WO2013054878A1 - 自動変速機のシフト装置 - Google Patents
自動変速機のシフト装置 Download PDFInfo
- Publication number
- WO2013054878A1 WO2013054878A1 PCT/JP2012/076426 JP2012076426W WO2013054878A1 WO 2013054878 A1 WO2013054878 A1 WO 2013054878A1 JP 2012076426 W JP2012076426 W JP 2012076426W WO 2013054878 A1 WO2013054878 A1 WO 2013054878A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shaft
- pinion
- rack
- transmission
- shift
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/26—Generation or transmission of movements for final actuating mechanisms
- F16H61/28—Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/26—Generation or transmission of movements for final actuating mechanisms
- F16H61/28—Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
- F16H2061/2876—Racks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/08—Profiling
- F16H55/0873—Profiling for improving axial engagement, e.g. a chamfer at the end of the tooth flank
Definitions
- the present invention relates to a shift device for an automatic transmission for a vehicle.
- the rack shaft 135 (fork shaft) is supported in parallel with the output shaft of the transmission in the case of the automatic transmission.
- a shift device including a pinion shaft is assembled from the outside of the case of the automatic transmission.
- the pinion shaft is inserted into a support hole penetrating the case from the side where the pinion gear 134 is formed, and is assembled so that the pinion gear 134 meshes with the teeth of the rack portion formed on the rack shaft 135. If the pinion gear 134 and the tooth portion of the rack portion do not mesh well and the tooth portions interfere with each other, it is necessary to rotate the pinion gear 134 little by little to find the position where it can be meshed well. There is a risk that the number of steps will increase and the cost will increase.
- the present invention has been made in view of the above problems, and an object thereof is to provide a shift device for an automatic transmission that can be assembled in a short time with a simple configuration.
- the invention of the shift device for an automatic transmission is characterized in that a pinion rotatably supported by a drive source and a bearing provided in a transmission case that is driven to rotate by the drive source.
- At least one of a speed change member to be engaged and disengaged a rack formed on a part of a cylindrical outer peripheral portion of the speed change shaft member, a tooth width direction end portion on the bearing side of the teeth of the rack, and a tip end portion of the teeth of the pinion And the pinion shaft is inserted into a bearing provided in the transmission case in the axial direction. And the rack is guided to the chamfer formed in at least one said pinion and said rack are meshed.
- the shift device for an automatic transmission is the shift device according to the first aspect, wherein the shift shaft member is fixed with a fork that engages with a sleeve of the transmission mechanism, and the fork is driven by the operation in the axial direction.
- a fork shaft that operates the sleeve to engage and disengage the speed change mechanism;
- the shift device for an automatic transmission according to the first or second aspect, wherein the transmission shaft member has a position holding device that holds the movement at a predetermined position in the axial direction, and the rack includes The formed chamfer is a position of the rack that meshes with the pinion when the pinion shaft is inserted while being guided by the bearing while the transmission shaft member is held at the predetermined position by the position holding device. It is provided only on a plurality of teeth.
- the invention of a shift device for an automatic transmission is the shift device according to any one of the first to third aspects, wherein the pinion is inserted into a bearing provided in the transmission case in an axial direction.
- the rack is guided by the chamfer at the end of the rack in the tooth width direction on the bearing side, and is guided by the cylindrical surface of the transmission shaft member connected to the bottom of the rack to be engaged with the rack.
- a chamfer is formed on at least one of the bearing side end portion into which the pinion shaft is inserted and the tip end portion of the pinion teeth. For this reason, when the pinion shaft approaches and comes into contact with the rack while being guided by the bearing formed on the transmission case when the shift device is assembled, the pinion teeth or the rack teeth are formed on the opposing pinion teeth or the rack teeth. Engage easily between the tips of adjacent chamfers.
- the rack has a chamfer taper surface formed on its own teeth, or the chamfer taper surface formed on the pinion teeth or the pinion teeth, or the chamfer is provided.
- Non-rack teeth are pressed parallel to the rack teeth by the chamfer taper surface formed on the pinion.
- the transmission shaft member moves in the axial direction in response to a component force in the movement direction of the transmission shaft member according to the magnitude of the pressed force and the taper angle of the chamfer, and the pinion eventually meshes with the rack.
- variations in the rotation direction of the pinion shaft can be absorbed, and the pinion can be meshed well with the rack in a short time, and can be assembled at low cost.
- the transmission shaft member is a fork shaft.
- a rack for meshing a pinion is formed for each of a plurality of transmission shaft members (fork shafts), and the fork shaft and the shift fork are moved by rotating the pinion to disengage the transmission mechanism and to shift the gear. Change the stage.
- the shift device is provided by the number of the transmission shaft members, and the effect of the time shortened when the shift device is assembled is greater.
- the movement of the transmission shaft member is held at a predetermined position in the axial direction by the position holding device.
- chamfers are provided only on a plurality of teeth of the rack meshing with the pinion. For this reason, the formation of the chamfer that reduces the strength of the teeth of the rack can be minimized, and the reliability is ensured.
- the rack is formed on the cylindrical transmission shaft member, when the pinion shaft is inserted in the axial direction into the bearing provided in the transmission case, the pinion has a tooth width on the bearing side of the rack. It is guided by the chamfer formed at the end of the direction and is guided by the cylindrical surface of the transmission shaft member connected to the bottom of the rack to be engaged with the rack. In this way, variations in the radial direction of the pinion shaft can be absorbed, and the pinion can be satisfactorily engaged with the rack in a short time and assembled at a low cost.
- FIG. 2 is a sectional view taken along the line 2-2 in FIG. It is a skeleton figure which shows the whole structure of a transmission. It is a sectional side view of the shift device concerning a 1st embodiment.
- FIG. 5 is a view (A) and a view (B) of FIG. 4 showing a chamfer shape. It is a see-through
- the automatic transmission 1 is a seven-speed forward dual clutch automatic transmission, and includes a first input shaft 21 in the axial direction within the case 10, A second input shaft 22, a first counter shaft 31, and a second counter shaft 32 are provided. Further, in the case 10, as shown in FIG. 3, the dual clutch 40, the drive gears 51 to 57 for each shift stage, the final reduction drive gears 58 and 68, the driven gears 61 to 67 for each shift stage, the reverse gear 70, And a ring gear 80.
- the same axial direction as the first input shaft 21, the second input shaft 22, the first auxiliary shaft 31, and the second auxiliary shaft 32 is referred to as an input axis direction.
- the case 10 has a transmission case 11 and a clutch housing 12 as shown in FIG.
- the transmission case 11 has first to fourth shift clutches 101 to 104 (corresponding to the speed change mechanism of the present invention) provided to the first countershaft 31 and the second countershaft 32, respectively. ),
- each shift device 90 according to the present invention is provided for engaging and disengaging each gear position (see FIGS. 2 and 4). In FIG. 2, only two shift devices 90 are shown as representatives.
- the clutch housing 12 has an end surface facing the end surface of the transmission case 11, and is fixed to the transmission case 11 by bolt fastening.
- the clutch housing 12 supports each shaft by a plurality of bearings and accommodates a dual clutch 40 therein.
- the first input shaft 21 is rotatably supported with respect to the transmission case 11 and the clutch housing 12 by a bearing. Further, a portion for supporting the bearing and a plurality of external splines are formed on the outer peripheral surface of the first input shaft 21. A first speed drive gear 51 and a third speed drive gear 53 are directly formed on the first input shaft 21. The fifth speed drive gear 55 and the seventh speed drive gear 57 are press-fitted into the external spline formed on the outer peripheral surface of the first input shaft 21 by spline fitting. Further, a connecting portion that is connected to the first clutch 41 of the dual clutch 40 is formed at the end of the first input shaft 21.
- the second input shaft 22 is formed in a hollow shaft shape, and is rotatably supported on the outer periphery of a part of the first input shaft 21 via a plurality of bearings.
- the transmission case 11 and the clutch housing are supported by the bearings. 12 is supported rotatably. That is, the second input shaft 22 is disposed so as to be rotatable relative to the first input shaft 21 concentrically.
- a portion that supports the bearing and a plurality of external gears are formed on the outer peripheral surface of the second input shaft 22.
- a second speed drive gear 52, a fourth speed drive gear 54 and a sixth speed drive gear 56 are formed on the second input shaft 22.
- a connecting portion that is connected to the second clutch 42 of the dual clutch 40 is formed at the end of the second input shaft 22.
- the first countershaft 31 is rotatably supported with respect to the transmission case 11 and the clutch housing 12 by a bearing, and is disposed in parallel to the first input shaft 21 in the transmission case 11.
- a final reduction drive gear 58 is formed on the outer peripheral surface of the first countershaft 31, and a portion for supporting the bearing and a plurality of external splines are formed.
- the clutch hubs 201 of the first and third shift clutches 101 and 103 are press-fitted into the external splines of the first countershaft 31 by spline fitting.
- shift devices 90 for driving the first and third shift clutches 101 and 103 are fixed to the outer peripheral surface of the transmission case 11 in the vicinity of the first and third shift clutches 101 and 103, respectively. .
- the final reduction drive gear 58 meshes with a ring gear 80 of a differential (differential mechanism).
- the ring gear 80 is disposed on the internal combustion engine E / G side in the axial direction among the gears disposed in the transmission case 11.
- the first countershaft 31 is formed with a support portion that supports the first-speed driven gear 61, the third-speed driven gear 63, the fourth-speed driven gear 64, and the reverse gear 70 so as to be freely rotatable.
- the first speed driven gear 61 is always meshed with a first speed drive gear 51 formed on the first input shaft 21.
- the third speed driven gear 63 is always meshed with a third speed drive gear 53 formed on the first input shaft 21.
- the 4-speed driven gear 64 is always meshed with the 4-speed drive gear 54 formed on the second input shaft 22.
- the reverse gear 70 is always meshed with a small-diameter gear 62a formed integrally with a second-speed driven gear 62 that is supported on the second output shaft 31 so as to be free to rotate. Accordingly, when the second speed drive gear 52 of the second input shaft 22 meshed with the second speed driven gear 62 is rotated by the second input shaft 22, the reverse gear 70 is also rotated simultaneously.
- the second countershaft 32 is rotatably supported with respect to the transmission case 11 and the clutch housing 12 by a bearing, and is arranged in parallel to the first input shaft 21 in the transmission case 11. Further, on the outer peripheral surface of the second countershaft 32, as with the first countershaft 31, a final reduction drive gear 68 is formed, and a portion for supporting the bearing and a plurality of external splines are formed.
- the clutch hubs 201 of the second and fourth shift clutches 102 and 104 are press-fitted into the external splines of the second countershaft 32 by spline fitting.
- Shift devices 90 that drive the second and fourth shift clutches 102 and 104 are provided on the outer peripheral surface of the transmission case 11 in the vicinity of the second and fourth shift clutches 102 and 104, respectively.
- the final reduction drive gear 68 meshes with a differential ring gear 80.
- the second countershaft 32 is formed with a support portion that supports the second speed driven gear 62, the fifth speed driven gear 65, the sixth speed driven gear 66, and the seventh speed driven gear 67 so as to be freely rotatable.
- the second speed driven gear 62 is always meshed with the second speed drive gear 52 formed on the second input shaft 22.
- the 5-speed driven gear 65 is always meshed with a 5-speed drive gear 55 formed on the first input shaft 21.
- the sixth speed driven gear 66 is always meshed with a sixth speed drive gear 56 formed on the second input shaft 22.
- the seventh-speed driven gear 67 is always meshed with a seventh-speed drive gear 57 that is supported by the second countershaft 32 so as to be free to rotate.
- the dual clutch 40 includes a first clutch 41 that transmits the rotational driving force of the internal combustion engine E / G to the first input shaft 21, and the driving force of the internal combustion engine E / G that is supplied to the second input shaft 22.
- a second clutch 42 that transmits to The dual clutch 40 is accommodated in the clutch housing 12 on the right side of FIG. 1 and is concentric with the first input shaft 21 and the second input shaft 22.
- the first clutch 41 is connected to the connecting portion of the first input shaft 21, and the second clutch 42 is connected to the connecting portion of the second input shaft 22. Then, based on the vehicle control command, the first and second clutches 41 and 42 are sequentially operated with respect to the first and second input shafts 21 and 22 to switch the connection with the internal combustion engine E / G. It is possible to change the shift.
- the ring gear 80 is meshed with the final reduction drive gear 58 and the final reduction drive gear 68 so as to be always rotationally connected to the first auxiliary shaft 31 and the second auxiliary shaft 32.
- the ring gear 80 is connected to drive wheels (not shown) of the vehicle via an output shaft 80a that is pivotally supported by the case 10 and a differential mechanism (not shown).
- the first shift clutch 101 is disposed between the first speed driven gear 61 and the third speed driven gear 63 in the axial direction of the first countershaft 31.
- the second shift clutch 102 is disposed between the second speed driven gear 62 and the sixth speed driven gear 66 in the axial direction of the second countershaft 32.
- the third shift clutch 103 is disposed between the fourth speed driven gear 64 and the reverse gear 70 in the axial direction of the first countershaft 31.
- the fourth shift clutch 104 is disposed between the fifth speed driven gear 65 and the seventh speed driven gear 67 in the axial direction of the second countershaft 32.
- the first shift clutch 101 is press-fitted and fixed to a clutch hub 201 splined to the first countershaft 31, a first-speed engagement member 205 press-fitted to the first-speed driven gear 61, and a third-speed driven gear 63.
- the third-speed engaging member 205, the synchronizer ring 203 interposed between the clutch hub 201 and the left and right engaging members 205, 205, and the outer periphery of the clutch hub 201 are spline engaged so as to be movable in the axial direction. It consists of a sleeve 202.
- the first shift clutch 101 detachably connects the driven gears 61 and 63 to the first countershaft 31 by such a known synchromesh mechanism.
- the sleeve 202 of the first shift clutch 101 is not engaged with any of the engaging members 205 and 205 in the neutral position.
- the fork shaft 95 (corresponding to the transmission shaft member of the present invention) is driven in the input shaft direction and engaged with the annular groove on the outer periphery of the sleeve 202 fixed to the fork shaft 95.
- the sleeve 202 is shifted to the first speed driven gear 61 side by the shift fork 91 (corresponding to the speed change member of the present invention)
- the sleeve 202 is spline-engaged with the synchronizer ring 203 on the first speed driven gear 61 side.
- the rotation of the first countershaft 31 and the first speed driven gear 61 is synchronized.
- the sleeve 202 is engaged with the external spline on the outer periphery of the first-speed engagement member 205, and the first countershaft 31 and the first-speed driven gear 61 are integrally connected to form the first speed stage.
- the shift fork 91 shifts the sleeve 202 toward the third speed driven gear 63 by the shift device 90
- the rotation of the first countershaft 31 and the third speed driven gear 63 is similarly synchronized. Later, both are integrally connected to form the third speed stage.
- the second to fourth shift clutches 102 to 104 have substantially the same structure as that of the first shift clutch 101, and only have different attachment positions.
- the second shift clutch 102 selectively connects the second speed driven gear 62 and the sixth speed driven gear 66 to the second countershaft 32 to form the second speed stage and the sixth speed stage.
- the third shift clutch 103 selectively connects the fourth speed driven gear 64 and the reverse gear 70 to the first countershaft 31 to form the fourth speed and the reverse speed.
- the fourth shift clutch 104 selectively connects the fifth speed driven gear 65 and the seventh speed driven gear 67 to the first countershaft 31 to form the fifth speed stage and the seventh speed stage.
- each shift device 90 for driving the first to fourth shift clutches 101 to 104 will be described with reference to FIGS.
- Each shift device 90 is fixed to the outer peripheral surface of the transmission case 11 with bolts (not shown).
- Each shift device 90 is detachably attached to the outer peripheral surface of the transmission case 11.
- each shift device 90 includes a motor 92 that is a drive source, an actuator case 98, a pinion shaft 94, a worm wheel 93 that is integrally formed coaxially with the pinion shaft 94, and a worm wheel. 93, and a worm 100 that is formed on the rotating shaft of the motor 92 and is driven to rotate by the motor 92.
- the pinion shaft 94 is rotationally driven by the rotation of the motor 92.
- Each shift device 90 includes an oil seal 99 that supports the pinion shaft 94, a pinion 94a formed at the tip of the pinion shaft 94, and a rack 95a that meshes with the pinion 94a in a part of the cylindrical outer peripheral portion.
- a shaft 95 (transmission shaft member) and a shift fork 91 (transmission member) fixed to the fork shaft 95 are provided.
- the actuator case 98 has a main body 96 and a lid body 97.
- the main body 96 has a substantially rectangular parallelepiped shape, and the upper part in FIG.
- the main body 96 includes a bottom wall 96a having a rectangular shape, long side walls 96b and 96b erected from four sides of the bottom wall 96a, short side walls 96c and 96c, and side walls 96b. , 96b, 96c, 96c of FIG. 4, and a bolt fastening collar 96d erected with a surface parallel to the bottom wall 96a.
- Four through holes are provided at predetermined positions of the flange portion 96d.
- a cylindrical wall 96e is provided on the bottom wall 96a so as to protrude from the actuator case 98 coaxially with the pinion shaft 94.
- An oil seal 99 as a seal member is interposed between the pinion shaft 94 and the cylindrical wall 96e in a liquid-tight manner. This prevents external water, dust, and dust from entering the shift device.
- a bottomed cylindrical wall 11 a is provided in the transmission case 11 so as to be coaxial with the pinion shaft 94 from the outer peripheral wall of the transmission case 11.
- An oil seal 106 as a seal member is liquid-tightly interposed between the pinion shaft 94 and the cylindrical wall 11a.
- the bottom wall 96a and the bottom surface of the cylindrical wall 11a are provided with a through-hole 96f and a bearing 105 described later coaxially with the pinion shaft 94, and the pinion shaft 94 is inserted therethrough.
- the lid 97 is for preventing water and foreign matter from entering the actuator case 98, and is fixed to the upper surfaces of the side walls 96b, 96b, 96c, 96c by screws or the like.
- a cylindrical wall 97 a is provided on the lid 97 so as to be coaxial with the pinion shaft 94 and project into the actuator case 98, thereby forming a bearing at the end of the pinion shaft 94.
- a pinion 94a is formed at the tip of the pinion shaft 94 on the transmission case 11 side, and is disposed so as to protrude from the transmission case 11 by a predetermined amount.
- the other end of the pinion shaft 94 is supported by a cylindrical wall 97 a provided on the lid body 97 of the actuator case 98.
- the worm wheel 93 is coaxially and integrally fixed with the pinion shaft 94 between the lid body 97 and the bottom wall 96a.
- the flat surface of the worm wheel 93 on the bottom wall 96a side is slidably supported on the upper end surface in FIG. 4 of the cylindrical wall 96e protruding from the bottom wall 96a.
- the worm 100 is provided at the tip of the rotating shaft 92a of the motor 92.
- the worm 100 meshes with the worm wheel 93 and is rotated by a motor 92 to rotate the worm wheel 93.
- the motor 92 has a rotating shaft 92a of the motor 92 disposed along the bottom wall 96a of the actuator case 98 so that the housing portion 92b does not protrude outward. Is fixed to the bottom wall 96a.
- the bearing 105 which rotatably supports the pinion shaft 94, passes through the position where the pinion shaft 94 intersects the bottom surface of the cylindrical wall 11a of the transmission case 11.
- the bearing 105 has a function of suppressing deflection in a direction orthogonal to the axis of the pinion shaft 94.
- the bearing 105 has a guide function for inserting the pinion shaft 94 into the transmission case 11 and engaging the pinion 94a with a rack 95a of each fork shaft 95 described later.
- Each fork shaft 95 (transmission shaft member) is supported in the transmission case 11 in parallel with the first auxiliary shaft 31 and the second auxiliary shaft 32, and is reciprocally movable in the axial direction.
- the bearing portion of the transmission case 11 that supports each fork shaft 95 has a position holding device 23 that holds the movement at a predetermined position (see FIG. 1).
- the position holding device 23 may have any structure. However, in the present embodiment, as shown in FIG. 8, a recess 24 is provided on the bearing side, and a leaf spring 25 in which the protruding portion 26 slightly protrudes in the bearing inner diameter portion is provided in the recess 24.
- a concave portion 27 that accommodates the protruding portion 26 of the leaf spring 25 is engraved at a predetermined position of the fork shaft 95.
- the fork shaft 95 is slightly held in the axial direction at a predetermined position by engaging the protrusion 26 with the recess 27.
- both axial end portions of the recess 27, that is, the outer peripheral surface of the fork shaft 95 dents the protruding portion 26 of the leaf spring 25.
- the fork shaft 95 can be moved freely by being pushed down into the position 24.
- the position holding device 23 may be any mechanism other than this.
- each fork shaft 95 is held at a predetermined position in the axial direction by the position holding device 23.
- the predetermined position of the fork shaft 95 means that the sleeves 202 of the first to fourth shift clutches 101 to 104 engaged with the shift fork 91 fixed to the fork shaft 95 are in any gear stage.
- the position shall be neutral when not connected. However, it is not limited to this form and may be held at any position.
- the predetermined position held by the position holding device 23 may be a position that is not used when the shift device 90 is operated thereafter.
- the motor 92 is operated to move the fork shaft 95 from a predetermined holding position to a position where it is not used when the shift device 90 is operated thereafter. Then, the moved position may be set as the initial position of operation.
- the concave portion 27 of the fork shaft 95 does not pass through the protruding portion 26 of the position holding device 23, and therefore, rattling of the operation that occurs every time the protruding portion 26 is engaged with the concave portion 27. There is no risk of such a problem.
- a rack 95a is formed on a part of the cylindrical outer periphery of each fork shaft 95, and the rack 95a and the pinion 94a are engaged with each other.
- the width of the rack 95a (the number of teeth) may be determined from the required operating amount of each fork shaft 95. At this time, the required operation amount is within a range in which the shift fork 91 engaged with the sleeve 202 is operated in the axial direction of the fork shaft 95 to operate the sleeve 202 and the shift clutches 101 to 104 can be engaged and disengaged. equal.
- a chamfer 76 is formed at the tooth width direction end portion of the tooth 95 of the rack 95a included in the fork shaft 95 held at a predetermined position by the position holding device 23. Specifically, the chamfer 76 is formed only in the rack 95a that meshes when the pinion shaft 94 is inserted into the bearing 105 provided in the transmission case 11 in the axial direction. In this embodiment, when the pinion 94a inserted from the bearing 105 approaches, a chamfer 76 is provided on a total of four teeth in the vicinity of the pinion 94a (see FIG. 5).
- the chamfer 76 is a known one and includes a tip T and a tapered surface tp.
- the tip T is a ridge line formed by intersecting the left and right (in FIG. 5) tapered surfaces tp.
- the angle of the taper tp is such that when the pinion 94a comes into contact with the taper tp and further a force is applied in parallel with the tooth traces of the rack 95a, the pinion 94a slides on the taper tp and the shaft of the fork shaft 95 is satisfactorily
- An angle at which component force in the direction can be applied is preferable, and may be determined by experiment.
- a shift fork 91 is fixed to each fork shaft 95, and each shift fork 91 is engaged with each sleeve 202 of each shift clutch 101-104.
- the tapered surface tp is pressed parallel to the tooth trace of the rack 95a.
- the fork shaft 95 moves in the axial direction in response to a component force in the axial direction of the fork shaft 95 according to the magnitude of the force with which the tapered surface tp of the chamfer 76 is pressed and the angle of the tapered surface tp.
- the chamfer 76 guides the pinion 94a to the rack 95a in a short time and can be assembled at low cost.
- the shift device 90 is applied to a dual clutch automatic transmission.
- Many dual clutch automatic transmissions have two or more countershafts, and it is necessary to provide a shift device for each countershaft.
- the number of shift devices 90 required for an automatic transmission with one countershaft increases, and the merit when the shift devices are assembled in a short time is even greater.
- the shift device 90 provided for each fork shaft 95 is operated, and the shift clutches 101 to 104 are switched.
- the present invention is not limited to this, and the number of fork shafts 95 may be more than four, and the number of set shafts is arbitrary. Then, the shift devices 90 may be provided according to the number of fork shafts provided.
- the tooth width on the bearing 105 side which is the side into which the pinion shaft 94 is inserted, of the teeth of the rack 95a of the fork shaft 95 (transmission shaft member).
- a chamfer 76 is formed at the direction end. Therefore, when the pinion shaft 94 is moved closer to the rack 95a while being guided by the bearing 105 formed in the transmission case 11 during assembly, the teeth of the pinion 94a are adjacent to the teeth of the opposing rack 95a. It can be easily engaged between the tips T of the chamfer 76.
- the taper portion of the chamfer 76 formed on the rack 95a is pressed in parallel with the tooth trace of the rack 95a by the teeth of the pinion 94a.
- the fork shaft 95 (transmission shaft member) receives a component force in the moving direction of the fork shaft 95 according to the magnitude of the pressed force and the taper angle of the chamfer 76, and in the axial direction.
- the pinion 94a meshes with the rack 95a.
- the speed change shaft member is the fork shaft 95. That is, in the shift device 90, a rack 95a for meshing the pinion 94a is formed for each of a plurality of transmission shaft members (fork shafts 95), and the fork shaft 95 and the shift fork 91 are moved by rotationally driving the pinion 94a. Then, the gear mechanism is changed by disengaging the transmission mechanism.
- the shift device 90 is provided by the number of the fork shafts 95, and the effect of the time shortened when the shift device 90 is assembled becomes large.
- the transmission shaft member (fork shaft 95) is held by the position holding device 23 at a predetermined position in the axial direction.
- the chamfer 76 is attached only to a plurality of teeth of the rack 95a meshing with the tip of the pinion 94a. Provided. For this reason, the addition of the chamfer 76 which reduces the intensity
- the rack 95a is formed on the cylindrical fork shaft 95, when the pinion shaft 94 is inserted into the bearing 105 provided in the transmission case 11 along the axial direction, The pinion 94a is guided by a chamfer 76 formed at the end of the rack 95a on the bearing 105 side in the tooth width direction, and is guided by the cylindrical surface of the fork shaft 95 (transmission shaft member) connected to the tooth bottom of the rack 95a. It meshes with the rack 95a. In this way, variations in the radial direction of the pinion shaft 94 can be absorbed, and the pinion 94a can be satisfactorily engaged with the rack 95a in a short time and assembled at low cost.
- the shift device 110 selects a gear stage gate, that is, a selection mechanism SE that selects which fork shaft to move, and each shift clutch 101 by moving the fork shaft in the axial direction. And a shift mechanism S for engaging and disengaging .about.104. Only one shift device 110 is provided in the automatic transmission 2. And in 2nd Embodiment, the chamfer which concerns on this invention is provided in the selection mechanism SE part.
- the automatic transmission 2 according to the second embodiment will be described.
- the automatic transmission 2 will be described on the assumption that the present invention is applied to the dual clutch automatic transmission applied in the first embodiment. Therefore, a detailed description of the structure and operation of the automatic transmission 2 will be omitted, and only the shift device 110 will be mainly described based on FIGS. 6 and 7.
- symbol is attached
- the shift device 110 includes the select mechanism SE that selects the gear stage gate and the shift mechanism S that switches the gear stage by moving the fork shaft.
- the shift device 110 includes, as the select mechanism S, an actuator case 108, a select motor 112 (corresponding to a drive source of the present invention), a motor shaft pinion 124, a slide shaft 113, and a first rack. 113a, a second rack 113b, and a select shaft 114.
- the shift device 110 includes a select shaft pinion 114a having an outer diameter larger than the select shaft 114 formed in the vicinity of the tip end portion of the select shaft 114, an engaging portion 125, a fork shaft 115, a shift fork 111, have.
- the actuator case 108 is formed as shown in FIG. 6, and the select motor 112 is fixed from the outside by a bolt or the like.
- the actuator case 108 is fixed to the transmission case 121 from the outside of the transmission case 121 with a bolt or the like.
- the actuator case 108 communicates with the transmission case 121 and is integrally formed.
- the motor shaft pinion 124 is formed at the tip of the rotation shaft 112 a of the select motor 112.
- the slide shaft 113 (corresponding to the transmission shaft member of the present invention) has one end in the actuator case 108 formed integrally with the transmission case 121 and the other end in the support portion formed in the transmission case 121. Are configured to be movable in the axial direction. At the time of assembly, the slide shaft 113 is held at a predetermined position by the same position holding device 23 as that of the first embodiment provided in the support portion.
- a first rack 113 a that meshes with the motor shaft pinion 124 is formed on a part of the cylindrical outer peripheral portion of the slide shaft 113.
- the second rack 113b for meshing with a select shaft pinion 114a of the select shaft 114, which will be described later, is part of the outer periphery of the cylinder at a position corresponding to the back surface of the first rack 113a in this embodiment. Is formed.
- the side on which the pinion 114a of the select shaft 114 approaches (the right side in FIG. 6), that is, the end portion in the tooth width direction on the side of the integral support portion 136 that is a bearing described later.
- a chamfer 126 is formed.
- the number of teeth provided with the chamfer 126 is a total of four teeth in the vicinity of the close pinion 114a as in the case of the first embodiment (see FIG. 5).
- the chamfer 126 has the same shape as the chamfer 76 of the first embodiment.
- select shaft 114 (corresponding to the pinion shaft and speed change member of the present invention) is operated by the select motor 112 so that the motor shaft pinion 124, the first rack 113a, the slide shaft 113, the second rack 113b, and the select shaft pinion. It is rotationally driven via 114a. In this way, the select shaft 114 and the slide shaft 113 are connected by the second rack 113b and the pinion 114a engaging with each other.
- the select shaft pinion 114a is formed in the vicinity of the tip of the select shaft 114 with a larger outer diameter than the select shaft 114.
- the tip portion refers to an end portion (on the left side in FIG. 6) on which the select shaft 114 is brought closer to the second rack 113b when meshing with the second rack 113b.
- the select shaft 114 is supported at one end (right side in FIG. 6) by a support provided on the clutch housing 122, and the other end on the side where the select shaft pinion 114a is formed is connected to the transmission. It is supported by a support portion provided on the case 121. At this time, the select shaft 114 is supported so as to be movable in the axial direction and to be rotatable.
- the fork shaft 115 is supported by a support portion provided in the clutch housing 122 in the same manner as the support portion where one end of the select shaft 114 is supported. At this time, the support portion of the fork shaft 115 and the support portion of the select shaft 114 are integrally formed to form an integrated support portion 136 (bearing). As shown in FIG. 7, when the clutch housing 122 is assembled to the transmission case 121, the select shaft 114 and the fork shaft 115 are assembled at the same time while being cantilevered by the integrated integral support portion 136. At this time, the transmission case 121 is engaged with a pin 135 inserted in the clutch housing 122 by a guide hole provided in the transmission case 121 (corresponding to a bearing provided in the transmission case 121 according to the present invention). As a result, the clutch housing 122 is assembled while being guided in the axial direction of the select shaft 114 and the fork shaft 115.
- the shift fork 111 is fixed to the fork shaft 115 and engaged with the sleeves 202 of the shift clutches 101 to 104, respectively.
- the engaging portion 125 (corresponding to the speed change mechanism of the present invention) has a protrusion 114b provided on the select shaft 114 and a recess 115a that engages with the protrusion 114b.
- the protrusion 114b and the recess 115a are engaged and disengaged by the rotation of the select shaft 114 around the axis.
- a plurality of other fork shafts have a recess 115 a of the engaging portion 125.
- the protrusion 114b is engaged with the concave portion 115a of any of the fork shafts by the rotation of the select shaft 114 around the axis, and the fork shaft is selected.
- the select shaft 114 is moved in the axial direction by the shift mechanism S, so that the fork shaft 115 and the shift fork 111 are moved in the axial direction. Then, the gear 202 is switched by moving the sleeve 202 with which the shift fork 111 is engaged.
- the shift mechanism S is provided separately from the select mechanism SE.
- the shift motor 142 of the shift mechanism S is fixed to the actuator case 109 as shown in FIG.
- the rotational driving force of the shift motor 142 is transmitted to the pinion 144 via a speed reducer 143 (details not shown) provided in the actuator case 109.
- the pinion 144 meshes with a circumferential rack 145 formed on the outer periphery of the select shaft 114 in the transmission case 121.
- the actuator case 108 to which the select motor 112, the motor shaft pinion 124, and the slide shaft 113 are assembled is assembled to the outer peripheral surface of the transmission case 121.
- the slide shaft 113 protrudes and is inserted into the transmission case 121.
- the end portion of the slide shaft 113 is supported by a support portion formed in the transmission case 121 so as to be movable in the axial direction.
- the slide shaft 113 is held at a predetermined position by the position holding device 23 provided in the support portion.
- a chamfer 126 including a tip T and a tapered surface tp is formed at the end in the tooth width direction on the side of the integral support portion 136 (bearing) of the teeth of the second rack 113b with which the select shaft pinion 114a meshes. For this reason, when the select shaft pinion 114a of the select shaft 114 is brought closer to the teeth of the second rack 113b, the teeth of the select shaft pinion 114a can easily enter between the tips T of the adjacent chamfers 126.
- the select shaft pinion 114a when the select shaft pinion 114a is pushed toward the second rack 113b, the teeth of the select shaft pinion 114a that have entered between the tips T of the adjacent chamfers 126 are formed at a predetermined angle from the tip T of the chamfer 126.
- the left or right tapered surface tp is pressed in parallel with the tooth trace of the second rack 113b.
- the slide shaft 113 moves in the axial direction in response to a component force in the axial direction of the slide shaft 113 corresponding to the magnitude of the force with which the tapered surface tp of the chamfer 126 is pressed and the angle of the tapered surface tp.
- the select shaft pinion 114a is guided to the chamfer 126 by way of the chamfer 126 when the second rack 113b and the select shaft pinion 114a are assembled.
- the select shaft pinion 114a can be satisfactorily engaged with the second rack 113b in a short time, and can be assembled at a low cost, and the same effect as in the first embodiment can be expected.
- the chamfers 76 and 126 are formed on only a part of the teeth of the racks 95a and 113b.
- the present invention is not limited to this and may be formed on all the teeth. This also has an effect.
- the position holding device 23 is provided, but it may not be provided. In that case, as described above, chamfers may be formed on all teeth, or chamfers may be formed on more teeth than the number (4) of chamfers formed in this embodiment without providing all teeth. It is only necessary to ensure that the pinion meshes with the teeth of the rack in which the chamfer is formed.
- the chamfers 76 and 126 are provided in the racks 95a and 113b.
- the chamfers are not provided in the racks 95a and 113b, and chamfers are provided at the tips of the teeth of the pinion 94a and the select shaft pinion 114a. May be provided.
- a chamfer may be provided in both the racks 95a and 113b and the pinions 94a and 114a, and the same effect is obtained.
- the invention is embodied by the dual clutch type automatic transmission.
- the invention is not limited to this, and the invention is applied to an automated manual transmission (AMT) in which the clutch of the manual transmission is automated. May be.
- AMT automated manual transmission
- the transmission shaft members are the fork shaft 95 and the slide shaft 113, respectively.
- the present invention is not limited to this, and the rod connected to the shift lever of the AMT FR vehicle is a transmission shaft.
- a rack part may be formed on the rod as a member. This also provides the same effect as in the present embodiment.
- shift devices 90 and 110 may be applied to other automatic transmissions such as motorcycles instead of being applied to automatic transmissions for automobiles.
- the shift device that can be easily assembled according to the present invention can be applied to an automatic transmission of a vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Gear-Shifting Mechanisms (AREA)
Abstract
簡易な構成によって、短時間で組み付けが行える自動変速機のシフト装置を提供するため、ピニオンおよびラックの少なくとも一方にチャンファを形成する。これにより、ピニオン軸が、トランスミッションケースに設けられた軸受に挿入されるとチャンファがピニオン軸を誘導して、ピニオンとラックとを短時間で良好に噛合させる。
Description
本発明は、車両用自動変速機のシフト装置に関する。
従来、自動車などの車両用の自動変速機として、動力の伝達効率がよいとされている歯車式手動変速機をベースにした変速機の自動化がいくつか提案されている。例えば特許文献1に開示されるように、電動モータによってフォーク駆動機構(以降シフト装置と称す)を駆動し、シフト装置が有する、フォークに係合されたギヤシフトクラッチのスリーブを作動させギヤ段を切替えるものがある。
具体的には、特許文献1に開示される技術では、シフト装置が、4つのギヤシフトクラッチ101~104にそれぞれ対応して4つ設けられている。そして電動モータ131が、電動モータ131の回転軸にそれぞれ設けられたウォームギヤ132を回転駆動させる。そして、ウォームギヤ132は、ウォームギヤ132に噛合するウォームホイール133をそれぞれ回転駆動させる。ウォームホイール133の回転軸は各電動モータ131の回転軸と直交して配置されている。ウォームホイール133の回転軸(ピニオン軸)の先端には、ピニオンギヤ134が、それぞれ形成され、当該ピニオンギヤ134は、ラック軸135(フォークシャフト)に形成された各ラック部と噛合している。これにより電動モータ131の駆動によって、ラック部に噛合するピニオンギヤ134が回転駆動されると、ラック軸135に固定されたフォーク121~124が軸方向に進退移動し、ギヤシフトクラッチ101~104のスリーブ302を作動させ、ギヤ段を切替える。
上述の様に構成される特許文献1に記載の従来技術においては、ラック軸135(フォークシャフト)が自動変速機のケース内において、変速機の出力軸と平行に支承されている。そしてピニオン軸を含むシフト装置が、自動変速機のケースの外から組み付けられる。このときピニオン軸は、ピニオンギヤ134が形成された側からケースに貫通された支持穴に挿通され、ピニオンギヤ134がラック軸135に形成されたラック部の歯部と噛合するよう組み付けがされる。そしてピニオンギヤ134とラック部の歯部とが良好に噛合せず歯部同士が干渉する場合には、ピニオンギヤ134を少しずつ回転させ、良好に噛合できる位置を探りながら組み付けを行なう必要があり、組み付け工数が増大しコスト高になる虞がある。
本発明は上記課題に鑑みてなされたものであり、簡易な構成によって短時間で組み付けが行える自動変速機のシフト装置を提供することを目的とする。
上記の課題を解決するために、請求項1に係る自動変速機のシフト装置の発明は、駆動源と、前記駆動源によって回転駆動されトランスミッションケースに設けられた軸受によって回転可能に支承されたピニオン軸と、前記ピニオン軸の先端に形成されるピニオンと、前記トランスミッションケースに軸線方向に移動可能に支持される変速軸部材と、前記変速軸部材に連結され該変速軸部材の作動によって変速機構を係脱させる変速部材と、前記変速軸部材の円筒外周部の一部に形成されるラックと、前記ラックの歯の前記軸受側の歯幅方向端部および前記ピニオンの歯の先端部の少なくとも一方に形成されるチャンファと、を備え、前記ピニオン軸が前記トランスミッションケースに設けられた軸受に軸線方向に挿入されると前記ピニオンおよび前記ラックの少なくとも一方に形成された前記チャンファに誘導され前記ピニオンと前記ラックとが噛合される。
請求項2に係る自動変速機のシフト装置の発明は、請求項1において、前記変速軸部材は前記変速機構のスリーブに係合するフォークが固定され前記軸線方向への作動によって前記フォークを駆動し前記スリーブを作動させて前記変速機構を係脱するフォークシャフトである。
請求項3に係る自動変速機のシフト装置の発明は、請求項1または2において、前記変速軸部材は前記軸線方向における所定の位置で移動が保持される位置保持装置を有し、前記ラックに形成された前記チャンファは、前記位置保持装置によって前記変速軸部材が前記所定の位置に保持された状態において、前記ピニオン軸を前記軸受にガイドさせながら挿入したときに前記ピニオンと噛合する前記ラックの複数の歯のみに設けられる。
請求項4に係る自動変速機のシフト装置の発明は、請求項1乃至3のいずれか1項において、前記ピニオン軸が前記トランスミッションケースに設けられた軸受に軸線方向に挿入されると前記ピニオンは前記ラックの前記軸受側の歯幅方向端部のチャンファに誘導されるとともに、前記ラックの歯底に連なる前記変速軸部材の円筒面にガイドされて前記ラックと噛合される。
請求項1の発明によれば、変速軸部材のラックの歯において、ピニオン軸が挿入されてくる軸受側の端部、およびピニオンの歯の先端部の少なくとも一方にはチャンファが形成されている。このため、シフト装置の組み付け時にピニオン軸がトランスミッションケースに形成された軸受にガイドされながらラックに接近し当接すると、ピニオンの歯またはラックの歯は対向するピニオンの歯またはラックの歯に形成された隣り合うチャンファの先端間に容易に係合する。そして、ピニオン軸がさらに挿入されると、ラックは、自身の歯に形成されたチャンファのテーパ面が、ピニオンの歯、またはピニオンの歯に形成されたチャンファのテーパ面によって、または、チャンファを設けていないラックの歯が、ピニオンに形成されたチャンファのテーパ面によって、ラックの歯筋と平行に押しつけられる。こうすることにより変速軸部材は、押しつけられた力の大きさ、およびチャンファのテーパ角度に応じた変速軸部材の移動方向への分力を受けて軸線方向に移動し、やがてピニオンはラックに噛合する。これによりスペースが狭く組み付けが困難な自動変速機においてピニオン軸の回転方向のばらつきを吸収してピニオンをラックに短時間で良好に噛合させ、低コストに組み付けることができる。
請求項2の発明によれば、変速軸部材はフォークシャフトである。つまり、シフト装置は複数ある変速軸部材(フォークシャフト)毎にピニオンが噛合するためのラックが形成され、ピニオンが回転駆動することによってフォークシャフトおよびシフトフォークを移動させ変速機構を係脱させてギヤ段を変更する。このようにシフト装置は変速軸部材の数だけ設けられており、シフト装置を組み付ける際に短縮される時間の効果はより大きなものとなる。
請求項3の発明によれば、変速軸部材は位置保持装置によって軸線方向における所定の位置で移動が保持される。そして所定の位置に保持された状態において、組み付けのためピニオン軸を軸受にガイドさせながら挿入したときに、ピニオンと噛合するラックの複数の歯のみにチャンファが設けられる。このため、ラックの歯の強度を低減させるチャンファの形成を最小限に留めることができ信頼性が確保される。
請求項4の発明によれば、ラックが円筒の変速軸部材に形成されるので、ピニオン軸がトランスミッションケースに設けられた軸受に軸線方向に挿入されると、ピニオンはラックの軸受側の歯幅方向端部に形成されたチャンファに誘導されるとともに、ラックの歯底に連なる変速軸部材の円筒面にガイドされてラックと噛合される。このようにピニオン軸の半径方向のばらつきを吸収し、ピニオンをラックに短時間で良好に噛合させ低コストに組み付けることができる。
以下、本発明を具体化したシフト装置が適用される自動変速機の第1の実施形態について、図1~図5を参照し説明する。第1の実施形態である自動変速機1は、図1~図3に示すように、前進7速のデュアルクラッチ式自動変速機であり、ケース10内の軸線方向に、第1入力軸21、第2入力軸22、第1副軸31、及び第2副軸32を備えている。またケース10内には、図3に示すように、デュアルクラッチ40、各変速段の駆動ギヤ51~57、最終減速駆動ギヤ58、68、各変速段の従動ギヤ61~67、後進ギヤ70、及びリングギヤ80を備えている。以降、第1入力軸21、第2入力軸22、第1副軸31、及び第2副軸32と同一軸方向を入力軸方向と称す。
ケース10は、図1に示すように、トランスミッションケース11と、クラッチハウジング12とを有する。図2に示すように、トランスミッションケース11には第1副軸31、及び第2副軸32に対してそれぞれ設けられた第1~第4シフトクラッチ101~104(本発明の変速機構に該当する)を駆動し、各変速段を係脱して切替えるための本発明に係る各シフト装置90が設けられている(図2、図4参照)。なお、図2においては代表として2つのシフト装置90のみを示している。
図1に示すように、クラッチハウジング12は、トランスミッションケース11の端面と対向する端面を有し、トランスミッションケース11とボルト締結により固定されている。このクラッチハウジング12は、複数の軸受により各軸を支承するとともに、内部にデュアルクラッチ40を収容している。
図1、図3に示すように、第1入力軸21は、軸受によりトランスミッションケース11、及びクラッチハウジング12に対して回転可能に支承されている。また、第1入力軸21の外周面には、軸受を支持する部位と複数の外歯スプラインが形成されている。そして、第1入力軸21には、1速駆動ギヤ51及び3速駆動ギヤ53が直接形成されている。5速駆動ギヤ55及び7速駆動ギヤ57は、第1入力軸21の外周面に形成された外歯スプラインに、スプライン嵌合により圧入されている。また、第1入力軸21の端部には、デュアルクラッチ40の第1クラッチ41に連結される連結部が形成されている。
第2入力軸22は、中空軸状に形成されており、第1入力軸21の1部の外周に複数の軸受を介して回転可能に支承され、且つ、軸受によりトランスミッションケース11、及びクラッチハウジング12に対して回転可能に支承されている。つまり、第2入力軸22は、第1入力軸21に対して同心に相対回転可能に配置されている。また、第2入力軸22の外周面には、第1入力軸21と同様に、軸受を支持する部位と複数の外歯歯車が形成されている。第2入力軸22には、2速駆動ギヤ52、4速駆動ギヤ54及び6速駆動ギヤ56が形成されている。また、第2入力軸22の端部には、デュアルクラッチ40の第2クラッチ42に連結される連結部が形成されている。
第1副軸31は、軸受によりトランスミッションケース11及びクラッチハウジング12に対して回転可能に支承され、トランスミッションケース11内において、第1入力軸21に平行に配置されている。また、第1副軸31の外周面には、最終減速駆動ギヤ58が形成されるとともに、軸受を支持する部位と複数の外歯スプラインが形成されている。第1副軸31の外歯スプラインには、第1及び第3シフトクラッチ101、103の各クラッチハブ201がスプライン嵌合により圧入されている。
図2に示すように、第1及び第3シフトクラッチ101、103部近傍のトランスミッションケース11外周面には第1及び第3シフトクラッチ101、103を駆動する各シフト装置90がそれぞれ固定されている。最終減速駆動ギヤ58は、ディファレンシャル(差動機構)のリングギヤ80に噛合している。リングギヤ80は、トランスミッションケース11内に配置されるギヤのなかで軸線方向において内燃機関E/G側に配置されている。
さらに、第1副軸31には、1速従動ギヤ61、及び3速従動ギヤ63、4速従動ギヤ64、後進ギヤ70を遊転可能に支持する支持部が形成されている。
さらに、第1副軸31には、1速従動ギヤ61、及び3速従動ギヤ63、4速従動ギヤ64、後進ギヤ70を遊転可能に支持する支持部が形成されている。
1速従動ギヤ61は、第1入力軸21に形成された1速駆動ギヤ51と常時噛合されている。また、3速従動ギヤ63は、第1入力軸21に形成された3速駆動ギヤ53と常時噛合されている。
また、4速従動ギヤ64は、第2入力軸22に形成された4速駆動ギヤ54と常時噛合されている。
さらに、後進ギヤ70は、第2出力軸31に遊転可能に支持される2速従動ギヤ62に一体的に形成された小径ギヤ62aに常時噛合されている。これにより、2速従動ギヤ62と噛合される第2入力軸22の2速駆動ギヤ52が、第2入力軸22によって回転されると後進ギヤ70も同時に回転する。
また、4速従動ギヤ64は、第2入力軸22に形成された4速駆動ギヤ54と常時噛合されている。
さらに、後進ギヤ70は、第2出力軸31に遊転可能に支持される2速従動ギヤ62に一体的に形成された小径ギヤ62aに常時噛合されている。これにより、2速従動ギヤ62と噛合される第2入力軸22の2速駆動ギヤ52が、第2入力軸22によって回転されると後進ギヤ70も同時に回転する。
第2副軸32は、軸受によりトランスミッションケース11及びクラッチハウジング12に対して回転可能に軸承され、トランスミッションケース11内において第1入力軸21に平行に配置されている。また、第2副軸32の外周面には、第1副軸31と同様に、最終減速駆動ギヤ68が形成されるとともに、軸受を支持する部位と複数の外歯スプラインが形成されている。第2副軸32の外歯スプラインには、第2及び第4シフトクラッチ102、104の各クラッチハブ201がスプライン嵌合により圧入されている。第2、第4シフトクラッチ102、104部近傍のトランスミッションケース11の外周面には第2、第4シフトクラッチ102、104を駆動する各シフト装置90がそれぞれ設けられている。最終減速駆動ギヤ68は、ディファレンシャルのリングギヤ80に噛合している。さらに、第2副軸32には、2速従動ギヤ62、5速従動ギヤ65、6速従動ギヤ66および7速従動ギヤ67を、遊転可能に支持する支持部が形成されている。
2速従動ギヤ62は、第2入力軸22に形成された2速駆動ギヤ52と常時噛合されている。また、5速従動ギヤ65は、第1入力軸21に形成された5速駆動ギヤ55と常時噛合されている。また、6速従動ギヤ66は、第2入力軸22に形成された6速駆動ギヤ56と常時噛合されている。さらに、7速従動ギヤ67は、第2副軸32に遊転可能に支持される7速駆動ギヤ57に常時噛合されている。
デュアルクラッチ40は、図3に示すように、内燃機関E/Gの回転駆動力を第1入力軸21に伝達する第1クラッチ41と、内燃機関E/Gの駆動力を第2入力軸22に伝達する第2クラッチ42と、を有する。このデュアルクラッチ40は、図1の右側においてクラッチハウジング12に収容され、第1入力軸21及び第2入力軸22に対して同心に設けられている。第1クラッチ41は、第1入力軸21の連結部に連結され、第2クラッチ42は、第2入力軸22の連結部に連結されている。そして、車両の制御指令に基づき、第1、第2入力軸21、22に対し、第1、第2クラッチ41、42を順次作動させ、内燃機関E/Gとの連結を切り換えることにより、高速のシフト変更を可能としている。
リングギヤ80は、図3に示すように、最終減速駆動ギヤ58及び最終減速駆動ギヤ68に噛合されることで、第1副軸31及び第2副軸32に常時回転連結されている。このリングギヤ80は、ケース10に軸支される出力軸80a及び差動機構(図示せず)を介して車両の駆動輪(図示せず)に連結されている。
次に、第1~第4シフトクラッチ101~104(変速機構)について説明する。第1シフトクラッチ101は、第1副軸31の軸方向において、1速従動ギヤ61と3速従動ギヤ63との間に配置されている。第2シフトクラッチ102は、第2副軸32の軸方向において、2速従動ギヤ62と、6速従動ギヤ66と、の間に配置されている。また第3シフトクラッチ103は、第1副軸31の軸方向において、4速従動ギヤ64と、後進ギヤ70と、の間に配置されている。さらに第4シフトクラッチ104は、第2副軸32の軸方向において、5速従動ギヤ65と、7速従動ギヤ67と、の間に配置されている。
第1シフトクラッチ101は、第1副軸31にスプライン固定されたクラッチハブ201と、1速従動ギヤ61に圧入固定された1速係合部材205と、3速従動ギヤ63に圧入固定された3速係合部材205と、クラッチハブ201と左右の各係合部材205、205の間にそれぞれ介在されたシンクロナイザリング203と、クラッチハブ201の外周に軸線方向に移動自在にスプライン係合されたスリーブ202よりなる。第1シフトクラッチ101は、このような周知のシンクロメッシュ機構によって、各従動ギヤ61、63を、交互に第1副軸31に離脱可能に接続する。
第1シフトクラッチ101のスリーブ202は、中立位置では係合部材205、205の何れにも係合されていない。しかし、シフト装置90の作動によって、フォークシャフト95(本発明の変速軸部材に該当する)が、入力軸方向に駆動され、フォークシャフト95に固定されたスリーブ202の外周の環状溝に係合されたシフトフォーク91(本発明の変速部材に該当する)によりスリーブ202が1速従動ギヤ61側にシフトすれば、スリーブ202は、1速従動ギヤ61側のシンクロナイザリング203にスプライン係合する。そして第1副軸31と、1速従動ギヤ61と、の回転を同期させる。次にスリーブ202が1速係合部材205の外周の外歯スプラインと係合し、第1副軸31と、1速従動ギヤ61と、を一体的に連結して第1速段を形成する。またシフト装置90により、シフトフォーク91が、スリーブ202を、3速従動ギヤ63側にシフトされれば、同様にして第1副軸31と、3速従動ギヤ63と、の回転を同期させた後に、この両者を一体的に連結して第3速段を形成する。
第2~第4シフトクラッチ102~104は、第1シフトクラッチ101と実質的に同一構造で、取り付け位置が異なるのみである。第2シフトクラッチ102は、2速従動ギヤ62及び6速従動ギヤ66を第2副軸32に選択的に連結して2速段及び6速段を形成する。第3シフトクラッチ103は、4速従動ギヤ64及び後進ギヤ70を第1副軸31に選択的に連結して4速段及び後進段を形成する。さらに、第4シフトクラッチ104は、5速従動ギヤ65及び7速従動ギヤ67を第1副軸31に選択的に連結して5速段及び7速段を形成する。
次に第1~第4シフトクラッチ101~104を駆動するための本発明に係る各シフト装置90について図2、図4に基づいて説明する。各シフト装置90は、トランスミッションケース11の外周面に図略のボルトによって固定されている。各シフト装置90は、トランスミッションケース11の外周面に着脱自在である。
図4に示すように、各シフト装置90は、駆動源であるモータ92と、アクチュエータケース98と、ピニオン軸94と、ピニオン軸94と同軸で一体的に形成されたウォームホイール93と、ウォームホイール93と噛合し、モータ92の回転軸に形成されモータ92によって回転駆動されるウォーム100と、を有している。このような構成によりピニオン軸94はモータ92の回転により回転駆動される。
また、各シフト装置90は、ピニオン軸94を軸承するオイルシール99と、ピニオン軸94の先端に形成されたピニオン94aと、ピニオン94aと噛合するラック95aを円筒外周部の一部に備えたフォークシャフト95(変速軸部材)と、フォークシャフト95に固定されたシフトフォーク91(変速部材)と、を有している。
アクチュエータケース98は、本体96と、蓋体97と、を有している。本体96は、略直方体形状を有し、図4における上方が開口している。また本体96は、長方形形状を有した底壁96aと、底壁96aの4辺からそれぞれ立設される長辺の各側壁96b、96bと、短辺の各側壁96c、96cと、各側壁96b、96b、96c、96cの図4における下端から底壁96aと平行な面を有して立設されるボルト締結用の鍔部96dと、を備えている。鍔部96dの所定の位置には貫通孔(図略)が、4箇所設けられている。4箇所の貫通孔には、アクチュエータケース98を、トランスミッションケース11の外周面に固定する際に、ボルトが挿通される。また底壁96aには、ピニオン軸94と同軸に円筒壁96eが、アクチュエータケース98内に突設されている。ピニオン軸94と円筒壁96eとの間には、シール部材としてのオイルシール99が、液密に介在している。 これにより、外部の水、塵、および埃がシフト装置内部へ進入するのを防止している。また、トランスミッションケース11の外周壁からは、ピニオン軸94と同軸に、有底の円筒壁11aが、トランスミッションケース11内に突設されている。ピニオン軸94と円筒壁11aとの間には、シール部材としてのオイルシール106が、液密に介在している。これにより、トランスミッションケース11内のオイルが、外部へ漏出することが防止されている。底壁96aおよび円筒壁11aの底面には、ピニオン軸94と同軸に、貫通孔96fおよび後述する軸受105が設けられており、ピニオン軸94が挿通される。
蓋体97は、アクチュエータケース98の内部に、水や異物が混入するのを防止するためのものであり、スクリュ等により、側壁96b、96b、96c、96cの上面に固定されている。蓋体97には、ピニオン軸94と同軸に、円筒壁97aがアクチュエータケース98内に突設されており、ピニオン軸94の端部の軸受を形成している。
ピニオン軸94のトランスミッションケース11側の先端には、ピニオン94aが形成され、トランスミッションケース11内に所定量突出して配置されている。またピニオン軸94のもう一方の端部は、アクチュエータケース98の蓋体97に設けられた円筒壁97aに支持されている。
ウォームホイール93は、蓋体97と底壁96aとの間で、ピニオン軸94と同軸、かつ一体的に固定されている。そしてウォームホイール93の底壁96a側の平面は、底壁96aから突設された円筒壁96eの、図4における上端面上に低μで摺動可能に支持されている。
ウォーム100は、モータ92の回転軸92aの先端部に備えられている。ウォーム100は、ウォームホイール93に噛合し、モータ92によって回転駆動されてウォームホイール93を回転させる。そしてウォームホイール93の回転軸(=ピニオン軸94)は、モータ92の回転軸92aと直交して配置されている。モータ92は、自動変速機1の小型化のため、ハウジング部92bが外方に突出しないように、モータ92の回転軸92aが、アクチュエータケース98の底壁96aに沿って配置され、所定の方法により底壁96aに固定されている。
また、ピニオン軸94が、トランスミッションケース11の円筒壁11aの底面と交差する位置には、前述したとおり、ピニオン軸94を回転可能に軸承する、本発明に係る軸受105が、貫通している。軸受105は、ピニオン軸94の軸線と直交する方向への振れを抑制する機能を有している。また、軸受105は、ピニオン軸94をトランスミッションケース11内に挿入し、ピニオン94aを後述する各フォークシャフト95のラック95aに噛合させるときのガイド機能を有している。
各フォークシャフト95(変速軸部材)は、トランスミッションケース11内に、第1副軸31、第2副軸32と平行に軸承され、軸方向に往復動可能に配設されている。各フォークシャフト95を軸承するトランスミッションケース11の軸受部は、所定の位置で移動が保持される位置保持装置23を有している(図1参照)。位置保持装置23は、どのような構造を有していてもよい。しかし、本実施形態においては、図8に示すように、軸受側に窪み24を設け、窪み24の中に軸受内径部内に突出部26が若干突出する板ばね25を設けている。そしてフォークシャフト95の所定の位置に、板ばね25の突出部26を収容する凹部27が、刻設されている。これにより、フォークシャフト95は、凹部27に突出部26を係合させることにより所定の位置で軸線方向の移動が軽度に保持される。そして、モータ92を駆動させ、フォークシャフト95を軸線方向に移動させることにより、凹部27のいずれかの軸線方向両端部、即ちフォークシャフト95の外周面が、板ばね25の突出部26を、窪み24の中に押し下げることによって、フォークシャフト95の移動が自在となる。なお、位置保持装置23は、これ以外にもどのような機構であってもよい。
このような構成を有するので、各フォークシャフト95を組み付けた初期状態においては、各フォークシャフト95を位置保持装置23によって、軸方向における所定の位置に保持させておく。このとき、フォークシャフト95の所定の位置とは、フォークシャフト95に固定されるシフトフォーク91が係合する、第1~第4シフトクラッチ101~104の各スリーブ202を、いずれのギヤ段にも連結していない中立状態にする位置とする。ただし、この形態に限らず、どのような位置で保持してもよい。例えば、位置保持装置23によって保持した所定の位置は、以降シフト装置90を作動させたときには使用しない位置としてもよい。つまり、所定の位置で組み付けを終了させた後には、モータ92を作動させて、フォークシャフト95を所定の保持位置から、以降シフト装置90を作動させたときには使用しない位置まで移動させる。そして、移動させた位置を作動の初期位置として設定すればよい。これにより、通常の作動時においては、フォークシャフト95の凹部27は位置保持装置23の突出部26を通過しないので、凹部27に、突出部26が係合される度に発生する作動のガタつき等が生じる虞はない。
そして、前述のとおり、各フォークシャフト95の円筒外周部の一部には、ラック95aが形成され、ラック95aとピニオン94aとが噛合している。なお、ラック95aの幅(歯の枚数)は、各フォークシャフト95の必要作動量から決定すればよい。このとき、必要作動量とは、スリーブ202に係合するシフトフォーク91が、フォークシャフト95の軸方向に作動されてスリーブ202を作動させ、各シフトクラッチ101~104を係脱可能とする範囲に等しい。
位置保持装置23によって、所定の位置に保持されたフォークシャフト95が備えるラック95aの一部の歯の軸受105側の歯幅方向端部には、チャンファ76が形成されている。詳細には、ピニオン軸94が、トランスミッションケース11に設けられた軸受105に、軸線方向に挿入されたときに噛合するラック95aにのみチャンファ76が形成されている。本実施形態においては、軸受105から挿入されるピニオン94aが接近したときに、ピニオン94aの近傍にある計4歯にチャンファ76が設けられている(図5参照)。チャンファ76は公知のものであり、先端T及びテーパ面tpよりなる。先端Tは左右(図5において)のテーパ面tpが交差して形成される稜線である。テーパtpの角度はピニオン94aがテーパtpに接触後、さらに、ラック95aの歯筋と平行に力を付与されたときに、ピニオン94aがテーパtp上を摺動しながら良好にフォークシャフト95の軸方向への分力を付与できる角度が好ましく、実験によって決定すればよい。各フォークシャフト95には、シフトフォーク91がそれぞれ固定されており、各シフトフォーク91は、各シフトクラッチ101~104の各スリーブ202とそれぞれ係合している。
次に、上述した第1の実施形態のシフト装置90の組み付けに係る作用について説明する(図4参照)。前述したように、シフト装置90を組み付ける際には、各シフトクラッチ101~104は、前述したように位置保持装置23の作用によって中立位置にある。このような状態で、モータ92、ウォーム100、ウォームホイール93、およびピニオン軸94が組み付けられたアクチュエータケース98を、トランスミッションケース11の外周面に組み付ける。このため、まずピニオン軸94を、ピニオン94a側からトランスミッションケース11を貫通する軸受105に挿入する。そしてピニオン軸94を、軸受105にガイドさせながらトランスミッションケース11内に押込み、ピニオン94aをラック95aに接近させていく。
このとき、図5に示すようにフォークシャフト95のラック95aの歯の軸受105側の歯幅方向端部には先端T及びテーパ面tpよりなるチャンファ76が4歯形成されている。このため、ピニオン軸94のピニオン94aを、ラック95aの歯に接近させていくと、ピニオン94aの歯は容易に隣り合うチャンファ76の先端T間に入り込むことができる(図5(b)2点鎖線参照)。さらにピニオン軸94を、ラック95a側に押込んでいくと、ラック95aの歯の隣り合うチャンファ76の先端T間に入り込んだピニオン94aの歯はチャンファ76の先端Tから所定の角度で形成されるいずれかのテーパ面tpをラック95aの歯筋と平行に押しつける。そしてフォークシャフト95は、チャンファ76のテーパ面tpが押しつけられた力の大きさおよびテーパ面tpの角度に応じたフォークシャフト95の軸線方向への分力を受けて、軸線方向に移動する。このようにラック95aとピニオン94aの組み付け時にチャンファ76を介することによって、チャンファ76に誘導され、ピニオン94aをラック95aに短時間で良好に噛合させることができ、低コストに組み付けられる。
なお、第1の実施形態においては、シフト装置90を、デュアルクラッチ式自動変速機に適用させた。デュアルクラッチ式自動変速機では、副軸を2個以上備えるものが多く、各副軸に対してシフト装置をそれぞれ設ける必要がある。これにより副軸が1本の自動変速機に対し、必要なシフト装置90の数が多くなり、シフト装置を短時間で組み付けたときのメリットは一層大きなものとなる。
また、第1の実施形態においては、フォークシャフト95を4本設け、それぞれのフォークシャフト95に対して設けたシフト装置90を作動させ、各シフトクラッチ101~104の切り替えを行なった。しかしこれに限らずフォークシャフト95は、4本を越えて設けてもよく、設定本数は任意である。そして設けたフォークシャフトの本数に応じて、シフト装置90をそれぞれ設けてやればよい。
上述の説明から明らかな様に、第1の実施形態においては、フォークシャフト95(変速軸部材)のラック95aの歯において、ピニオン軸94が挿入されてくる側である、軸受105側の歯幅方向端部には、チャンファ76が形成されている。このため、組み付け時に、ピニオン軸94を、トランスミッションケース11に形成された軸受105にガイドさせながらラック95aに接近させていくと、ピニオン94aの歯は対向するラック95aの歯に形成された隣り合うチャンファ76の先端T間に容易に係合できる。そして、ピニオン軸94をさらに挿入していくと、ラック95aは、自身に形成されたチャンファ76のテーパ部が、ピニオン94aの歯によって、ラック95aの歯筋と平行に押しつけられる。こうすることにより、フォークシャフト95(変速軸部材)は、押しつけられた力の大きさ、およびチャンファ76のテーパ角度に応じた、フォークシャフト95の移動方向への分力を受けて、軸線方向に移動し、やがてピニオン94aは、ラック95aに噛合する。このようにスペースが狭く、組み付けが困難な自動変速機において、チャンファ76によって、ピニオン94aを誘導することにより、ピニオン94aの歯を、ラック95aに短時間で良好に噛合させ低コストに組み付けることができる。
また、第1の実施形態においては、変速軸部材は、フォークシャフト95である。つまり、シフト装置90は、複数ある変速軸部材(フォークシャフト95)毎にピニオン94aが噛合するためのラック95aが形成され、ピニオン94aが回転駆動することによって、フォークシャフト95およびシフトフォーク91を移動させ、変速機構を係脱させてギヤ段を変更する。このようにシフト装置90は、フォークシャフト95の数だけ設けられており、シフト装置90を組み付ける際に短縮される時間の効果は大きなものとなる。
また、第1の実施形態においては、変速軸部材(フォークシャフト95)は、位置保持装置23によって、軸線方向における所定の位置で移動が保持される。そして、所定の位置に保持された状態において、組み付けのため、ピニオン軸94を、軸受105にガイドさせながら挿入したときに、ピニオン94aの先端と噛合するラック95aの複数の歯のみにチャンファ76が設けられる。このため、ラック95aの歯の強度を低減させるチャンファ76の追加を最小限に留めることができ信頼性が向上される。
また、第1の実施形態においては、ラック95aが、円筒のフォークシャフト95に形成されるので、ピニオン軸94が、トランスミッションケース11に設けられた軸受105に軸線方向に沿って挿入されると、ピニオン94aは、ラック95aの軸受105側の歯幅方向端部に形成されたチャンファ76に誘導されるとともに、ラック95aの歯底に連なるフォークシャフト95(変速軸部材)の円筒面にガイドされてラック95aと噛合される。このようにピニオン軸94の半径方向のばらつきを吸収し、ピニオン94aをラック95aに短時間で良好に噛合させ低コストに組み付けることができる。
次に、第2の実施形態について説明する。第2の実施形態のシフト装置110は、ギヤ段のゲートを選択する、即ち、いずれのフォークシャフトを移動させるかを選択するセレクト機構SEと、フォークシャフトを軸線方向に移動させて各シフトクラッチ101~104の係脱を行なうシフト機構Sと、を有している。シフト装置110は、自動変速機2に1つだけ設けられる。そして、第2の実施形態においては、本発明に係るチャンファをセレクト機構SE部に設ける。
第2の実施形態にかかる自動変速機2について説明する。自動変速機2においても、第1の実施形態で適用したデュアルクラッチ式自動変速機に本発明を適用するものとして説明する。このため、自動変速機2の構造および作用についての詳細な説明は省略し、主にシフト装置110のみについて図6、図7に基づいて説明する。なお、第1の実施形態と同様の構成については、同じ符号を付して説明する。
シフト装置110は、上述したように、ギヤ段のゲートを選択するセレクト機構SEと、フォークシャフトを移動させてギヤ段を切替えるシフト機構Sと、を有している。図6に示すようにシフト装置110は、セレクト機構Sとして、アクチュエータケース108と、セレクトモータ112(本発明の駆動源に該当する)と、モータ軸ピニオン124と、スライドシャフト113と、第1ラック113aと、第2ラック113bと、セレクトシャフト114と、を有している。また、シフト装置110は、セレクトシャフト114の先端部近傍に形成されたセレクトシャフト114よりも大きな外径を有するセレクトシャフトピニオン114aと、係合部125と、フォークシャフト115と、シフトフォーク111と、を有している。
アクチュエータケース108は、図6に示すように形成され、セレクトモータ112が、外方からボルト等によって固定されている。そしてアクチュエータケース108は、トランスミッションケース121の外方からトランスミッションケース121にボルト等によって固定される。
アクチュエータケース108内は、トランスミッションケース121内と連通しており、一体的に形成されている。モータ軸ピニオン124は、セレクトモータ112の回転軸112aの先端に形成されている。
アクチュエータケース108内は、トランスミッションケース121内と連通しており、一体的に形成されている。モータ軸ピニオン124は、セレクトモータ112の回転軸112aの先端に形成されている。
スライドシャフト113(本発明の変速軸部材に該当する)は、トランスミッションケース121内と一体的に形成されているアクチュエータケース108内に一端を、またトランスミッションケース121内に形成された支持部に他端を、支持され、軸線方向に移動可能に構成されている。組み付け時においては、スライドシャフト113は、支持部に設けた第1の実施形態と同様の位置保持装置23によって所定の位置に保持されている。スライドシャフト113の円筒外周部の一部には、モータ軸ピニオン124と噛合する第1ラック113aが形成されている。
また、後述するセレクトシャフト114のセレクトシャフトピニオン114aと噛合するための本発明に係る第2ラック113bが、本実施形態においては第1ラック113aの裏面に相当する位置で円筒外周部の一部に形成されている。
さらに第2ラック113bの歯のうち、組み付け時に、セレクトシャフト114のピニオン114aが接近してくる側(図6において右側)、つまり後述する軸受である一体支持部136側の歯幅方向端部には、チャンファ126が形成されている。このとき、チャンファ126を設ける歯の数は、第1実施形態の場合と同様に接近したピニオン114aの近傍にある計4歯である(図5参照)。ただし、これは一例であるので、4歯に限定する必要はなく、いくつでもよい。チャンファ126は、第1の実施形態のチャンファ76と、同様の形状を有している。
前述したセレクトシャフト114(本発明のピニオン軸および変速部材に該当する)は、セレクトモータ112の作動によって、モータ軸ピニオン124、第1ラック113a、スライドシャフト113、第2ラック113b、およびセレクトシャフトピニオン114aを介して回転駆動される。このようにセレクトシャフト114と、スライドシャフト113と、は第2ラック113bと、ピニオン114aと、が噛合することにより連結されている。
前述したとおり、セレクトシャフトピニオン114aは、セレクトシャフト114の先端部近傍に、セレクトシャフト114より大きな外径で形成される。このとき先端部とは、セレクトシャフト114を、第2ラック113bに噛合させるときに、第2ラック113bに接近させていく側の端部(図6において左方)をいう。
そして、セレクトシャフト114は、一方の端部(図6において右方)を、クラッチハウジング122に設けられた支持部に支持され、セレクトシャフトピニオン114aが形成された側の他方の端部を、トランスミッションケース121に設けられた支持部に支持される。このときセレクトシャフト114は、軸方向への移動が可能であるとともに回転可能であるよう支持されている。
フォークシャフト115は、セレクトシャフト114の一方の端部が支持される支持部と同様に、クラッチハウジング122に設けられた支持部に支持されている。このとき、フォークシャフト115の支持部とセレクトシャフト114の支持部とは、一体で形成され、一体支持部136(軸受)を形成している。そして図7に示すように、クラッチハウジング122をトランスミッションケース121に組み付ける際に、セレクトシャフト114およびフォークシャフト115を、一体化された一体支持部136で片持ち支持しながら同時に組み付けるものである。なお、このとき、トランスミッションケース121は、トランスミッションケース121に設けられたガイド穴(本発明に係るトランスミッションケース121に設けられた軸受に該当する)が、クラッチハウジング122に挿入されたピン135に係合されることによって、セレクトシャフト114およびフォークシャフト115の軸線方向にガイドされながらクラッチハウジング122に接近して組み付けられる。
シフトフォーク111は、フォークシャフト115に固定され、各シフトクラッチ101~104の各スリーブ202とそれぞれ係合している。係合部125(本発明の変速機構に該当する)は、セレクトシャフト114に設けられた突部114bと、該突部114bと係合する凹部115aと、を有している。セレクトシャフト114の軸線回りの回動によって突部114bと凹部115aとは係脱される。複数ある別のフォークシャフトも同様に、係合部125の凹部115aを有している。このように、セレクトシャフト114の軸線回りの回動によって突部114bが、いずれかのフォークシャフトの凹部115aと係合し、フォークシャフトを選択する。
突部114bと凹部115aとが係合されている状態において、セレクトシャフト114がシフト機構Sによって軸線方向に移動されることにより、フォークシャフト115およびシフトフォーク111が軸線方向に移動する。そしてシフトフォーク111が係合するスリーブ202を移動させ変速ギヤ段の切替えを行なう。
シフト機構Sは、セレクト機構SEとは別体で設けられている。シフト機構Sのシフトモータ142は、図6に示すようにアクチュエータケース109に固定されている。シフトモータ142の回転駆動力はアクチュエータケース109内に設けられた減速装置143(詳細は図示しない)を介してピニオン144に伝達される。そしてピニオン144はトランスミッションケース121内で、セレクトシャフト114の外周に形成された円周ラック145と噛合している。これにより、シフトモータ142が作動すると、ピニオン144が回転し、セレクトシャフト114を軸線方向に移動させる。これによって、シフトフォーク111が係合するスリーブ202を移動させ、ギヤ段の切替えを行なう。
次に、第2の実施形態のシフト装置110の組み付けに係る作用について、図7に基づいて説明する。シフト装置110のセレクト機構SE部を組み付ける際には、まずセレクトモータ112、モータ軸ピニオン124、およびスライドシャフト113が組み付けられたアクチュエータケース108をトランスミッションケース121の外周面に組み付ける。このとき、トランスミッションケース121内には、スライドシャフト113が突出して挿入されていく。そして、スライドシャフト113の端部が、トランスミッションケース121内に形成された支持部によって、軸線方向に移動可能に支持される。このとき、スライドシャフト113は、支持部に設けた位置保持装置23によって所定の位置に保持されている。
このような状態において、図7に示すように、セレクトシャフト114とフォークシャフト115とが軸線を重力方向と一致させた状態で、クラッチハウジング122の一体支持部136に、下方の一端を支持され待機している。そして、上方からセレクト機構SE部が組み付けられたトランスミッションケース121が、入力軸軸線方向を重力方向と一致させた状態で下降してくる。これにより、セレクトシャフト114とフォークシャフト115とが下方からトランスミッションケース121内に挿入される。セレクトシャフト114とフォークシャフト115とが、さらにトランスミッションケース121内に挿入されると、クラッチハウジング122に挿入されたピン135と、トランスミッションケース121のクラッチハウジング122側の端面に形成されたガイド穴の内周面と、が係合する。そして、ピン135が、ガイド穴にガイドされながら、セレクトシャフト114の先端部近傍のセレクトシャフトピニオン114aが、スライドシャフト113の第2ラック113bに接近する。
このとき、セレクトシャフトピニオン114aが噛合する第2ラック113bの歯の一体支持部136(軸受)側の歯幅方向端部には、先端T及びテーパ面tpよりなるチャンファ126が形成されている。このため、セレクトシャフト114のセレクトシャフトピニオン114aを第2ラック113bの歯に接近させていくと、セレクトシャフトピニオン114aの歯は、容易に隣り合うチャンファ126の先端T間に入り込むことができる。さらに、セレクトシャフトピニオン114aを、第2ラック113b側に押込んでいくと、隣り合うチャンファ126の先端T間に入り込んだセレクトシャフトピニオン114aの歯は、チャンファ126の先端Tから所定の角度で形成される、左右いずれかのテーパ面tpを、第2ラック113bの歯筋と平行に押しつける。そして、スライドシャフト113は、チャンファ126のテーパ面tpが押しつけられた力の大きさ、およびテーパ面tpの角度に応じたスライドシャフト113の軸線方向への分力を受けて軸線方向に移動する。このように、第2ラック113bとセレクトシャフトピニオン114aとの組み付け時に、チャンファ126を介することによって、セレクトシャフトピニオン114aがチャンファ126に誘導される。これにより、セレクトシャフトピニオン114aを第2ラック113bに短時間で良好に噛合させることができるとともに、低コストな組み付けとすることができ、第1の実施形態と同様の効果が期待できる。
なお、第1および第2の実施形態においては、チャンファ76、126を、ラック95a、113bの歯の一部のみに形成していたが、これに限らず全ての歯に形成してもよい。これによっても効果は得られる。
また、第1および第2の実施形態においては、位置保持装置23を設けたが、なくてもよい。その場合には上記のように、全ての歯にチャンファを形成してもよいし、全ての歯に設けずとも本実施形態で形成したチャンファの数(4つ)よりも多くの歯にチャンファを形成し、確実にピニオンが、チャンファが形成されたラックの歯と噛合するようにすればよい。
また、第1および第2の実施形態においては、ラック95a、113bにチャンファ76、126を設けたが、ラック95a、113bには設けず、ピニオン94a、セレクトシャフトピニオン114aの各歯の先端にチャンファを設けてもよい。さらにラック95a、113bおよびピニオン94a、114aの両方にチャンファを設けてもよく同様の効果が得られる。
また、第1および第2の実施形態においては、デュアルクラッチ式自動変速機によって発明を具体化したが、これに限らず手動式変速機のクラッチを自動化したオートメーテッドマニュアルトランスミッション(AMT)に適用してもよい。
また、第1および第2の実施形態においては、変速軸部材を、それぞれフォークシャフト95およびスライドシャフト113としたが、これに限らず、AMTのFR車のシフトレバーに連結されるロッドを変速軸部材とし、該ロッドにラック部を形成してもよい。これによっても本実施形態と同様の効果が得られる。
さらに、シフト装置90、110を、自動車用の自動変速機に適用するのではなく、自動二輪車等の他の自動変速機に適用してもよい。
本発明に係る組み付けが容易なシフト装置は、車両が有する自動変速機に適用できる。
1、2・・・自動変速機、10・・・ケース、11、121・・・トランスミッションケース、12、122・・・クラッチハウジング、76、126・・・チャンファ、90、110・・・シフト装置、91・・・変速部材(シフトフォーク)、92、112・・・駆動源(モータ、セレクトモータ)、94・・・ピニオン軸、94a・・・ピニオン、95・・・変速軸部材(フォークシャフト)、95a・・・ラック、105・・・軸受、113・・・変速軸部材(スライドシャフト)、113b・・・ラック(第2ラック)、114・・・変速部材およびピニオン軸(セレクトシャフト)、114a・・・ピニオン(セレクトシャフトピニオン)、135・・・ピン、136・・・軸受(一体支持部)。
Claims (4)
- 駆動源と、
前記駆動源によって回転駆動されトランスミッションケースに設けられた軸受によって回転可能に支承されたピニオン軸と、
前記ピニオン軸の先端に形成されるピニオンと、
前記トランスミッションケースに軸線方向に移動可能に支持される変速軸部材と、
前記変速軸部材に連結され該変速軸部材の作動によって変速機構を係脱させる変速部材と、
前記変速軸部材の円筒外周部の一部に形成されるラックと、
前記ラックの歯の前記軸受側の歯幅方向端部および前記ピニオンの歯の先端部の少なくとも一方に形成されるチャンファと、
を備え、
前記ピニオン軸が前記トランスミッションケースに設けられた軸受に軸線方向に挿入されると前記ピニオンおよび前記ラックの少なくとも一方に形成された前記チャンファに誘導され前記ピニオンと前記ラックとが噛合される自動変速機のシフト装置。 - 請求項1において、
前記変速軸部材は前記変速機構のスリーブに係合するフォークが固定され前記軸線方向への作動によって前記フォークを駆動し前記スリーブを作動させて前記変速機構を係脱するフォークシャフトである自動変速機のシフト装置。 - 請求項1または2において、
前記変速軸部材は前記軸線方向における所定の位置で移動が保持される位置保持装置を有し、
前記ラックに形成された前記チャンファは、前記位置保持装置によって前記変速軸部材が前記所定の位置に保持された状態において、前記ピニオン軸を前記軸受にガイドさせながら挿入したときに前記ピニオンと噛合する前記ラックの複数の歯のみに設けられる自動変速機のシフト装置。 - 請求項1乃至3のいずれか1項において、
前記ピニオン軸が前記トランスミッションケースに設けられた軸受に軸線方向に挿入されると前記ピニオンは前記ラックの前記軸受側の歯幅方向端部に形成されたチャンファに誘導されるとともに、前記ラックの歯底に連なる前記変速軸部材の円筒面にガイドされて前記ラックと噛合される自動変速機のシフト装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-225528 | 2011-10-13 | ||
JP2011225528A JP2013087779A (ja) | 2011-10-13 | 2011-10-13 | 自動変速機のシフト装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013054878A1 true WO2013054878A1 (ja) | 2013-04-18 |
Family
ID=48081924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/076426 WO2013054878A1 (ja) | 2011-10-13 | 2012-10-12 | 自動変速機のシフト装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013087779A (ja) |
WO (1) | WO2013054878A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014206493A1 (de) * | 2014-04-04 | 2015-10-08 | Zf Friedrichshafen Ag | Schaltvorrichtung für ein automatisiertes Fahrzeuggetriebe |
FR3080423A1 (fr) * | 2018-04-18 | 2019-10-25 | Suzuki Motor Corporation | Transmission automatique |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0680055U (ja) * | 1993-04-22 | 1994-11-08 | マツダ株式会社 | 変速機の操作機構 |
JP2007309417A (ja) * | 2006-05-18 | 2007-11-29 | Aisin Ai Co Ltd | 変速機の操作装置 |
JP2010096300A (ja) * | 2008-10-17 | 2010-04-30 | Aisin Ai Co Ltd | 変速機用フォークシャフト駆動装置 |
JP2011127660A (ja) * | 2009-12-16 | 2011-06-30 | Aisin Ai Co Ltd | 自動変速機のシフト操作装置 |
JP2011163458A (ja) * | 2010-02-10 | 2011-08-25 | Aisin Ai Co Ltd | 自動変速機のシフト操作装置 |
-
2011
- 2011-10-13 JP JP2011225528A patent/JP2013087779A/ja active Pending
-
2012
- 2012-10-12 WO PCT/JP2012/076426 patent/WO2013054878A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0680055U (ja) * | 1993-04-22 | 1994-11-08 | マツダ株式会社 | 変速機の操作機構 |
JP2007309417A (ja) * | 2006-05-18 | 2007-11-29 | Aisin Ai Co Ltd | 変速機の操作装置 |
JP2010096300A (ja) * | 2008-10-17 | 2010-04-30 | Aisin Ai Co Ltd | 変速機用フォークシャフト駆動装置 |
JP2011127660A (ja) * | 2009-12-16 | 2011-06-30 | Aisin Ai Co Ltd | 自動変速機のシフト操作装置 |
JP2011163458A (ja) * | 2010-02-10 | 2011-08-25 | Aisin Ai Co Ltd | 自動変速機のシフト操作装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014206493A1 (de) * | 2014-04-04 | 2015-10-08 | Zf Friedrichshafen Ag | Schaltvorrichtung für ein automatisiertes Fahrzeuggetriebe |
FR3080423A1 (fr) * | 2018-04-18 | 2019-10-25 | Suzuki Motor Corporation | Transmission automatique |
Also Published As
Publication number | Publication date |
---|---|
JP2013087779A (ja) | 2013-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4809629B2 (ja) | 変速操作装置 | |
JP6286460B2 (ja) | 遊星歯車機構及び変速機 | |
US7434488B2 (en) | Transmission for tractor | |
JP4179385B2 (ja) | 車両用変速機 | |
JP2008298223A (ja) | 変速機 | |
KR20110126111A (ko) | 듀얼 클러치식 자동 변속기 | |
JP2012207687A (ja) | 変速機 | |
JP5195679B2 (ja) | 車両用自動変速機 | |
CN101012868A (zh) | 一种六速机械式轿车变速器 | |
WO2013054878A1 (ja) | 自動変速機のシフト装置 | |
JP4720627B2 (ja) | リバースギヤ鳴り防止変速機 | |
JP2011163458A (ja) | 自動変速機のシフト操作装置 | |
JP3131194B2 (ja) | カウンターシャフト式変速機 | |
CN200996440Y (zh) | 一种六速机械式轿车变速器 | |
JP2013127299A (ja) | 自動変速機のシフト装置 | |
JP4922257B2 (ja) | トランスミッション | |
JP2008298260A (ja) | 変速機 | |
JP3505776B2 (ja) | 変速機 | |
JP2011241883A (ja) | 変速機のリバースシフト機構 | |
JP2011127660A (ja) | 自動変速機のシフト操作装置 | |
JP5862548B2 (ja) | 手動変速機の組立方法 | |
CN103671755A (zh) | 一种车用双离合变速器传动装置 | |
JP6068866B2 (ja) | 変速機 | |
JP6156119B2 (ja) | 動力伝達装置の組み付け構造および動力伝達装置の組み付け方法 | |
WO2016067656A1 (ja) | 車両の動力伝達制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12839369 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/08/2014) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12839369 Country of ref document: EP Kind code of ref document: A1 |