WO2013056457A1 - 有色金属多元合金真空精炼炉 - Google Patents

有色金属多元合金真空精炼炉 Download PDF

Info

Publication number
WO2013056457A1
WO2013056457A1 PCT/CN2011/081087 CN2011081087W WO2013056457A1 WO 2013056457 A1 WO2013056457 A1 WO 2013056457A1 CN 2011081087 W CN2011081087 W CN 2011081087W WO 2013056457 A1 WO2013056457 A1 WO 2013056457A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
condensation
cover
refining furnace
evaporation
Prior art date
Application number
PCT/CN2011/081087
Other languages
English (en)
French (fr)
Inventor
杨斌
速斌
潘建仁
汤文通
陈巍
樊则飞
黎文林
李孟林
Original Assignee
昆明鼎邦科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆明鼎邦科技有限公司 filed Critical 昆明鼎邦科技有限公司
Priority to EP11874168.5A priority Critical patent/EP2770068B1/en
Publication of WO2013056457A1 publication Critical patent/WO2013056457A1/zh
Priority to US14/218,942 priority patent/US9540709B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/02Furnaces of a kind not covered by any preceding group specially designed for laboratory use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/04Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/14Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • F27D2007/066Vacuum

Definitions

  • the present invention relates to a vacuum refining furnace, and more particularly to a refining furnace for separating and purifying a liquid non-ferrous metal alloy.
  • Vacuum refining furnaces are generally used for separation and purification of non-ferrous metal alloys, and can also be used for other heat treatments. After the liquid alloy material is sent to the refining furnace, it is sequentially introduced into the evaporation trays of each layer and heated by the graphite heating element to a higher temperature. During this process, the low-boiling metal evaporates from a liquid state to a gaseous state, condenses into a liquid state on a graphite condensing hood, is collected by a manifold, and flows out through the discharge pipe. The liquid metal remaining without evaporation is discharged through the residual pipe.
  • the invention provides a high-power vacuum refining furnace which can be used for purification separation of multi-alloys. Adopt the following technical solutions:
  • a non-ferrous metal multi-alloy vacuum refining furnace comprising a refining furnace body comprising an evaporation disc laminate, a graphite condensation cover and a graphite thermal insulation cover; in particular, the graphite thermal insulation cover is sleeved on the evaporation tray laminate, on the graphite thermal insulation cover
  • the graphite thermal insulation cover is sleeved on the evaporation tray laminate, on the graphite thermal insulation cover
  • the design principle of the present invention is as follows: High-temperature metal vapor is emitted from the evaporation tray stack, through the through hole in the graphite heat shield and the through hole of the condensation cover, and the condensation cover exchanges heat, condenses the metal with higher temperature, and the steam thereof Condensation on the condensing hood closer to the stack of evaporative discs, while the lower condensing metal will condense through the through holes of the smaller condensing hood and condense over the larger condensing hood, even through several condensations The through holes in the cover condense on the largest condensation hood.
  • the condensation area in the refining furnace will be greatly improved, and from small to large, the temperature on each condensing hood will be stepped down and the temperature difference will be larger, which is beneficial to the material from liquid alloy. More than one metal is separated and the condensable range of the refining furnace is expanded to achieve refining of the multi-alloy.
  • the present invention provides a graphite heat shield between the smallest condensation cover and the evaporation tray stack.
  • the numerous through holes in the graphite insulation cover are mainly for discharging metal vapor.
  • the main function of the graphite heat shield is to block the heat from the graphite heating element and the evaporation tray stack, so that the temperature of the outer condensation chamber is not too high, and on the other hand, the evaporation tray stack is kept warm. Promote the evaporation of liquid alloy materials.
  • the refining furnace can use the 270kw graphite heating element to heat the production with the faster material flow, and the condensation efficiency can also be achieved. Maintained at a high level, the amount of alloy treatment has increased significantly. Some metals that have been difficult to condense in the past, such as antimony and arsenic, can be condensed by the refining furnace.
  • the invention has the following advantages: 1) capable of processing a multi-component alloy containing 5 to 90% of tin, ⁇ 25% of niobium and the balance being lead by vacuum distillation at a low cost, and having a lead content of 30 to 99.
  • the balance is gold, silver, platinum, rhodium, ruthenium, copper, ruthenium, osmium multi-alloy, and the tin content is 1 ⁇ 99%, the balance is lead binary alloy, and the tin content is 1 ⁇ 95%, binary alloy with balance of indium; 2)
  • the power of graphite heating element is 270kw, the processing capacity of some alloys can reach 25 metric tons/day; 3) Small heat loss, evaporation efficiency and condensation efficiency High; 4) Long working life, low energy consumption, high metal yield, good production environment, stable and reliable.
  • Figure 1 is a cross-sectional view showing the structure of the embodiment
  • Figure 2 is a cross-sectional view showing the structure of an evaporating disk laminate in the embodiment
  • Figure 3 is a front elevational view of the evaporation tray in the embodiment
  • Figure 4 is a cross-sectional view taken along line AA of Figure 3
  • Figure 5 is a cross-sectional view taken along line BB of Figure 3;
  • Fig. 6 is a view showing a connection structure between a graphite heating element and a heating element connecting seat in the embodiment.
  • the multi-alloy vacuum refining furnace of the present embodiment comprises a refining furnace body 1, a graphite heating element 2, a heating element connecting seat 3, an electrode 4, a sealed furnace shell 5, a feeding tube 6, an exhausting pipe 7, and an outlet.
  • the tube 8 and the remaining tube 9 are formed. among them:
  • the refining furnace body 1 comprises a first graphite condensation cover 10, a second graphite condensation cover 11, a graphite feed hopper 12, an evaporation tray stack 13, a graphite insulation cover 14, a first condensation cover 15, and a second condensation cover. 16.
  • the third condensation hood 17 and the bus bar 18 are formed.
  • the evaporation tray stack 13 is disposed at the center of the bus bar 18, and the graphite heat shield 14 is placed outside the evaporation tray stack 13.
  • the first condensing cover 15 is the smallest, the second condensing cover 16 is large, and the third condensing cover 17 is the largest.
  • the first condensation cover 15 is disposed outside the graphite heat retention cover 14, the second condensation cover 16 is disposed outside the first condensation cover 15, and the third condensation cover 17 is disposed outside the second condensation cover 16.
  • a plurality of through holes are drilled in the graphite heat insulating cover 14, the first cooling cover 15, and the second condensation cover 16.
  • the first condensing cover 10 is mounted on the third condensing cover 17, and the second condensing cover 11 is mounted on the first condensing cover 15.
  • the graphite feed hopper 12 passes through the first condensing cover 10 and the second condensing cover 11, and is opposed to the upper portion of the evaporation tray stack 13.
  • the evaporating disk stack 13 of the present embodiment is composed of a top plate 19, a bottom plate 20, and a plurality of evaporation plates 21.
  • the evaporation tray 21 is disposed between the top plate 19 and the bottom plate 20.
  • the bottom plate 20 and the center of the evaporation tray 21 are provided with heat generating body penetration holes 22 for penetration of the graphite heating element 2.
  • FIG. 1 As shown in Figure 1, 4.
  • the single evaporation tray 21 of the present embodiment has a disk shape, and is provided with a circumferential evaporation tank 23, one end of the evaporation tank 23 is the evaporation tank head 24, and the other end is the evaporation tank tail 25, The evaporation trough head 24 and the evaporation trough tail 25 are separated by an evaporation trough spacer 26.
  • a material outflow hole 27 is provided at the end of the evaporation tank 25.
  • the liquid alloy material falls from the top plate 19 into the first position of the evaporation tray of the uppermost evaporation tray, and flows along the evaporation tank toward the tail of the evaporation tank, and finally flows out from the material outflow hole and falls into the evaporation tray of the lower layer.
  • the slot head so looped, finally falls onto the bottom disk 20.
  • a heat insulating ferrule 29 is mounted on the side wall of the evaporation tray 21 through the heat insulating ferrule support ring 28.
  • the main function of the heat insulating ferrule 29 is to heat the evaporation tray 21 to ensure uniform heating of the liquid alloy material and the evaporation tray.
  • the circumferential side wall of 21 is reinforced.
  • the evaporation tank has no complicated flow channel design, and the strength of the disk body is increased, and the purpose is to adapt to the design of the large flow and high power furnace body.
  • the bottom tray 20 is connected to the residual material tube 9 from the bottom, and the liquid alloy material evaporated by the high temperature is discharged from the residual material tube 9; the bus tray 18 is connected to the discharge tube 8 from the bottom, and the liquid metal which is condensed after evaporation is discharged from the material. Tube 8 is discharged.
  • the liquid alloy material evaporated by high temperature or the liquid metal condensed after evaporation will react with the discharge pipe and the residual pipe made of metal, and the new alloy will contaminate the product, and the discharge pipe will be produced.
  • the remaining material tube is gradually thinned until it erodes the gas leakage. Therefore, the discharge tube 8 and the residual material tube 9 of the present embodiment adopt the following structure: as shown in FIG.
  • the graphite liner 31 is lined inside the steel outer casing 30,
  • the refractory filler 32 is bonded between the steel outer casing 30 and the graphite liner 31.
  • the discharge pipe 8 and the residual pipe 9, which are made of this structure, cannot be in contact with the steel casing 30, and the service life thereof is greatly prolonged.
  • the graphite heating element 2 is provided with a heat generating pin portion 33.
  • the heat generating pin portion 33 and the heat generating body connecting base 3 are connected by a graphite bolt 34.
  • a positioning portion 35 is provided on the heating element connecting seat 3 corresponding to the heat generating pin portion 33.
  • a vertical contact surface 351 which is in close contact with the side surface of the heat generating lead portion 33 is provided on the positioning portion 35, and the side surface and the side are The contact surfaces are bonded with a high-temperature conductive filler to increase the contact area of the two to pass a larger current and reduce the contact resistance.
  • the graphite heating element 2 is electrically connected to the electrode 4 through the heating element connecting seat 3.
  • the electrode 4 also functions to support the heating element connector 3 and the graphite heating element 2.
  • the temperature of the electrode will be very high. Therefore, in this embodiment, the electrode is cooled by water cooling, and a cold liquid chamber 36 is provided inside the electrode 4, and the outside of the electrode 4 is provided with The liquid inlet port 37 and the liquid outlet port 38 through which the cold liquid chamber 36 communicates.
  • the heating body connector A stopper member is provided between the electrode 3 and the electrode 4, and the member is a stopper piece 39.
  • the sealed furnace shell 5 is composed of a furnace shell upper cover 40 and a furnace shell chassis 41.
  • the upper cover 40 of the furnace casing is provided with a feed pipe 6 and an exhaust pipe 7, and the feed pipe 6 is opposed to the graphite feed hopper 12, and the suction pipe 7 is connected to the vacuuming device.
  • the electrode 4, the discharge pipe 8, and the remaining material pipe 9 are all passed through the furnace shell chassis 41 and fixed to the furnace shell chassis 41.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Details (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

本发明提供一种大功率的真空精炼炉,该炉可用于多元合金的提纯分离。该精炼炉的石墨保温罩套在蒸发盘层叠体外,在石墨保温罩上设有众多通孔;石墨冷凝罩分为两个以上大小不同的冷凝罩,最小的冷凝罩套在石墨保温罩外,较大的冷凝罩套在较小的冷凝罩外;除最大的冷凝罩外,其他冷凝罩上均设有众多通孔。本发明具有以下优点:1)能够以低成本的真空蒸馏方式处理多种多元合金;2)当石墨发热体功率在270kw水平时,对某些合金的处理能力可达到25公吨/天;3)热量损失小、蒸发效率和冷凝效率高;4)工作寿命长、能耗低、金属直收率高、生产环境好、稳定可靠。

Description

有色金属多元合金真空精炼炉
技术领域
本发明涉及一种真空精炼炉, 更具体地说, 涉及一种对液态有色金属合金进 行分离提纯的精炼炉。
背景技术
真空精炼炉一般作为有色金属合金分离提纯之用, 也可作其它热处理之用。 液态合金物料被送进精炼炉后, 依次进入各层蒸发盘中, 并被石墨发热体加热至 更高的温度。在此过程中, 低沸点金属由液态变为气态而蒸发出去, 在石墨冷凝 罩上冷凝为液态, 并经汇流盘收集, 通过出料管流出。 而没有被蒸发的液态金属 剩料则通过剩料管流出。
名为 "连续式真空电阻炉 " 的 PCT 国际申请 (国际申请号: PCT/CN/2008/000299,国际申请日:2008年 2月 4日,国际公布号: W02009/059489 A1 , 国际公布日: 2009年 5月 14日) 公开了一种精炼炉, 该炉可实现对物料在 蒸发盘内流动方向和滞留时间的严格控制, 保证物料在炉内的蒸馏时间完全相 等。但是当在这种精炼炉上配置功率更大的石墨发热体以提高合金处理量时, 则 会出现石墨冷凝罩温度过高、冷凝效率降低问题。 一些如锑、砷等需要较低冷凝 温度的金属蒸汽无法冷凝, 会在炉内到处乱跑、冷凝, 堵塞抽气管或造成电极短 路, 縮短精炼炉的寿命。 为使在提升精炼炉功率的前提下同时提高冷凝效率, 需 要对现有精炼炉的结构进行改进。 发明内容
本发明提供一种大功率的真空精炼炉, 该炉可用于多元合金的提纯分离。 采用以下的技术方案:
有色金属多元合金真空精炼炉,包括精炼炉体, 所述精炼炉体包括蒸发盘层 叠体、 石墨冷凝罩和石墨保温罩; 特别地, 石墨保温罩套在蒸发盘层叠体外, 在 石墨保温罩上设有众多通孔; 石墨冷凝罩分为两个以上直径大小不同的冷凝罩, 最小的冷凝罩套在石墨保温罩外,较大的冷凝罩套在较小的冷凝罩外; 除最大的 冷凝罩外, 其他冷凝罩上均设有众多通孔。 本发明的设计原理如下: 高温的金属蒸汽从蒸发盘层叠体发出, 透过石墨保 温罩上的通孔以及冷凝罩的通孔逐层和冷凝罩交换热量, 冷凝温度较高的金属, 其蒸汽会在较接近蒸发盘层叠体的冷凝罩上冷凝, 而冷凝温度较低的金属, 其蒸 汽会穿过较小的冷凝罩的通孔而在较大的冷凝罩上冷凝,甚至穿过若干冷凝罩上 的通孔而在最大的冷凝罩上冷凝。在配备多层冷凝罩后, 精炼炉体内的冷凝面积 将得到大幅的提升, 而且自小至大, 各冷凝罩上的温度呈阶梯式递减、温差幅度 也较大,这有利于从液态合金物料中分离出一种以上的金属并且扩大精炼炉的可 冷凝范围, 从而实现多元合金的精炼。在配备了大功率的石墨发热体后, 为避免 最接近蒸发盘层叠体的冷凝罩的温度过高而失去冷凝效果,本发明在最小的冷凝 罩与蒸发盘层叠体之间设置有石墨保温罩,石墨保温罩上的众多通孔主要是让金 属蒸汽排出的。石墨保温罩的主要作用是,一方面阻挡来自石墨发热体和蒸发盘 层叠体的热量,令其外的冷凝罩的温度不至于过高, 另一方面其内的对蒸发盘层 叠体进行保温, 促进液态合金物料的蒸发作用。通过以上改进, 相比以前只能以 最高 lOOkw 的石墨发热体配合物料慢速流动的生产方式, 本精炼炉即使采用 270kw的石墨发热体配合较快的物料流动进行加热生产, 其冷凝效率也能维持在 一个较高的水平, 合金处理量大幅提升。 一些过去较难冷凝的金属如锑、砷等都 可以被本精炼炉冷凝下来。
本发明具有以下优点: 1 ) 能够以低成本的真空蒸馏方式处理含锡量为 5〜 90%, 含锑量 <25%,余量为铅的多元合金, 以及含铅量为 30〜99. 5%,余量为金、 银、 铂、 铼、 铱、 铜、 锑、 铋的多元合金, 以及含锡量为 1〜99%, 余量为铅的 二元合金, 以及含锡量为 1〜95%, 余量为铟的二元合金; 2 ) 当石墨发热体功率 在 270kw水平时, 对某些合金的处理能力可达 25公吨 /天; 3 ) 热量损失小、 蒸 发效率和冷凝效率高; 4) 工作寿命长、 能耗低、 金属直收率高、 生产环境好、 稳定可靠。
附图说明
图 1是实施例的结构剖视图;
图 2是实施例中蒸发盘层叠体的结构剖视图;
图 3是实施例中蒸发盘的主视图;
图 4是图 3的 A-A向剖视图; 图 5是图 3的 B-B向剖视图;
图 6是实施例中石墨发热体与发热体连接座之间的连接结构图。 附图标记说明: 1-精炼炉体; 2-石墨发热体; 3-发热体连接座; 4-电极; 5- 密封炉壳; 6-进料管; 7-抽气管; 8-出料管; 9-剩料管; 10-第一石墨冷凝罩盖; 11-第二石墨冷凝罩盖; 12-石墨进料斗; 13-蒸发盘层叠体; 14-石墨保温罩; 15- 第一冷凝罩; 16-第二冷凝罩; 17-第三冷凝罩; 18-汇流盘; 19-顶层盘; 20-底 层盘; 21-蒸发盘; 22-发热体穿入孔; 23-蒸发槽; 24-蒸发槽首; 25-蒸发槽尾; 26-蒸发槽隔栏; 27-物料流出孔; 28-保温箍支撑环; 29-保温箍; 30-钢制外壳; 31-石墨衬管; 32-耐火填充料; 33-发热引脚部; 34-石墨螺栓; 35-定位部; 351- 接触面; 36-冷液腔; 37-进液口; 38-出液口; 39-止动片; 40-炉壳上盖; 41- 炉壳底盘。 具体实施方式
下面结合附图和实施例对本发明作进一步说明。
如图 1所示,本实施例的多元合金真空精炼炉由精炼炉体 1、石墨发热体 2、 发热体连接座 3、 电极 4、 密封炉壳 5、 进料管 6、 抽气管 7、 出料管 8和剩料管 9构成。 其中:
1 )精炼炉体 1由第一石墨冷凝罩盖 10、第二石墨冷凝罩盖 11、石墨进料斗 12、 蒸发盘层叠体 13、 石墨保温罩 14、 第一冷凝罩 15、 第二冷凝罩 16、 第三冷 凝罩 17和汇流盘 18构成。蒸发盘层叠体 13设置于汇流盘 18的中央, 石墨保温 罩 14套在蒸发盘层叠体 13外。第一冷凝罩 15最小, 第二冷凝罩 16较大, 第三 冷凝罩 17最大。第一冷凝罩 15套在石墨保温罩 14外, 第二冷凝罩 16套在第一 冷凝罩 15外, 第三冷凝罩 17套在第二冷凝罩 16外。 在石墨保温罩 14、 第一冷 凝罩 15和第二冷凝罩 16上均钻有众多通孔。 第一冷凝罩盖 10安装在第三冷凝 罩 17上,第二冷凝罩盖 11安装在第一冷凝罩 15上。石墨进料斗 12穿过第一冷 凝罩盖 10和第二冷凝罩盖 11, 与蒸发盘层叠体 13的上部正对。
如图 2所示, 本实施例的蒸发盘层叠体 13由顶层盘 19、 底层盘 20以及若 干蒸发盘 21构成。 蒸发盘 21处在顶层盘 19与底层盘 20之间, 底层盘 20与蒸 发盘 21的中央均设有发热体穿入孔 22, 用于石墨发热体 2的穿入。 如图 3、 图 4、 图 5所示, 本实施例的单个蒸发盘 21为圆盘状, 其上设有周向的蒸发槽 23, 蒸发槽 23的一头为蒸发槽首 24, 另一头为蒸发槽尾 25, 蒸发槽首 24与蒸发槽 尾 25之间以蒸发槽隔栏 26分隔。 在蒸发槽尾 25设有物料流出孔 27。 工作时, 液态合金物料从顶层盘 19落入最上层的蒸发盘的蒸发槽首位置, 并沿蒸发槽向 蒸发槽尾方向流动, 最后从物料流出孔流出, 落入到下层的蒸发盘的蒸发槽首, 如此循环, 最后落到底层盘 20上。 如图 4所示, 在蒸发盘 21的侧壁上通过保温 箍支撑环 28安装有保温箍 29, 保温箍 29的主要作用是对蒸发盘 21进行保温, 保证液态合金物料受热均匀以及对蒸发盘 21的周向侧壁进行加固。 本实施例的 蒸发盘, 其蒸发槽没有复杂的流道设计, 盘体强度有所增加, 目的是为了与大流 量、 大功率的炉体设计相适应。
底层盘 20从底部接通剩料管 9, 经高温蒸发后的液态合金物料从剩料管 9 排出; 汇流盘 18从底部接通出料管 8, 蒸发后被冷凝下来的液态金属从出料管 8 排出。由于经高温蒸发后的液态合金物料或蒸发后被冷凝下来的液态金属均会与 金属制成的出料管和剩料管发生反应,在产生新合金而污染产品的同时, 会使出 料管或剩料管逐渐变薄直至蚀穿漏气,因此本实施例的出料管 8和剩料管 9采用 以下结构: 如图 1所示, 在钢制外壳 30内部衬入石墨衬管 31, 并在钢制外壳 30 与石墨衬管 31之间填入耐火填充料 32粘接。采用该结构制成的出料管 8和剩料 管 9, 高温的液态金属不能与钢制外壳 30相接触, 其使用寿命大大延长。
2 ) 如图 6所示, 石墨发热体 2上设有发热引脚部 33。 发热引脚部 33与发 热体连接座 3之间通过石墨螺栓 34连接在一起。 为对石墨发热体 2进行定位, 在发热体连接座 3上对应发热引脚部 33设置定位部 35。 为提高发热引脚部 33 与发热体连接座 3之间的电流通过能力, 在定位部 35上设有垂直的与发热引脚 部 33的侧面贴紧的接触面 351, 并且将该侧面和该接触面用高温导电填充料粘 接, 以此增加两者的接触面积使之能通过更大电流, 减少接触电阻。
3 ) 如图 1所示, 石墨发热体 2是通过发热体连接座 3而与电极 4导通的。 电极 4兼有支撑发热体连接座 3和石墨发热体 2的作用。在采用大功率石墨发热 体的情况下,电极的温度将非常高,因此本实施例采用水冷方式对电极进行散热, 在电极 4的内部设有冷液腔 36, 在电极 4的外部设有与冷液腔 36相通的进液口 37和出液口 38。 为确保发热体连接座 3与电极 4之间连接稳固, 发热体连接座 3与电极 4之间设有止动部件, 该部件是止动片 39。
4) 如图 1所示, 密封炉壳 5由炉壳上盖 40和炉壳底盘 41连接构成。 在炉 壳上盖 40设有进料管 6和抽气管 7, 进料管 6与石墨进料斗 12正对, 抽气管 7 连通抽真空设备。 电极 4、 出料管 8、 剩料管 9均穿出于炉壳底盘 41, 并与炉壳 底盘 41进行固定。

Claims

权 利 要 求
1、 有色金属多元合金真空精炼炉, 包括精炼炉体、 石墨发热体、 电极和密 封炉壳, 所述精炼炉体包括蒸发盘层叠体、石墨冷凝罩和石墨保温罩, 所述蒸发 盘层叠体包括蒸发盘; 其特征是: 石墨保温罩套在蒸发盘层叠体外, 在石墨保温 罩上设有众多通孔; 石墨冷凝罩分为两个以上直径大小不同的冷凝罩, 最小的冷 凝罩套在石墨保温罩外,较大的冷凝罩套在较小的冷凝罩外;除最大的冷凝罩外, 其他冷凝罩上均设有众多通孔。
2、 如权利要求 1所述的有色金属多元合金真空精炼炉, 其特征是: 精炼炉 体(1) 由第一石墨冷凝罩盖(10)、第二石墨冷凝罩盖(11)、石墨进料斗(12)、 蒸发盘层叠体 (13)、 石墨保温罩 (14)、 第一冷凝罩 (15)、 第二冷凝罩 (16)、 第三冷凝罩(17)和汇流盘(18)构成; 蒸发盘层叠体(13)设置于汇流盘(18) 的中央; 石墨保温罩(14)套在蒸发盘层叠体(13)夕卜; 第一冷凝罩(15)最小, 第二冷凝罩 (16)较大, 第三冷凝罩 (17)最大; 第一冷凝罩 (15)套在石墨保 温罩 (14) 夕卜, 第二冷凝罩 (16) 套在第一冷凝罩 (15) 夕卜, 第三冷凝罩 (17) 套在第二冷凝罩 (16) 夕卜; 在石墨保温罩 (14)、 第一冷凝罩 (15) 和第二冷凝 罩 (16) 上均钻有众多通孔; 第一冷凝罩盖 (10) 安装在第三冷凝罩 (17) 上, 第二冷凝罩盖 (11)安装在第一冷凝罩 (15)上; 石墨进料斗 (12) 穿过第一冷 凝罩盖 (10) 和第二冷凝罩盖 (11), 与蒸发盘层叠体 (13) 的上部正对。
3、 如权利要求 1所述的有色金属多元合金真空精炼炉, 其特征是: 蒸发盘
(21) 为圆盘状, 其上设有周向的蒸发槽 (23), 蒸发槽 (23) 的一头为蒸发槽 首 (24), 另一头为蒸发槽尾 (25), 蒸发槽首 (24) 与蒸发槽尾 (25)之间以蒸 发槽隔栏 (26) 分隔, 在蒸发槽尾 (25) 设有物料流出孔 (27)。
4、 如权利要求 1所述的有色金属多元合金真空精炼炉, 其特征是: 在蒸发 盘 (21) 的侧壁上通过保温箍支撑环 (28) 安装有保温箍 (29)。
5、 如权利要求 1所述的有色金属多元合金真空精炼炉, 其特征是: 包括有 出料管 (8) 和剩料管 (9); 所述出料管 (8) 和剩料管 (9) 采用以下结构: 在 钢制外壳(30) 内部衬入石墨衬管 (31), 并在钢制外壳(30) 与石墨衬管 (31) 之间填入耐火填充料 (32) 粘接。
6、 如权利要求 1所述的有色金属多元合金真空精炼炉, 其特征是: 石墨发 热体 (2) 是通过发热体连接座 (3) 而与电极 (4) 导通; 石墨发热体 (2) 上设 有发热引脚部 (33); 发热引脚部 (33)与发热体连接座 (3)之间通过石墨螺栓
(34) 连接在一起; 在发热体连接座 (3) 上对应发热引脚部 (33 ) 设置定位部
(35); 在定位部 (35) 上设有垂直的与发热引脚部 (33) 的侧面贴紧的接触面 (351 ), 并且将该侧面和该接触面用高温导电填充料粘接。
7、 如权利要求 1所述的有色金属多元合金真空精炼炉, 其特征是: 包括有 电极 (4), 在电极 (4) 的内部设有冷液腔 (36), 在电极 (4) 的外部设有与冷 液腔 (36) 相通的进液口 (37) 和出液口 (38)。
8、 如权利要求 1所述的有色金属多元合金真空精炼炉, 其特征是: 石墨发 热体 (2) 是通过发热体连接座 (3) 而与电极 (4) 导通; 发热体连接座 (3) 与 电极 (4) 之间设有止动部件。
9、 如权利要求 8所述的有色金属多元合金真空精炼炉, 其特征是: 所述止 动部件是止动片 (39)。
PCT/CN2011/081087 2011-10-19 2011-10-21 有色金属多元合金真空精炼炉 WO2013056457A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11874168.5A EP2770068B1 (en) 2011-10-19 2011-10-21 Vacuum refining furnace for nonferrous metal multicomponent alloys
US14/218,942 US9540709B2 (en) 2011-10-19 2014-03-18 Vacuum refining furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110318915.3 2011-10-19
CN201110318915.3A CN102425938B (zh) 2011-10-19 2011-10-19 有色金属多元合金真空精炼炉

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/218,942 Continuation-In-Part US9540709B2 (en) 2011-10-19 2014-03-18 Vacuum refining furnace

Publications (1)

Publication Number Publication Date
WO2013056457A1 true WO2013056457A1 (zh) 2013-04-25

Family

ID=45959944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081087 WO2013056457A1 (zh) 2011-10-19 2011-10-21 有色金属多元合金真空精炼炉

Country Status (5)

Country Link
US (1) US9540709B2 (zh)
EP (1) EP2770068B1 (zh)
CN (1) CN102425938B (zh)
MY (1) MY165563A (zh)
WO (1) WO2013056457A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676828A (zh) * 2012-06-04 2012-09-19 昆明理工大学 一种从铅/铋基合金中提取金、银的设备
CN105969997B (zh) * 2016-07-27 2017-10-24 昆明鼎邦科技股份有限公司 高沸点合金间断式真空蒸馏分离炉
CN106119562B (zh) * 2016-08-12 2018-06-15 永兴县億翔环保科技有限公司 用于真空冶炼炉的蒸发盘及其蒸发盘组
CN106086443B (zh) * 2016-08-12 2018-06-15 永兴县億翔环保科技有限公司 真空冶炼炉用蒸发盘
CN111807360B (zh) * 2020-07-28 2021-03-19 韶山润泽新能源科技有限公司 一种天然石墨负极粉提纯处理系统及工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1159918A (en) * 1967-04-18 1969-07-30 Tsni Insititut Olovyannoi Prom Purifying Metals
GB1387894A (en) * 1972-11-22 1975-03-19 Inst Metallurgii I Obogascheni Apparatus for refining metal
CN2880850Y (zh) * 2005-10-18 2007-03-21 昆明理工大学 一种直接从铝矿中提炼铝的真空炉
WO2009059489A1 (fr) 2007-11-08 2009-05-14 Kunming Diboo Technology Co., Ltd. Four à vide à distillation continue

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803335A (en) * 1972-11-27 1974-04-09 V Esjutin Apparatus for refining metals
US4045006A (en) * 1975-07-31 1977-08-30 Cherednichenko Vladimir Semeno Apparatus for continuous vacuum-refining of metals
US4027861A (en) * 1976-04-02 1977-06-07 Cherednichenko Vladimir Semeno Apparatus for continuous vacuum-refining of metals
CN87209402U (zh) * 1987-06-18 1988-10-26 昆明工学院 内热式多级连续蒸馏真空炉
CN1031565A (zh) * 1988-07-21 1989-03-08 昆明工学院 铋银锌壳真空提取银、铋和锌
CN2219897Y (zh) * 1995-03-09 1996-02-14 余树华 真空石墨炉
CN201292397Y (zh) * 2008-10-16 2009-08-19 昆明理工大学 一种适用于碳热还原氧化镁制取金属镁的真空冶金炉
CN201463534U (zh) * 2009-08-06 2010-05-12 昆明理工大学 一种真空反应炉

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1159918A (en) * 1967-04-18 1969-07-30 Tsni Insititut Olovyannoi Prom Purifying Metals
GB1387894A (en) * 1972-11-22 1975-03-19 Inst Metallurgii I Obogascheni Apparatus for refining metal
CN2880850Y (zh) * 2005-10-18 2007-03-21 昆明理工大学 一种直接从铝矿中提炼铝的真空炉
WO2009059489A1 (fr) 2007-11-08 2009-05-14 Kunming Diboo Technology Co., Ltd. Four à vide à distillation continue

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2770068A4 *

Also Published As

Publication number Publication date
CN102425938B (zh) 2014-12-10
EP2770068A4 (en) 2015-08-05
CN102425938A (zh) 2012-04-25
US9540709B2 (en) 2017-01-10
EP2770068B1 (en) 2017-06-21
MY165563A (en) 2018-04-05
EP2770068A1 (en) 2014-08-27
US20140203483A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
WO2013056457A1 (zh) 有色金属多元合金真空精炼炉
TW200416292A (en) Vapor-deposition device
CN102706144A (zh) 一种分级冷凝真空炉
CN109055769A (zh) 一种多元合金分级蒸馏设备
CN2880850Y (zh) 一种直接从铝矿中提炼铝的真空炉
CN108441645A (zh) 一种高砷合金连续真空蒸馏分离的设备
CN201476539U (zh) 一种强制冷却式还原蒸馏炉
CN201032368Y (zh) 一种高效低氧化烧损铝合金集中熔化炉
CN209555328U (zh) 感应加热真空蒸馏炉
CN202853124U (zh) 开水机电热水器的余热收集装置
CN117448573A (zh) 感应竖式还原炉及其工艺方法
CN216909215U (zh) 一种用于回收醇酮溶剂的环己酮醇酮精制系统
CN105018730B (zh) 电磁感应内热式金属镁真空还原炉
CN103256818A (zh) 一种罐式煅烧炉冷却水套
CN106765000A (zh) 电加热设备
US20060016682A1 (en) Solar seawater desalting apparatus
CN203501756U (zh) 等离子加热炉
CN210529007U (zh) 一种真空中频感应蒸馏炉
CN207877262U (zh) 一种便于炉壁降温的石墨加热炉
CN209555329U (zh) 电极加热真空蒸馏炉
CN209443071U (zh) 一种高纯钙真空蒸馏提纯装置
CN203153428U (zh) 蒸馏式饮水机
CN207331017U (zh) 一种内热式连续真空精馏炉
CN209018412U (zh) 蒸烤一体机
CN201992981U (zh) 一种钽材质多级蒸馏坩埚

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874168

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011874168

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011874168

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE