WO2013054913A1 - 高温ガス炉蒸気発電システム - Google Patents

高温ガス炉蒸気発電システム Download PDF

Info

Publication number
WO2013054913A1
WO2013054913A1 PCT/JP2012/076513 JP2012076513W WO2013054913A1 WO 2013054913 A1 WO2013054913 A1 WO 2013054913A1 JP 2012076513 W JP2012076513 W JP 2012076513W WO 2013054913 A1 WO2013054913 A1 WO 2013054913A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
pressure
secondary coolant
steam
temperature
Prior art date
Application number
PCT/JP2012/076513
Other languages
English (en)
French (fr)
Inventor
功 皆月
溝上 頼賢
直 小山
裕貴 塚本
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP12839477.2A priority Critical patent/EP2767981B1/en
Priority to US14/350,946 priority patent/US9959945B2/en
Publication of WO2013054913A1 publication Critical patent/WO2013054913A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/06Heterogeneous reactors, i.e. in which fuel and moderator are separated
    • G21C1/08Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being highly pressurised, e.g. boiling water reactor, integral super-heat reactor, pressurised water reactor
    • G21C1/09Pressure regulating arrangements, i.e. pressurisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/004Control systems for steam generators of nuclear power plants
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/06Heterogeneous reactors, i.e. in which fuel and moderator are separated
    • G21C1/08Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being highly pressurised, e.g. boiling water reactor, integral super-heat reactor, pressurised water reactor
    • G21C1/10Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being highly pressurised, e.g. boiling water reactor, integral super-heat reactor, pressurised water reactor moderator and coolant being different or separated
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/06Heterogeneous reactors, i.e. in which fuel and moderator are separated
    • G21C1/08Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being highly pressurised, e.g. boiling water reactor, integral super-heat reactor, pressurised water reactor
    • G21C1/10Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being highly pressurised, e.g. boiling water reactor, integral super-heat reactor, pressurised water reactor moderator and coolant being different or separated
    • G21C1/12Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being highly pressurised, e.g. boiling water reactor, integral super-heat reactor, pressurised water reactor moderator and coolant being different or separated moderator being solid, e.g. Magnox reactor or gas-graphite reactor
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/253Promoting flow of the coolant for gases, e.g. blowers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/006Details of nuclear power plant primary side of steam generators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/04Pumping arrangements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/08Regulation of any parameters in the plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/28Selection of specific coolants ; Additions to the reactor coolants, e.g. against moderator corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a steam power generation system using a high temperature gas furnace.
  • a helium-cooled high-temperature gas reactor described in Patent Document 1 is a gas-cooled furnace using helium gas as a coolant, and includes a primary helium circuit including a nuclear reactor, an intermediate heat exchanger, and a helium turbine.
  • the secondary helium circuit is separated, and heat from the primary helium circuit is generated by operating the helium turbine in the secondary helium circuit.
  • Patent Document 1 helium gas is used as the coolant for the secondary cooling system, but water is used as the coolant for the secondary cooling system, and steam is generated by the steam generator using the heat of the primary helium circuit.
  • HTGR steam power generation system that generates power by operating a steam turbine using the steam.
  • the steam pressure in the steam generator is generally set higher than the helium gas pressure in the reactor. For this reason, when the heat transfer tube of the steam generator is broken, high-pressure water or steam supplied into the heat transfer tube may enter the reactor.
  • water intrusion suppression equipment is installed to prevent water and steam from entering the reactor, but if the water intrusion suppression equipment becomes inoperative, the graphite that forms the core And water react (C + H 2 O ⁇ CO + H 2 ), which may lead to corrosion of graphite or hydrogen explosion due to combustible gas.
  • This invention solves the subject mentioned above, and aims at providing the high temperature gas reactor steam power generation system which can prevent the penetration
  • the HTGR steam power generation system of the present invention uses helium gas as a primary coolant and heats the primary coolant with heat generated by a nuclear reaction in which neutrons are decelerated by a graphite block.
  • a steam generator that uses water as a secondary coolant, heats the secondary coolant by the primary coolant that has passed through the reactor to form steam, and steam that is operated by steam from the steam generator
  • the secondary coolant in the steam generator is controlled against the pressure of the primary coolant in the reactor.
  • a pressure adjusting means for setting the pressure low is provided.
  • the pressure adjusting means by setting the pressure of the secondary coolant in the steam generator to be lower than the pressure of the primary coolant in the reactor by the pressure adjusting means, the heat transfer tube of the steam generator is When broken, it is possible to prevent the high-pressure water or steam supplied into the heat transfer tube from entering the reactor.
  • the pressure adjusting means has a primary coolant storage section that recovers or supplies the primary coolant, and supplies the primary coolant in the primary coolant storage section. It is characterized by doing.
  • the pressure of the secondary coolant in the steam generator can be set lower than the pressure of the primary coolant in the nuclear reactor.
  • the pressure adjusting means has a secondary coolant delivery section for delivering the secondary coolant to the steam generator, and the secondary coolant delivery section includes the secondary coolant delivery section. It is characterized by reducing the delivery amount of the secondary coolant.
  • the pressure of the secondary coolant in the steam generator can be set lower than the pressure of the primary coolant in the nuclear reactor.
  • the pressure adjusting means includes a secondary coolant flow rate variable unit that varies the flow rate of the secondary coolant to be sent to the steam turbine, and the secondary coolant The flow rate of the secondary coolant sent to the steam turbine is increased in the flow rate variable unit.
  • the pressure of the secondary coolant in the steam generator can be set lower than the pressure of the primary coolant in the nuclear reactor.
  • the pressure adjusting means is provided in a bypass circuit for bypassing the secondary coolant to the steam turbine, and a secondary flow rate of the secondary coolant is varied. It has a coolant bypass flow rate variable unit, and the secondary coolant bypass flow rate variable unit increases the flow rate of the secondary coolant sent to the bypass circuit.
  • the pressure of the secondary coolant in the steam generator can be set lower than the pressure of the primary coolant in the nuclear reactor.
  • the HTGR steam power generation system is configured such that the pressure adjusting means is based on a pressure difference between the pressure of the primary coolant and the pressure of the secondary coolant so that the pressure difference falls within a predetermined range.
  • Pressure control means for controlling is provided.
  • a steam generator is generated with respect to the pressure of the primary coolant in the reactor by the pressure adjusting means, based on the pressure difference between the pressure of the primary coolant and the pressure of the secondary coolant.
  • the secondary coolant pressure at can be set and controlled low.
  • the HTGR steam power generation system of the present invention is characterized by comprising temperature adjusting means for increasing the outlet temperature of the secondary coolant in the steam generator in accordance with the setting of the pressure by the pressure adjusting means.
  • the temperature adjusting means has a secondary coolant delivery section for delivering the secondary coolant to the steam generator, and the secondary coolant delivery section includes the secondary coolant delivery section. It is characterized by reducing the delivery amount of the secondary coolant.
  • the outlet temperature of the secondary coolant in the steam generator can be increased with the setting of the pressure by the pressure adjusting means.
  • the temperature adjusting means includes a primary coolant temperature variable unit that varies a temperature of the primary coolant in the nuclear reactor, and in the primary coolant temperature variable unit The temperature of the primary coolant is increased.
  • the outlet temperature of the secondary coolant in the steam generator can be increased with the setting of the pressure by the pressure adjusting means.
  • the HTGR steam power generation system is based on the outlet temperature of the secondary coolant, and the temperature adjusting means so that the outlet temperature becomes a predetermined temperature according to the pressure set for the secondary coolant. It is characterized by comprising temperature control means for controlling.
  • the control for increasing the outlet temperature of the secondary coolant in the steam generator according to the setting of the pressure by the pressure regulator by the temperature regulator based on the outlet temperature of the secondary coolant It can be performed.
  • FIG. 1 is a schematic diagram of a HTGR steam power generation system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing control of the HTGR steam power generation system shown in FIG.
  • FIG. 3 is a flowchart showing control of the HTGR steam power generation system shown in FIG.
  • FIG. 4 is a flowchart showing control of the HTGR steam power generation system shown in FIG.
  • FIG. 5 is a flowchart showing control of the HTGR steam power generation system shown in FIG.
  • FIG. 6 is a schematic diagram of another HTGR steam power generation system according to the embodiment of the present invention.
  • FIG. 7 is a flowchart showing control of the HTGR steam power generation system shown in FIG.
  • FIG. 8 is a flowchart showing control of the HTGR steam power generation system shown in FIG.
  • FIG. 1 is a schematic diagram of a HTGR steam power generation system according to the present embodiment.
  • the HTGR steam power generation system 1 mainly includes a nuclear reactor 2, a steam generator 3, a steam turbine 4, and a generator 5.
  • the nuclear reactor 2 uses helium gas as a primary coolant, and heats the primary coolant with heat generated by a nuclear reaction in which neutrons are decelerated by a graphite block.
  • the steam generator 3 uses water as a secondary coolant and heats the secondary coolant with the primary coolant that has passed through the reactor 2 to produce steam.
  • the nuclear reactor 2 and the steam generator 3 communicate with each other by a primary cooling system circuit 2a.
  • the primary cooling system circuit 2 a is provided with a circulation fan (primary coolant delivery unit) 2 b that sends out the primary coolant and circulates it between the nuclear reactor 2 and the steam generator 3. That is, the primary cooling system circuit 2 a sends out the primary coolant by the circulation fan 2 b to circulate the reactor 2 and the steam generator 3.
  • the primary cooling system circuit 2a is provided with a primary coolant storage unit 2c that recovers or supplies the primary coolant via the primary cooling system circuit 2a.
  • the steam generator 3 is provided with a heat transfer tube 3a therein.
  • the heat transfer tube 3a is a helical coil type, and a secondary coolant is circulated therein.
  • the steam generator 3 supplies heat to the secondary coolant circulated through the heat transfer tube 3a by the primary coolant heated in the nuclear reactor 2, and generates steam (superheated steam).
  • the steam turbine 4 is operated by steam supplied from the steam generator 3.
  • the generator 5 generates power with the operation of the steam turbine 4.
  • the steam turbine 4 includes a high-pressure turbine 4a and a low-pressure turbine 4b.
  • the high-pressure turbine 4a is operated by steam from the steam generator 3, and the low-pressure turbine 4b is extracted by steam extracted from the high-pressure turbine 4a. Operates.
  • the steam used for the operation of the low-pressure turbine 4b is cooled and condensed by the condenser 6 and returned to the water.
  • the returned water is sent out to the heater 8 by a condensate pump 7 provided at the subsequent stage of the condenser 6.
  • the heater 8 heats water with the steam extracted from the low-pressure turbine 4b.
  • the steam used for heating the water is condensed by heat exchange with water to become water, and is supplied to the water upstream of the heater 8.
  • the water heated by the heater 8 is stored in the water supply tank 9.
  • the water stored in the water supply tank 9 is sent out by a water supply pump (secondary coolant delivery unit) 10 and supplied to the steam generator 3 through a heater 11.
  • the heater 11 heats water with steam extracted from the high-pressure turbine 4a.
  • the steam used for heating the water is condensed by heat exchange with water to become water and is supplied to the water supply tank 9. Further, drain (condensed water) in the high-pressure turbine 4 a is also supplied to the water supply tank 9.
  • the secondary cooling system circuit 12 includes a governor valve (secondary valve) that changes the flow rate of steam to the steam turbine 4 between the steam generator 3 and the steam turbine 4 in order to keep the rotation speed of the steam turbine 4 constant.
  • a coolant flow rate variable portion) 13 is provided.
  • the secondary cooling system circuit 12 is provided with a bypass circuit 14 that bypasses the steam to the steam turbine 4.
  • the bypass circuit 14 is provided with a bypass valve (secondary coolant bypass flow rate variable unit) 15 that varies the flow rate of steam.
  • the HTGR steam power generation system 1 prevents the secondary coolant from entering the reactor 2 in the steam generator 3.
  • the HTGR steam power generation system 1 according to the present embodiment includes pressure adjusting means for setting the pressure of the secondary coolant in the steam generator 3 to be lower than the pressure of the primary coolant in the nuclear reactor 2. .
  • the HTGR steam power generation system 1 of the present embodiment by setting the pressure of the secondary coolant in the steam generator 3 to be lower than the pressure of the primary coolant in the reactor 2 by the pressure adjusting means, When the heat transfer tube 3a of the steam generator 3 is damaged, it is possible to prevent the high-pressure water or steam supplied into the heat transfer tube 3a from entering the reactor 2.
  • the pressure adjusting means includes a primary coolant storage unit 2c, a feed water pump (secondary coolant delivery unit) 10, a governor valve (secondary coolant flow rate variable unit) 13, a bypass valve (secondary coolant bypass flow rate). At least one of the variable portions) 15.
  • a pressure adjustment means raises the pressure of a primary coolant by supplying a primary coolant in the primary coolant storage part 2c, the secondary in the steam generator 3 with respect to the pressure of the primary coolant in the nuclear reactor 2 Set the coolant pressure low. Further, the pressure adjusting means reduces the pressure of the secondary coolant sent to the steam generator 3 by reducing the feed amount of the secondary coolant in the feed water pump (secondary coolant feed section) 10.
  • the pressure of the secondary coolant in the steam generator 3 is set lower than the pressure of the primary coolant. Further, the pressure adjusting means increases the flow rate of the secondary coolant sent to the steam turbine 4 in the governor valve (secondary coolant flow rate variable portion) 13, thereby adjusting the pressure of the primary coolant on the outlet side of the steam generator 3. The pressure of the secondary coolant in the steam generator 3 is set lower than the pressure of the primary coolant in the nuclear reactor 2. Further, the pressure adjusting means increases the flow rate of the secondary coolant sent to the bypass circuit 14 in the bypass valve (secondary coolant bypass flow rate variable unit) 15, thereby increasing the pressure of the primary coolant on the outlet side of the steam generator 3. And the pressure of the secondary coolant in the steam generator 3 is set lower than the pressure of the primary coolant in the nuclear reactor 2.
  • the HTGR steam power generation system 1 of the present embodiment includes a primary coolant storage unit 2c, a feed water pump (secondary coolant delivery unit) 10, a governor valve (secondary coolant flow rate variable unit). ) 13, pressure control means 16 for controlling the bypass valve (secondary coolant bypass flow rate variable part) 15 is provided.
  • the pressure control means 16 includes a pressure difference calculation unit 17, a primary coolant recovery supply setting unit 18, a secondary coolant delivery amount setting unit 19, a secondary coolant flow rate setting unit 20, and a secondary coolant bypass flow rate setting. At least one of the portions 21 is included.
  • the pressure difference calculation unit 17 detects the pressure of the primary coolant, the primary coolant pressure detection unit 22, and the secondary coolant pressure detection that detects the pressure of the secondary coolant flowing through the heat transfer pipe 3 a of the steam generator 3. Each pressure is input from the unit 23, and the difference between the pressures is calculated.
  • the primary coolant pressure detection unit 22 In order to set the pressure of the secondary coolant in the steam generator 3 lower than the pressure of the primary coolant in the nuclear reactor 2, the primary coolant pressure detection unit 22 has a relatively low primary cooling on the inlet side of the circulation fan 2b. The pressure of the material is detected.
  • the secondary coolant pressure detection unit 23 is compared on the outlet side of the steam generator 3. High secondary coolant pressure is detected.
  • the primary coolant pressure detector 22 detects the pressure of the primary coolant on the inlet side of the nuclear reactor 2. Further, the secondary coolant pressure detection unit 23 detects the pressure of the secondary coolant on the outlet side of the steam generator 3.
  • the primary coolant recovery and supply setting unit 18 recovers or supplies the primary coolant in the primary coolant storage unit 2c, or uses a flow restricting mechanism such as an orifice (for example, ON / OFF valve control by pressure) to provide the primary coolant.
  • the recovery pressure or supply pressure is set, or the recovery amount or supply amount of the primary coolant is set by a flow rate adjusting valve.
  • the secondary coolant delivery amount setting unit 19 sets the increase and decrease of the delivery amount of the secondary coolant and the increase / decrease amount in the feed water pump (secondary coolant delivery unit) 10. That is, when increasing the delivery amount of the secondary coolant, the feed water pump 10 is set to a high rotation speed and the amount of increase is set according to the number of rotations. Set weight loss by number.
  • the secondary coolant flow rate setting unit 20 sets the increase and decrease of the flow rate of the secondary coolant and the increase / decrease amount in the governor valve (secondary coolant flow rate variable unit) 13. That is, when increasing the flow rate of the secondary coolant, the governor valve 13 is set to the open side, and the amount of increase is set according to the opening degree. Set the weight loss according to the degree.
  • the secondary coolant bypass flow rate setting unit 21 sets the increase / decrease and the increase / decrease amount of the secondary coolant in the bypass valve (secondary coolant bypass flow rate variable unit) 15. That is, when the flow rate of the secondary coolant is increased, the bypass valve 15 is set to the open side, and the amount of increase is set according to the opening degree. Set the weight loss according to the degree.
  • the pressure control means 16 is configured by a microcomputer or the like, and based on the calculation of the pressure difference by the pressure difference calculation unit 17 in a storage unit (not shown) such as a RAM or a ROM, the pressure difference is within a predetermined range.
  • a storage unit such as a RAM or a ROM
  • the predetermined range of the pressure difference is not limited as long as the pressure of the secondary coolant in the steam generator 3 is lower than the pressure of the primary coolant in the nuclear reactor 2, and is different in various plants.
  • the pressure of the secondary coolant on the outlet side in the steam generator 3 is set to 5.8 [MPa] with respect to the pressure of 5.94 [MPa] on the inlet side of the primary coolant in 2b.
  • the upper limit of the pressure difference is set for each of various plants.
  • 2 to 5 are flowcharts showing the control of the HTGR steam power generation system shown in FIG.
  • the control of the primary coolant storage unit 2c as the pressure adjusting means is performed by adjusting the pressure difference between the primary coolant pressure and the secondary coolant pressure obtained from the calculation by the pressure difference calculation unit 17. If the pressure difference is primary coolant pressure ⁇ secondary coolant pressure (step S1: Yes), a command to supply the primary coolant by the primary coolant recovery supply setting unit 18 is sent to the primary coolant storage unit 2c. The primary coolant is supplied so as to increase the pressure of the primary coolant (step S2). This is performed until the primary coolant pressure> the secondary coolant pressure is satisfied in step S1 (step S1: No).
  • step S1 when the primary coolant pressure> the secondary coolant pressure (step S1: No), if the pressure difference is within a predetermined range (step S3: Yes), this control is terminated. Further, when the pressure difference is not within the predetermined range in step S3, that is, when the primary coolant pressure is too high exceeding the upper limit of the pressure difference set for each plant (step S3: No), the primary coolant recovery supply setting unit 18 A command to recover the primary coolant is issued to the primary coolant storage unit 2c, and the primary coolant is recovered so as to reduce the pressure of the primary coolant (step S4). This is performed until the primary coolant pressure> the secondary coolant pressure in Step S1 (Step S1: No), and the pressure difference becomes a predetermined range (Step S3: Yes) in Step S3. This control is performed constantly or periodically.
  • the control of the feed water pump (secondary coolant delivery unit) 10 as the pressure adjusting means is performed by the primary coolant pressure and the secondary coolant pressure obtained from the calculation by the pressure difference calculation unit 17.
  • the pressure difference is primary coolant pressure ⁇ secondary coolant pressure (step S11: Yes)
  • the secondary coolant delivery amount setting unit 19 performs secondary cooling to the steam generator 3.
  • a command to reduce the delivery amount of the material is issued to the water supply pump 10, and the delivery amount of the secondary coolant is reduced so as to reduce the pressure of the secondary coolant (step S12). This is performed until the primary coolant pressure> the secondary coolant pressure is satisfied in Step S11 (Step S11: No).
  • step S13: Yes if the primary coolant pressure> the secondary coolant pressure in step S11 (step S11: No), if the pressure difference is within a predetermined range (step S13: Yes), this control is terminated. Further, when the pressure difference is not within the predetermined range in step S13, that is, when the secondary coolant pressure is too low exceeding the upper limit of the pressure difference set for each plant (step S13: No), the secondary coolant delivery amount setting is performed. The unit 19 issues a command to the feed water pump 10 to increase the delivery amount of the secondary coolant to the steam generator 3, and the delivery amount of the secondary coolant is increased so as to increase the pressure of the secondary coolant (step S14). . This is performed until the primary coolant pressure> the secondary coolant pressure in Step S11 (Step S11: No) and the pressure difference becomes a predetermined range (Step S13: Yes) in Step S13. This control is performed constantly or periodically.
  • the control of the governor valve (secondary coolant flow rate variable unit) 13 as the pressure adjusting means is controlled by the pressure of the primary coolant and the secondary coolant obtained from the calculation by the pressure difference calculation unit 17.
  • the secondary coolant flow rate setting unit 20 causes the secondary coolant to be supplied to the steam turbine 4.
  • a command to increase the flow rate of the secondary coolant is issued to the governor valve 13, and the flow rate of the secondary coolant is increased so as to reduce the pressure of the secondary coolant (step S22). This is performed until the primary coolant pressure> the secondary coolant pressure is satisfied in Step S21 (Step S21: No).
  • step S21 when the primary coolant pressure> the secondary coolant pressure (step S21: No), if the pressure difference is within a predetermined range (step S23: Yes), this control is terminated. Further, when the pressure difference is not within the predetermined range in step S23, that is, when the secondary coolant pressure is too low exceeding the upper limit of the pressure difference set for each plant (step S23: No), the secondary coolant flow rate setting unit A command to reduce the flow rate of the secondary coolant to the steam turbine 4 is issued to the governor valve 13 by 20, and the flow rate of the secondary coolant is reduced so as to increase the pressure of the secondary coolant (step S24). This is performed until the primary coolant pressure> the secondary coolant pressure in Step S21 (Step S21: No), and the pressure difference becomes a predetermined range (Step S23: Yes) in Step S23. This control is performed constantly or periodically.
  • the control of the bypass valve (secondary coolant bypass flow rate variable unit) 15 as the pressure adjusting means is performed by controlling the pressure of the primary coolant and the secondary coolant obtained from the calculation by the pressure difference calculation unit 17. If the pressure difference is primary coolant pressure ⁇ secondary coolant pressure (step S31: Yes), the secondary coolant bypass flow rate setting unit 21 supplies the secondary to the bypass circuit 14 based on the pressure difference with the secondary pressure. A command to increase the flow rate of the coolant is issued to the bypass valve 15, and the flow rate of the secondary coolant is increased so as to reduce the pressure of the secondary coolant (step S32). This is performed until the primary coolant pressure> the secondary coolant pressure is satisfied in Step S31 (Step S31: No).
  • step S33: Yes if the pressure difference is within a predetermined range (step S33: Yes), this control is terminated. Further, when the pressure difference is not within the predetermined range in step S33, that is, when the secondary coolant pressure is too low exceeding the upper limit of the pressure difference set for each plant (step S33: No), the secondary coolant bypass flow rate setting is performed. A command to reduce the flow rate of the secondary coolant to the bypass circuit 14 is issued to the bypass valve 15 by the unit 21, and the flow rate of the secondary coolant is reduced so as to increase the pressure of the secondary coolant (step S34). This is performed until the primary coolant pressure> the secondary coolant pressure in Step S31 (Step S31: No), and the pressure difference becomes a predetermined range (Step S33: Yes) in Step S33. This control is performed constantly or periodically.
  • the primary coolant storage part 2c as a pressure adjustment means mentioned above, the feed water pump (secondary coolant sending part) 10, the governor valve (secondary coolant flow rate variable part) 13, the bypass valve (secondary coolant bypass flow rate) Control of the variable portion 15 may be performed individually or in combination, and is appropriately selected according to the HTGR steam power generation system 1.
  • the HTGR steam power generation system 1 includes, as pressure adjusting means, the primary coolant storage unit 2c, the feed water pump (secondary coolant delivery unit) 10, the governor valve (secondary coolant flow rate). Variable part) 13 and at least one of bypass valve (secondary coolant bypass flow rate variable part) 15, the secondary pressure in the steam generator 3 with respect to the pressure of the primary coolant in the reactor 2 by these pressure adjusting means.
  • the coolant pressure can be set low. Then, it is possible to appropriately select the pressure adjusting means according to the HTGR steam power generation system 1.
  • the HTGR steam power generation system 1 has pressure adjusting means based on the pressure difference between the pressure of the primary coolant and the pressure of the secondary coolant so that the pressure difference falls within a predetermined range.
  • the pressure adjustment means controls the pressure of the primary coolant in the reactor 2 based on the pressure difference between the pressure of the primary coolant and the pressure of the secondary coolant.
  • the secondary coolant pressure in 3 can be set and controlled to be low.
  • the pressure of the secondary coolant in the steam generator 3 is set to be lower than the pressure of the primary coolant in the reactor 2, the high-pressure water or steam supplied into the heat transfer tube 3a is set. Can be prevented from entering the nuclear reactor 2.
  • the pressure of the secondary coolant at the outlet of the steam generator 3 decreases, the boiling temperature of the secondary coolant decreases and the average steam temperature during heating of the secondary coolant decreases.
  • the thermal efficiency of the system 1 tends to deteriorate.
  • the pressure of the primary coolant of the nuclear reactor 2 is uniquely set with the setting of the pressure by the pressure adjusting means, the pressure of the secondary coolant must be lowered than the pressure of the primary coolant. From the viewpoint, as a measure for improving the thermal efficiency of the HTGR steam power generation system 1, there is a limit in increasing the pressure of the secondary coolant at the outlet of the steam generator 3.
  • the HTGR steam power generation system 1 includes temperature adjusting means for increasing the outlet temperature of the secondary coolant in the steam generator 3 in accordance with the setting of the pressure by the pressure adjusting means.
  • the temperature of the secondary coolant at the outlet of the steam generator 3 is increased to increase the average steam temperature during heating. It becomes possible to improve. That is, when the pressure of the secondary coolant in the steam generator 3 is set lower than the pressure of the primary coolant in the reactor 2, the thermal efficiency of the HTGR steam power generation system 1 that can be deteriorated thereby can be improved. It becomes possible.
  • FIG. 6 is a schematic diagram of another HTGR steam power generation system according to the present embodiment, which includes a temperature adjusting means.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the temperature adjusting means includes a feed water pump (secondary coolant delivery unit) 10, a circulation fan (primary coolant delivery unit) 2b as a primary coolant temperature variable unit, and a primary coolant temperature variable unit. At least one of the nuclear reactors 2.
  • the temperature adjusting means reduces the amount of generated steam by reducing the amount of secondary coolant delivered in the feed water pump (secondary coolant delivery unit) 10, and the outlet temperature of the secondary coolant in the steam generator 3. Increase the outlet temperature.
  • the temperature adjusting means reduces the amount of primary coolant heated in the reactor 2 by reducing the amount of primary coolant delivered in the circulation fan (primary coolant delivery unit) 2 b, thereby reducing the amount of primary coolant in the reactor 2.
  • the outlet temperature is increased with respect to the outlet temperature, and the outlet temperature of the secondary coolant heated by the primary coolant is increased.
  • the HTGR steam power generation system 1 controls a feed water pump (secondary coolant delivery unit) 10, a circulation fan (primary coolant delivery unit) 2 b, and a nuclear reactor 2.
  • a temperature control means 25 is provided.
  • the temperature control means 25 has a temperature acquisition unit 26 and at least one of a secondary coolant delivery amount setting unit 27 and a primary coolant delivery amount setting unit 28.
  • the temperature acquisition unit 26 inputs the outlet temperature of the secondary coolant from the secondary coolant temperature detection unit 30 that detects the outlet temperature of the secondary coolant of the steam generator 3.
  • a primary coolant temperature detector 31 is provided to detect a relatively high primary coolant temperature on the outlet side of the reactor 2.
  • the temperature acquisition unit 26 inputs the outlet temperature of the primary coolant from the primary coolant temperature detection unit 31.
  • the secondary coolant delivery amount setting unit 27 sets the increase and decrease of the delivery amount of the secondary coolant and the increase / decrease amount in the feed water pump (secondary coolant delivery unit) 10. That is, when increasing the delivery amount of the secondary coolant, the feed water pump 10 is set to a high rotation speed and the amount of increase is set according to the number of rotations. Set weight loss by number.
  • the primary coolant delivery amount setting unit 28 sets the increase and decrease of the delivery amount of the primary coolant and the increase / decrease amount in the circulation fan (primary coolant delivery unit) 2b. That is, when increasing the delivery amount of the primary coolant, the circulation fan 2b is set to a high rotation speed and the amount of increase is set according to the number of rotations. Set weight loss.
  • the temperature control means 25 is constituted by a microcomputer or the like, and based on the outlet temperature of the secondary coolant by the temperature acquisition unit 26 in a storage unit (not shown) such as a RAM or a ROM, this temperature becomes a predetermined temperature.
  • a storage unit such as a RAM or a ROM
  • a program and data for performing each setting in the secondary coolant delivery amount setting unit 27 and the primary coolant delivery amount setting unit 28 are stored.
  • the predetermined temperature is based on a temperature equivalent to the outlet temperature of the secondary coolant before the pressure is set by the pressure adjusting means (differing in various plants, for example, 550 [° C.]), and its range is also Set for each plant.
  • 7 to 8 are flowcharts showing the control of the HTGR steam power generation system shown in FIG.
  • the control of the feed water pump (secondary coolant delivery unit) 10 as the temperature adjusting means is based on the outlet temperature of the secondary coolant obtained by the temperature acquisition unit 26, and the outlet temperature ⁇ predetermined temperature.
  • the secondary coolant delivery amount setting unit 27 issues a command to the feed water pump 10 to reduce the delivery amount of the secondary coolant to the steam generator 3, and sets the outlet temperature of the secondary coolant.
  • the amount of secondary coolant delivered is reduced so as to increase (step S42). This is performed until the outlet temperature ⁇ the predetermined temperature in Step S41 (Step S41: No).
  • step S41 If the outlet temperature is equal to or higher than the predetermined temperature in step S41 (step S41: No) and the outlet temperature is equal to the predetermined temperature (step S43: No), this control is terminated.
  • step S41 when the outlet temperature ⁇ predetermined temperature (step S41: No) and the outlet temperature> predetermined temperature (step S43: Yes), that is, the secondary cooling exceeds the predetermined temperature set for each plant.
  • the secondary coolant delivery amount setting unit 27 issues a command for increasing the delivery amount of the secondary coolant to the steam generator 3 to the feed water pump 10 to set the outlet temperature of the secondary coolant.
  • the control of the circulation fan (primary coolant delivery unit) 2b as the primary coolant temperature variable unit of the temperature adjusting means is based on the outlet temperature of the secondary coolant obtained by the temperature acquisition unit 26.
  • the primary coolant delivery amount setting unit 28 issues a command to the circulation fan 2b to reduce the delivery amount of the primary coolant to the reactor 2, and the primary coolant exit The amount of primary coolant delivered is decreased so as to increase the temperature (step S52). This is performed until the outlet temperature ⁇ the predetermined temperature in Step S51 (Step S51: No).
  • the feed water pump (secondary coolant delivery unit) 10 the circulation fan (primary coolant delivery unit) 2b, and the reactor 2 as the temperature adjusting means described above may be controlled individually or in combination. It may be performed, and is appropriately selected according to the HTGR steam power generation system 1.
  • the HTGR steam power generation system 1 includes a feed water pump (secondary coolant sending unit) 10 and a circulation fan (primary coolant sending as a primary coolant temperature varying unit) as temperature adjusting means.
  • Part) 2b which has at least one of the nuclear reactors 2 as the primary coolant temperature variable part, and the outlet of the secondary coolant in the steam generator 3 according to the setting of the pressure by the pressure regulator by these temperature regulators The temperature can be increased. And it is possible to select a temperature adjustment means suitably according to the HTGR steam power generation system 1.
  • the HTGR steam power generation system 1 is based on the outlet temperature of the secondary coolant, so that the outlet temperature becomes a predetermined temperature according to the set pressure of the secondary coolant.
  • the temperature control means for controlling the temperature the outlet temperature of the secondary coolant in the steam generator 3 is increased by the temperature adjusting means according to the pressure setting by the pressure adjusting means based on the outlet temperature of the secondary coolant. Control can be performed.
  • the pressure difference is set to the primary coolant pressure ⁇ secondary coolant pressure until a stable power output is obtained.
  • the pressure setting by the pressure adjusting means is performed after the power generation output in the HTGR steam power generation system 1 is stabilized. Therefore, the adjustment of the temperature by the temperature adjusting means is to raise the temperature of the secondary coolant at the outlet of the steam generator 3 to a temperature equal to that before the pressure is set by the pressure adjusting means.
  • the primary cooling system circuit 2a is primary. It is assumed that the coolant enters the heat transfer tube 3 a of the steam generator 3 and reaches the secondary cooling system circuit 12.
  • on-off valves 33 are provided on the upstream side and the downstream side of the steam generator 3 of the secondary cooling system circuit 12. When a decrease in the pressure of the secondary coolant is detected and it is determined that the heat transfer tube 3a of the steam generator 3 has been damaged, the on-off valve 33 may be closed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Control Of Turbines (AREA)

Abstract

 ヘリウムガスを一次冷却材とし、黒鉛ブロックにより中性子を減速させた原子核反応によって発生した熱で一次冷却材を加熱する原子炉(2)と、水を二次冷却材とし、原子炉(2)を経た一次冷却材により二次冷却材を加熱して蒸気とする蒸気発生器(3)と、蒸気発生器(3)からの蒸気によって稼動する蒸気タービン(4)と、蒸気タービン(4)の稼動に伴って発電する発電機(5)とを有する高温ガス炉蒸気発電システム(1)において、原子炉(2)における一次冷却材の圧力に対し、蒸気発生器(3)における二次冷却材の圧力を低く設定する圧力調整手段を備える。

Description

高温ガス炉蒸気発電システム
 本発明は、高温ガス炉を用いた蒸気発電システムに関するものである。
 従来、例えば、特許文献1に記載のヘリウム冷却高温ガス炉は、ヘリウムガスを冷却材とするガス冷却炉であって、原子炉を含む一次ヘリウム回路と、中間熱交換器およびヘリウムタービンを含む二次ヘリウム回路とを分離し、一次ヘリウム回路の熱を二次ヘリウム回路においてヘリウムタービンを稼動させて発電を行う。
特開平8-338892号公報
 上述した特許文献1では、二次冷却系の冷却材としてヘリウムガスを用いているが、二次冷却系の冷却材に水を用い、一次ヘリウム回路の熱を利用して蒸気発生器によって蒸気を発生させ、当該蒸気によって蒸気タービンを稼動させて発電を行う高温ガス炉蒸気発電システムがある。
 このような高温ガス炉蒸気発電システムにおいては、一般に、蒸気発生器における蒸気圧力が、原子炉におけるヘリウムガス圧力よりも高く設定されている。このため、蒸気発生器の伝熱管が破損した場合、伝熱管内に供給された高圧の水や蒸気が原子炉に浸入するおそれがある。高温ガス炉蒸気発電システムでは、水浸入抑制設備を設置し、水や蒸気が原子炉に浸入する事態を回避しているが、水浸入抑制設備が不作動となった場合、炉心を構成する黒鉛と水とが反応(C+HO→CO+H)し、黒鉛の腐食や可燃性ガスによる水素爆発に至るおそれがある。
 本発明は上述した課題を解決するものであり、蒸気発生器における二次冷却材の原子炉への浸入を防止することのできる高温ガス炉蒸気発電システムを提供することを目的とする。
 上述の目的を達成するために、本発明の高温ガス炉蒸気発電システムは、ヘリウムガスを一次冷却材とし、黒鉛ブロックにより中性子を減速させた原子核反応によって発生した熱で前記一次冷却材を加熱する原子炉と、水を二次冷却材とし、前記原子炉を経た前記一次冷却材により前記二次冷却材を加熱して蒸気とする蒸気発生器と、前記蒸気発生器からの蒸気によって稼動する蒸気タービンと、前記蒸気タービンの稼動に伴って発電する発電機とを有する高温ガス炉蒸気発電システムにおいて、前記原子炉における前記一次冷却材の圧力に対し、前記蒸気発生器における前記二次冷却材の圧力を低く設定する圧力調整手段を備えることを特徴とする。
 この高温ガス炉蒸気発電システムによれば、圧力調整手段により原子炉における一次冷却材の圧力に対し、蒸気発生器における二次冷却材の圧力を低く設定することで、蒸気発生器の伝熱管が破損した場合に、伝熱管内に供給された高圧の水や蒸気が原子炉に浸入する事態を防ぐことができる。
 また、本発明の高温ガス炉蒸気発電システムでは、前記圧力調整手段は、前記一次冷却材を回収または供給する一次冷却材貯蔵部を有し、当該一次冷却材貯蔵部において前記一次冷却材を供給することを特徴とする。
 この高温ガス炉蒸気発電システムによれば、原子炉における一次冷却材の圧力に対し、蒸気発生器における二次冷却材の圧力を低く設定することができる。
 また、本発明の高温ガス炉蒸気発電システムでは、前記圧力調整手段は、前記二次冷却材を前記蒸気発生器に送り出す二次冷却材送出部を有し、当該二次冷却材送出部において前記二次冷却材の送出量を減らすことを特徴とする。
 この高温ガス炉蒸気発電システムによれば、原子炉における一次冷却材の圧力に対し、蒸気発生器における二次冷却材の圧力を低く設定することができる。
 また、本発明の高温ガス炉蒸気発電システムでは、前記圧力調整手段は、前記蒸気タービンに送る前記二次冷却材の流量を可変する二次冷却材流量可変部を有し、当該二次冷却材流量可変部において前記蒸気タービンに送る前記二次冷却材の流量を増すことを特徴とする。
 この高温ガス炉蒸気発電システムによれば、原子炉における一次冷却材の圧力に対し、蒸気発生器における二次冷却材の圧力を低く設定することができる。
 また、本発明の高温ガス炉蒸気発電システムでは、前記圧力調整手段は、前記蒸気タービンへの前記二次冷却材を迂回させるバイパス回路に設けられて前記二次冷却材の流量を可変する二次冷却材バイパス流量可変部を有し、当該二次冷却材バイパス流量可変部において前記バイパス回路に送る前記二次冷却材の流量を増すことを特徴とする。
 この高温ガス炉蒸気発電システムによれば、原子炉における一次冷却材の圧力に対し、蒸気発生器における二次冷却材の圧力を低く設定することができる。
 また、本発明の高温ガス炉蒸気発電システムは、前記一次冷却材の圧力と前記二次冷却材の圧力との圧力差に基づき、当該圧力差が所定範囲となるように、前記圧力調整手段を制御する圧力制御手段を備えることを特徴とする。
 この高温ガス炉蒸気発電システムによれば、一次冷却材の圧力と二次冷却材の圧力との圧力差に基づくことで、圧力調整手段により原子炉における一次冷却材の圧力に対して蒸気発生器における二次冷却材の圧力を低く設定制御することができる。
 また、本発明の高温ガス炉蒸気発電システムは、前記圧力調整手段による圧力の設定に伴い、前記蒸気発生器における前記二次冷却材の出口温度を高める温度調整手段を備えることを特徴とする。
 この高温ガス炉蒸気発電システムによれば、蒸気発生器の出口での二次冷却材の温度を上げることで、加熱時の蒸気平均温度が上がるため、高温ガス炉蒸気発電システムの熱効率を改善することができる。すなわち、圧力調整手段によって原子炉における一次冷却材の圧力に対して蒸気発生器における二次冷却材の圧力を低く設定した場合、これにより悪化し得る高温ガス炉蒸気発電システムの熱効率を改善することができる。
 また、本発明の高温ガス炉蒸気発電システムでは、前記温度調整手段は、前記二次冷却材を前記蒸気発生器に送り出す二次冷却材送出部を有し、当該二次冷却材送出部において前記二次冷却材の送出量を減らすことを特徴とする。
 この高温ガス炉蒸気発電システムによれば、圧力調整手段による圧力の設定に伴い、蒸気発生器における二次冷却材の出口温度を高めることができる。
 また、本発明の高温ガス炉蒸気発電システムでは、前記温度調整手段は、前記原子炉における前記一次冷却材の温度を可変する一次冷却材温度可変部を有し、当該一次冷却材温度可変部において前記一次冷却材の温度を高めることを特徴する。
 この高温ガス炉蒸気発電システムによれば、圧力調整手段による圧力の設定に伴い、蒸気発生器における二次冷却材の出口温度を高めることができる。
 また、本発明の高温ガス炉蒸気発電システムは、前記二次冷却材の出口温度に基づき、当該出口温度が前記二次冷却材の設定された圧力に伴う所定温度となるように前記温度調整手段を制御する温度制御手段を備えることを特徴とする。
 この高温ガス炉蒸気発電システムによれば、二次冷却材の出口温度に基づいて、温度調整手段により圧力調整手段による圧力の設定に応じて蒸気発生器における二次冷却材の出口温度を高める制御を行うことができる。
 本発明によれば、蒸気発生器における二次冷却材の原子炉への浸入を防止することができる。
図1は、本発明の実施の形態に係る高温ガス炉蒸気発電システムの概略図である。 図2は、図1に示す高温ガス炉蒸気発電システムの制御を示すフローチャートである。 図3は、図1に示す高温ガス炉蒸気発電システムの制御を示すフローチャートである。 図4は、図1に示す高温ガス炉蒸気発電システムの制御を示すフローチャートである。 図5は、図1に示す高温ガス炉蒸気発電システムの制御を示すフローチャートである。 図6は、本発明の実施の形態に係る他の高温ガス炉蒸気発電システムの概略図である。 図7は、図6に示す高温ガス炉蒸気発電システムの制御を示すフローチャートである。 図8は、図6に示す高温ガス炉蒸気発電システムの制御を示すフローチャートである。
 以下に、本発明に係る実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
 図1は、本実施の形態に係る高温ガス炉蒸気発電システムの概略図である。図1に示すように高温ガス炉蒸気発電システム1は、原子炉2、蒸気発生器3、蒸気タービン4、および発電機5を主に備えている。
 原子炉2は、ヘリウムガスを一次冷却材として用い、黒鉛ブロックにより中性子を減速させた原子核反応によって発生した熱で一次冷却材を加熱する。蒸気発生器3は、水を二次冷却材として用い、原子炉2を経た一次冷却材により二次冷却材を加熱して蒸気とする。原子炉2と蒸気発生器3とは、一次冷却系回路2aによって通じている。一次冷却系回路2aは、一次冷却材を送り出して原子炉2と蒸気発生器3とに循環させる循環ファン(一次冷却材送出部)2bが設けられている。すなわち、一次冷却系回路2aは、循環ファン2bにより一次冷却材を送り出して原子炉2と蒸気発生器3とを循環させる。なお、一次冷却系回路2aは、当該一次冷却系回路2aを介して一次冷却材を回収または供給する一次冷却材貯蔵部2cが設けられている。また、蒸気発生器3は、その内部に伝熱管3aが設けられている。伝熱管3aは、ヘリカルコイル型であり、その内部に二次冷却材が流通される。すなわち、蒸気発生器3は、原子炉2で加熱された一次冷却材により、伝熱管3aに流通された二次冷却材に熱を供給し、蒸気(過熱蒸気)を発生させる。
 蒸気タービン4は、蒸気発生器3から供給される蒸気によって稼動する。発電機5は、蒸気タービン4の稼動に伴って発電する。蒸気タービン4は、本実施の形態では高圧タービン4aと低圧タービン4bとを有し、蒸気発生器3からの蒸気によって高圧タービン4aが稼動し、この高圧タービン4aから抽気された蒸気によって低圧タービン4bが稼動する。そして、低圧タービン4bの稼動に用いられた蒸気は、復水器6によって冷却して凝縮され水に戻される。戻された水は、復水器6の後段に設けられた復水ポンプ7によって加熱器8に送り出される。加熱器8は、低圧タービン4bから抽気された蒸気により水を加熱する。なお、水の加熱に用いられた蒸気は、水との熱交換によって凝縮されて水となり加熱器8の上流側の水に供給される。加熱器8で加熱された水は、給水タンク9に貯留される。給水タンク9に貯留された水は、給水ポンプ(二次冷却材送出部)10によって送り出され、加熱器11を経て蒸気発生器3に供給される。加熱器11は、高圧タービン4aから抽気された蒸気により水を加熱する。なお、水の加熱に用いられた蒸気は、水との熱交換によって凝縮されて水となり給水タンク9に供給される。また、高圧タービン4aにおけるドレン(凝縮水)も給水タンク9に供給される。このように、蒸気発生器3から供給される蒸気は、蒸気タービン4を稼動した後、凝縮されて水に戻され、蒸気発生器3に供給される二次冷却系回路12を循環する。この二次冷却系回路12は、蒸気発生器3と蒸気タービン4との間に、蒸気タービン4の回転数を一定とするために蒸気タービン4への蒸気の流量を可変するガバナ弁(二次冷却材流量可変部)13が設けられている。また、二次冷却系回路12は、蒸気タービン4への蒸気を迂回させるバイパス回路14が設けられている。そして、バイパス回路14は、蒸気の流量を可変するバイパス弁(二次冷却材バイパス流量可変部)15が設けられている。
 このような高温ガス炉蒸気発電システム1において、蒸気発生器3における二次冷却材の圧力が、原子炉2における一次冷却材の圧力よりも高く設定されていると、蒸気発生器3の伝熱管3aが破損した場合、伝熱管3a内に供給された高圧の水や蒸気が原子炉2に浸入するおそれがある。このような場合、炉心を構成する黒鉛と水とが反応(C+HO→CO+H)し、黒鉛の腐食や可燃性ガスによる水素爆発に至るおそれがある。
 そこで、本実施の形態の高温ガス炉蒸気発電システム1は、蒸気発生器3における二次冷却材の原子炉2への浸入を防止している。具体的に、本実施の形態の高温ガス炉蒸気発電システム1は、原子炉2における一次冷却材の圧力に対し、蒸気発生器3における二次冷却材の圧力を低く設定する圧力調整手段を備える。
 本実施の形態の高温ガス炉蒸気発電システム1によれば、圧力調整手段により原子炉2における一次冷却材の圧力に対し、蒸気発生器3における二次冷却材の圧力を低く設定することで、蒸気発生器3の伝熱管3aが破損した場合に、伝熱管3a内に供給された高圧の水や蒸気が原子炉2に浸入する事態を防ぐことが可能になる。
 具体的に、圧力調整手段は、一次冷却材貯蔵部2c、給水ポンプ(二次冷却材送出部)10、ガバナ弁(二次冷却材流量可変部)13、バイパス弁(二次冷却材バイパス流量可変部)15の少なくとも一つを有している。そして、圧力調整手段は、一次冷却材貯蔵部2cにおいて一次冷却材を供給することで、一次冷却材の圧力を高め、原子炉2における一次冷却材の圧力に対し、蒸気発生器3における二次冷却材の圧力を低く設定する。また、圧力調整手段は、給水ポンプ(二次冷却材送出部)10において二次冷却材の送出量を減らすことで、蒸気発生器3に送る二次冷却材の圧力を下げ、原子炉2における一次冷却材の圧力に対し、蒸気発生器3における二次冷却材の圧力を低く設定する。また、圧力調整手段は、ガバナ弁(二次冷却材流量可変部)13において蒸気タービン4に送る二次冷却材の流量を増すことで、蒸気発生器3の出口側の一次冷却材の圧力を下げ、原子炉2における一次冷却材の圧力に対し、蒸気発生器3における二次冷却材の圧力を低く設定する。また、圧力調整手段は、バイパス弁(二次冷却材バイパス流量可変部)15においてバイパス回路14に送る二次冷却材の流量を増すことで、蒸気発生器3の出口側の一次冷却材の圧力を下げ、原子炉2における一次冷却材の圧力に対し、蒸気発生器3における二次冷却材の圧力を低く設定する。
 本実施の形態の高温ガス炉蒸気発電システム1は、図1に示すように、一次冷却材貯蔵部2c、給水ポンプ(二次冷却材送出部)10、ガバナ弁(二次冷却材流量可変部)13、バイパス弁(二次冷却材バイパス流量可変部)15を制御する圧力制御手段16を備える。
 圧力制御手段16は、圧力差演算部17を有するとともに、一次冷却材回収供給設定部18、二次冷却材送出量設定部19、二次冷却材流量設定部20、二次冷却材バイパス流量設定部21の少なくとも一つを有している。
 圧力差演算部17は、一次冷却材の圧力を検出する一次冷却材圧力検出部22と、蒸気発生器3の伝熱管3aに流通する二次冷却材の圧力を検出する二次冷却材圧力検出部23とから、それぞれの圧力を入力し、各圧力の差を演算する。原子炉2における一次冷却材の圧力に対し、蒸気発生器3における二次冷却材の圧力を低く設定するため、一次冷却材圧力検出部22は、循環ファン2bの入口側において比較的低い一次冷却材の圧力を検出する。また、原子炉2における一次冷却材の圧力に対し、蒸気発生器3における二次冷却材の圧力を低く設定するため、二次冷却材圧力検出部23は、蒸気発生器3の出口側において比較的高い二次冷却材の圧力を検出する。一次冷却材圧力検出部22は、原子炉2の入口側で一次冷却材の圧力を検出する。また、二次冷却材圧力検出部23は、蒸気発生器3の出口側で二次冷却材の圧力を検出する。
 一次冷却材回収供給設定部18は、一次冷却材貯蔵部2cにおいて、一次冷却材の回収または供給をしたり、オリフィスなどの流量制限機構(例えば、圧力によるON-OFF弁制御)により一次冷却材の回収圧力または供給圧力を設定したり、あるいは流量調整弁により一次冷却材の回収量または供給量を設定したりするものである。
 二次冷却材送出量設定部19は、給水ポンプ(二次冷却材送出部)10において二次冷却材の送出量の増減、および増減量を設定するものである。すなわち、二次冷却材の送出量を増す場合、給水ポンプ10を高回転としてその回転数により増量を設定し、二次冷却材の送出量を減らす場合は、給水ポンプ10を低回転としてその回転数により減量を設定する。
 二次冷却材流量設定部20は、ガバナ弁(二次冷却材流量可変部)13において二次冷却材の流量の増減、および増減量を設定するものである。すなわち、二次冷却材の流量を増す場合、ガバナ弁13を開放側にしてその開度により増量を設定し、二次冷却材の流量を減らす場合は、ガバナ弁13を閉塞側にしてその開度により減量を設定する。
 二次冷却材バイパス流量設定部21は、バイパス弁(二次冷却材バイパス流量可変部)15において二次冷却材の流量の増減、および増減量を設定するものである。すなわち、二次冷却材の流量を増す場合、バイパス弁15を開放側にしてその開度により増量を設定し、二次冷却材の流量を減らす場合は、バイパス弁15を閉塞側にしてその開度により減量を設定する。
 圧力制御手段16は、マイコンなどで構成され、RAMやROMなどの記憶部(図示せず)に、圧力差演算部17による圧力差の演算に基づき、この圧力差が所定範囲となるように、一次冷却材回収供給設定部18、二次冷却材送出量設定部19、二次冷却材流量設定部20、二次冷却材バイパス流量設定部21での各設定を行うためのプログラムやデータが格納されている。ここで、圧力差の所定範囲とは、原子炉2における一次冷却材の圧力よりも、蒸気発生器3における二次冷却材の圧力が低ければよく、様々なプラントで異なるが、例えば、循環ファン2bにおける入口側の一次冷却材の圧力5.94[MPa]に対し、蒸気発生器3における出口側の二次冷却材の圧力を5.8[MPa]とする。また、圧力差の上限も様々なプラントごとに設定される。
 圧力制御手段16による圧力調整手段の制御について説明する。図2~図5は、図1に示す高温ガス炉蒸気発電システムの制御を示すフローチャートである。
 圧力調整手段としての一次冷却材貯蔵部2cの制御は、図2に示すように、圧力差演算部17による演算から得られた一次冷却材の圧力と二次冷却材の圧力との圧力差に基づき、当該圧力差が、一次冷却材圧力≦二次冷却材圧力の場合(ステップS1:Yes)、一次冷却材回収供給設定部18により一次冷却材を供給する指令を一次冷却材貯蔵部2cに出し、一次冷却材の圧力を上げるように、一次冷却材を供給する(ステップS2)。これを、ステップS1において一次冷却材圧力>二次冷却材圧力となるまで行う(ステップS1:No)。ステップS1において一次冷却材圧力>二次冷却材圧力の場合(ステップS1:No)、圧力差が所定範囲であれば(ステップS3:Yes)、本制御を終了する。また、ステップS3において圧力差が所定範囲でなく、すなわちプラントごとに設定される圧力差の上限を超えて一次冷却材圧力が高過ぎる場合(ステップS3:No)、一次冷却材回収供給設定部18により一次冷却材を回収する指令を一次冷却材貯蔵部2cに出し、一次冷却材の圧力を下げるように、一次冷却材を回収する(ステップS4)。これを、ステップS1において一次冷却材圧力>二次冷却材圧力であり(ステップS1:No)、ステップS3において圧力差が所定範囲(ステップS3:Yes)となるまで行う。なお、本制御は、常時または定期的に行われる。
 圧力調整手段としての給水ポンプ(二次冷却材送出部)10の制御は、図3に示すように、圧力差演算部17による演算から得られた一次冷却材の圧力と二次冷却材の圧力との圧力差に基づき、当該圧力差が、一次冷却材圧力≦二次冷却材圧力の場合(ステップS11:Yes)、二次冷却材送出量設定部19により蒸気発生器3への二次冷却材の送出量を減らす指令を給水ポンプ10に出し、二次冷却材の圧力を下げるように、二次冷却材の送出量を減らす(ステップS12)。これを、ステップS11において一次冷却材圧力>二次冷却材圧力となるまで行う(ステップS11:No)。ステップS11において一次冷却材圧力>二次冷却材圧力の場合(ステップS11:No)、圧力差が所定範囲であれば(ステップS13:Yes)、本制御を終了する。また、ステップS13において圧力差が所定範囲でなく、すなわちプラントごとに設定される圧力差の上限を超えて二次冷却材圧力が低過ぎる場合(ステップS13:No)、二次冷却材送出量設定部19により蒸気発生器3への二次冷却材の送出量を増す指令を給水ポンプ10に出し、二次冷却材の圧力を上げるように、二次冷却材の送出量を増す(ステップS14)。これを、ステップS11において一次冷却材圧力>二次冷却材圧力であり(ステップS11:No)、ステップS13において圧力差が所定範囲(ステップS13:Yes)となるまで行う。なお、本制御は、常時または定期的に行われる。
 圧力調整手段としてのガバナ弁(二次冷却材流量可変部)13の制御は、図4に示すように、圧力差演算部17による演算から得られた一次冷却材の圧力と二次冷却材の圧力との圧力差に基づき、当該圧力差が、一次冷却材圧力≦二次冷却材圧力の場合(ステップS21:Yes)、二次冷却材流量設定部20により蒸気タービン4への二次冷却材の流量を増す指令をガバナ弁13に出し、二次冷却材の圧力を下げるように、二次冷却材の流量を増す(ステップS22)。これを、ステップS21において一次冷却材圧力>二次冷却材圧力となるまで行う(ステップS21:No)。ステップS21において一次冷却材圧力>二次冷却材圧力の場合(ステップS21:No)、圧力差が所定範囲であれば(ステップS23:Yes)、本制御を終了する。また、ステップS23において圧力差が所定範囲でなく、すなわちプラントごとに設定される圧力差の上限を超えて二次冷却材圧力が低過ぎる場合(ステップS23:No)、二次冷却材流量設定部20により蒸気タービン4への二次冷却材の流量を減らす指令をガバナ弁13に出し、二次冷却材の圧力を上げるように、二次冷却材の流量を減らす(ステップS24)。これを、ステップS21において一次冷却材圧力>二次冷却材圧力であり(ステップS21:No)、ステップS23において圧力差が所定範囲(ステップS23:Yes)となるまで行う。なお、本制御は、常時または定期的に行われる。
 圧力調整手段としてのバイパス弁(二次冷却材バイパス流量可変部)15の制御は、図5に示すように、圧力差演算部17による演算から得られた一次冷却材の圧力と二次冷却材の圧力との圧力差に基づき、当該圧力差が、一次冷却材圧力≦二次冷却材圧力の場合(ステップS31:Yes)、二次冷却材バイパス流量設定部21によりバイパス回路14への二次冷却材の流量を増す指令をバイパス弁15に出し、二次冷却材の圧力を下げるように、二次冷却材の流量を増す(ステップS32)。これを、ステップS31において一次冷却材圧力>二次冷却材圧力となるまで行う(ステップS31:No)。ステップS31において一次冷却材圧力>二次冷却材圧力の場合(ステップS31:No)、圧力差が所定範囲であれば(ステップS33:Yes)、本制御を終了する。また、ステップS33において圧力差が所定範囲でなく、すなわちプラントごとに設定される圧力差の上限を超えて二次冷却材圧力が低過ぎる場合(ステップS33:No)、二次冷却材バイパス流量設定部21によりバイパス回路14への二次冷却材の流量を減らす指令をバイパス弁15に出し、二次冷却材の圧力を上げるように、二次冷却材の流量を減らす(ステップS34)。これを、ステップS31において一次冷却材圧力>二次冷却材圧力であり(ステップS31:No)、ステップS33において圧力差が所定範囲(ステップS33:Yes)となるまで行う。なお、本制御は、常時または定期的に行われる。
 なお、上述した圧力調整手段としての一次冷却材貯蔵部2c、給水ポンプ(二次冷却材送出部)10、ガバナ弁(二次冷却材流量可変部)13、バイパス弁(二次冷却材バイパス流量可変部)15の制御は、個々に行ってもよく、または併用して行ってもよく、高温ガス炉蒸気発電システム1に応じて適宜選択される。
 このように、本実施の形態の高温ガス炉蒸気発電システム1は、圧力調整手段として、一次冷却材貯蔵部2c、給水ポンプ(二次冷却材送出部)10、ガバナ弁(二次冷却材流量可変部)13、バイパス弁(二次冷却材バイパス流量可変部)15の少なくとも一つを有し、これら圧力調整手段により原子炉2における一次冷却材の圧力に対し、蒸気発生器3における二次冷却材の圧力を低く設定することができる。そして、高温ガス炉蒸気発電システム1に応じて圧力調整手段を適宜選択することが可能である。
 また、本実施の形態の高温ガス炉蒸気発電システム1は、一次冷却材の圧力と二次冷却材の圧力との圧力差に基づき、当該圧力差が所定範囲となるように、圧力調整手段を制御する圧力制御手段16を備えることで、一次冷却材の圧力と二次冷却材の圧力との圧力差に基づいて、圧力調整手段により原子炉2における一次冷却材の圧力に対して蒸気発生器3における二次冷却材の圧力を低く設定制御することが可能になる。
 ところで、上述したように、原子炉2における一次冷却材の圧力に対し、蒸気発生器3における二次冷却材の圧力を低く設定することにより、伝熱管3a内に供給された高圧の水や蒸気が原子炉2に浸入する事態を防ぐことができる。しかし、蒸気発生器3の出口での二次冷却材の圧力が下がると、二次冷却材の沸騰温度が下がり、二次冷却材の加熱時の蒸気平均温度が下がるため、高温ガス炉蒸気発電システム1の熱効率が悪化する傾向となる。さらに、圧力調整手段による上記圧力の設定に伴い、原子炉2の一次冷却材の圧力が一義的に設定されるため、この一次冷却材の圧力よりも二次冷却材の圧力を下げなければならない観点から、高温ガス炉蒸気発電システム1の熱効率を改善する対策として、蒸気発生器3の出口での二次冷却材の圧力を上げることには限界が生じる。
 そこで、本実施の形態の高温ガス炉蒸気発電システム1では、圧力調整手段による上記圧力の設定に伴い、蒸気発生器3における二次冷却材の出口温度を高める温度調整手段を備える。
 この高温ガス炉蒸気発電システム1によれば、蒸気発生器3の出口での二次冷却材の温度を上げることで、加熱時の蒸気平均温度が上がるため、高温ガス炉蒸気発電システム1の熱効率を改善することが可能になる。すなわち、原子炉2における一次冷却材の圧力に対して蒸気発生器3における二次冷却材の圧力を低く設定する場合、これにより悪化し得る高温ガス炉蒸気発電システム1の熱効率を改善することが可能になる。
 図6は、本実施の形態に係る他の高温ガス炉蒸気発電システムであって、温度調整手段を備える高温ガス炉蒸気発電システムの概略図である。なお、図6において、図1に示す構成と同等部分には、同一の符号を付してその説明を省略する。
 図6に示すように、温度調整手段は、給水ポンプ(二次冷却材送出部)10、一次冷却材温度可変部としての循環ファン(一次冷却材送出部)2b、一次冷却材温度可変部としての原子炉2の少なくとも一つを有している。そして、温度調整手段は、給水ポンプ(二次冷却材送出部)10において二次冷却材の送出量を減らすことで、発生する蒸気量を減らし、蒸気発生器3における二次冷却材の出口温度に対して当該出口温度を上げる。また、温度調整手段は、循環ファン(一次冷却材送出部)2bにおいて一次冷却材の送出量を減らすことで、原子炉2で加熱される一次冷却材を減らし、原子炉2における一次冷却材の出口温度に対して当該出口温度を高め、この一次冷却材により加熱される二次冷却材の出口温度を上げる。
 本実施の形態の高温ガス炉蒸気発電システム1は、図6に示すように、給水ポンプ(二次冷却材送出部)10、循環ファン(一次冷却材送出部)2b、原子炉2を制御する温度制御手段25を備える。
 温度制御手段25は、温度取得部26を有するとともに、二次冷却材送出量設定部27、一次冷却材送出量設定部28の少なくとも一つを有している。
 温度取得部26は、蒸気発生器3の二次冷却材の出口温度を検出する二次冷却材温度検出部30から、二次冷却材の出口温度を入力する。また、原子炉2の出口側において比較的高い一次冷却材の温度を検出するため、一次冷却材温度検出部31が設けられている。温度取得部26は、この一次冷却材温度検出部31から、一次冷却材の出口温度を入力する。
 二次冷却材送出量設定部27は、給水ポンプ(二次冷却材送出部)10において二次冷却材の送出量の増減、および増減量を設定するものである。すなわち、二次冷却材の送出量を増す場合、給水ポンプ10を高回転としてその回転数により増量を設定し、二次冷却材の送出量を減らす場合は、給水ポンプ10を低回転としてその回転数により減量を設定する。
 一次冷却材送出量設定部28は、循環ファン(一次冷却材送出部)2bにおいて一次冷却材の送出量の増減、および増減量を設定するものである。すなわち、一次冷却材の送出量を増す場合、循環ファン2bを高回転としてその回転数により増量を設定し、一次冷却材の送出量を減らす場合は、循環ファン2bを低回転としてその回転数により減量を設定する。
 温度制御手段25は、マイコンなどで構成され、RAMやROMなどの記憶部(図示せず)に、温度取得部26による二次冷却材の出口温度に基づき、この温度が所定温度となるように、二次冷却材送出量設定部27、一次冷却材送出量設定部28での各設定を行うためのプログラムやデータが格納されている。ここで、所定温度とは、圧力調整手段による圧力の設定以前の二次冷却材の出口温度と同等の温度(様々なプラントで異なるが、例えば、550[℃])を基準とし、その範囲も様々なプラントごとに設定される。
 温度制御手段25による温度調整手段の制御について説明する。図7~図8は、図6に示す高温ガス炉蒸気発電システムの制御を示すフローチャートである。
 温度調整手段としての給水ポンプ(二次冷却材送出部)10の制御は、図7に示すように、温度取得部26により得られた二次冷却材の出口温度に基づき、出口温度<所定温度の場合(ステップS41:Yes)、二次冷却材送出量設定部27により蒸気発生器3への二次冷却材の送出量を減らす指令を給水ポンプ10に出し、二次冷却材の出口温度を上げるように、二次冷却材の送出量を減らす(ステップS42)。これを、ステップS41において出口温度≧所定温度となるまで行う(ステップS41:No)。ステップS41において出口温度≧所定温度であって(ステップS41:No)、出口温度=所定温度であれば(ステップS43:No)、本制御を終了する。また、ステップS41において出口温度≧所定温度であって(ステップS41:No)、出口温度>所定温度である場合(ステップS43:Yes)、すなわちプラントごとに設定される所定温度を超えて二次冷却材の出口温度が高過ぎる場合、二次冷却材送出量設定部27により蒸気発生器3への二次冷却材の送出量を増す指令を給水ポンプ10に出し、二次冷却材の出口温度を下げるように、二次冷却材の送出量を増す(ステップS44)。これを、ステップS41において出口温度≧所定温度であり(ステップS41:No)、ステップS43において出口温度=所定温度(ステップS43:No)となるまで行う。なお、本制御は、常時または定期的に行われる。
 温度調整手段の一次冷却材温度可変部としての循環ファン(一次冷却材送出部)2bの制御は、図8に示すように、温度取得部26により得られた二次冷却材の出口温度に基づき、出口温度<所定温度の場合(ステップS51:Yes)、一次冷却材送出量設定部28により原子炉2への一次冷却材の送出量を減らす指令を循環ファン2bに出し、一次冷却材の出口温度を上げるように、一次冷却材の送出量を減らす(ステップS52)。これを、ステップS51において出口温度≧所定温度となるまで行う(ステップS51:No)。ステップS51において出口温度≧所定温度であって(ステップS51:No)、出口温度=所定温度であれば(ステップS53:No)、本制御を終了する。また、ステップS51において出口温度≧所定温度であって(ステップS51:No)、出口温度>所定温度である場合(ステップS53:Yes)、すなわちプラントごとに設定される所定温度を超えて二次冷却材の出口温度が高過ぎる場合、一次冷却材送出量設定部28により原子炉2への一次冷却材の送出量を増す指令を循環ファン2bに出し、一次冷却材の出口温度を上げるように、一次冷却材の送出量を増す(ステップS54)。これを、ステップS51において出口温度≧所定温度であり(ステップS51:No)、ステップS53において出口温度=所定温度(ステップS53:No)となるまで行う。なお、本制御は、常時または定期的に行われる。
 なお、上述した温度調整手段としての給水ポンプ(二次冷却材送出部)10、循環ファン(一次冷却材送出部)2b、原子炉2の制御は、個々に行ってもよく、または併用して行ってもよく、高温ガス炉蒸気発電システム1に応じて適宜選択される。
 このように、本実施の形態の高温ガス炉蒸気発電システム1は、温度調整手段として、給水ポンプ(二次冷却材送出部)10、一次冷却材温度可変部としての循環ファン(一次冷却材送出部)2b、一次冷却材温度可変部としての原子炉2の少なくとも一つを有し、これら温度調整手段により、圧力調整手段による圧力の設定に伴い、蒸気発生器3における二次冷却材の出口温度を高めることができる。そして、高温ガス炉蒸気発電システム1に応じて温度調整手段を適宜選択することが可能である。
 また、本実施の形態の高温ガス炉蒸気発電システム1は、二次冷却材の出口温度に基づき、当該出口温度が二次冷却材の設定された圧力に伴う所定温度となるように温度調整手段を制御する温度制御手段を備えることで、二次冷却材の出口温度に基づいて、温度調整手段により圧力調整手段による圧力の設定に応じて蒸気発生器3における二次冷却材の出口温度を高める制御を行うことが可能になる。
 ところで、高温ガス炉蒸気発電システム1においては、安定した発電出力が得られるまで、圧力差を一次冷却材圧力<二次冷却材圧力とする。そして、圧力調整手段による圧力の設定は、高温ガス炉蒸気発電システム1における発電出力が安定した後に行われる。そそのため、温度調整手段による温度の調整は、圧力調整手段による圧力の設定以前と同等までの温度に、蒸気発生器3の出口での二次冷却材の温度を上げるものである。
 なお、原子炉2における一次冷却材の圧力に対し、蒸気発生器3における二次冷却材の圧力を低く設定すると、蒸気発生器3の伝熱管3aが破損した場合、一次冷却系回路2aの一次冷却材が蒸気発生器3の伝熱管3a内に入り、二次冷却系回路12に至ることが想定される。このような事態を回避するため、図1および図6に示すように、二次冷却系回路12の蒸気発生器3の上流側および下流側に開閉弁33を設け、例えば、蒸気発生器3の二次冷却材の圧力の低下を検出して蒸気発生器3の伝熱管3aが破損したことを判断した場合に、開閉弁33を閉塞すればよい。
 1 高温ガス炉蒸気発電システム
 2 原子炉(一次冷却材温度可変部)
 2a 一次冷却系回路
 2b 循環ファン(一次冷却材送出部,一次冷却材温度可変部)
 2c 一次冷却材貯蔵部
 3 蒸気発生器
 3a 伝熱管
 4 蒸気タービン
 5 発電機
 10 給水ポンプ(二次冷却材送出部)
 12 二次冷却系回路
 13 ガバナ弁(二次冷却材流量可変部)
 14 バイパス回路
 15 バイパス弁(二次冷却材バイパス流量可変部)
 16 圧力制御手段
 17 圧力差演算部
 18 一次冷却材回収供給設定部
 19 二次冷却材送出量設定部
 20 二次冷却材流量設定部
 21 二次冷却材バイパス流量設定部
 22 一次冷却材圧力検出部
 23 二次冷却材圧力検出部
 25 温度制御手段
 26 温度取得部
 27 二次冷却材送出量設定部
 28 一次冷却材送出量設定部
 30 二次冷却材温度検出部
 31 一次冷却材温度検出部

Claims (10)

  1.  ヘリウムガスを一次冷却材とし、黒鉛ブロックにより中性子を減速させた原子核反応によって発生した熱で前記一次冷却材を加熱する原子炉と、水を二次冷却材とし、前記原子炉を経た前記一次冷却材により前記二次冷却材を加熱して蒸気とする蒸気発生器と、前記蒸気発生器からの蒸気によって稼動する蒸気タービンと、前記蒸気タービンの稼動に伴って発電する発電機とを有する高温ガス炉蒸気発電システムにおいて、
     前記原子炉における前記一次冷却材の圧力に対し、前記蒸気発生器における前記二次冷却材の圧力を低く設定する圧力調整手段を備えることを特徴とする高温ガス炉蒸気発電システム。
  2.  前記圧力調整手段は、前記一次冷却材を回収または供給する一次冷却材貯蔵部を有し、当該一次冷却材貯蔵部において前記一次冷却材を供給することを特徴とする請求項1に記載の高温ガス炉蒸気発電システム。
  3.  前記圧力調整手段は、前記二次冷却材を前記蒸気発生器に送り出す二次冷却材送出部を有し、当該二次冷却材送出部において前記二次冷却材の送出量を減らすことを特徴とする請求項1または2に記載の高温ガス炉蒸気発電システム。
  4.  前記圧力調整手段は、前記蒸気タービンに送る前記二次冷却材の流量を可変する二次冷却材流量可変部を有し、当該二次冷却材流量可変部において前記蒸気タービンに送る前記二次冷却材の流量を増すことを特徴とする請求項1~3のいずれか一つに記載の高温ガス炉蒸気発電システム。
  5.  前記圧力調整手段は、前記蒸気タービンへの前記二次冷却材を迂回させるバイパス回路に設けられて前記二次冷却材の流量を可変する二次冷却材バイパス流量可変部を有し、当該二次冷却材バイパス流量可変部において前記バイパス回路に送る前記二次冷却材の流量を増すことを特徴とする請求項1~4のいずれか一つに記載の高温ガス炉蒸気発電システム。
  6.  前記一次冷却材の圧力と前記二次冷却材の圧力との圧力差に基づき、当該圧力差が所定範囲となるように、前記圧力調整手段を制御する圧力制御手段を備えることを特徴とする請求項1~5のいずれか一つに記載の高温ガス炉蒸気発電システム。
  7.  前記圧力調整手段による圧力の設定に伴い、前記蒸気発生器における前記二次冷却材の出口温度を高める温度調整手段を備えることを特徴とする請求項1~6のいずれか一つに記載の高温ガス炉蒸気発電システム。
  8.  前記温度調整手段は、前記二次冷却材を前記蒸気発生器に送り出す二次冷却材送出部を有し、当該二次冷却材送出部において前記二次冷却材の送出量を減らすことを特徴とする請求項7に記載の高温ガス炉蒸気発電システム。
  9.  前記温度調整手段は、前記原子炉における前記一次冷却材の温度を可変する一次冷却材温度可変部を有し、当該一次冷却材温度可変部において前記一次冷却材の温度を高めることを特徴する請求項7または8に記載の高温ガス炉蒸気発電システム。
  10.  前記二次冷却材の出口温度に基づき、当該出口温度が前記二次冷却材の設定された圧力に伴う所定温度となるように前記温度調整手段を制御する温度制御手段を備えることを特徴とする請求項7~9のいずれか一つに記載の高温ガス炉蒸気発電システム。
PCT/JP2012/076513 2011-10-14 2012-10-12 高温ガス炉蒸気発電システム WO2013054913A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12839477.2A EP2767981B1 (en) 2011-10-14 2012-10-12 High-temperature gas reactor steam generator system
US14/350,946 US9959945B2 (en) 2011-10-14 2012-10-12 High temperature gas cooled reactor steam generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-227459 2011-10-14
JP2011227459A JP5787709B2 (ja) 2011-10-14 2011-10-14 高温ガス炉蒸気発電システム

Publications (1)

Publication Number Publication Date
WO2013054913A1 true WO2013054913A1 (ja) 2013-04-18

Family

ID=48081958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076513 WO2013054913A1 (ja) 2011-10-14 2012-10-12 高温ガス炉蒸気発電システム

Country Status (4)

Country Link
US (1) US9959945B2 (ja)
EP (1) EP2767981B1 (ja)
JP (1) JP5787709B2 (ja)
WO (1) WO2013054913A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098122A (zh) * 2016-05-31 2016-11-09 哈尔滨工程大学 一种基于超临界二氧化碳布雷顿循环的核能发电系统
CN109767852A (zh) * 2019-02-22 2019-05-17 西安热工研究院有限公司 一种用于反应堆紧急停堆的二回路安全系统及其工作方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110718313B (zh) * 2019-09-18 2023-08-04 上海电力大学 一种传热管破裂事故下核电站一回路降温控制方法
CN113983441A (zh) * 2021-10-09 2022-01-28 上海核工程研究设计院有限公司 一种供热堆多用途协调控制方案
CN114459013B (zh) * 2022-01-27 2023-09-08 华能山东石岛湾核电有限公司 高温气冷堆蒸汽发生器的保护系统及方法
CN117095841B (zh) * 2023-08-21 2024-08-30 华能山东石岛湾核电有限公司 一种用于高温气冷堆与汽轮机、发电机大联锁验证方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57582A (en) * 1980-04-29 1982-01-05 Ght Hochtemperaturreak Tech High temperature gas cooling nuclear reactor for module construction mode
JPS62199698U (ja) * 1986-06-10 1987-12-19
JPH03221893A (ja) * 1990-01-26 1991-09-30 Japan Atom Power Co Ltd:The 高温ガス炉
JPH07120575A (ja) * 1993-10-20 1995-05-12 Mitsubishi Heavy Ind Ltd 高温ガス炉
JPH08338892A (ja) 1995-06-14 1996-12-24 Japan Atom Energy Res Inst ヘリウム冷却高温ガス炉
JPH0933681A (ja) * 1995-07-17 1997-02-07 Mitsubishi Heavy Ind Ltd 高温ガス炉
JP2011226990A (ja) * 2010-04-22 2011-11-10 Mitsubishi Heavy Ind Ltd 蒸気発生器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB984692A (en) * 1960-07-08 1965-03-03 Babcock & Wilcox Ltd Improvements in nuclear reactor installations
CH405517A (de) * 1963-05-17 1966-01-15 Sulzer Ag Verfahren und Vorrichtung zur Regelung einer Reaktoranlage
US3894394A (en) * 1974-04-22 1975-07-15 Westinghouse Electric Corp HTGR power plant hot reheat steam pressure control system
US4976913A (en) * 1989-04-24 1990-12-11 Schoessow Glen J Nuclear energy system using pelletized fuel in a boiling liquid reactor
AU2002244885A1 (en) * 2001-03-26 2002-10-08 Pebble Bed Modular Reactor (Proprietary) Limited A nuclear power plant and method of operating the same
AU2002351036A1 (en) * 2001-11-30 2003-06-10 Pebble Bed Modular Reactor (Proprietary) Limited System for and method of controlling a nuclear power plant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57582A (en) * 1980-04-29 1982-01-05 Ght Hochtemperaturreak Tech High temperature gas cooling nuclear reactor for module construction mode
JPS62199698U (ja) * 1986-06-10 1987-12-19
JPH03221893A (ja) * 1990-01-26 1991-09-30 Japan Atom Power Co Ltd:The 高温ガス炉
JPH07120575A (ja) * 1993-10-20 1995-05-12 Mitsubishi Heavy Ind Ltd 高温ガス炉
JPH08338892A (ja) 1995-06-14 1996-12-24 Japan Atom Energy Res Inst ヘリウム冷却高温ガス炉
JPH0933681A (ja) * 1995-07-17 1997-02-07 Mitsubishi Heavy Ind Ltd 高温ガス炉
JP2011226990A (ja) * 2010-04-22 2011-11-10 Mitsubishi Heavy Ind Ltd 蒸気発生器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2767981A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098122A (zh) * 2016-05-31 2016-11-09 哈尔滨工程大学 一种基于超临界二氧化碳布雷顿循环的核能发电系统
CN109767852A (zh) * 2019-02-22 2019-05-17 西安热工研究院有限公司 一种用于反应堆紧急停堆的二回路安全系统及其工作方法
CN109767852B (zh) * 2019-02-22 2024-06-04 西安热工研究院有限公司 一种用于反应堆紧急停堆的二回路安全系统及其工作方法

Also Published As

Publication number Publication date
EP2767981A4 (en) 2015-06-17
US9959945B2 (en) 2018-05-01
JP5787709B2 (ja) 2015-09-30
US20150162105A1 (en) 2015-06-11
EP2767981B1 (en) 2017-01-18
JP2013088207A (ja) 2013-05-13
EP2767981A1 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5787709B2 (ja) 高温ガス炉蒸気発電システム
JP4578354B2 (ja) 蒸気タービンプラントの廃熱利用設備
JP2008121483A (ja) 熱媒体供給設備および太陽熱複合発電設備なびにこれらの制御方法
EP2165116B1 (en) Immediate response steam generating method
CN108278590A (zh) 一种高温气冷堆核电站停堆冷却的系统和方法
US20170098483A1 (en) Heat exchange system and nuclear reactor system
JP4818391B2 (ja) 蒸気タービンプラント及びその運転方法
JP5667435B2 (ja) 熱併給原子力発電システム
CN114543074B (zh) 直流燃煤发电机组启动系统
JP5733929B2 (ja) 給水装置
JP4349133B2 (ja) 原子力プラント及びその運転方法
JP2022129412A (ja) 原子力発電プラントの出力制御装置及び出力制御方法
JP5895498B2 (ja) タービンバイパス装置およびタービンバイパス制御方法
JP5452513B2 (ja) 原子炉の運転方法
CN101201159B (zh) 带可调节闪蒸系统的余热发电方法及余热发电系统
JP4449620B2 (ja) 原子力プラント及びその運転方法
JP2007232500A (ja) 原子炉の運転方法及び原子力発電プラント
JP4399381B2 (ja) 原子力発電プラントの運転方法
JP3971646B2 (ja) 補充蒸気の制御方法
JP2008304264A (ja) 原子力プラント及びその運転方法
CN114198738B (zh) 一种高温气冷堆给水加热系统
JP4516438B2 (ja) 原子力プラントの運転方法
JPH04140699A (ja) 原子力発電設備
JP4982270B2 (ja) 原子炉の運転方法及び原子力発電プラント
CN116189950A (zh) 基于能量平衡改进的给水控制系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839477

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14350946

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012839477

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012839477

Country of ref document: EP