線X-X’で切断したときの断面図を示す。図10Cに、その等価回路を示す。
静電容量素子40は、3枚目のグリーンシートの作製方法が異なる以外は、図4に示した静電容量素子20の構成と同じであるが、図4に示した従来の静電容量素子20と区別するために、図10では40番代の番号を付けている。
K=4N-1 ・・・・・ (2)
が成立する。この式(2)から、N=1、K=3となり、直列接続される単素子のコンデンサの数は、最大3個となる(図14で後述)。なお、図10では、直列接続するコンデンサを2個にしている。
面と、Fe3+の電荷面の形成により、分極を形成して強誘電体的特性を示す希土類鉄酸化物がある。ここで、希土類元素をREとし、鉄族元素をTMとしたときに、分子式(RE)・(TM)2・O4(O:酸素元素)で表される材料が高誘電率を有することが知られている。希土類元素としては、例えば、Y、Er、Yb、Lu(特にYと重希土類元素)が挙げられ、鉄族元素としては、例えば、Fe、Co、Ni(特にFe)が挙げられる。また、希土類鉄酸化物である(RE)・(TM)2・O4としては、例えば、ErFe2O4、LuFe2O4、YFe2O4などが用いられる。
次に、図14~図17を参照して、本開示の第1の実施形態例に係る静電容量素子の製造方法の第1の変形例について説明する。
図14Aは、3個のコンデンサ56a~56cが直列接続された静電容量素子50の外観図を示す。図14Bは、点線X-X’で切断したときの断面図を示す。図14Cは、その等価回路を示す。図10の静電容量素子40と異なる点は、直列接続するコンデンサの数を1個多くするために、静電容量素子40のときに比べてグリーンシートが1枚余計に必要になることである。つまり、図14Bに示すように、導電体53a~53dを含む4枚のグリーンシートが必要になる。
4bとで、図14Cの等価回路に示す第1のコンデンサ56aが形成される。また、基本パターン裏返しGS55cの導電体53cと基本パターン180°回転&裏返しGS55dの導電体53dの間に配置される誘電体シート54cにより、図14Cの等価回路に示す第3のコンデンサ56cが形成される。
次に、図18~22を参照して、本開示の第1の実施形態例に係る静電容量素子の製造方法の第2の変形例について説明する。
図18Aは、7個のコンデンサ66a~66gが直列接続された静電容量素子60の外観図を示す。図18Bは、点線X-X’で切断したときの断面図を示す。図18Cは、その等価回路を示す。
図18の静電容量素子60は、7個のコンデンサ66a~66gが直列接続された静電容量素子であるから、各コンデンサ間の電極に接続するための端子も含めると、8個の外部電極62a~62hと、8個の導電体63a~63hが必要とされる。すなわち、2種類の基本パターンからなる8枚のグリーンシート65a~65hが必要となる。以下、この2種類の基本パターンを第1パターン、第2パターンとして説明する。
図19Aは第1パターンの基礎となるグリーンシート(GS)65aを示す。この第1パターンGS65aを180°回転すると図19Bに示す第1パターン180°回転GS65bとなり、この第1パターンGS65aを裏返すと図19Cに示す、第1パターン裏返しGS65cになる。図19Dは、図19Bの第1パターン180°回転GS65bを更に裏返して作製した第1パターン180°回転&裏返しGS65dである。
。図20に示す第2のパターンのグリーンシートでは、コンデンサの電極を形成する導電体の部分は、第1のパターンとほぼ同じにし、外部電極と接続するための引き出し線部が図19に示す第1のパターンのグリーンシートと異ならせている。
図21に示すように、第1パターンGS65a、第1パターン180°回転GS65b、第2パターンGS65e、第2パターン180°回転GS65fの4枚のグリーンシートが順不同で積層される。この積層されたグリーンシートの上に白シート67cが配置され、この白シート67c上に、第2パターン裏返しGS65g、第2パターン180°回転&裏返しGS65h、第1パターン180°回転&裏返しGS65d、及び第1パターン裏返しGS65cの4枚のグリーンシートが順不同で積層される。このように2つのパターンを有する8枚のグリーンシートが積層された後は、その上部と下部に複数枚の白シート67a、67bが重ねて配置される。
回転&裏返しGS65d(図19D)を得る(ステップS34)。
次に、図23~26を参照して、本開示の第2の実施形態例の静電容量素子とその製造方法について説明する。
図23Aは、3個のコンデンサ76a~76cが直列接続された静電容量素子70の外観図を示している。図23Bは、点線X-X’で切断した時の断面図を示している。図23Cは、その等価回路を示している。外観図から分かるように、この第2の実施形態例では、外部電極72a~72dが直方体形状をした静電容量素子本体71の4側面の略同位置に存在している。
。
ここで、基本パターンGS75a、基本パターン90°回転GS75b、基本パターン180°回転GS75c及び基本パターン270°回転GS75dを順不同で積層した場合には、グリーンシートの種類数N(=1,2,3・・・)と直列接続される単素子のコンデンサの数Kとの関係は、
K=4N-1 ・・・・・ (2)
が成立する。ここでは、N=1で、直列接続される単素子のコンデンサの数K=3となる。
次に、ステップS51で作製した基本パターンGS75aを90°回転し、基本パターン90°回転GS75b(図24B)を作製する(ステップS52)。続いて、基本パターンGS75aを180°回転して基本パターン180°回転GS75c(図24C)を作製し(ステップS53)、更に270°回転して基本パターン270°回転GS75d(図24D)を作製する(ステップS54)。
図27~29を参照して、本開示の第2の実施形態例の静電容量素子の第1の変形例とその製造方法について説明する。
図27Aは、並列接続された2個のコンデンサ86a、86b、86cのそれぞれが3個直列に接続された静電容量素子80の外観図を示したものである。図27Bは、点線X-X’で切断した時の断面図を示したものである。図27Cは、その等価回路を示したものである。図27Dは、内部回路を示したものである。この第1の変形例の外部電極82a~82dは、図23の外部電極72a~72dと同じものである。
重ねた7枚のグリーンシートの上部と下部に複数枚の白シート87a、87bを積層する。
ステップS51~S54で生成した4つのグリーンシートが作製された後は、基本パターンGS85aの上部に基本パターン180°回転GS85c、基本パターン90°回転GS85b、基本パターン270°回転GS85dをこの順番に重ねて積層体を生成する(ステップS58)。そして、ステップS58で作製した積層体の下部に基本パターン180°回転GS85c、基本パターン90°回転GS85b、基本パターン270°回転GS85dをこの順番で重ねて積層体とする(ステップS59)。すなわち、図28に示したように、基本パターンGS85aを共通のグリーンシートとして、その上下に、基本パターン180°回転GS85c、基本パターン90°回転GS85b、基本パターン270°回転GS85dが順番に配置された7枚のグリーンシートが積層された積層体が得られる。
次に、図30~32を参照して、本開示の第2の実施形態例の静電容量素子の第2の変形例とその製造方法について説明する。
図30に示す第2の変形例が図27に示す第1の変形例と異なるところは、X-X’で切断した断面図のみである。つまり、図27に示す静電容量素子80は、図27Bに示すように導電体が7個(83aが1個、83b~83dがそれぞれ2個)であるのに対し、図30の静電容量素子80Aでは、導電体は8個(83a~83dがそれぞれ2個ずつ)設けられている。
基本パターンGS85aと2枚の基本パターン180°回転GS85cにより、2個のコンデンサ86aが作製され、2枚の基本パターン180°回転GS85cと2枚の基本パターン90°回転GS85bにより2個のコンデンサ86bが作製される。そして、2枚の基本パターン90°回転GS85bと2枚の基本パターン270°回転GS85dから2個のコンデンサ86cが作製される。これにより、図30Dの内部回路に示すように、6個のコンデンサ(86a、86b、86cがそれぞれ2個)が積層された静電容量素子80Aが得られる。
次に、図33~35を参照して、本開示の第2の実施形態例の静電容量素子の第3の変形例とその製造方法について説明する。
図33に示す第3の変形例(静電容量素子80B)が、図27に示す第1の変形例や、図30に第2の変形例と異なるところは、内部回路に示すように3個並列にしたコンデンサ86a、86b、86cを3個直列に接続している点である。このため、第3の変形例では、図33Bに示すように、電極を形成する導電体を10個(83a、83dをそれぞれ2個、83b、83cをそれぞれ3個)設けている。
シート87a、87bが積層される。
ステップS54までの処理が終えた後に、基本パターンGS85aの上部に基本パターン180°回転GS85c、基本パターン90°回転GS85b、及び基本パターン270°回転GS85dを積層した積層体を2個作製する(ステップS68)。そして、ステップS68で作製した2個の積層体の間に、基本パターン90°回転GS85bと基本パターン180°回転GS85cの積層体を挿入する(ステップS69)。
次に、図36~38を参照して、本開示の第2の実施形態例の静電容量素子の第4の変形例とその製造方法について説明する。
図36に示す第4の変形例である静電容量素子80Cと、図33に示す静電容量素子80Bは、その外観図、内部回路ともに同一であり、異なる点はX-X’断面図(B)に示される導電体電極83a~83dの数のみである。すなわち、図33Bでは、上述のように、導電体電極は10個(83a、83dをそれぞれ2個、83b、83cをそれぞれ3個)であるのに対し、図36Bでは12個の導電体電極(83a~83dのそれぞれが3個ずつ)を備えている。
0°回転GS85dが2枚であるのに対して、図37ではいずれのグリーンシートも3枚用いている点であった。したがって、図37においては、3枚の基本パターンGS85aと3枚の基本パターン180°回転GS85cにより、3個のコンデンサ86aが作製され、3枚の基本パターン180°回転GS85cと3枚の基本パターン90°回転GS85bにより3個のコンデンサ86bが作製される。そして、3枚の基本パターン90°回転GS85bと3枚の基本パターン270°回転GS85dから3個のコンデンサ86cが作製される。これにより、図36Dの内部回路に示すように、並列接続された3個のコンデンサが3個直列接続された9個のコンデンサ(86a、86b、86cがそれぞれ3個)が積層された静電容量素子80Cが得られる。
その後、ステップS51で作製した基本パターンGS85aを2枚用意し、その基本パターンGS85aそれぞれの上部に基本パターン180°回転GS85c、基本パターン90°回転GS85b、及び基本パターン°回転GS85dを重ねた積層体を2個作製する(ステップS72)。更に、別の基本パターンGS85aを1枚用意し、この基本パターンGS85aの下部に基本パターン180°回転GS85c、基本パターン90°回転GS85b、及び基本パターン270°回転GS85dを順番に重ねた積層体を1個作製する(ステップS73)。
次に、図39~42を参照して、本開示の第3の実施形態例に係る静電容量素子の製造方法について説明する。
図39Aは、7個のコンデンサ96a~96gが直列接続された静電容量素子90の外観図を示している。図39Bは、X-X’断面図を示している。図39Cは、その等価回路を示している。外観図から分かるように、この第3の実施形態例では、外部電極92a~92hが直方体形状をした静電容量素子本体91の4つの側面に2個ずつ並んで配置されている。
K=8N―1 ・・・・・ (3)
が成立する。すなわち、N=1に対して、K=7となるので、図39Cの等価回路に示すように、1個の基本パターンのグリーンシートだけで、7個の単素子のコンデンサの直列接続構造が得られる。
図39では、外部電極92a~92hが8個なので、直列接続される単素子のコンデンサは7個が限度であるが、外部電極を16にして、電極を形成するパターンNを“2”とすれば、単素子のコンデンサ15個を直列接続した静電容量素子が得られることは言うまでもない。
つまり、ステップS51~S54では、基本パターンGS95aを作製した後に、この基本パターンGS95aを90°回転した基本パターン90°回転GS95b、180°回転した基本パターン180°回転GS95c及び270°回転した基本パターン270°回転GS95dを作製する。
(1)
導電体が塗布されない誘電体シートと、該誘電体シートに導電体塗布用の少なくとも1個の基本パターン形状を有するマスクを用意する工程と、
前記誘電体シート上に前記マスクを介して導電体を塗布して基本パターングリーンシートを作製する工程と、
前記基本パターングリーンシートを回転した基本パターン回転グリーンシートを作製する工程と、
前記基本パターングリーンシート及び前記基本パターン回転グリーンシートを積層する工程と、
前記基本パターングリーンシート、または前記基本パターン回転グリーンシートのうち、少なくとも一つのグリーンシートを裏返して、前記基本パターングリーンシートまたは前記回転グリーンシートとは異なる基本パターン裏返しグリーンシートを作製する工程と、
前記基本パターングリーンシート及び前記基本パターン回転グリーンシートを積層した積層体に、導電体が塗布されていない誘電体シートを介して前記基本パターン裏返しグリーンシートを積層する工程と、
前記基本パターングリーンシート、前記基本パターン回転グリーンシート、前記誘電体シート及び前記基本パターン裏返しグリーンシートの積層体を圧着及び焼成処理する工程と、
を含む静電容量素子の製造方法。
(2)
更に、前記基本パターングリーンシート、前記基本パターン回転グリーンシート、前記誘電体シート及び前記基本パターン裏返しグリーンシートの積層体の上部及び下部に、導電体が塗布されていない補強用の誘電体シートを積層する工程、を含む(1)に記載の静電容量素子の製造方法。
(3)
更に、前記基本パターングリーンシート、前記基本パターン回転グリーンシート、前記誘電体シート、及び前記基本パターン裏返しグリーンシートの積層体の側面に、外部電極を印刷して焼成処理を行う工程、を含む(1)または(2)に記載の静電容量素子の製造方法。
(4)
前記基本パターン回転グリーンシートは、前記基本パターングリーンシートを180°回転した基本パターン180°回転グリーンシートである、(1)~(4)のいずれかに記載の静電容量素子の製造方法。
(5)
前記基本パターン裏返しグリーンシートは前記基本パターングリーンシートと前記基本パターン180°回転パターングリーンシートのいずれかあるいは両方を裏返して作製される基本パターン裏返しグリーンシート及び/または基本パターン180°回転&裏返しグリーンシートである、(4)に記載の静電容量素子の製造方法。
(6)
前記基本パターングリーンシートを作製するための異なる基本パターンのマスクを2個用意し、2種の基本パターングリーンシート、前記基本パターングリーンシートを180°回転した2種の基本パターン180°回転グリーンシート、2種の前記基本パターングリーンシート及び2種の前記基本パターン180°回転グリーンシートのそれぞれを裏返して前記基本パターン裏返しグリーンシート及び/または基本パターン180°回転&裏返しグリーンシートを作製する、(1)~(4)のいずれかに記載の静電容量素子の製造方法。
(7)
前記基本パターン回転グリーンシートは、前記基本パターングリーンシートを90°回転した基本パターン90°回転グリーンシート、前記基本パターングリーンシートを180°回転した基本パターン180°回転グリーンシート、及び前記基本パターングリーンシートを270°回転した基本パターン270°回転グリーンシートの3種類であり、
前記裏返しグリーンシートは、前記基本パターングリーンシート及び3種類の前記基本パターン回転グリーンシートを裏返した基本パターン裏返しグリーンシート、前記基本パターン90°回転グリーンシートを裏返した基本パターン90°回転&裏返しグリーンシート、前記基本パターン180°回転グリーンシートを裏返した基本パターン180°回転&裏返しグリーンシート、及び前記基本パターン270°回転グリーンシートを裏返した基本パターン270°回転&裏返しグリーンシートの4種類であり、
前記積層されるグリーンシートは、前記基本パターングリーンシート、前記基本パターン90°回転グリーンシート、前記基本パターン180°回転グリーンシート、前記基本パターン270°回転グリーンシート、前記基本パターン裏返しグリーンシート、前記基本パターン90°回転&裏返しグリーンシート、前記基本パターン180°回転&裏返しグリーンシート、及び前記基本パターン270°回転&裏返しグリーンシートの8枚と導電体が塗布されていない誘電体シートからなる、(1)~(3)のいずれかに記載の静電容量素子の製造方法。
(8)誘電体シート及び該誘電体シートに導電体塗布用の所定のパターン形状を有するマスクを用意する工程と、
前記誘電体シート上に前記マスクを介して導電体を塗布して基本パターングリーンシートを作製する工程と、
前記基本パターングリーンシートを90°回転して基本パターン90°回転グリーンシートを作製する工程と、
前記基本パターングリーンシートを180°回転して基本パターン180°回転グリーンシートを作製する工程と、
前記基本パターングリーンシートを270°回転して基本パターン270°回転グリーンシートを作製する工程と、
前記基本パターングリーンシート、前記基本パターン90°回転グリーンシート、前記基本パターン180°回転グリーンシート、及び前記基本パターン270°回転グリーンシートを積層する工程と、
前記積層される4個のグリーンシートの上部及び下部に導電体が塗布されていない誘電体シートである補強用白シートを積層して圧着及び焼成処理を行う工程と、を含む静電容量素子の製造方法。
Claims (8)
- 導電体が塗布されない誘電体シートと、該誘電体シートに導電体塗布用の少なくとも1個の基本パターン形状を有するマスクを用意する工程と、
前記誘電体シート上に前記マスクを介して導電体を塗布して基本パターングリーンシートを作製する工程と、
前記基本パターングリーンシートを回転した基本パターン回転グリーンシートを作製する工程と、
前記基本パターングリーンシート及び前記基本パターン回転グリーンシートを積層する工程と、
前記基本パターングリーンシート、または前記基本パターン回転グリーンシートのうち、少なくとも一つのグリーンシートを裏返して、前記基本パターングリーンシートまたは前記基本パターン回転グリーンシートとは異なる基本パターン裏返しグリーンシートを作製する工程と、
前記基本パターングリーンシート及び前記基本パターン回転グリーンシートを積層した積層体に、導電体が塗布されていない誘電体シートを介して前記基本パターン裏返しグリーンシートを積層する工程と、
前記基本パターングリーンシート、前記基本パターン回転グリーンシート、前記誘電体シート及び前記基本パターン裏返しグリーンシートの積層体を圧着及び焼成処理する工程と、
を含む静電容量素子の製造方法。 - 更に、前記基本パターングリーンシート、前記基本パターン回転グリーンシート、前記誘電体シート及び前記基本パターン裏返しグリーンシートの積層体の上部及び下部に、導電体が塗布されていない補強用の誘電体シートを積層する工程、を含む請求項1に記載の静電容量素子の製造方法。
- 更に、前記基本パターングリーンシート、前記基本パターン回転グリーンシート、前記誘電体シート、及び前記基本パターン裏返しグリーンシートの積層体の側面に、外部電極を印刷して焼成処理を行う工程、
を含む請求項1に記載の静電容量素子の製造方法。 - 前記基本パターン回転グリーンシートは、前記基本パターングリーンシートを180°回転した基本パターン180°回転グリーンシートである、請求項1に記載の静電容量素子の製造方法。
- 前記基本パターン裏返しグリーンシートは前記基本パターングリーンシートと前記基本パターン180°回転パターングリーンシートのいずれかあるいは両方を裏返して作製される基本パターン裏返しグリーンシート及び/または基本パターン180°回転&裏返しグリーンシートである、請求項4に記載の静電容量素子の製造方法。
- 前記基本パターングリーンシートを作製するための異なる基本パターンのマスクを2個用意し、2種の基本パターングリーンシート、前記基本パターングリーンシートを180°回転した2種の基本パターン180°回転グリーンシート、2種の前記基本パターングリーンシート及び2種の前記基本パターン180°回転グリーンシートのそれぞれを裏返して前記基本パターン裏返しグリーンシート及び/または基本パターン180°回転&裏返しグリーンシートを作製する、請求項1に記載の静電容量素子の製造方法。
- 前記基本パターン回転グリーンシートは、前記基本パターングリーンシートを90°回転した基本パターン90°回転グリーンシート、前記基本パターングリーンシートを180°回転した基本パターン180°回転グリーンシート、及び前記基本パターングリーン
シートを270°回転した基本パターン270°回転グリーンシートの3種類であり、
前記裏返しグリーンシートは、前記基本パターングリーンシート及び3種類の前記基本パターン回転グリーンシートを裏返した基本パターン裏返しグリーンシート、前記基本パターン90°回転グリーンシートを裏返した基本パターン90°回転&裏返しグリーンシート、前記基本パターン180°回転グリーンシートを裏返した基本パターン180°回転&裏返しグリーンシート、及び前記基本パターン270°回転グリーンシートを裏返した基本パターン270°回転&裏返しグリーンシートの4種類であり、
前記積層されるグリーンシートは、前記基本パターングリーンシート、前記基本パターン90°回転グリーンシート、前記基本パターン180°回転グリーンシート、前記基本パターン270°回転グリーンシート、前記基本パターン裏返しグリーンシート、前記基本パターン90°回転&裏返しグリーンシート、前記基本パターン180°回転&裏返しグリーンシート、及び前記基本パターン270°回転&裏返しグリーンシートの8枚と導電体が塗布されていない誘電体シートからなる、
請求項1に記載の静電容量素子の製造方法。 - 誘電体シート及び該誘電体シートに導電体塗布用の所定のパターン形状を有するマスクを用意する工程と、
前記誘電体シート上に前記マスクを介して導電体を塗布して基本パターングリーンシートを作製する工程と、
前記基本パターングリーンシートを90°回転して基本パターン90°回転グリーンシートを作製する工程と、
前記基本パターングリーンシートを180°回転して基本パターン180°回転グリーンシートを作製する工程と、
前記基本パターングリーンシートを270°回転して基本パターン270°回転グリーンシートを作製する工程と、
前記基本パターングリーンシート、前記基本パターン90°回転グリーンシート、前記基本パターン180°回転グリーンシート、及び前記基本パターン270°回転グリーンシートを積層する工程と、
前記積層される4個のグリーンシートの上部及び下部に導電体が塗布されていない誘電体シートである補強用白シートを積層して圧着及び焼成処理を行う工程と、
を含む静電容量素子の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280050235.0A CN103858192A (zh) | 2011-10-20 | 2012-10-02 | 静电电容元件的制造方法 |
US14/351,464 US20140259655A1 (en) | 2011-10-20 | 2012-10-02 | Production method of electrostatic capacitance element |
KR1020147009466A KR20140079396A (ko) | 2011-10-20 | 2012-10-02 | 정전 용량 소자의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011230919A JP2013089870A (ja) | 2011-10-20 | 2011-10-20 | 静電容量素子の製造方法 |
JP2011-230919 | 2011-10-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013058096A1 true WO2013058096A1 (ja) | 2013-04-25 |
Family
ID=48140748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/075485 WO2013058096A1 (ja) | 2011-10-20 | 2012-10-02 | 静電容量素子の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140259655A1 (ja) |
JP (1) | JP2013089870A (ja) |
KR (1) | KR20140079396A (ja) |
CN (1) | CN103858192A (ja) |
WO (1) | WO2013058096A1 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5870674B2 (ja) * | 2011-12-20 | 2016-03-01 | Tdk株式会社 | 積層コンデンサアレイ |
US10046632B2 (en) * | 2015-11-04 | 2018-08-14 | Truck Accessories Group, Llc | Tonneau cover |
JP2021500752A (ja) * | 2017-10-23 | 2021-01-07 | エイブイエックス コーポレイション | 接続性を改善した多層電子デバイス、およびそれを作製する方法 |
US10800234B2 (en) | 2017-10-27 | 2020-10-13 | Truck Associates Group, LLC | Folding cover attachment systems |
DE102018104459A1 (de) | 2018-02-27 | 2019-08-29 | Tdk Electronics Ag | Vielschichtbauelement mit externer Kontaktierung |
US11084361B2 (en) | 2018-10-25 | 2021-08-10 | Truck Accessories Group, Llc | Rolling tonneau cover |
US11299021B2 (en) | 2019-07-17 | 2022-04-12 | Truck Accessories Group, Llc | Multi-panel tonneau cover |
US11724582B2 (en) | 2020-12-03 | 2023-08-15 | Leer Group | Pinch latch assembly |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08316093A (ja) * | 1995-05-19 | 1996-11-29 | Murata Mfg Co Ltd | 積層セラミック電子部品の製造方法 |
JP2000195742A (ja) * | 1998-12-24 | 2000-07-14 | Kyocera Corp | 積層セラミックコンデンサ |
JP2009200092A (ja) * | 2008-02-19 | 2009-09-03 | Taiyo Yuden Co Ltd | 積層コンデンサ |
-
2011
- 2011-10-20 JP JP2011230919A patent/JP2013089870A/ja active Pending
-
2012
- 2012-10-02 WO PCT/JP2012/075485 patent/WO2013058096A1/ja active Application Filing
- 2012-10-02 CN CN201280050235.0A patent/CN103858192A/zh active Pending
- 2012-10-02 KR KR1020147009466A patent/KR20140079396A/ko not_active Application Discontinuation
- 2012-10-02 US US14/351,464 patent/US20140259655A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08316093A (ja) * | 1995-05-19 | 1996-11-29 | Murata Mfg Co Ltd | 積層セラミック電子部品の製造方法 |
JP2000195742A (ja) * | 1998-12-24 | 2000-07-14 | Kyocera Corp | 積層セラミックコンデンサ |
JP2009200092A (ja) * | 2008-02-19 | 2009-09-03 | Taiyo Yuden Co Ltd | 積層コンデンサ |
Also Published As
Publication number | Publication date |
---|---|
CN103858192A (zh) | 2014-06-11 |
JP2013089870A (ja) | 2013-05-13 |
US20140259655A1 (en) | 2014-09-18 |
KR20140079396A (ko) | 2014-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013058096A1 (ja) | 静電容量素子の製造方法 | |
JP6852253B2 (ja) | 積層セラミック電子部品及びその製造方法 | |
JP5666123B2 (ja) | 可変容量デバイス | |
JP5653886B2 (ja) | 積層セラミックキャパシタ及びその製造方法 | |
JP2019041093A (ja) | キャパシタ部品及びその製造方法 | |
KR102427927B1 (ko) | 3단자 적층형 커패시터 | |
JP6282388B2 (ja) | 静電容量素子、及び共振回路 | |
JP2020057738A (ja) | 電子部品、回路基板、および電子部品の回路基板への実装方法 | |
KR102029529B1 (ko) | 적층 세라믹 커패시터 | |
JP5965466B2 (ja) | 積層セラミックキャパシタ及びその製造方法 | |
KR101412900B1 (ko) | 적층 세라믹 커패시터 및 그 제조 방법 | |
JP5152278B2 (ja) | 積層電子部品の製造方法及び積層電子部品 | |
JP2022020868A (ja) | 積層型キャパシタ及びその実装基板 | |
KR100849378B1 (ko) | 적층 콘덴서 | |
JP2012060030A (ja) | 静電容量素子、静電容量素子の製造方法、及び共振回路 | |
JP2022016003A (ja) | 電子部品 | |
JP2009124155A (ja) | 多層セラミックコンデンサの製造方法 | |
US6392332B1 (en) | Laminated piezo ceramic transformer device | |
KR20190116171A (ko) | 적층형 전자 부품 | |
JPH04282812A (ja) | 積層体の製造方法 | |
US9379304B2 (en) | Internal electrode for piezoelectric device, piezoelectric device including the same, and method for manufacturing piezoelectric device | |
KR20180004521A (ko) | 적층 세라믹 커패시터 및 적층 세라믹 커패시터의 제조방법 | |
JP2010103175A (ja) | 積層コンデンサの製造方法 | |
KR20150042953A (ko) | 압전 소자 및 그 제조방법 | |
JP2018074069A (ja) | 薄膜コンデンサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12841634 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147009466 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14351464 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12841634 Country of ref document: EP Kind code of ref document: A1 |