WO2013054652A1 - 基板処理装置、基板処理方法、半導体装置の製造方法、および記録媒体 - Google Patents

基板処理装置、基板処理方法、半導体装置の製造方法、および記録媒体 Download PDF

Info

Publication number
WO2013054652A1
WO2013054652A1 PCT/JP2012/074272 JP2012074272W WO2013054652A1 WO 2013054652 A1 WO2013054652 A1 WO 2013054652A1 JP 2012074272 W JP2012074272 W JP 2012074272W WO 2013054652 A1 WO2013054652 A1 WO 2013054652A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas supply
zone
reaction
reaction gas
Prior art date
Application number
PCT/JP2012/074272
Other languages
English (en)
French (fr)
Inventor
小川 有人
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to KR1020147009341A priority Critical patent/KR20140070590A/ko
Priority to US14/350,723 priority patent/US20140256152A1/en
Publication of WO2013054652A1 publication Critical patent/WO2013054652A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Definitions

  • the present invention relates to a substrate processing apparatus, a substrate processing method, a method for manufacturing a semiconductor device, and a recording medium for performing a step of forming a thin film on a substrate such as a wafer.
  • a substrate processing apparatus a substrate processing method, a semiconductor device manufacturing method, and a recording medium for forming an insulating film and a metal film.
  • One of the manufacturing processes of a semiconductor device is, for example, a process of manufacturing a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor).
  • MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
  • a metal film a TiN (titanium nitride) film using TiCl 4 (titanium tetrachloride) and NH 3 (ammonia), and as an insulating film, TEMAH (tetrakisethylmethylaminohafnium) and O 3 (ozone),
  • TEMAH tetrakisethylmethylaminohafnium
  • O 3 ozone
  • HfO 2 (hafnium oxide) film using H 2 O a ZrO 2 (zirconium oxide) film using TEMAZ (tetrakisethylmethylaminozirconium) and O 3, and the like.
  • metal film means a film composed of a conductive substance containing metal atoms, that is, a conductive metal-containing film, and this is composed of a single metal.
  • Conductive metal single-layer film, conductive metal nitride film, conductive metal oxide film, conductive metal oxynitride film, conductive metal carbide film (metal carbide film), conductive metal carbon A nitride film, a conductive metal composite film, a conductive metal alloy film, a conductive metal silicide film, and the like are also included.
  • the TiN film, TaN film, HfN film, and ZrN film are conductive metal nitride films
  • the TiC film is a conductive metal carbonized film
  • the TiCN film is a conductive metal carbonitride film
  • a TiAlN film Is a conductive metal composite film.
  • the film formation method is an alternate supply that alternately supplies a plurality of types of gases rather than a simultaneous supply method that simultaneously supplies a plurality of types of gases. Law application is increasing.
  • FIG. 6 shows a film forming sequence in a conventional example in the case of forming a film by the alternating supply method.
  • the film is formed by the alternate supply method, usually, (1) the supply process of the first reaction gas 61 as a precursor, and (2) the first reaction gas 61 is discharged by the purge gas 62.
  • the first purge step (3) the supply step of the second reaction gas 63 that is an oxidizing or reducing gas, and (4) the second purge step of discharging the second reaction gas 63 by the purge gas 64.
  • One cycle is formed, and the film is formed by repeating this cycle.
  • FIG. 7 is a diagram illustrating an atmosphere in a processing furnace when a conventional film forming sequence is performed using, for example, a vertical film forming apparatus.
  • FIG. 7 is a vertical cross-sectional view of the processing furnace, in which a boat 217 loaded with a plurality of wafers 202 is loaded into a substantially cylindrical reaction tube 503, and gas is supplied from the gas nozzle 531 into the reaction tube 503.
  • the exhaust pipe 271 is exhausted.
  • the first reaction gas 61 is supplied from the gas nozzle 531.
  • FIG. 7B the purge gas 62 is supplied from the gas nozzle 531, and the first reaction gas 61 is discharged by the purge gas 62.
  • FIG. 7C the second reaction gas 63 is supplied from the gas nozzle 531.
  • FIG. 7D the purge gas 64 is supplied from the gas nozzle 531, and the second reaction gas 63 is discharged by the purge gas 64.
  • the supply amount depends on the exposure amount, which is the product of the gas supply amount per unit time and the supply time, and the supply time can be shortened when the supply amount per unit time is large, and the supply amount when the supply amount per unit time is small. You need to lengthen the time. For this reason, when this film formation is performed in a batch furnace, for example, a vertical film formation apparatus, it is difficult to increase the supply amount per unit time because the chamber capacity is large and the number of wafers is large. The time required for the supply process and the oxidizing / reducing gas supply process becomes longer, which causes a decrease in throughput.
  • Patent Document 1 in the vertical film forming apparatus, a step of supplying the first reactive species into the processing chamber, a purging step of removing excess first reactive species from the processing chamber, and a first step in the processing chamber.
  • a technique for forming a thin film having a desired thickness on a substrate by repeating the steps of supplying a reactive species of 2 and a purging step of removing surplus second reactive species from the processing chamber. Yes.
  • a processing chamber configured to accommodate a plurality of substrates and having an interior divided into a plurality of zones, A gas supply system that supplies a first reaction gas, a second reaction gas, and an inert gas to each of the plurality of zones in the processing chamber; A gas exhaust system for exhausting the gas in each zone; A first reaction gas supply step for supplying a first reaction gas to each zone in the processing chamber containing a plurality of substrates, a first purge for supplying an inert gas and discharging the first reaction gas A plurality of processes including a process, a second reaction gas supply process for supplying a second reaction gas, and a second purge process for supplying an inert gas and discharging the second reaction gas.
  • a control unit that controls the gas supply system and the gas exhaust system so that the steps performed simultaneously in the zones are different from each other, A substrate processing apparatus is provided.
  • a first reaction gas supply step for supplying a first reaction gas to each zone in the processing chamber containing a plurality of substrates, a first purge for supplying an inert gas and discharging the first reaction gas
  • a plurality of processes including a process, a second reaction gas supply process for supplying a second reaction gas, and a second purge process for supplying an inert gas and discharging the second reaction gas.
  • FIG. 1 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus preferably used in the present embodiment, and shows a processing furnace 200 portion in a vertical sectional view.
  • FIG. 2 is a sectional view (horizontal sectional view) taken along the line AA of FIG.
  • the processing furnace 200 includes heaters 207 (2071 to 2076) as heating sources (heating means).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • the heater 207 is a resistance heating type heater (heat source by resistance heating), and is configured to heat a wafer 202 in a processing chamber 201 described later to a predetermined temperature.
  • the heater 207 is divided into six zones (areas) 2071 to 2076, and the heaters in each zone are connected to the controller 280, respectively, so that the temperature can be adjusted independently.
  • the inside of the processing chamber 201 is divided into a first zone to a fourth zone, which are at least four processing zones in order from the top.
  • the first zone to the fourth zone are regions on which the wafer 202 is placed at the time of processing.
  • An auxiliary heating area where the wafer 202 is not placed is provided above the first zone and below the fourth zone, and heated by a first auxiliary heater 2075 and a second auxiliary heater 2076, respectively.
  • a dummy wafer that is not a product wafer is mounted on the boat 217 corresponding to the second auxiliary heater 2076. If necessary, a dummy wafer that is not a product wafer is also mounted on the boat 217 corresponding to the upper portion of the first zone heater 2071.
  • a reaction tube 203 is disposed inside the heater 207 concentrically with the heater 207.
  • the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and has a cylindrical shape with the upper end closed and the lower end opened.
  • a processing chamber (reaction chamber) 201 is formed in the cylindrical hollow portion of the reaction tube 203, and is configured so that wafers 202 as substrates can be accommodated in a horizontal posture and in a multi-stage aligned state in a vertical direction by a boat 217 described later. ing.
  • a reaction vessel (processing vessel) is formed by the reaction tube 203.
  • the gas supply system includes a first reaction gas supply system, a second reaction gas supply system, a first inert gas supply system, and a second inert gas supply system, which will be described later.
  • first reaction gas supply nozzles 231 to 234 for supplying a first reaction gas and second reaction gas supply nozzles 331 to 334 for supplying a second reaction gas are provided in the reaction tube 203. (See FIG. 2) is provided so as to penetrate the side wall of the lower part of the reaction tube 203 in the horizontal direction.
  • the first reactive gas supply nozzles 231 to 234 and the second reactive gas supply nozzles 331 to 334 are respectively reacted in an arcuate space between the inner wall of the reaction tube 203 constituting the processing chamber 201 and the wafer 202. It is provided so as to rise upward in the stacking direction of the wafer 202 along the upper part from the lower part of the inner wall of the tube 203.
  • the first reactive gas supply nozzles 231 to 234 and the second reactive gas supply nozzles 331 to 334 are respectively formed in regions that horizontally surround the wafer arrangement region on the side of the wafer arrangement region where the wafer 202 is arranged. It is provided along the arrangement region.
  • the first reactive gas supply nozzles 231 to 234 and the second reactive gas supply nozzles 331 to 334 have the same shape as the nozzles 231 and 331, 232 and 332, 233 and 333, 234 and 334, respectively.
  • the horizontal portion is provided so as to penetrate the lower side wall of the reaction tube 203, and the vertical portion rises from at least one end side to the other end side of the wafer arrangement region. It is provided as follows. In FIG. 1, for convenience of illustration, nozzles 231, 331, 232, 332, 233, 333, 234, and 334 are shown as one.
  • a metal manifold that supports the reaction tube 203 may be provided below the reaction tube 203, and each nozzle may be provided so as to penetrate the side wall of the metal manifold.
  • the furnace port portion of the processing furnace 200 may be made of metal, and a nozzle or the like may be attached to the metal furnace port portion.
  • the first reactive gas supply nozzle 231 has a length up to the upper end of the first zone
  • the first reactive gas supply nozzle 232 has a length up to the upper end of the second zone
  • the one reactive gas supply nozzle 233 has a length up to the upper end of the third zone
  • the first reactive gas supply nozzle 234 has a length up to the upper end of the fourth zone.
  • a plurality of gas supply holes 231h for supplying gas are provided on the side surface of the first reaction gas supply nozzle 231 in the first zone, and gas is supplied to the side surface of the first reaction gas supply nozzle 232 in the second zone.
  • a plurality of gas supply holes 232h are provided, and a plurality of gas supply holes 233h for supplying gas are provided on the side surface of the first reaction gas supply nozzle 233 in the third zone, and the first reaction gas supply in the fourth zone is provided.
  • a plurality of gas supply holes 234 h for supplying gas are provided on the side surface of the nozzle 234.
  • the second reactive gas supply nozzle 331 has a length up to the upper end of the first zone
  • the second reactive gas supply nozzle 332 has a length up to the upper end of the second zone
  • the nozzle 333 has a length up to the upper end of the third zone
  • the second reaction gas supply nozzle 334 has a length up to the upper end of the fourth zone.
  • a plurality of gas supply holes 331h for supplying gas are provided on the side surface of the second reaction gas supply nozzle 331 in the first zone, and a gas is provided on the side surface of the second reaction gas supply nozzle 332 in the second zone.
  • a plurality of gas supply holes 332h for supplying gas are provided, and a plurality of gas supply holes 333h for supplying gas are provided on the side surface of the second reaction gas supply nozzle 333 in the third zone, and the second reaction in the fourth zone.
  • a plurality of gas supply holes 334 h for supplying gas are provided on the side surface of the gas supply nozzle 334.
  • FIG. 1 shows gas supply holes 231h and 331h, 232h and 332h, 233h and 333h, and 234h and 334h, respectively. In FIG. 2, only 234h and 334h are shown.
  • the gas supply holes 231 h to 234 h and 331 h to 334 h are opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 202.
  • These gas supply holes 231h to 234h and 331h to 334h all have the same opening area from the lower part to the upper part of each zone, and are further provided at the same opening pitch.
  • each of these gas supply holes 231h to 234h and 331h to 334h is arranged at a position between the wafer 202 and the wafer 202 so as to correspond to each of the wafers 202 loaded on the boat 217.
  • the gas flowing out from the supply hole is configured to flow between the wafer 202 and the wafer 202 in the horizontal direction. If comprised in this way, it can suppress effectively that the gas which flowed out from the gas supply hole arrange
  • the first reactive gas supply nozzle 231 supplies gas into the first zone
  • the first reactive gas supply nozzle 232 supplies gas into the second zone
  • the first reactive gas supply nozzle 233 is within the third zone.
  • the first reactive gas supply nozzle 234 is configured to supply gas into the fourth zone, and preferably is configured not to supply gas to the other zones, respectively.
  • the second reactive gas supply nozzle 331 supplies gas into the first zone
  • the second reactive gas supply nozzle 332 supplies gas into the second zone
  • the second reactive gas supply nozzle 333 is in the third zone.
  • the second reactive gas supply nozzle 334 is configured to supply gas into the fourth zone, and is preferably configured not to supply gas to the other zones.
  • the gas supply method in the present embodiment is the first reaction arranged in the arc-shaped vertical space defined by the inner wall of the reaction tube 203 and the ends of the plurality of stacked wafers 202. Gas is conveyed through the gas supply nozzles 231 to 234 and the second reaction gas supply nozzles 331 to 334, and is opened to the first reaction gas supply nozzles 231 to 234 and the second reaction gas supply nozzles 331 to 334, respectively.
  • Gas is first ejected into the reaction tube 203 from the supply holes 231h to 234h and 331h to 334h in the vicinity of the wafer 202, and the main flow of gas in the reaction tube 203 is parallel to the surface of the wafer 202, that is, in the horizontal direction. It is said. With such a configuration, it is possible to supply gas uniformly to each wafer 202 and to have an effect of making the film thickness of the thin film formed on each wafer 202 uniform.
  • the residual gas after the reaction flows toward the discharge hole 203c described later, and is exhausted from the exhaust pipe 271 through the exhaust chamber 201a.
  • the first reaction gas supply nozzles 231 to 234 are connected to the first reaction gas supply pipes 231a to 234a for supplying the first reaction gas, respectively.
  • Second reaction gas supply pipes 331a to 334a for supplying a second reaction gas are connected to 331 to 334, respectively.
  • the first reaction gas supply pipe 231a includes, in order from the upstream direction, a TEMAZ supply source 241 that is a first reaction gas supply source, a valve 261c that is an on-off valve, and a mass flow controller (MFC) that is a flow rate controller (flow rate control unit). 251a and a valve 261a are provided. Further, an inert gas supply pipe 231b is connected to the downstream side of the valve 261a of the first reaction gas supply pipe 231a. The inert gas supply pipe 231b is provided with an N 2 gas supply source 243, a valve 261d, an MFC 251b, and a valve 261b which are inert gas supply sources in order from the upstream direction.
  • the first reactive gas supply nozzle 231 described above is connected to the distal end portion (the most downstream portion) of the first reactive gas supply pipe 231a so that the first reactive gas can be supplied into the first zone. .
  • the first reactive gas supply pipe 232a is provided with a TEMAZ supply source 241, a valve 262c, an MFC 252a, and a valve 262a in order from the upstream direction.
  • an inert gas supply pipe 232b is connected to the downstream side of the valve 262a of the first reactive gas supply pipe 232a.
  • the inert gas supply pipe 232b is provided with an N 2 gas supply source 243, a valve 262d, an MFC 252b, and a valve 262b in this order from the upstream direction.
  • the above-mentioned first reactive gas supply nozzle 232 is connected to the distal end portion (the most downstream portion) of the first reactive gas supply pipe 232a so that the first reactive gas can be supplied into the second zone. .
  • the first reactive gas supply pipe 233a is provided with a TEMAZ supply source 241, a valve 263c, an MFC 253a, and a valve 263a in order from the upstream direction.
  • an inert gas supply pipe 233b is connected to the downstream side of the valve 263a of the first reaction gas supply pipe 233a.
  • the inert gas supply pipe 233b is provided with an N 2 gas supply source 243, a valve 263d, an MFC 253b, and a valve 263b in this order from the upstream direction.
  • the above-mentioned first reactive gas supply nozzle 233 is connected to the distal end portion (the most downstream portion) of the first reactive gas supply pipe 233a so that the first reactive gas can be supplied into the third zone. .
  • a TEMAZ supply source 241, a valve 264c, an MFC 254a, and a valve 264a are provided in this order from the upstream direction.
  • an inert gas supply pipe 234b is connected to the downstream side of the valve 264a of the first reactive gas supply pipe 234a.
  • the inert gas supply pipe 234b is provided with an N 2 gas supply source 243, a valve 264d, an MFC 254b, and a valve 264b in this order from the upstream direction.
  • the above-mentioned first reactive gas supply nozzle 234 is connected to the distal end portion (the most downstream portion) of the first reactive gas supply pipe 234a, so that the first reactive gas can be supplied into the fourth zone. .
  • the first reaction gas supply system is mainly configured by the first reaction gas supply pipes 231a to 234a, the valves 261c to 264c, the MFCs 251a to 254a, and the valves 261a to 264a.
  • the first reactive gas supply source 241, the first reactive gas supply nozzles 231 to 234, and the gas supply holes 231h to 234h may be included in the first reactive gas supply system.
  • the inert gas supply pipes 231b to 234b, the valves 261d to 264d, the MFCs 251b to 254b, and the valves 261b to 264b mainly constitute a first inert gas supply system.
  • the first inert gas supply system also functions as a first purge gas supply system.
  • the inert gas supply source 243, the first reactive gas supply nozzles 231 to 234, and the gas supply holes 231h to 234h may be included in the first inert gas supply system.
  • TEMAZ tetrakisethylmethylaminozirconium: Zr [N (C 2 H 5 )
  • Zr zirconium
  • (CH 3 )] 4 Gas is supplied into the processing chamber 201 via valves 261c to 264c, MFCs 251a to 254a, valves 261a to 264a, and first reaction gas supply nozzles 231 to 234. That is, the first reaction gas supply system is configured as a zirconium source gas supply system.
  • the inert gas is supplied from the inert gas supply pipes 231b to 234b into the first reaction gas supply pipes 231a to 234a via the valves 261d to 264d, the MFCs 251b to 254b, and the valves 261b to 264b, respectively. You may make it do.
  • the inert gas supplied into the first reaction gas supply pipes 231a to 234a is supplied into the processing chamber 201 together with the TEMAZ gas via the first reaction gas supply nozzles 231 to 234, respectively.
  • a liquid raw material which is a liquid state under normal temperature normal pressure like TEMAZ, a liquid raw material will be vaporized with vaporization systems, such as a vaporizer and a bubbler, and will be supplied as raw material gas.
  • the second reaction gas supply pipe 331a is provided with an O 3 supply source 242, a valve 361c, an MFC 351a, and a valve 361a, which are second reaction gas supply sources, in order from the upstream direction.
  • An inert gas supply pipe 331b is connected to the downstream side of the valve 361a of the second reaction gas supply pipe 331a.
  • the inert gas supply pipe 331b is provided with an N 2 gas supply source 243, a valve 361d, an MFC 351b, and a valve 361b which are inert gas supply sources in order from the upstream direction.
  • the second reactive gas supply nozzle 331 described above is connected to the distal end portion (the most downstream portion) of the second reactive gas supply pipe 331a, so that the second reactive gas can be supplied into the first zone. .
  • the second reactive gas supply pipe 332a is provided with an O 3 supply source 242, a valve 362c, an MFC 352a, and a valve 362a in order from the upstream direction.
  • An inert gas supply pipe 332b is connected to the downstream side of the valve 362a of the second reactive gas supply pipe 332a.
  • the inert gas supply pipe 332b is provided with an N 2 gas supply source 243, a valve 362d, an MFC 352b, and a valve 362b which are inert gas supply sources in order from the upstream direction.
  • the second reactive gas supply nozzle 332 described above is connected to the distal end portion (the most downstream portion) of the second reactive gas supply pipe 332a so that the second reactive gas can be supplied into the second zone. .
  • an O 3 supply source 242, a valve 363c, an MFC 353a, and a valve 363a are provided in the second reactive gas supply pipe 333a in this order from the upstream direction.
  • an inert gas supply pipe 333b is connected to the downstream side of the valve 363a of the second reaction gas supply pipe 333a.
  • the inert gas supply pipe 333b is provided with an N 2 gas supply source 243, a valve 363d, an MFC 353b, and a valve 363b which are inert gas supply sources in order from the upstream direction.
  • the above-mentioned second reactive gas supply nozzle 333 is connected to the distal end portion (the most downstream portion) of the second reactive gas supply pipe 333a so that the second reactive gas can be supplied into the third zone. .
  • the second reactive gas supply pipe 334a is provided with an O 3 supply source 242, a valve 364c, an MFC 354a, and a valve 364a in this order from the upstream direction.
  • an inert gas supply pipe 334b is connected to the downstream side of the valve 364a of the second reaction gas supply pipe 334a.
  • the inert gas supply pipe 334b is provided with an N 2 gas supply source 243, a valve 364d, an MFC 354b, and a valve 364b which are inert gas supply sources in order from the upstream direction.
  • the above-mentioned second reactive gas supply nozzle 334 is connected to the distal end portion (the most downstream portion) of the second reactive gas supply pipe 334a, so that the second reactive gas can be supplied into the fourth zone. .
  • the second reaction gas supply system is mainly configured by the second reaction gas supply pipes 331a to 334a, the valves 361c to 364c, the MFCs 351a to 354a, and the valves 361a to 364a.
  • the second reaction gas supply source 242, the second reaction gas supply nozzles 331 to 334, and the gas supply holes 331h to 334h may be included in the second reaction gas supply system.
  • the inert gas supply pipes 331b to 334b, valves 361d to 364d, MFCs 351b to 354b, and valves 361b to 364b mainly constitute a second inert gas supply system.
  • the second inert gas supply system also functions as a second purge gas supply system.
  • the inert gas supply source 243, the second reaction gas supply nozzles 331 to 334, and the gas supply holes 331h to 334h may be included in the second inert gas supply system.
  • ozone (O 3 ) gas which is the second reaction gas, is used as an oxidizing gas, valves 361c to 364c, MFCs 351a to 354a, valves 361a to 364a, second It is supplied into the processing chamber 201 via the reaction gas supply nozzles 331 to 334. That is, the second reaction gas supply system is configured as an ozone gas supply system that is an oxidizing gas.
  • the inert gas is supplied from the inert gas supply pipes 331b to 334b into the second reaction gas supply pipes 331a to 334a via the valves 361d to 364d, the MFCs 351b to 354b, and the valves 361b to 364b. You may do it.
  • the inert gas supplied into the second reaction gas supply pipes 331a to 334a is supplied into the processing chamber 201 together with the O 3 gas via the second reaction gas supply nozzles 331 to 334, respectively.
  • the reaction tube side wall 203b on the side of the reaction tube 203 facing the reaction gas supply nozzle is provided with a plurality of discharge holes 203c for discharging the atmosphere in the processing chamber 201.
  • the discharge hole 203c has a horizontally long slit shape, and the gas supply holes 231h to 234h and the gas supply holes are located at positions facing the gas supply holes 231h to 234h and the gas supply holes 331h to 334h, respectively.
  • the same number of gas supply holes 231h to 234h and gas supply holes 331h to 334h are provided at the same height as 331h to 334h.
  • An exhaust chamber 201a is provided outside the soot discharge hole 203c.
  • the exhaust chamber 201a is formed as the inside (hollow part) of a cylinder long in the vertical direction.
  • This cylinder is composed of an exhaust chamber side wall 203a and a reaction tube side wall 203b.
  • the upper end of the exhaust chamber 201 a is closed, and the lower end is connected to the exhaust pipe 271.
  • An exhaust pipe 271 for exhausting the atmosphere in the exhaust chamber 201a is connected to the lower portion of the reaction tube 203, that is, the lower portion of the exhaust chamber 201a.
  • An exhaust port is formed at a connection portion between the exhaust chamber 201 a and the exhaust pipe 271.
  • the exhaust pipe 271 is connected to a pressure sensor 274 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 272 as a pressure regulator (pressure adjustment unit).
  • a vacuum pump 273 as an evacuation device is connected. Note that the APC valve 272 can open and close the vacuum pump 273 while the vacuum pump 273 is operated, and can stop the vacuum exhaust and the vacuum exhaust in the processing chamber 201.
  • the valve is configured so that the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening degree.
  • An exhaust system is mainly configured by the exhaust hole 203c, the exhaust chamber 201a, the exhaust pipe 271, the pressure sensor 274, and the APC valve 272. Note that the vacuum pump 273 may be included in the exhaust system.
  • the pressure in the processing chamber 201 is adjusted by adjusting the opening of the APC valve 272 based on the pressure information detected by the pressure sensor 274 with the vacuum pump 273 activated. Adjustment (control) is performed so that a predetermined pressure (degree of vacuum) is less than atmospheric pressure.
  • a pressure control unit pressure adjustment unit is mainly configured by the pressure sensor 274 and the APC valve 272.
  • the eaves seal cap 219 is configured to be raised and lowered in the vertical direction by a boat elevator 115 as an elevating mechanism vertically installed outside the reaction tube 203.
  • the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by moving the seal cap 219 up and down. That is, the boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217, that is, the wafer 202 into and out of the processing chamber 201.
  • a boat 217 as a substrate holder is made of a heat-resistant material such as quartz or silicon carbide, and a plurality of wafers 202 are aligned in a horizontal posture and in a state where their centers are aligned, and stacked in multiple stages. And is configured to hold.
  • a heat insulating member 218 made of a heat resistant material such as quartz or silicon carbide is provided at the lower part of the boat 217 so that heat from the heater 207 is not easily transmitted to the seal cap 219 side. .
  • the heat insulating member 218 may be constituted by a plurality of heat insulating plates made of a heat resistant material such as quartz or silicon carbide, and a heat insulating plate holder that supports the heat insulating plates in a horizontal posture in multiple stages.
  • a temperature sensor 208 as a temperature detector is installed in the reaction tube 203.
  • the temperature sensor 208 is installed for each of the first to fourth zones, and adjusts the power supply to the first zone heater 2071 to the fourth zone heater 2074 based on the temperature information detected by each temperature sensor 208.
  • the temperature in the processing chamber 201 is configured to have a desired temperature distribution.
  • the temperature sensor 208 is configured in an L shape like the first reactive gas supply nozzles 231 to 234 and the second reactive gas supply nozzles 331 to 334, and is provided along the inner wall of the reaction tube 203.
  • the power supply to the heater 207 (2071 to 2074) is adjusted based on the temperature information detected by each temperature sensor 208, and the wafer 202 in the processing chamber 201 is controlled to a predetermined temperature. Is done.
  • FIG. 8 is a diagram for explaining a control unit in the present embodiment.
  • a controller 280 as a control unit (control means) includes a CPU (Central Processing Unit) 281, a RAM (Random Access Memory) 282, a storage unit 283, an operation display unit 284, an I / O.
  • the computer includes a port 285 and an input / output unit 286.
  • the RAM 282, the storage unit 283, the operation display unit 284, the I / O port 285, and the input / output unit 286 are configured to exchange data with the CPU 281 via the internal bus 287.
  • the operation display unit 284 receives inputs such as instructions from the operator and displays various data and the like, and is configured by a touch panel, for example.
  • the storage unit (storage device) 283 includes, for example, a flash memory, an HDD (Hard Disk Drive), and the like.
  • a control program that controls the operation of the substrate processing apparatus, a process recipe that describes a substrate processing procedure and conditions described later, and the like are stored in a readable manner.
  • the process recipe is a combination of the controller 280 so that predetermined procedures can be obtained by causing the controller 280 to execute each procedure in the substrate processing process described later, and functions as a program.
  • the process recipe, the control program, and the like are collectively referred to as simply a program.
  • the RAM 282 is configured as a memory area (work area) in which programs, data, and the like read by the CPU 281 are temporarily stored.
  • the I / O port 285 includes the MFCs 251a to 254a, 251b to 254b, 351a to 354a, 351b to 354b, the open / close valves 261a to 264a, 261b to 264b, 261c to 264c, 261d to 264d, 361a to 364a, 361b to 364b. , 361c to 364c, 361d to 364d, pressure sensor 274, APC valve 272, vacuum pump 273, temperature sensor 208, heater 207, boat elevator 115, boat rotation mechanism 267, etc. .
  • the I / O port 285 transmits sensor information received from each component to the CPU 281 and transmits a command to each component received from the CPU 281 to each component.
  • the input / output unit 286 reads a program, various data, and the like from an external storage device 290 (to be described later) outside the controller 280 and writes the program and various data to the storage unit 283. I / O operation to write to is performed.
  • the CPU 281 is configured to read out and execute a control program from the storage unit 283 and to read out a process recipe from the storage unit 283 in response to an operation command input from the operation display unit 284. Then, the CPU 281 adjusts the flow rates of various gases by the MFCs 251a to 254a, 251b to 254b, 351a to 354a, and 351b to 354b via the I / O port 285 so as to follow the contents of the read process recipe, and the open / close valve.
  • controller 280 is not limited to being configured as a dedicated computer, and may be configured as a general-purpose computer.
  • a computer-readable external storage device storing the above-described program (for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD (Compact Disc) or a DVD (Digital Versatile Disc), an MO (Magneto Optical)
  • a magneto-optical disc such as a disc
  • USB semiconductor memory such as a universal serial bus
  • a thin film for forming a metal oxide film as an oxide film, which is a high dielectric constant insulating film, on a substrate as a step of a semiconductor device (device) manufacturing process using the processing furnace of the substrate processing apparatus described above A sequence example of the forming process will be described.
  • TEMAZ Zr [N (CH 3 ) 2 ] 4
  • O 3 is used as an oxidation source when forming a ZrO 2 film as an insulating film.
  • the operation of each part constituting the substrate processing apparatus is controlled by the controller 280.
  • the processing chamber 201 is evacuated by the vacuum pump 273 so that the inside of the processing chamber 201 has a desired pressure (degree of vacuum) lower than atmospheric pressure.
  • the pressure in the processing chamber 201 is measured by the pressure sensor 274, and the APC valve 272 is feedback-controlled based on the measured pressure information (pressure adjustment).
  • the vacuum pump 273 maintains a state in which it is constantly operated at least until the processing on the wafer 202 is completed.
  • the wafer 202 in the processing chamber 201 is heated by the heater 207 (heaters 2071 to 2076) so as to reach a desired temperature.
  • the power supply to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 208 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment). Note that the heating of the wafer 202 in the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 202 is completed.
  • the boat rotation mechanism 267 starts to rotate the boat 217 and the wafer 202.
  • the rotation of the boat 217 and the wafer 202 by the boat rotation mechanism 267 is continuously performed at least until the processing on the wafer 202 is completed.
  • FIG. 3 is a gas supply timing chart in the film forming sequence of the present embodiment, and shows the supply timing of main substances supplied into the processing chamber for convenience.
  • wafer when the term “wafer” is used, it means “wafer itself” or “a laminate (aggregate) of a wafer and a predetermined layer or film formed on the surface thereof”. "(That is, a wafer including a predetermined layer or film formed on the surface).
  • wafer surface when the term “wafer surface” is used in this specification, it means “the surface of the wafer itself (exposed surface)” or “the surface of a predetermined layer or film formed on the wafer”. That is, it may mean “the outermost surface of the wafer as a laminated body”.
  • the phrase “supplying a predetermined gas to the wafer” means “supplying a predetermined gas directly to the surface (exposed surface) of the wafer itself”. , It may mean that “a predetermined gas is supplied to a layer, a film, or the like formed on the wafer, that is, to the outermost surface of the wafer as a laminated body”. Further, in this specification, when “describe a predetermined layer (or film) on the wafer” is described, “determine a predetermined layer (or film) directly on the surface (exposed surface) of the wafer itself”. This means that a predetermined layer (or film) is formed on a layer or film formed on the wafer, that is, on the outermost surface of the wafer as a laminate. There is a case.
  • substrate in this specification is the same as the term “wafer”. In that case, in the above description, “wafer” is replaced with “substrate”. Good.
  • Step 1 (Zirconium-containing layer forming step)
  • step 1 TEMAZ gas is supplied into the first zone.
  • the valves 261c and 261a of the first reactive gas supply pipe 231a are opened, and the TEMAZ gas is caused to flow through the first reactive gas supply pipe 231a.
  • the flow rate of the TEMAZ gas is adjusted by the MFC 251a.
  • the flow-adjusted TEMAZ gas passes from the plurality of gas supply holes 231h of the first reaction gas supply nozzle 231 to the first zone, which is a wafer arrangement region in the processing chamber 201 in a reduced pressure state heated to a predetermined temperature.
  • the TEMAZ gas supplied into the first zone flows in the first zone in the horizontal direction, and is exhausted from the exhaust holes (slits) 203c provided to face the plurality of gas supply holes 231h. , Flows down through the exhaust chamber 201a, and is exhausted from the exhaust pipe 271 through an exhaust port provided on the lower end side of the reaction tube 203. At this time, TEMAZ gas is supplied to the wafer 202 in the first zone.
  • the valves 261d and 261b of the inert gas supply pipe 231b may be opened to supply N 2 gas, which is an inert gas, as a carrier gas from the inert gas supply pipe 231b.
  • N 2 gas which is an inert gas
  • the flow rate of the N 2 gas is adjusted by the MFC 251b, and the N 2 gas is supplied into the first reaction gas supply pipe 231a.
  • the N 2 gas whose flow rate has been adjusted is mixed with the TEMAZ gas whose flow rate has been adjusted in the first reaction gas supply pipe 231a, and from the gas supply hole 231h of the first reaction gas supply nozzle 231 into the first zone. Is exhausted from the exhaust pipe 271 through the exhaust chamber 201a.
  • the valves 361d and 361b of the inert gas supply pipe 331b are opened, and the second reaction gas is supplied from the inert gas supply pipe 331b.
  • N 2 gas is supplied to the supply pipe 331a.
  • the N 2 gas supplied to the second reaction gas supply pipe 331a flows into the processing chamber 201 from the gas supply hole 331h of the second reaction gas supply nozzle 331. Thereby, it is possible to prevent the TEMAZ gas supplied into the processing chamber 201 from entering the second reaction gas supply nozzle 331.
  • the APC valve 272 is appropriately adjusted to maintain the pressure in the processing chamber 201 at a pressure lower than atmospheric pressure, for example, in a range of 1 to 1333 Pa.
  • the supply flow rate of the TEMAZ gas controlled by the MFC 251a is, for example, a flow rate in the range of 10 to 2000 sccm (0.01 to 2 slm).
  • the supply flow rate of the N 2 gas controlled by the MFCs 251b and 351b is, for example, a flow rate in the range of 200 to 10,000 sccm (0.2 to 10 slm).
  • the time for supplying the TEMAZ gas to the wafer 202 is, for example, a time within the range of 1 to 120 seconds.
  • the temperature of the heater 2071 is set so that the CVD reaction occurs in the processing chamber 201 in the above-described pressure zone. That is, the temperature of the heater 2071 is set so that the temperature of the wafer 202 becomes a predetermined temperature, for example, a temperature in the range of 100 to 400 ° C.
  • a predetermined temperature for example, a temperature in the range of 100 to 400 ° C.
  • the temperature of the wafer 202 is less than 100 ° C.
  • the TEMAZ gas is difficult to decompose and adsorb on the wafer 202.
  • the temperature of the wafer 202 exceeds 400 ° C., the CVD reaction becomes strong, and the deterioration of the film thickness uniformity in the surface of the wafer 202 becomes remarkable. Therefore, the temperature of the wafer 202 is preferably set to a temperature in the range of 100 ° C. or more and 400 ° C. or less.
  • the zirconium-containing layer may be a zirconium layer (Zr layer), an adsorption layer of TEMAZ gas, or may include both.
  • the layer having a thickness of less than one atomic layer means an atomic layer formed discontinuously in the surface direction (direction along the surface) of the wafer 202, and the thickness of the one atomic layer.
  • This layer means an atomic layer formed continuously in the surface direction of the wafer 202.
  • a layer having a thickness of less than one molecular layer which will be described later, means a molecular layer formed discontinuously in the surface direction of the wafer 202, and a layer having a thickness of one molecular layer means a wafer. It means a molecular layer formed continuously in the surface direction of 202.
  • the above-mentioned zirconium layer is a general term including not only a continuous layer in the surface direction of the wafer 202 composed of zirconium (Zr) but also a discontinuous layer and a zirconium thin film formed by overlapping these layers.
  • the layer continuous in the surface direction of the wafer 202 made of Zr may be referred to as a zirconium thin film.
  • Zr constituting the zirconium layer includes those in which the bond with at least a part of the elements constituting the ligand in TEMAZ is not completely broken.
  • the TEMAZ gas adsorption layer includes a discontinuous chemical adsorption layer in addition to a continuous chemical adsorption layer in the surface direction of the wafer 202 of gas molecules of the TEMAZ gas. That is, the adsorption layer of the TEMAZ gas includes a single molecular layer composed of TEMAZ molecules or a chemical adsorption layer having a thickness less than one molecular layer.
  • the TEMAZ molecules constituting the chemical adsorption layer of the TEMAZ gas include those in which the bond between Zr and the ligand is partially broken and those in which at least a part of the elements constituting the ligand is eliminated.
  • a zirconium layer is formed by depositing Zr on the wafer 202.
  • the adsorption layer of the TEMAZ gas is formed by adsorbing the TEMAZ gas on the wafer 202. Note that it is preferable to form a zirconium layer on the wafer 202 rather than forming a TEMAZ gas adsorption layer on the wafer 202 because the film formation rate can be increased.
  • the oxidizing action in Step 3 described later does not reach the entire zirconium-containing layer.
  • the minimum value of the thickness of the zirconium-containing layer that can be formed on the wafer 202 is less than one atomic layer. Accordingly, it is preferable that the thickness of the zirconium-containing layer is less than one atomic layer to several atomic layers.
  • the action of oxidation in Step 3 to be described later can be relatively increased. The time required for the oxidation reaction can be shortened.
  • the time required for forming the zirconium-containing layer in step 1 can also be shortened. As a result, the processing time per cycle can be shortened, and the total processing time can be shortened. That is, the film forming rate can be increased. Further, by controlling the thickness of the zirconium-containing layer to 1 atomic layer or less, it becomes possible to improve the controllability of film thickness uniformity.
  • Step 2 (First purge process) After the zirconium-containing layer is formed on the wafer 202, the valves 261c and 261a of the first reaction gas supply pipe 231a are closed, and the supply of the TEMAZ gas is stopped. At this time, the APC valve 272 of the exhaust pipe 271 is appropriately adjusted, the first zone is evacuated by the vacuum pump 273, and the remaining TEMAZ gas is discharged from the first zone. . At this time, with the valves 261d, 261b, 361d, 361b opened, N 2 gas as an inert gas is supplied from the inert gas supply pipe 231b via the first reaction gas supply pipe 231a to the first reaction gas supply.
  • the N 2 gas supplied into the first zone flows horizontally in the first zone so as to push out the residual gas in the first zone, and the exhaust hole in the first zone.
  • the gas flows out from the (slit) 203c to the exhaust chamber 201a, flows down in the exhaust chamber 201a, and is exhausted from the exhaust pipe 271 through the exhaust port provided on the lower end side of the reaction tube 203.
  • the N 2 gas acts as a purge gas for exhausting the remaining TEMAZ gas, so that the TEMAZ gas remaining in the first zone can be effectively excluded from the first zone.
  • the gas remaining in the first zone may not be completely removed, and the inside of the first zone may not be completely purged. If the amount of gas remaining in the first zone is very small, no adverse effect will occur in the subsequent step 3. At this time, the flow rate of the N 2 gas supplied into the first zone does not need to be a large flow rate. For example, by supplying an amount similar to the volume of the first zone, there is an adverse effect in step 3. Purge that does not occur can be performed. Thus, by not completely purging the inside of the first zone, the purge time can be shortened and the throughput can be improved. In addition, consumption of N 2 gas can be minimized.
  • step 2 the temperature of the heater 2071 is set to be in the range of 100 to 400 ° C. as in step 1.
  • the pressure in the processing chamber 201 is adjusted to the APC valve 272 appropriately, and is maintained at the same pressure as that in Step 1, for example, in the range of 1 to 1333 Pa.
  • the supply flow rate of the N 2 gas as the purge gas is controlled by the MFCs 251b and 351b, and is set to a flow rate in the range of, for example, 200 to 10,000 sccm (0.2 to 10 slm).
  • the purge time is the same as the processing time in Step 1, for example, a time within the range of 1 to 120 seconds.
  • Step 3 (Oxidation process) After the residual gas in the first zone is removed, the valves 361c and 361a of the second reaction gas supply pipe 331a are opened, and O 3 gas is allowed to flow through the second reaction gas supply pipe 331a.
  • the flow rate of the O 3 gas is adjusted by the MFC 351a.
  • the flow-adjusted O 3 gas is supplied from the plurality of gas supply holes 331h of the second reaction gas supply nozzle 331 into the first zone in a reduced pressure state heated to a predetermined temperature.
  • the O 3 gas supplied into the first zone flows in the horizontal direction in the first zone, and enters the exhaust chamber 201a from the discharge holes (slits) 203c provided corresponding to the plurality of gas supply holes 331h.
  • the exhaust gas flows out through the exhaust chamber 201a and is exhausted from the exhaust pipe 271 through an exhaust port provided on the lower end side of the reaction tube 203. At this time, O 3 gas is supplied to the wafer 202 in the first zone.
  • the valves 361d and 361b of the inert gas supply pipe 331b may be opened, and N 2 gas which is an inert gas may be supplied from the inert gas supply pipe 331b as a carrier gas.
  • the flow rate of the N 2 gas is adjusted by the MFC 351b and is supplied into the second reaction gas supply pipe 331a.
  • a mixed gas of O 3 gas and N 2 gas is supplied from the second reaction gas supply pipe 331a.
  • the valves 261 d and 261 b of the inert gas supply pipe 231 b are opened, and the first reaction is performed from the inert gas supply pipe 231 b.
  • N 2 gas is supplied to the gas supply pipe 231a.
  • the N 2 gas supplied to the first reaction gas supply pipe 231 a flows into the processing chamber 201 from the gas supply hole 231 h of the first reaction gas supply nozzle 231. Thereby, it is possible to prevent the O 3 gas supplied into the processing chamber 201 from entering the first reactive gas supply nozzle 231.
  • step 3 the pressure in the first zone, that is, the pressure in the processing chamber 201 is maintained at the same pressure as the pressure in step 1, for example, in the range of 1 to 1333 Pa, by appropriately adjusting the APC valve 272. .
  • the supply flow rate of the O 3 gas controlled by the MFC 351a is, for example, a flow rate in the range of 100 to 10,000 sccm (0.1 to 10 slm).
  • the supply flow rate of the N 2 gas controlled by the MFCs 351b and 251b is set to a flow rate in the range of, for example, 200 to 10,000 sccm (0.2 to 10 slm).
  • the time for supplying the O 3 gas to the wafer 202 is the same as the processing time in Step 1, for example, a time in the range of 1 to 120 seconds.
  • the temperature of the heater 2071 is set so as to be the same temperature range as in step 1, for example, a temperature within the range of 100 to 400 ° C.
  • this O 3 gas reacts with at least a part of the zirconium-containing layer formed on the wafer 202. That is, an oxidation treatment is performed on the zirconium-containing layer, and the zirconium-containing layer is changed (modified) to a zirconium oxide layer (ZrO 2 layer, hereinafter also simply referred to as a ZrO layer) by this oxidation treatment. ).
  • Step 4 (Second Purge Step) After the zirconium oxide layer is formed on the wafer 202 in step 3, that is, after the zirconium-containing layer is changed to the zirconium oxide layer, the valves 361c and 361a of the second reaction gas supply pipe 331a are closed, and the O 3 gas Stop supplying. At this time, the APC valve 272 of the exhaust pipe 271 is appropriately adjusted and the inside of the first zone is evacuated by the vacuum pump 273, and the remaining O 3 gas and reaction by-products are removed from the first zone. -Discharge from inside.
  • N 2 gas as an inert gas is supplied from the inert gas supply pipe 331b via the second reaction gas supply pipe 331a to the second reaction gas supply.
  • N 2 gas as an inert gas is supplied from the inert gas supply pipe 331b via the second reaction gas supply pipe 331a to the second reaction gas supply.
  • the N 2 gas supplied into the first zone flows horizontally in the first zone so as to push out residual gas and reaction by-products in the first zone, and the first zone Out of the exhaust hole (slit) 203c in the tank, flows down into the exhaust chamber 201a, and is exhausted from the exhaust pipe 271 through the exhaust port provided on the lower end side of the reaction tube 203.
  • This N 2 gas acts as a purge gas, whereby O 3 gas and reaction by-products remaining in the first zone can be effectively excluded from the first zone.
  • the gas remaining in the first zone may not be completely removed, and the inside of the first zone may not be completely purged. If the amount of gas remaining in the first zone is very small, no adverse effect will occur in the subsequent step 1. At this time, the flow rate of the N 2 gas supplied into the first zone does not need to be a large flow rate. For example, by supplying an amount similar to the volume of the first zone, there is an adverse effect in step 1. Purge that does not occur can be performed. Thus, by not completely purging the inside of the first zone, the purge time can be shortened and the throughput can be improved. In addition, consumption of N 2 gas can be minimized.
  • step 4 the temperature of the heater 2071 is set to be in the range of 100 to 400 ° C. as in step 1.
  • the pressure in the processing chamber 201 is adjusted to the APC valve 272 appropriately, and is maintained at the same pressure as that in Step 1, for example, in the range of 1 to 1333 Pa.
  • the supply flow rate of the N 2 gas as the purge gas is controlled by the MFCs 351b and 251b, and is set to a flow rate in the range of, for example, 200 to 10,000 sccm (0.2 to 10 slm).
  • the purge time is the same as the processing time in Step 1, for example, a time within the range of 1 to 120 seconds.
  • the temperature of the heater 207 is set so that the temperature of the wafer 202 becomes a predetermined temperature, for example, a constant temperature within a range of 100 to 400 ° C.
  • the APC valve 272 is adjusted so that the pressure in the processing chamber 201 becomes a predetermined pressure, for example, a constant pressure in the range of 1 to 1333 Pa, and the processing time of each step is a predetermined time, for example, 1 to 120 seconds. The time is within the range.
  • the processing time of each step is adjusted to the processing time of the step with the longest processing time.
  • the processing times of Step 2 to Step 4 are matched with the processing time of Step 1.
  • the processing times of step 1 is the longest, the processing times of Step 2 to Step 4 are matched with the processing time of Step 1.
  • the processing times of step 1, step 2, and step 4 are matched with the processing time of step 3.
  • time is left in Step 1 after supplying sufficient TEMAZ gas, supply of TEMAZ gas may be stopped and only N 2 gas may be supplied for the remaining time.
  • a zirconium oxide film (ZrO 2 film, hereinafter simply referred to as a predetermined thickness) is formed on the wafer 202 in the first zone. (Also referred to as a ZrO film).
  • the thickness of the zirconium oxide film is, for example, in the range of 8 to 20 nm.
  • step 1 to step 4 are set as one cycle, and this cycle is performed a predetermined number of times, preferably a plurality of times, so that A zirconium oxide film having a predetermined thickness is formed on the wafer 202 in the second zone to the fourth zone.
  • the processing of Step 1 to Step 4 is performed in this order in each zone, and the processing is performed by shifting the timing by one step in each zone.
  • the second purge process (step 4) is performed in the second zone.
  • the second reaction gas supply process (step 3) is performed in the third zone, and the first purge process (step 2) is performed in the fourth zone.
  • the first reactive gas supply process (step 1) is performed in the second zone, and the second purge process is performed in the third zone.
  • the second reaction gas supply step (Step 3) is performed in the fourth zone.
  • the first purge process (step 2) is performed in the second zone, and the first reaction gas is performed in the third zone.
  • the supply process (step 1) and the second purge process (step 4) are performed in the fourth zone.
  • the second reaction gas supply process (step 3) is performed in the second zone, and the first purge process is performed in the third zone.
  • the first reaction gas supply step (Step 1) is performed in the fourth zone.
  • FIG. 4 shows the atmosphere in the processing furnace in the film forming sequence of this embodiment.
  • the first reaction gas supply step (step 1) is performed in the first zone
  • the second purge step (step 4) is performed in the second zone
  • the second reaction is performed in the third zone.
  • the first purge process (step 2) is performed in the fourth zone.
  • the first purge process (step 2) is performed in the first zone
  • the first reactive gas supply process (step 2) is performed in the second zone.
  • step 1) the second purge process (step 4) is performed in the third zone, and the second reaction gas supply process (step 3) is performed in the fourth zone.
  • step 3 the second reaction gas supply process (step 3) is performed in the first zone, and the first purge process (step 3) is performed in the second zone.
  • step 2) the first reactive gas supply process (step 1) is performed in the third zone, and the second purge process (step 4) is performed in the fourth zone.
  • step 4D which is one step advanced from FIG. 4C
  • the second purge process (step 4) is performed in the first zone, and the second reactive gas supply process (step 4) is performed in the second zone.
  • step 3 the first purge process (step 2) is performed in the third zone, and the first reactive gas supply process (step 1) is performed in the fourth zone.
  • the first reaction gas (TEMAZ) supply process in step 1 the first purge process (Purge1) in step 2, the second reaction in step 3 In the gas (O 3 ) supply step, Step 4, the second purge step (Purge2) is performed, and then the same process is repeated in the second cycle, the third cycle, and so on.
  • the first reactive gas (TEMAZ) supply process in step 1 the first purge process in step 2, the second reactive gas (step 3) In the O 3 ) supply step, Step 4, the second purge step is performed, and then the second cycle, the third cycle,... Are repeated in the same manner.
  • the TEMAZ gas is supplied into the second zone from the gas supply hole 232h through the first reaction gas supply pipe 232a and the first reaction gas nozzle 232.
  • the N 2 gas passes through the inert gas supply pipe 232b, the first reaction gas supply pipe 232a, and the first reaction gas supply nozzle 232, and is supplied into the second zone from the gas supply hole 232h. May be.
  • the N 2 gas is supplied into the second zone from the gas supply hole 332h through the inert gas supply pipe 332b, the second reaction gas supply pipe 332a, and the second reaction gas supply nozzle 332.
  • the TEMAZ gas supplied into the processing chamber 201 from entering the second reaction gas supply nozzle 332.
  • Step 2 the N 2 gas that is the first purge gas passes through the inert gas supply pipe 232b, the first reaction gas supply pipe 232a, the first reaction gas nozzle 232, and passes through the gas supply hole 232h to the second zone. And the inert gas supply pipe 332b, the second reaction gas supply pipe 332a, and the second reaction gas supply nozzle 332, and is supplied from the gas supply hole 332h into the second zone.
  • Step 3 O 3 gas is supplied into the second zone from the gas supply hole 332h through the second reaction gas supply pipe 332a and the second reaction gas nozzle 332.
  • the N 2 gas passes through the inert gas supply pipe 332b, the second reaction gas supply pipe 332a, and the second reaction gas supply nozzle 332, and is supplied into the second zone from the gas supply hole 332h. May be.
  • the N 2 gas is supplied into the second zone from the gas supply hole 232h through the inert gas supply pipe 232b, the first reaction gas supply pipe 232a, and the first reaction gas supply nozzle 232. Like that. Thereby, it is possible to prevent the O 3 gas supplied into the processing chamber 201 from entering the first reaction gas supply nozzle 232.
  • Step 4 the N 2 gas as the second purge gas passes through the inert gas supply pipe 332b, the second reaction gas supply pipe 332a, the second reaction gas nozzle 332, and passes through the gas supply hole 332h to the second zone. And the inert gas supply pipe 232b, the first reaction gas supply pipe 232a, and the first reaction gas nozzle 232, and is supplied from the gas supply hole 232h into the second zone.
  • the TEMAZ gas is supplied into the third zone from the gas supply hole 233h through the first reaction gas supply pipe 233a and the first reaction gas nozzle 233.
  • the N 2 gas passes through the inert gas supply pipe 233b, the first reaction gas supply pipe 233a, and the first reaction gas supply nozzle 233, and is supplied into the third zone from the gas supply hole 233h. May be.
  • the N 2 gas passes through the inert gas supply pipe 333b, the second reaction gas supply pipe 333a, and the second reaction gas supply nozzle 333, and is supplied from the gas supply hole 333h into the second zone.
  • the TEMAZ gas supplied into the processing chamber 201 from entering the second reaction gas supply nozzle 333.
  • Step 2 the N 2 gas as the first purge gas passes through the inert gas supply pipe 233b, the first reaction gas supply pipe 233a, the first reaction gas nozzle 233, and passes through the gas supply hole 233h to the third zone.
  • the inert gas supply pipe 333b, the second reaction gas supply pipe 333a, and the second reaction gas supply nozzle 333 and is supplied from the gas supply hole 333h into the third zone.
  • Step 3 O 3 gas is supplied into the third zone from the gas supply hole 333h through the second reaction gas supply pipe 333a and the second reaction gas nozzle 333.
  • the N 2 gas passes through the inert gas supply pipe 333b, the second reaction gas supply pipe 333a, and the second reaction gas supply nozzle 333, and is supplied into the third zone from the gas supply hole 333h. May be.
  • the N 2 gas is supplied into the third zone from the gas supply hole 233h through the inert gas supply pipe 233b, the first reaction gas supply pipe 233a, and the first reaction gas supply nozzle 233.
  • the O 3 gas supplied into the processing chamber 201 from entering the first reaction gas supply nozzle 233.
  • step 4 the N 2 gas as the second purge gas passes through the inert gas supply pipe 333b, the second reaction gas supply pipe 333a, the second reaction gas nozzle 333, and passes through the gas supply hole 333h to the third zone.
  • the inert gas supply pipe 233b, the first reaction gas supply pipe 233a, and the first reaction gas nozzle 233 and is supplied from the gas supply hole 233h into the third zone.
  • the TEMAZ gas is supplied into the fourth zone from the gas supply hole 234h through the first reaction gas supply pipe 234a and the first reaction gas nozzle 234.
  • the N 2 gas passes through the inert gas supply pipe 234b, the first reaction gas supply pipe 234a, and the first reaction gas supply nozzle 234, and is supplied into the fourth zone from the gas supply hole 234h. May be.
  • the N 2 gas is supplied into the fourth zone from the gas supply hole 334h through the inert gas supply pipe 334b, the second reaction gas supply pipe 334a, and the second reaction gas supply nozzle 334.
  • the TEMAZ gas supplied into the processing chamber 201 from entering the second reaction gas supply nozzle 334.
  • Step 2 the N 2 gas which is the first purge gas passes through the inert gas supply pipe 234b, the first reaction gas supply pipe 234a, the first reaction gas nozzle 234, and passes through the gas supply hole 234h to the fourth zone. And the inert gas supply pipe 334b, the second reaction gas supply pipe 334a, and the second reaction gas supply nozzle 334, and is supplied from the gas supply hole 334h into the fourth zone.
  • step 3 O 3 gas is supplied into the fourth zone from the gas supply hole 334h through the second reaction gas supply pipe 334a and the second reaction gas nozzle 334.
  • the N 2 gas is supplied to the fourth zone from the gas supply hole 334h through the inert gas supply pipe 334b, the second reaction gas supply pipe 334a, and the second reaction gas supply nozzle 334. May be.
  • the N 2 gas is supplied into the fourth zone from the gas supply hole 234h through the inert gas supply pipe 234b, the first reaction gas supply pipe 234a, and the first reaction gas supply nozzle 234.
  • the O 3 gas supplied into the processing chamber 201 from entering the first reaction gas supply nozzle 234.
  • Step 4 the N 2 gas as the second purge gas passes through the inert gas supply pipe 334b, the second reaction gas supply pipe 334a, the second reaction gas nozzle 334, and passes through the gas supply hole 334h to the fourth zone. And the inert gas supply pipe 234b, the first reaction gas supply pipe 234a and the first reaction gas nozzle 234, and is supplied from the gas supply hole 234h into the fourth zone.
  • the gas and by-products remaining in the processing chamber 201 are discharged from the processing chamber 201, and the atmosphere in the processing chamber 201 is replaced with an inert gas. Thereafter, the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
  • the seal cap 219 is lowered by the boat elevator 115 to open the lower end of the reaction tube 203 and the processed wafer 202 is held by the boat 217 from the lower end of the reaction tube 203 to the outside of the reaction tube 203. Unloaded (boat unload). Thereafter, the processed wafer 202 is taken out from the boat 217 (wafer discharge). In this way, a series of processes for forming a zirconium oxide film having a predetermined thickness on the wafer 202 is completed.
  • the number of zones and the number of steps are set to four, which is the same number, and processing is performed with the timing shifted by one step in each zone.
  • the processes performed simultaneously in each zone are different from each other.
  • the same process is not performed simultaneously in each zone, and the timing of performing each process between the zones.
  • a cycle including a first reaction gas supply process, a first purge process, a second reaction gas supply process, and a second purge process (steps 1 to 4) repeated in each zone is performed between the zones. Therefore, it is asynchronous (not synchronized).
  • the zone for performing the first reactive gas supply process or the zone for performing the second reactive gas supply process always exists at any timing, so that the processing is performed only at a specific timing as shown in FIG.
  • the flow rate of the reaction gas supplied to one wafer can be increased, thereby reducing the reaction gas supply time. That is, since the exposure amount of the reactive gas per wafer can be increased as compared with the conventional method, the time for forming the zirconium-containing layer in step 1 and the time for oxidizing the zirconium-containing layer in step 3 are shortened. That is, the film formation time can be shortened and the throughput can be improved.
  • the number of reaction gas supply nozzles, reaction gas supply tubes, and inert gas supply tubes is reduced as compared with the case where the number of zones is larger than the number of steps. This makes it easy to configure the gas supply system. Further, compared to the case where the number of zones is smaller than the number of steps, the flow rate of the reaction gas supplied per wafer can be increased, and the reaction gas supply time can be shortened. That is, compared with the case where the number of zones is smaller than the number of steps, the exposure amount of the reactive gas per wafer can be increased. Therefore, the time for forming the zirconium-containing layer in step 1 or the zirconium-containing layer in step 3 The oxidation time can be shortened, that is, the film formation time can be shortened, and the throughput can be improved.
  • a gas curtain with an inert gas that suppresses mixing of each reaction gas is performed by performing the second purge process or the third purge process.
  • the number of zones can be set to four.
  • two kinds of reaction gases a first reaction gas containing a first element, a second reaction gas containing a second element and a third element
  • the film formation can be performed with four zones.
  • the number of zones is set to eight.
  • the number of zones can be set to six or four.
  • three kinds of reaction gases a first reaction gas containing a first element, a second reaction gas containing a second element and a third element, a fourth reaction gas, In the case where a film can be formed using a third reaction gas containing an element), the film can be formed with six zones.
  • reaction gases a first reaction gas containing a first element and a second element, a second reaction containing a third element and a fourth element
  • the film can be formed with four zones.
  • FIG. 9 is a diagram showing an atmosphere in a processing furnace in a film forming sequence according to another embodiment of the present invention.
  • a process of purging all zones that is, FIGS. 9B, 9D, 9F, and 9H, is provided while switching gases in each zone.
  • tetrakisethylmethylaminozirconium Zr [N (C 2 H 5 ) (CH 3 )] 4 , abbreviated TEMAZ), which is a raw material containing Zr
  • TEMAZ tetrakisethylmethylaminozirconium
  • TDMAZ tetrakisdimethylaminozirconium
  • TDEAZ tetrakisdiethylaminozirconium
  • Inorganic materials such as zirconium tetrachloride (ZrCl 4 ) can also be used.
  • a purge gas or a carrier gas an example has been described using a N 2 gas is an inert gas, the other, Ar, He, Ne, may be used a noble gas such as Xe.
  • ozone (O 3 ) gas which is an oxidizing gas
  • oxygen (O 2 ) gas which is an oxidizing gas
  • Nitrogen oxide (NO) gas, nitrous oxide (N 2 O) gas, water vapor (H 2 O), or the like may be used. That is, as the oxidizing gas, at least one gas selected from the group consisting of O 2 gas, O 3 gas, H 2 O gas, NO gas, and N 2 O gas can be used.
  • the present invention can form a Ni film using Ni (PF 3 ) 4 and H 2 or a Ru film using Ru (C 5 H 4 C 2 H 5 ) 2 and O 2. It can also be applied to the deposition of a pure metal such as a film.
  • a raw material containing an element other than Zr such as Ti, Ta, Hf, Ni, Ru, and Si can be used in addition to the raw material containing Zr.
  • a reducing gas such as ammonia (NH 3 ) gas can be used in addition to the oxidizing gas.
  • the reducing gas may be diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas, hydrogen (H 2 ) gas, heavy gas, as well as NH 3 gas.
  • Hydrogen (D 2 ) gas, methane (CH 4 ) gas, or the like can be used. That is, the reducing gas is at least one selected from the group consisting of H 2 gas, D 2 gas, NH 3 gas, CH 4 gas, N 2 H 2 gas, N 2 H 4 gas, and N 3 H 8 gas. Two gases can be used.
  • a thin film is formed using a batch type substrate processing apparatus that processes a plurality of substrates, for example, 25 to 150 substrates at a time.
  • the present invention is not limited to this.
  • the present invention can also be suitably applied to the case where a thin film is formed using a substrate processing apparatus that processes a small number of substrates, for example, several substrates at a time.
  • the present invention can be realized, for example, by changing a process recipe of an existing substrate processing apparatus.
  • the process recipe according to the present invention is installed in an existing substrate processing apparatus via a telecommunication line or a recording medium recording the process recipe, or input / output of the existing substrate processing apparatus It is also possible to operate the apparatus and change the process recipe itself to the process recipe according to the present invention.
  • a processing chamber configured to accommodate a plurality of substrates and having an interior divided into a plurality of zones, A gas supply system that supplies a first reaction gas, a second reaction gas, and an inert gas to each of the plurality of zones in the processing chamber; A gas exhaust system for exhausting the gas in each zone; A first reaction gas supply step for supplying a first reaction gas to each zone in the processing chamber containing a plurality of substrates, a first purge for supplying an inert gas and discharging the first reaction gas A plurality of processes including a process, a second reaction gas supply process for supplying a second reaction gas, and a second purge process for supplying an inert gas and discharging the second reaction gas.
  • a control unit that controls the gas supply system and the gas exhaust system so that the steps performed simultaneously in the zones are different from each other, A substrate processing apparatus is provided.
  • control unit In the substrate processing apparatus of appendix 1, preferably, The control unit is configured to control the gas supply system and the gas exhaust system so that the same process is not performed simultaneously in each zone when the thin film is formed.
  • the control unit is configured to control the gas supply system and the gas exhaust system so that the timing of performing each process is different between the zones when the thin film is formed.
  • control unit performs the first reactive gas supply process, the first purge process, the second reactive gas supply process, and the second purge process in each zone at any timing.
  • the gas supply system and the gas exhaust system are controlled so as to be performed without fail.
  • a gas supply hole of the gas supply system for supplying gas to each zone and a gas discharge hole of the gas exhaust system for discharging gas in each zone are provided for each zone.
  • a heating unit for heating the processing chamber outside the processing chamber is provided for each zone,
  • the said control part is comprised so that the temperature of the heating part provided for every said zone may be independently controlled for every said zone.
  • the processing chamber is defined by a cylindrical reaction tube having a longitudinal direction in the vertical direction, On the inner wall of the reaction tube, a partition plate that protrudes in the center direction of the reaction tube is provided at the boundary between the zones.
  • the processing chamber is defined by a cylindrical reaction tube having a longitudinal direction in the vertical direction,
  • the gas supply system has a gas supply nozzle extending in the vertical direction in the reaction tube, and the gas supply nozzle has a plurality of gas supply holes that open toward the center of the reaction tube,
  • the gas exhaust system has a plurality of gas exhaust holes provided on the side of the reaction tube facing the gas supply nozzle so as to extend in the vertical direction, and the gas exhaust holes and the gas supply holes are arranged horizontally.
  • the directional position is configured to be a position between the substrates accommodated in the reaction tube.
  • a first reaction gas supply step for supplying a first reaction gas to each zone in the processing chamber containing a plurality of substrates, a first purge for supplying an inert gas and discharging the first reaction gas
  • a plurality of processes including a process, a second reaction gas supply process for supplying a second reaction gas, and a second purge process for supplying an inert gas and discharging the second reaction gas.
  • Appendix 16 In the method for manufacturing a semiconductor device according to any one of appendix 14 or 15, preferably, In the step of forming the thin film, the timing for performing the steps is varied between the zones.
  • the first purge step or the second purge is performed in a zone between a zone where the first reactive gas supply step is performed and a zone where the second reactive gas supply step is performed. Let the process take place.
  • the first purge step or the second purge is performed in a zone between a zone where the first reactive gas supply step is performed and a zone where the second reactive gas supply step is performed.
  • a gas curtain made of an inert gas is formed.
  • a first reaction gas supply step for supplying a first reaction gas to each zone in the processing chamber containing a plurality of substrates, a first purge for supplying an inert gas and discharging the first reaction gas
  • a plurality of processes including a process, a second reaction gas supply process for supplying a second reaction gas, and a second purge process for supplying an inert gas and discharging the second reaction gas.
  • a procedure for accommodating a plurality of substrates in a processing chamber whose interior is divided into a plurality of zones First reaction gas supply procedure for supplying a first reaction gas to each zone in the processing chamber containing a plurality of substrates, a first purge for supplying an inert gas and discharging the first reaction gas
  • a plurality of procedures including a procedure, a second reaction gas supply procedure for supplying a second reaction gas, and a second purge procedure for supplying an inert gas and discharging the second reaction gas.
  • a procedure for accommodating a plurality of substrates in a processing chamber whose interior is divided into a plurality of zones First reaction gas supply procedure for supplying a first reaction gas to each zone in the processing chamber containing a plurality of substrates, a first purge for supplying an inert gas and discharging the first reaction gas
  • a plurality of procedures including a procedure, a second reaction gas supply procedure for supplying a second reaction gas, and a second purge procedure for supplying an inert gas and discharging the second reaction gas.
  • DESCRIPTION OF SYMBOLS 200 ... Processing furnace, 202 ... Wafer (substrate), 201 ... Processing chamber, 201a ... Exhaust chamber, 203 ... Reaction tube, 207 ... Heater unit (heating part), 217 ... Boat, 219 ... Seal cap, 231-234 ... 1 reactive gas supply nozzle, 231a to 234a ... first reactive gas supply pipe, 231b to 234b ... inert gas supply pipe, 231h to 234h ... gas supply hole, 241 ... first reactive gas supply source, 242 ... second reactive gas Supply source, 243 ... inert gas supply source, 251a to 254a ... MFC, 251b to 254b ...
  • MFC 361a-364a ... Open / close valve, 361b-364b ... Open / close valve, 361c-364c ... Open / close valve, 361d-364d ... Open / close valve, 2071 ... First zone heater, 2072 ... Second Zone heater, 2073, third zone heater, 2074, fourth zone heater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

複数枚の基板を収容するように構成されるとともに、内部が複数のゾーンに分割された処理室と、前記処理室内の前記複数のゾーンのそれぞれに対して、第1の反応ガス、第2の反応ガスおよび不活性ガスを供給するガス供給系と、前記各ゾーン内のガスを排気するガス排気系と、複数枚の基板を収容した前記処理室内の前記各ゾーンに対して、第1の反応ガスを供給する第1反応ガス供給工程、不活性ガスを供給し第1の反応ガスを排出する第1パージ工程、第2の反応ガスを供給する第2反応ガス供給工程、不活性ガスを供給し第2の反応ガスを排出する第2パージ工程を含む複数の工程を繰り返し実施することで、前記各ゾーンにおける基板上に薄膜を形成し、その際、前記各ゾーンにおいて同時に行われる工程が互いに異なる工程となるように、前記ガス供給系および前記ガス排気系を制御する制御部と、を有するように基板処理装置を構成する。

Description

基板処理装置、基板処理方法、半導体装置の製造方法、および記録媒体
  本発明は、ウエハ等の基板上に薄膜を形成する工程を実施する基板処理装置、基板処理方法、半導体装置の製造方法、および記録媒体に関し、例えば、LSI等の半導体装置の製造工程の一工程において絶縁膜や金属膜を形成するための基板処理装置、基板処理方法、半導体装置の製造方法、および記録媒体に関するものである。
  半導体装置(デバイス)の製造工程の一つに、例えば、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)を製造する工程がある。このMOSFETの高集積化及び高性能化に伴い、MOSFETの製造工程において多種多様の絶縁膜や金属膜の適用が検討されている。例えば、金属膜としては、TiCl(四塩化チタン)とNH(アンモニア)を用いたTiN(窒化チタン)膜、絶縁膜としては、TEMAH(テトラキスエチルメチルアミノハフニウム)とO(オゾン)、もしくはHOを用いたHfO(酸化ハフニウム)膜、TEMAZ(テトラキスエチルメチルアミノジルコニウム)とO等を用いたZrO(酸化ジルコニウム)膜などがある。
  ここで、本明細書では、金属膜という用語は、金属原子を含む導電性の物質で構成される膜、すなわち、導電性の金属含有膜を意味しており、これには、金属単体で構成される導電性の金属単体膜の他、導電性の金属窒化膜、導電性の金属酸化膜、導電性の金属酸窒化膜、導電性の金属炭化膜(金属カーバイド膜)、導電性の金属炭窒化膜、導電性の金属複合膜、導電性の金属合金膜、導電性の金属シリサイド膜等も含まれる。なお、TiN膜、TaN膜、HfN膜、ZrN膜は導電性の金属窒化膜であり、TiC膜は導電性の金属炭化膜であり、TiCN膜は導電性の金属炭窒化膜であり、TiAlN膜は導電性の金属複合膜である。
  また、熱負荷低減や3D(3次元)デバイス構造の適用の観点から、成膜手法としては、複数種類のガスを同時に供給する同時供給法よりも、複数種類のガスを交互に供給する交互供給法の適用が増えている。
  交互供給法にて成膜する場合の従来例における成膜シーケンスを図6に示す。図6に示すように、交互供給法にて成膜する場合は、通常、(1)プリカーサである第1の反応ガス61の供給工程、(2)第1の反応ガス61をパージガス62により排出する第1パージ工程、(3)酸化もしくは還元ガスである第2の反応ガス63の供給工程、(4)第2の反応ガス63をパージガス64により排出する第2パージ工程、の4つの工程を1サイクルとし、このサイクルを繰り返すことで成膜する。
  図7は、例えば縦型成膜装置で従来例の成膜シーケンスを行う場合の、処理炉内の雰囲気を示す図である。図7は、処理炉の垂直断面図であり、略円筒形状の反応管503内に複数のウエハ202を搭載したボート217が搬入されており、ガスノズル531からガスが反応管503内に供給され、排気管271から排気される。
  まず、図7(a)において、ガスノズル531から第1の反応ガス61が供給される。次に、図7(b)において、ガスノズル531からパージガス62が供給され、第1の反応ガス61をパージガス62により排出する。次に、図7(c)において、ガスノズル531から第2の反応ガス63が供給される。次に、図7(d)において、ガスノズル531からパージガス64が供給され、第2の反応ガス63をパージガス64により排出する。
  このとき、第1の反応ガス(プリカーサ)供給工程、および、第2の反応ガス(酸化/還元ガス)供給工程においては、適正な反応を起こす必要があるため、十分な供給量が必要となる。その供給量は、単位時間当たりのガス供給量と供給時間の積からなる暴露量に依存し、単位時間当たりの供給量が多いと供給時間を短くでき、単位時間当たりの供給量が少ないと供給時間を長くする必要がある。
  このため、この成膜をバッチ炉、例えば縦型成膜装置で行う場合、チャンバ容量が大きく、かつ、ウエハ枚数が多いので、単位時間当たりの供給量を多くすることが難しく、その結果、プリカーサ供給工程や酸化/還元ガス供給工程にかかる時間が長くなり、スループットが低下する要因となっている。
  下記の特許文献1には、縦型成膜装置において、処理室内に第1の反応種を供給する工程と、処理室から余剰な第1の反応種を除去するパージ工程と、処理室内に第2の反応種を供給する工程と、処理室から余剰な第2の反応種を除去するパージ工程とから成るステップを繰り返して、基板上に所望の厚さの薄膜を形成する技術が開示されている。
特開2006-269532号公報
  上述したように、従来の縦型成膜装置において、複数種類の反応ガスを交互に供給して成膜を行う場合、第1の反応ガス供給工程や第2の反応ガス供給工程に要する時間が長くなり、スループットを向上させることが容易ではなかった。
  本発明の目的は、第1の反応ガス供給工程や第2の反応ガス供給工程に要する時間を短縮し、スループットを向上させることのできる基板処理装置や、該基板処理装置を用いた基板処理方法、半導体装置の製造方法および記録媒体を提供することにある。
  本発明の一態様によれば、
  複数枚の基板を収容するように構成されるとともに、内部が複数のゾーンに分割された処理室と、
  前記処理室内の前記複数のゾーンのそれぞれに対して、第1の反応ガス、第2の反応ガスおよび不活性ガスを供給するガス供給系と、
  前記各ゾーン内のガスを排気するガス排気系と、
  複数枚の基板を収容した前記処理室内の前記各ゾーンに対して、第1の反応ガスを供給する第1反応ガス供給工程、不活性ガスを供給し第1の反応ガスを排出する第1パージ工程、第2の反応ガスを供給する第2反応ガス供給工程、不活性ガスを供給し第2の反応ガスを排出する第2パージ工程を含む複数の工程を繰り返し実施することで、前記各ゾーンにおける基板上に薄膜を形成し、その際、前記各ゾーンにおいて同時に行われる工程が互いに異なる工程となるように、前記ガス供給系および前記ガス排気系を制御する制御部と、
  を有する基板処理装置が提供される。
  本発明の他の態様によれば、
  内部が複数のゾーンに分割された処理室内に複数枚の基板を収容する工程と、
  複数枚の基板を収容した前記処理室内の前記各ゾーンに対して、第1の反応ガスを供給する第1反応ガス供給工程、不活性ガスを供給し第1の反応ガスを排出する第1パージ工程、第2の反応ガスを供給する第2反応ガス供給工程、不活性ガスを供給し第2の反応ガスを排出する第2パージ工程を含む複数の工程を繰り返し実施することで、前記各ゾーンにおける基板上に薄膜を形成する工程と、
  を有し、
  前記薄膜を形成する工程では、前記各ゾーンにおいて同時に行われる工程が互いに異なる工程となるようにする基板処理方法が提供される。
  本発明のさらに他の態様によれば、
  内部が複数のゾーンに分割された処理室内に複数枚の基板を収容する工程と、
  複数枚の基板を収容した前記処理室内の前記各ゾーンに対して、第1の反応ガスを供給する第1反応ガス供給工程、不活性ガスを供給し第1の反応ガスを排出する第1パージ工程、第2の反応ガスを供給する第2反応ガス供給工程、不活性ガスを供給し第2の反応ガスを排出する第2パージ工程を含む複数の工程を繰り返し実施することで、前記各ゾーンにおける基板上に薄膜を形成する工程と、
  を有し、
  前記薄膜を形成する工程では、前記各ゾーンにおいて同時に行われる工程が互いに異なる工程となるようにする半導体装置の製造方法が提供される。
  本発明のさらに他の態様によれば、
  内部が複数のゾーンに分割された処理室内に複数枚の基板を収容する手順と、
  複数枚の基板を収容した前記処理室内の前記各ゾーンに対して、第1の反応ガスを供給する第1反応ガス供給手順、不活性ガスを供給し第1の反応ガスを排出する第1パージ手順、第2の反応ガスを供給する第2反応ガス供給手順、不活性ガスを供給し第2の反応ガスを排出する第2パージ手順を含む複数の手順を繰り返し実施することで、前記各ゾーンにおける基板上に薄膜を形成する手順と、
  をコンピュータに実行させ、
  前記薄膜を形成する手順では、前記各ゾーンにおいて同時に行われる手順が互いに異なる手順となるようにするプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。
  このように構成すると、第1の反応ガス供給工程や第2の反応ガス供給工程に要する時間を短縮し、スループットを向上させることができる。
本発明の実施形態における処理炉を側面からみた垂直断面図を示す。 図1におけるA-A断面図(水平断面図)を示す。 本発明の実施形態における成膜シーケンスを示す図である。 本発明の実施形態の成膜シーケンスにおける処理炉内の雰囲気を示す図である。 本発明の実施形態における成膜シーケンスを説明するための図である。 従来例における成膜シーケンスを示す図である。 従来例の成膜シーケンスにおける処理炉内の雰囲気を示す図である。 本発明の実施形態における制御部を説明するための図である。 本発明の他の実施形態の成膜シーケンスにおける処理炉内の雰囲気を示す図である。
  本発明の実施の形態を図面に基づいて説明する。
  図1は、本実施の形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉200部分を縦断面図で示している。また、図2は、処理炉200部分を図1のA-A線断面図(水平断面図)で示している。
  図1に示されているように、処理炉200は加熱源(加熱手段)としてのヒータ207(2071~2076)を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。ヒータ207は、抵抗加熱型のヒータ(抵抗加熱による熱源)であり、後述する処理室201内のウエハ202を所定の温度に加熱するように構成されている。
  ヒータ207は、2071~2076の6つのゾーン(領域)に区分されており、各ゾーンのヒータは、それぞれコントローラ280に接続され、それぞれ独立に温度を調節できるようになっている。
  図1に示すように、処理室201内は、上から順に少なくとも4つの処理ゾーンである、第1ゾーン~第4ゾーンに区分されている。第1ゾーン~第4ゾーンは、処理時においてウエハ202が載置される領域であり、それぞれ、主に、第1ゾーンヒータ2071、第2ゾーンヒータ2072、第3ゾーンヒータ2073、第4ゾーンヒータ2074により加熱される。第1ゾーンの上方と第4ゾーンの下方には、ウエハ202が載置されない補助加熱領域が設けられ、それぞれ第1補助加熱ヒータ2075と第2補助加熱ヒータ2076により加熱される。なお、第2補助加熱ヒータ2076に対応するボート217上には、製品用ウエハでないダミーウエハが搭載される。また、必要に応じて、第1ゾーンヒータ2071の上部に対応するボート217上にも、製品用ウエハでないダミーウエハが搭載される。
  ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料により構成されており、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の筒中空部には処理室(反応室)201が形成されており、基板としてのウエハ202を後述するボート217によって水平姿勢で垂直方向に多段に整列した状態で収容可能に構成されている。反応管203により反応容器(処理容器)が形成される。
  次に、ガス供給系について説明する。ガス供給系は、後述する第1反応ガス供給系、第2反応ガス供給系、第1不活性ガス供給系、第2不活性ガス供給系により構成される。
  図1に示すように、反応管203内には、第1の反応ガスを供給する第1反応ガス供給ノズル231~234と、第2の反応ガスを供給する第2反応ガス供給ノズル331~334(図2参照)とが、反応管203下部の側壁を水平方向に貫通するように設けられている。第1反応ガス供給ノズル231~234と第2反応ガス供給ノズル331~334は、それぞれ、処理室201を構成している反応管203の内壁とウエハ202との間における円弧状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ202の積載方向上方に向かって立ち上がるように設けられている。すなわち、第1反応ガス供給ノズル231~234と第2反応ガス供給ノズル331~334は、それぞれ、ウエハ202が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。第1反応ガス供給ノズル231~234と第2反応ガス供給ノズル331~334は、ノズル231と331、232と332、233と333、234と334が、それぞれ同一形状を有しており、それぞれL字型のロングノズルとして構成されており、その水平部は反応管203の下部側壁を貫通するように設けられており、その垂直部は少なくともウエハ配列領域の一端側から他端側に向かって立ち上がるように設けられている。図1においては、図示を簡明にする便宜上、ノズル231と331、232と332、233と333、234と334を、それぞれ1本で示している。
  なお、反応管203の下方に、反応管203を支持する金属製のマニホールドを設け、各ノズルを、この金属製のマニホールドの側壁を貫通するように設けるようにしてもよい。このように、処理炉200の炉口部を金属製とし、この金属製の炉口部にノズル等を取り付けるようにしてもよい。
  図1に示すように、第1反応ガス供給ノズル231は第1ゾーンの上端までの長さを有し、第1反応ガス供給ノズル232は第2ゾーンの上端までの長さを有し、第1反応ガス供給ノズル233は第3ゾーンの上端までの長さを有し、第1反応ガス供給ノズル234は第4ゾーンの上端までの長さを有している。
  第1ゾーン内の第1反応ガス供給ノズル231の側面には、ガスを供給するガス供給孔231hが複数設けられ、第2ゾーン内の第1反応ガス供給ノズル232の側面には、ガスを供給するガス供給孔232hが複数設けられ、第3ゾーン内の第1反応ガス供給ノズル233の側面には、ガスを供給するガス供給孔233hが複数設けられ、第4ゾーン内の第1反応ガス供給ノズル234の側面には、ガスを供給するガス供給孔234hが複数設けられている。
  同様に、第2反応ガス供給ノズル331は第1ゾーンの上端までの長さを有し、第2反応ガス供給ノズル332は第2ゾーンの上端までの長さを有し、第2反応ガス供給ノズル333は第3ゾーンの上端までの長さを有し、第2反応ガス供給ノズル334は第4ゾーンの上端までの長さを有している。
  また、第1ゾーン内の第2反応ガス供給ノズル331の側面には、ガスを供給するガス供給孔331hが複数設けられ、第2ゾーン内の第2反応ガス供給ノズル332の側面には、ガスを供給するガス供給孔332hが複数設けられ、第3ゾーン内の第2反応ガス供給ノズル333の側面には、ガスを供給するガス供給孔333hが複数設けられ、第4ゾーン内の第2反応ガス供給ノズル334の側面には、ガスを供給するガス供給孔334hが複数設けられている。
  なお、図示を簡明にする便宜上、図1においては、ガス供給孔231hと331h、232hと332h、233hと333h、234hと334hをそれぞれ一方で示す。また、図2においては、234hと334hのみを示す。
  ガス供給孔231h~234h、331h~334hは、反応管203の中心を向くように開口しており、ウエハ202に向けてガスを供給することが可能となっている。これらのガス供給孔231h~234h、331h~334hは、いずれも、各ゾーンの下部から上部にわたってそれぞれ同一の開口面積を有し、更に同じ開口ピッチで設けられている。
  好ましくは、これらのガス供給孔231h~234h、331h~334hのそれぞれは、ボート217に積載されたウエハ202のそれぞれに対応するよう、ウエハ202とウエハ202の間の位置に配置され、これらのガス供給孔から流出したガスが、ウエハ202とウエハ202の間を水平方向に流れるように構成される。このように構成すると、各ゾーンに配置されたガス供給孔から流出したガスが、他のゾーンへ混入することを効果的に抑制できる。
  かくして、第1反応ガス供給ノズル231は第1ゾーン内へガスを供給し、第1反応ガス供給ノズル232は第2ゾーン内へガスを供給し、第1反応ガス供給ノズル233は第3ゾーン内へガスを供給し、第1反応ガス供給ノズル234は第4ゾーン内へガスを供給するように構成され、好ましくは、それぞれ、他のゾーンへはガスを供給しないように構成される。
  同様に、第2反応ガス供給ノズル331は第1ゾーン内へガスを供給し、第2反応ガス供給ノズル332は第2ゾーン内へガスを供給し、第2反応ガス供給ノズル333は第3ゾーン内へガスを供給し、第2反応ガス供給ノズル334は第4ゾーン内へガスを供給するように構成され、好ましくは、それぞれ、他のゾーンへはガスを供給しないように構成される。
  このように、本実施形態におけるガス供給の方法は、反応管203の内壁と、積載された複数枚のウエハ202の端部とで定義される円弧状の縦長の空間内に配置した第1反応ガス供給ノズル231~234と第2反応ガス供給ノズル331~334を経由してガスを搬送し、第1反応ガス供給ノズル231~234と第2反応ガス供給ノズル331~334にそれぞれ開口されたガス供給孔231h~234h、331h~334hからウエハ202の近傍で初めて反応管203内にガスを噴出させており、反応管203内におけるガスの主たる流れをウエハ202の表面と平行な方向、すなわち水平方向としている。このような構成とすることで、各ウエハ202に均一にガスを供給でき、各ウエハ202に形成される薄膜の膜厚を均一にできる効果がある。なお、反応後の残ガスは、後述する排出孔203cの方向に向かって流れ、排気室201aを介して、排気管271より排気されることとなる。
  図2に示すように、第1反応ガス供給ノズル231~234には、それぞれ、第1の反応ガスを供給する第1反応ガス供給管231a~234aが接続されており、第2反応ガス供給ノズル331~334には、それぞれ、第2の反応ガスを供給する第2反応ガス供給管331a~334aが接続されている。
  第1反応ガス供給管231aには、上流方向から順に、第1反応ガス供給源であるTEMAZ供給源241、開閉弁であるバルブ261c、流量制御器(流量制御部)であるマスフローコントローラ(MFC)251a、及びバルブ261aが設けられている。また、第1反応ガス供給管231aのバルブ261aよりも下流側には、不活性ガス供給管231bが接続されている。この不活性ガス供給管231bには、上流方向から順に、不活性ガス供給源であるNガス供給源243、バルブ261d、MFC251b、及びバルブ261bが設けられている。第1反応ガス供給管231aの先端部(最下流部)には、上述の第1反応ガス供給ノズル231が接続されており、第1ゾーン内へ第1の反応ガスを供給可能となっている。
  同様に、第1反応ガス供給管232aには、上流方向から順に、TEMAZ供給源241、バルブ262c、MFC252a、及びバルブ262aが設けられている。また、第1反応ガス供給管232aのバルブ262aよりも下流側には、不活性ガス供給管232bが接続されている。この不活性ガス供給管232bには、上流方向から順に、Nガス供給源243、バルブ262d、MFC252b、及びバルブ262bが設けられている。第1反応ガス供給管232aの先端部(最下流部)には、上述の第1反応ガス供給ノズル232が接続されており、第2ゾーン内へ第1の反応ガスを供給可能となっている。
  同様に、第1反応ガス供給管233aには、上流方向から順に、TEMAZ供給源241、バルブ263c、MFC253a、及びバルブ263aが設けられている。また、第1反応ガス供給管233aのバルブ263aよりも下流側には、不活性ガス供給管233bが接続されている。この不活性ガス供給管233bには、上流方向から順に、Nガス供給源243、バルブ263d、MFC253b、及びバルブ263bが設けられている。第1反応ガス供給管233aの先端部(最下流部)には、上述の第1反応ガス供給ノズル233が接続されており、第3ゾーン内へ第1の反応ガスを供給可能となっている。
  同様に、第1反応ガス供給管234aには、上流方向から順に、TEMAZ供給源241、バルブ264c、MFC254a、及びバルブ264aが設けられている。また、第1反応ガス供給管234aのバルブ264aよりも下流側には、不活性ガス供給管234bが接続されている。この不活性ガス供給管234bには、上流方向から順に、Nガス供給源243、バルブ264d、MFC254b、及びバルブ264bが設けられている。第1反応ガス供給管234aの先端部(最下流部)には、上述の第1反応ガス供給ノズル234が接続されており、第4ゾーン内へ第1の反応ガスを供給可能となっている。
  主に、第1反応ガス供給管231a~234a、バルブ261c~264c、MFC251a~254a、バルブ261a~264aにより、第1反応ガス供給系が構成される。なお、第1反応ガス供給源241や、第1反応ガス供給ノズル231~234やガス供給孔231h~234hを、第1反応ガス供給系に含めて考えてもよい。
  また、主に、不活性ガス供給管231b~234b、バルブ261d~264d、MFC251b~254b、バルブ261b~264bにより、第1不活性ガス供給系が構成される。第1不活性ガス供給系は第1パージガス供給系としても機能する。なお、不活性ガス供給源243や、第1反応ガス供給ノズル231~234やガス供給孔231h~234hを、第1不活性ガス供給系に含めて考えてもよい。
  第1反応ガス供給管231a~234aからは、それぞれ、金属元素であるジルコニウム(Zr)を含む原料ガス(ジルコニウム原料ガス)として、TEMAZ(テトラキスエチルメチルアミノジルコニウム:Zr[N(C)(CH)])ガスが、バルブ261c~264c、MFC251a~254a、バルブ261a~264a、第1反応ガス供給ノズル231~234を介して処理室201内に供給される。すなわち、第1反応ガス供給系はジルコニウム原料ガス供給系として構成される。
  このとき同時に、不活性ガス供給管231b~234bから、それぞれ、不活性ガスが、バルブ261d~264d、MFC251b~254b、バルブ261b~264bを介して第1反応ガス供給管231a~234a内に供給されるようにしてもよい。第1反応ガス供給管231a~234a内に供給された不活性ガスは、それぞれ、第1反応ガス供給ノズル231~234を介して、TEMAZガスとともに処理室201内に供給される。なお、TEMAZのように常温常圧下で液体状態である液体原料を用いる場合は、液体原料を気化器やバブラ等の気化システムにより気化して、原料ガスとして供給することとなる。
  第2反応ガス供給管331aには、上流方向から順に、第2反応ガス供給源であるO供給源242、バルブ361c、MFC351a、及びバルブ361aが設けられている。また、第2反応ガス供給管331aのバルブ361aよりも下流側には、不活性ガス供給管331bが接続されている。この不活性ガス供給管331bには、上流方向から順に、不活性ガス供給源であるNガス供給源243、バルブ361d、MFC351b、及びバルブ361bが設けられている。第2反応ガス供給管331aの先端部(最下流部)には、上述の第2反応ガス供給ノズル331が接続されており、第1ゾーン内へ第2の反応ガスを供給可能となっている。
  同様に、第2反応ガス供給管332aには、上流方向から順に、O供給源242、バルブ362c、MFC352a、及びバルブ362aが設けられている。また、第2反応ガス供給管332aのバルブ362aよりも下流側には、不活性ガス供給管332bが接続されている。この不活性ガス供給管332bには、上流方向から順に、不活性ガス供給源であるNガス供給源243、バルブ362d、MFC352b、及びバルブ362bが設けられている。第2反応ガス供給管332aの先端部(最下流部)には、上述の第2反応ガス供給ノズル332が接続されており、第2ゾーン内へ第2の反応ガスを供給可能となっている。
  同様に、第2反応ガス供給管333aには、上流方向から順に、O供給源242、バルブ363c、MFC353a、及びバルブ363aが設けられている。また、第2反応ガス供給管333aのバルブ363aよりも下流側には、不活性ガス供給管333bが接続されている。この不活性ガス供給管333bには、上流方向から順に、不活性ガス供給源であるNガス供給源243、バルブ363d、MFC353b、及びバルブ363bが設けられている。第2反応ガス供給管333aの先端部(最下流部)には、上述の第2反応ガス供給ノズル333が接続されており、第3ゾーン内へ第2の反応ガスを供給可能となっている。
  同様に、第2反応ガス供給管334aには、上流方向から順に、O供給源242、バルブ364c、MFC354a、及びバルブ364aが設けられている。また、第2反応ガス供給管334aのバルブ364aよりも下流側には、不活性ガス供給管334bが接続されている。この不活性ガス供給管334bには、上流方向から順に、不活性ガス供給源であるNガス供給源243、バルブ364d、MFC354b、及びバルブ364bが設けられている。第2反応ガス供給管334aの先端部(最下流部)には、上述の第2反応ガス供給ノズル334が接続されており、第4ゾーン内へ第2の反応ガスを供給可能となっている。
  主に、第2反応ガス供給管331a~334a、バルブ361c~364c、MFC351a~354a、バルブ361a~364aにより、第2反応ガス供給系が構成される。なお、第2反応ガス供給源242や、第2反応ガス供給ノズル331~334やガス供給孔331h~334hを、第2反応ガス供給系に含めて考えてもよい。
  また、主に、不活性ガス供給管331b~334b、バルブ361d~364d、MFC351b~354b、バルブ361b~364bにより、第2不活性ガス供給系が構成される。第2不活性ガス供給系は第2パージガス供給系としても機能する。なお、不活性ガス供給源243や、第2反応ガス供給ノズル331~334やガス供給孔331h~334hを、第2不活性ガス供給系に含めて考えてもよい。
  第2反応ガス供給管331a~334aからは、それぞれ、酸化性ガスとして、第2の反応ガスであるオゾン(O)ガスが、バルブ361c~364c、MFC351a~354a、バルブ361a~364a、第2反応ガス供給ノズル331~334を介して、処理室201内に供給される。すなわち、第2反応ガス供給系は酸化性ガスであるオゾンガス供給系として構成される。このとき同時に、不活性ガス供給管331b~334bから、不活性ガスが、バルブ361d~364d、MFC351b~354b、バルブ361b~364bを介して、第2反応ガス供給管331a~334a内に供給されるようにしてもよい。第2反応ガス供給管331a~334a内に供給された不活性ガスは、それぞれ、第2反応ガス供給ノズル331~334を介して、Oガスとともに処理室201内へ供給される。
  次に、ガス排気系について説明する。
  図1に示すように、反応管203の反応ガス供給ノズルと対向する側の反応管側壁203bには、処理室201内の雰囲気を排出する排出孔203cが複数設けられている。排出孔203cは、本実施形態では横長のスリット状であり、それぞれが、ガス供給孔231h~234hやガス供給孔331h~334hのそれぞれと対向する位置に、ガス供給孔231h~234hやガス供給孔331h~334hのそれぞれと同じ高さに、ガス供給孔231h~234hやガス供給孔331h~334hと同じ数だけ設けられている。
  排出孔203cの外側には、排気室201aが設けられている。排気室201aは、鉛直方向に長い筒の内部(中空部)として形成されている。この筒は、排気室側壁203aと反応管側壁203bとで構成される。排気室201aの上端は閉塞され、下端は排気管271に接続されている。排気室201aを設けることにより、ガス供給孔231h~234hやガス供給孔331h~334hから処理室201内へ水平方向に流出したガスが、排出孔203cへ向けて、処理室201内を水平に流れ易くなっている。
  また、各ゾーンの境界位置における反応管203の内壁には、反応管203の内壁から内向きに突出するように、仕切り板203dが設けられている。仕切り板203dは、反応管203の内壁に熔接されている。図2に示すように、仕切り板203dは、上面視が環状(ドーナツ状)であり、各ゾーンのガス供給孔から、処理室201内へ水平方向に流出したガスが、他のゾーンへ混入するのを抑制している。排気室側壁203a、仕切り板203dは、反応管203と同じ石英等の材料で形成されている。
  反応管203の下部、すなわち排気室201aの下部には、排気室201a内の雰囲気を排気するための排気管271が接続されている。排気室201aと排気管271との接続部に排気口が形成される。排気管271には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ274および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ272を介して、真空排気装置としての真空ポンプ273が接続されている。なお、APCバルブ272は、真空ポンプ273を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ273を作動させた状態で弁開度を調節することで、処理室201内の圧力を調整することができるように構成されているバルブである。
  主に、排出孔203c、排気室201a、排気管271、圧力センサ274、APCバルブ272により排気系が構成される。なお、真空ポンプ273を排気系に含めて考えてもよい。
  ウエハ202に対する処理中は、真空ポンプ273を作動させた状態で、圧力センサ274により検出された圧力情報に基づいてAPCバルブ272の弁の開度を調節することにより、処理室201内の圧力が大気圧未満の所定の圧力(真空度)となるように調整(制御)される。主に、圧力センサ274、APCバルブ272により、圧力制御部(圧力調整部)が構成される。
  反応管203の下方には、反応管203の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、反応管203の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は、例えばステンレス等の金属により構成され、円盤状に形成されている。シールキャップ219の上面には、反応管203の下端と当接するシール部材としてOリング220が設けられている。
  シールキャップ219の処理室201と反対側には、後述する基板保持具としてのボート217を回転させるボート回転機構267が設置されている。ボート回転機構267の回転軸265は、シールキャップ219を貫通してボート217に接続されている。ボート回転機構267は、ボート217を回転させることでウエハ202を回転させるように構成されている。
  シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。すなわち、ボートエレベータ115は、ボート217すなわちウエハ202を、処理室201内外に搬送する搬送装置(搬送機構)として構成される。
  基板保持具としてのボート217は、例えば石英や炭化珪素等の耐熱性材料により構成されており、複数枚のウエハ202を水平姿勢で、かつ、互いに中心を揃えた状態で整列させて多段に積層して保持するように構成されている。なお、ボート217の下部には、例えば石英や炭化珪素等の耐熱性材料からなる断熱部材218が設けられており、ヒータ207からの熱がシールキャップ219側に伝わりにくくなるように構成されている。なお、断熱部材218は、石英や炭化珪素等の耐熱性材料からなる複数枚の断熱板と、これら断熱板を水平姿勢で多段に支持する断熱板ホルダとにより構成してもよい。
  図2に示すように、反応管203内には、温度検出器としての温度センサ208が設置されている。温度センサ208は、第1~第4の各ゾーンごとに設置されており、各温度センサ208により検出された温度情報に基づき、第1ゾーンヒータ2071~第4ゾーンヒータ2074への通電具合を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ208は、第1反応ガス供給ノズル231~234や第2反応ガス供給ノズル331~334と同様に、L字型に構成されており、反応管203の内壁に沿って設けられている。
  ウエハ202に対する処理中は、各温度センサ208により検出された温度情報に基づきヒータ207(2071~2074)への通電具合が調整され、処理室201内のウエハ202が所定の温度となるように制御される。
  次に、図8を用いて制御部280を説明する。図8は、本実施形態における制御部を説明するための図である。
  図8に示されているように、制御部(制御手段)であるコントローラ280は、CPU(Central Processing Unit)281、RAM(Random Access Memory)282、記憶部283、操作表示部284、I/Oポート285、入出力部286を備えたコンピュータとして構成されている。RAM282、記憶部283、操作表示部284、I/Oポート285、入出力部286は、内部バス287を介して、CPU281とデータ交換可能なように構成されている。
  操作表示部284は、操作者からの指示等の入力を受け付け、また、各種データ等を表示するもので、例えばタッチパネル等により構成される。
  記憶部(記憶装置)283は、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶部283内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプロセスレシピ等が、読み出し可能に格納されている。なお、プロセスレシピは、後述する基板処理工程における各手順をコントローラ280に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単にプログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM282は、CPU281によって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
  I/Oポート285は、上述のMFC251a~254a、251b~254b、351a~354a、351b~354b、開閉バルブ261a~264a、261b~264b、261c~264c、261d~264d、361a~364a、361b~364b、361c~364c、361d~364d、圧力センサ274、APCバルブ272、真空ポンプ273、温度センサ208、ヒータ207、ボートエレベータ115、ボート回転機構267等の基板処理装置の各構成部に接続されている。I/Oポート285は、各構成部から受信したセンサ情報等をCPU281へ送信するとともに、CPU281から受信した各構成部への指令を各構成部に送信する。
  入出力部286は、プログラムや各種データ等をコントローラ280外部の後述する外部記憶装置290から読み出して記憶部283へ書き込み、また、記憶部283内のプログラムや各種データ等を読み出して外部記憶装置290へ書き込む入出力動作を行う。
  CPU281は、記憶部283から制御プログラムを読み出して実行すると共に、操作表示部284からの操作コマンドの入力等に応じて記憶部283からプロセスレシピを読み出すように構成されている。そして、CPU281は、読み出したプロセスレシピの内容に沿うように、I/Oポート285を介して、MFC251a~254a、251b~254b、351a~354a、351b~354bによる各種ガスの流量調整動作、開閉バルブ261a~264a、261b~264b、261c~264c、261d~264d、361a~364a、361b~364b、361c~364c、361d~364dの開閉動作、APCバルブ272の開閉動作及び圧力センサ274に基づくAPCバルブ272による圧力調整動作、温度センサ208に基づくヒータ207の温度調整動作、真空ポンプ273の起動および停止、ボートエレベータ115によるボート217の昇降動作、ボート回転機構267によるボート217の回転および回転速度調節動作等を制御するように構成されている。
  なお、コントローラ280は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていてもよい。例えば、上述のプログラムを格納したコンピュータ読み取り可能な外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CD(Compact Disc)やDVD(Digital Versatile Disc)等の光ディスク、MO(Magneto Optical Disc)等の光磁気ディスク、USB(Universal Serial Bus)メモリやメモリカード等の半導体メモリ)290を用意し、係る外部記憶装置290から入出力部286を介して汎用のコンピュータにプログラムをインストールすること等により、本実施形態に係るコントローラ280を構成することができる。なお、コンピュータにプログラムを供給するための手段は、外部記憶装置290を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、外部記憶装置290を介さずにプログラムを供給するようにしてもよい。なお、記憶部283や外部記憶装置290は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に記録媒体ともいう。なお、本明細書において記録媒体という言葉を用いた場合は、記憶部283単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。
  次に、上述の基板処理装置の処理炉を用いて、半導体装置(デバイス)の製造工程の一工程として、基板上に高誘電率絶縁膜である酸化膜としての金属酸化膜を成膜する薄膜形成工程のシーケンス例について説明する。本実施例では、絶縁膜としてZrO膜を成膜する際において、ZrプリカーサとしてTEMAZ(Zr[N(CH)、酸化源としてOを用いた事例を用いて説明する。なお、以下の説明において、基板処理装置を構成する各部の動作はコントローラ280により制御される。
  まず、複数枚のウエハ202がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ202を保持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される。この状態で、シールキャップ219はOリング220を介して反応管203の下端をシールした状態となる。
  続いて、処理室201内が大気圧未満の所望の圧力(真空度)となるように真空ポンプ273によって真空排気される。このとき、処理室201内の圧力は圧力センサ274で測定され、この測定された圧力情報に基づきAPCバルブ272がフィードバック制御される(圧力調整)。なお、真空ポンプ273は、少なくともウエハ202に対する処理が完了するまでの間は常時作動させた状態を維持する。
  また、処理室201内のウエハ202が所望の温度となるようにヒータ207(ヒータ2071~2076)によって加熱される。このとき、処理室201内が所望の温度分布となるように、温度センサ208が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される(温度調整)。なお、ヒータ207による処理室201内のウエハ202の加熱は、少なくともウエハ202に対する処理が完了するまでの間は継続して行われる。
  続いて、ボート回転機構267によりボート217及びウエハ202の回転を開始する。なお、ボート回転機構267によるボート217及びウエハ202の回転は、少なくとも、ウエハ202に対する処理が完了するまでの間は継続して行われる。
  ボート217の回転開始後、後述する4つのステップを順次実行し、薄膜形成を行う。すなわち、本実施形態の薄膜形成工程は、この4つのステップ(要素工程)から構成される。
  この4つのステップのタイミング図を図3に示す。図3は、本実施形態の成膜シーケンスにおけるガス供給のタイミング図であり、便宜上、処理室内へ供給する主な物質の供給タイミングを示している。
  なお、本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合(すなわち、表面に形成された所定の層や膜等を含めてウエハと称する場合)がある。また、本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面(露出面)」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面、すなわち、積層体としてのウエハの最表面」を意味する場合がある。
  従って、本明細書において「ウエハに対して所定のガスを供給する」と記載した場合は、「ウエハそのものの表面(露出面)に対して所定のガスを直接供給する」ことを意味する場合や、「ウエハ上に形成されている層や膜等に対して、すなわち、積層体としてのウエハの最表面に対して所定のガスを供給する」ことを意味する場合がある。また、本明細書において「ウエハ上に所定の層(又は膜)を形成する」と記載した場合は、「ウエハそのものの表面(露出面)上に所定の層(又は膜)を直接形成する」ことを意味する場合や、「ウエハ上に形成されている層や膜等の上、すなわち、積層体としてのウエハの最表面の上に所定の層(又は膜)を形成する」ことを意味する場合がある。
  なお、本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同様であり、その場合、上記説明において、「ウエハ」を「基板」に置き換えて考えればよい。
  まず、第1ゾ-ンにおけるステップ1~ステップ4を説明する。
  [ステップ1](ジルコニウム含有層形成工程)
  ステップ1において、図3に示すように、第1ゾ-ン内にTEMAZガスが供給される。詳しくは、第1反応ガス供給管231aのバルブ261c、261aを開き、第1反応ガス供給管231aにTEMAZガスを流す。TEMAZガスは、MFC251aにより流量調整される。流量調整されたTEMAZガスは、第1反応ガス供給ノズル231の複数のガス供給孔231hから、所定の温度に加熱された減圧状態の処理室201内におけるウエハ配列領域である第1ゾ-ンへ、水平方向に流出するように供給される。第1ゾ-ン内に供給されたTEMAZガスは、第1ゾ-ン内を水平方向に流れ、複数のガス供給孔231hにそれぞれ対向して設けられた排出孔(スリット)203cから排気室201aへ流出し、排気室201a内を流下して反応管203の下端側に設けられた排気口を介して排気管271から排気される。このとき、第1ゾーン内におけるウエハ202に対してTEMAZガスが供給されることとなる。
  このとき、不活性ガス供給管231bのバルブ261d、261bを開き、不活性ガス供給管231bからキャリアガスとして不活性ガスであるNガスを供給するようにしてもよい。Nガスは、MFC251bにより流量調整されて、第1反応ガス供給管231a内に供給される。流量調整されたNガスは、第1反応ガス供給管231a内で、流量調整されたTEMAZガスと混合されて、第1反応ガス供給ノズル231のガス供給孔231hから、第1ゾ-ン内に供給され、排気室201aを通り、排気管271から排気されることとなる。
  なお、このとき、第2反応ガス供給ノズル331内へのTEMAZガスの侵入を防止するために、不活性ガス供給管331bのバルブ361d、361bを開き、不活性ガス供給管331bから第2反応ガス供給管331aへNガスを供給する。第2反応ガス供給管331aへ供給されたNガスは、第2反応ガス供給ノズル331のガス供給孔331hから処理室201内へ流れる。これにより、処理室201内に供給されたTEMAZガスが第2反応ガス供給ノズル331内へ侵入することを防止できる。
  ステップ1において、APCバルブ272を適正に調整して、処理室201内の圧力を、大気圧未満、例えば1~1333Paの範囲内の圧力に維持する。MFC251aで制御するTEMAZガスの供給流量は、例えば10~2000sccm(0.01~2slm)の範囲内の流量とする。MFC251b、351bで制御するNガスの供給流量は、それぞれ例えば200~10000sccm(0.2~10slm)の範囲内の流量とする。TEMAZガスをウエハ202に対して供給する時間は、例えば1~120秒の範囲内の時間とする。ヒータ2071の温度は、上述の圧力帯において処理室201内でCVD反応が生じるような温度となるように設定する。すなわちウエハ202の温度が所定の温度、例えば100~400℃の範囲内の温度となるようにヒータ2071の温度を設定する。なお、ウエハ202の温度が100℃未満となるとウエハ202上においてTEMAZガスが分解、吸着しにくくなる。また、ウエハ202の温度が400℃を超えるとCVD反応が強くなり、ウエハ202の面内における膜厚均一性の悪化が顕著となる。よって、ウエハ202の温度は100℃以上400℃以下の範囲内の温度とするのが好ましい。
  上述の条件、すなわちCVD反応が生じる条件下でTEMAZガスを第1ゾーン内に供給することで、第1ゾーン内のウエハ202(表面の下地膜)上に、例えば1原子層未満から数原子層程度の厚さのジルコニウム含有層が形成される。ジルコニウム含有層は、ジルコニウム層(Zr層)であってもよいし、TEMAZガスの吸着層であってもよいし、その両方を含んでいてもよい。
  ここで、1原子層未満の厚さの層とは、ウエハ202の面方向(表面に沿った方向)に不連続に形成される原子層のことを意味しており、1原子層の厚さの層とは、ウエハ202の面方向に連続的に形成される原子層のことを意味している。また、後述する1分子層未満の厚さの層とは、ウエハ202の面方向に不連続に形成される分子層のことを意味しており、1分子層の厚さの層とは、ウエハ202の面方向に連続的に形成される分子層のことを意味している。
  上述のジルコニウム層とは、ジルコニウム(Zr)により構成されるウエハ202の面方向に連続的な層の他、不連続な層や、これらが重なってできるジルコニウム薄膜をも含む総称である。なお、Zrにより構成されるウエハ202の面方向に連続的な層をジルコニウム薄膜という場合もある。なお、ジルコニウム層を構成するZrは、TEMAZにおける配位子を構成する元素の少なくとも一部との結合が完全に切れていないものも含む。
  また、TEMAZガスの吸着層とは、TEMAZガスのガス分子のウエハ202の面方向に連続的な化学吸着層の他、不連続な化学吸着層をも含む。すなわち、TEMAZガスの吸着層は、TEMAZ分子で構成される1分子層もしくは1分子層未満の厚さの化学吸着層を含む。なお、TEMAZガスの化学吸着層を構成するTEMAZ分子は、Zrと配位子との結合が一部切れたものや、配位子を構成する元素の少なくとも一部が脱離したものも含む。
  TEMAZガスが自己分解(熱分解)する条件下、すなわち、TEMAZの熱分解反応が生じる条件下では、ウエハ202上にZrが堆積することでジルコニウム層が形成される。TEMAZガスが自己分解(熱分解)しない条件下、すなわち、TEMAZの熱分解反応が生じない条件下では、ウエハ202上にTEMAZガスが吸着することでTEMAZガスの吸着層が形成される。なお、ウエハ202上にTEMAZガスの吸着層を形成するよりも、ウエハ202上にジルコニウム層を形成する方が、成膜レートを高くすることができ好ましい。
  ウエハ202上に形成されるジルコニウム含有層の厚さが数原子層を超えると、後述するステップ3での酸化の作用がジルコニウム含有層の全体に届かなくなる。また、ウエハ202上に形成可能なジルコニウム含有層の厚さの最小値は1原子層未満である。よって、ジルコニウム含有層の厚さは1原子層未満から数原子層程度とするのが好ましい。なお、ジルコニウム含有層の厚さを1原子層以下、すなわち、1原子層または1原子層未満とすることで、後述するステップ3での酸化の作用を相対的に高めることができ、ステップ3の酸化反応に要する時間を短縮することができる。ステップ1のジルコニウム含有層形成に要する時間を短縮することもできる。結果として、1サイクルあたりの処理時間を短縮することができ、トータルでの処理時間を短縮することも可能となる。すなわち、成膜レートを高くすることも可能となる。また、ジルコニウム含有層の厚さを1原子層以下とすることで、膜厚均一性の制御性を高めることも可能となる。
  [ステップ2](第1パージ工程)
  ウエハ202上にジルコニウム含有層が形成された後、第1反応ガス供給管231aのバルブ261c、261aを閉じ、TEMAZガスの供給を停止する。このとき、排気管271のAPCバルブ272を開いた状態で適正に調整して、真空ポンプ273により第1ゾ-ン内を真空排気し、残留したTEMAZガスを第1ゾ-ン内から排出する。
  このとき、バルブ261d、261b、361d、361bを開いた状態で、不活性ガスとしてのNガスを、不活性ガス供給管231bから第1反応ガス供給管231aを経由し、第1反応ガス供給ノズル231のガス供給孔231hから第1ゾ-ン内へ、また、不活性ガス供給管331bから第2反応ガス供給管331aを経由し、第2反応ガス供給ノズル331のガス供給孔331hから第1ゾ-ン内へ、水平方向に流出させて供給する。
  第1ゾ-ン内に供給されたNガスは、第1ゾ-ン内の残留ガスを押し出すようにして第1ゾ-ン内を水平方向に流れ、第1ゾ-ン内の排出孔(スリット)203cから排気室201aへ流出し、排気室201a内を流下して反応管203の下端側に設けられた排気口を介して排気管271から排気される。このNガスは、残留するTEMAZガスを排気するパージガスとして作用し、これにより、第1ゾ-ン内に残留するTEMAZガスを、第1ゾ-ン内から効果的に排除することができる。
  なお、このとき、第1ゾ-ン内に残留するガスを完全に排除しなくてもよく、第1ゾ-ン内を完全にパージしなくてもよい。第1ゾ-ン内に残留するガスが微量であれば、その後に行われるステップ3において悪影響が生じることはない。このとき第1ゾ-ン内に供給するNガスの流量も大流量とする必要はなく、例えば、第1ゾ-ンの容積と同程度の量を供給することで、ステップ3において悪影響が生じない程度のパージを行うことができる。このように、第1ゾ-ン内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、Nガスの消費も必要最小限に抑えることが可能となる。
  ステップ2において、ヒータ2071の温度は、ステップ1と同じく100~400℃の範囲内の温度となるように設定する。処理室201内の圧力は、APCバルブ272を適正に調整して、ステップ1の圧力と同じ圧力、例えば1~1333Paの範囲内の圧力に維持する。パージガスとしてのNガスの供給流量は、MFC251b、351bで制御し、それぞれ例えば200~10000sccm(0.2~10slm)の範囲内の流量とする。パージ時間は、ステップ1の処理時間と同じ時間、例えば1~120秒の範囲内の時間とする。
  [ステップ3](酸化工程)
  第1ゾ-ン内の残留ガスを除去した後、第2反応ガス供給管331aのバルブ361c、361aを開き、第2反応ガス供給管331aにOガスを流す。Oガスは、MFC351aにより流量調整される。流量調整されたOガスは、第2反応ガス供給ノズル331の複数のガス供給孔331hから、所定の温度に加熱された減圧状態の第1ゾーン内に供給される。第1ゾーン内に供給されたOガスは、第1ゾ-ン内を水平方向に流れ、複数のガス供給孔331hにそれぞれ対応して設けられた排出孔(スリット)203cから排気室201aへ流出し、排気室201a内を流下して反応管203の下端側に設けられた排気口を介して排気管271から排気される。このとき、第1ゾーン内におけるウエハ202に対してOガスが供給されることとなる。
  このとき、不活性ガス供給管331bのバルブ361d、361bを開き、不活性ガス供給管331bからキャリアガスとして不活性ガスであるNガスを供給するようにしてもよい。NガスはMFC351bにより流量調整されて、第2反応ガス供給管331a内に供給される。この場合、第2反応ガス供給管331aからは、OガスとNガスの混合ガスが供給されることとなる。
  なお、このとき、第1反応ガス供給ノズル231内へのOガスの侵入を防止するために、不活性ガス供給管231bのバルブ261d、261bを開き、不活性ガス供給管231bから第1反応ガス供給管231aへNガスを供給する。第1反応ガス供給管231aへ供給されたNガスは、第1反応ガス供給ノズル231のガス供給孔231hから処理室201内へ流れる。これにより、処理室201内に供給されたOガスが第1反応ガス供給ノズル231内へ侵入することを防止できる。
  ステップ3において、第1ゾーン内の圧力、つまり処理室201内の圧力を、APCバルブ272を適正に調整して、ステップ1の圧力と同じ圧力、例えば1~1333Paの範囲内の圧力に維持する。MFC351aで制御するOガスの供給流量は、例えば100~10000sccm(0.1~10slm)の範囲内の流量とする。MFC351b、251bで制御するNガスの供給流量は、それぞれ例えば200~10000sccm(0.2~10slm)の範囲内の流量とする。Oガスをウエハ202に対して供給する時間は、ステップ1の処理時間と同じ時間、例えば1~120秒の範囲内の時間とする。ヒータ2071の温度は、ステップ1と同様な温度帯、例えば100~400℃の範囲内の温度となるように設定する。
  このような条件下で第1ゾーン内にOガスを供給することで、このOガスが、ウエハ202上に形成されたジルコニウム含有層の少なくとも一部と反応する。すなわち、ジルコニウム含有層に対して酸化処理が行われ、この酸化処理により、ジルコニウム含有層はジルコニウム酸化層(ZrO層、以下、単にZrO層ともいう。)へと変化させられる(改質される)。
  [ステップ4](第2パージ工程)
  ステップ3でウエハ202上にジルコニウム酸化層が形成された後、つまり、ジルコニウム含有層をジルコニウム酸化層へと変化させた後、第2反応ガス供給管331aのバルブ361c、361aを閉じ、Oガスの供給を停止する。このとき、排気管271のAPCバルブ272を開いた状態で適正に調整して、真空ポンプ273により第1ゾ-ン内を真空排気し、残留したOガスや反応副生成物を第1ゾ-ン内から排出する。
  このとき、バルブ361d、361b、261d、261bを開いた状態で、不活性ガスとしてのNガスを、不活性ガス供給管331bから第2反応ガス供給管331aを経由し、第2反応ガス供給ノズル331のガス供給孔331hから第1ゾ-ン内へ、また、不活性ガス供給管231bから第1反応ガス供給管231aを経由し、第1反応ガス供給ノズル231のガス供給孔231hから第1ゾ-ン内へ、水平方向に流出させて供給する。
  第1ゾ-ン内に供給されたNガスは、第1ゾ-ン内の残留ガスや反応副生成物を押し出すようにして第1ゾ-ン内を水平方向に流れ、第1ゾ-ン内の排出孔(スリット)203cから排気室201aへ流出し、排気室201a内を流下して反応管203の下端側に設けられた排気口を介して排気管271から排気される。このNガスはパージガスとして作用し、これにより、第1ゾ-ン内に残留するOガスや反応副生成物を、第1ゾ-ン内から効果的に排除することができる。
  なお、このとき、第1ゾ-ン内に残留するガスを完全に排除しなくてもよく、第1ゾ-ン内を完全にパージしなくてもよい。第1ゾ-ン内に残留するガスが微量であれば、その後に行われるステップ1において悪影響が生じることはない。このとき第1ゾ-ン内に供給するNガスの流量も大流量とする必要はなく、例えば、第1ゾ-ンの容積と同程度の量を供給することで、ステップ1において悪影響が生じない程度のパージを行うことができる。このように、第1ゾ-ン内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、Nガスの消費も必要最小限に抑えることが可能となる。
  ステップ4において、ヒータ2071の温度は、ステップ1と同じく100~400℃の範囲内の温度となるように設定する。処理室201内の圧力は、APCバルブ272を適正に調整して、ステップ1の圧力と同じ圧力、例えば1~1333Paの範囲内の圧力に維持する。パージガスとしてのNガスの供給流量は、MFC351b、251bで制御し、それぞれ例えば200~10000sccm(0.2~10slm)の範囲内の流量とする。パージ時間は、ステップ1の処理時間と同じ時間、例えば1~120秒の範囲内の時間とする。
  以上述べたように、本実施形態では、ステップ1~ステップ4において、ウエハ202の温度が所定の温度、例えば100~400℃の範囲内の一定の温度となるようにヒータ207の温度を設定し、処理室201内の圧力が所定の圧力、例えば1~1333Paの範囲内の一定の圧力となるようにAPCバルブ272を調整し、各ステップの処理時間が所定の時間、例えば1~120秒間の範囲内の時間となるようにしている。
  なお、各ステップの処理時間は、処理時間の最も長いステップの処理時間に合わせる。例えば、ステップ1の処理時間が最も長い場合は、ステップ2~ステップ4の処理時間を、ステップ1の処理時間に合わせる。このとき、ステップ3において時間が余る場合は、十分なOガスの供給を行った後、Oガスの供給を停止し、残りの時間はNガスのみ供給するようにしてもよい。あるいは、ステップ3の処理時間が最も長い場合は、ステップ1、ステップ2、ステップ4の処理時間を、ステップ3の処理時間に合わせる。このとき、ステップ1において時間が余る場合は、十分なTEMAZガスの供給を行った後、TEMAZガスの供給を停止し、残りの時間はNガスのみ供給するようにしてもよい。
  上述したステップ1~4を1サイクルとして、このサイクルを所定回数、好ましくは複数回実施することにより、第1ゾーン内のウエハ202上に所定膜厚のジルコニウム酸化膜(ZrO膜、以下、単にZrO膜ともいう。)を成膜することが出来る。ジルコニウム酸化膜の膜厚は、例えば8~20nmの範囲内の膜厚とする。
  次に、第2ゾ-ン~第4ゾ-ンにおけるステップ1~ステップ4の処理について説明する。
  第2ゾ-ン~第4ゾ-ンにおいても、それぞれ第1ゾ-ンと同様に、ステップ1~ステップ4を1サイクルとして、このサイクルを所定回数、好ましくは複数回実施することにより、第2ゾ-ン~第4ゾ-ン内のウエハ202上に所定膜厚のジルコニウム酸化膜を成膜する。このとき、図3に示すように、各ゾーンにおいて、ステップ1~ステップ4の処理をこの順に行うとともに、各ゾーンにおいて、1ステップずつ、タイミングをずらして処理を行うようにする。
  具体的には、図3に示すように、まず第1ゾ-ンで第1反応ガス供給工程(ステップ1)が行われるタイミングにおいて、第2ゾ-ンで第2パージ工程(ステップ4)、第3ゾ-ンで第2反応ガス供給工程(ステップ3)、第4ゾ-ンで第1パージ工程(ステップ2)を行う。
  次に、第1ゾ-ンで第1パージ工程(ステップ2)が行われるタイミングにおいて、第2ゾ-ンで第1反応ガス供給工程(ステップ1)、第3ゾ-ンで第2パージ工程(ステップ4)、第4ゾ-ンで第2反応ガス供給工程(ステップ3)を行う。
  次に、第1ゾ-ンで第2反応ガス供給工程(ステップ3)が行われるタイミングにおいて、第2ゾ-ンで第1パージ工程(ステップ2)、第3ゾ-ンで第1反応ガス供給工程(ステップ1)、第4ゾ-ンで第2パージ工程(ステップ4)を行う。
  次に、第1ゾ-ンで第2パージ工程(ステップ4)が行われるタイミングにおいて、第2ゾ-ンで第2反応ガス供給工程(ステップ3)、第3ゾ-ンで第1パージ工程(ステップ2)、第4ゾ-ンで第1反応ガス供給工程(ステップ1)を行う。
  本実施形態の成膜シーケンスにおける処理炉内の雰囲気の様子を図4に示す。図4(a)のタイミングでは、第1ゾ-ンで第1反応ガス供給工程(ステップ1)、第2ゾ-ンで第2パージ工程(ステップ4)、第3ゾ-ンで第2反応ガス供給工程(ステップ3)、第4ゾ-ンで第1パージ工程(ステップ2)が行われている。
  次に、図4(a)から1ステップ進んだ図4(b)のタイミングでは、第1ゾ-ンで第1パージ工程(ステップ2)、第2ゾ-ンで第1反応ガス供給工程(ステップ1)、第3ゾ-ンで第2パージ工程(ステップ4)、第4ゾ-ンで第2反応ガス供給工程(ステップ3)が行われている。
  次に、図4(b)から1ステップ進んだ図4(c)のタイミングでは、第1ゾ-ンで第2反応ガス供給工程(ステップ3)、第2ゾ-ンで第1パージ工程(ステップ2)、第3ゾ-ンで第1反応ガス供給工程(ステップ1)、第4ゾ-ンで第2パージ工程(ステップ4)が行われている。
  次に、図4(c)から1ステップ進んだ図4(d)のタイミングでは、第1ゾ-ンで第2パージ工程(ステップ4)、第2ゾ-ンで第2反応ガス供給工程(ステップ3)、第3ゾ-ンで第1パージ工程(ステップ2)、第4ゾ-ンで第1反応ガス供給工程(ステップ1)が行われている。
  以上説明した各ゾーンの各ステップにおける成膜シーケンスを図5に示す。図5は、本実施形態における成膜シーケンスを説明するための図である。図5において、横方向は時間の流れであり、各ゾーンにおける工程を示す。縦方向は、51~54に、それぞれ第1ゾ-ン~第4ゾ-ンを示す。なお、サイクル番号とステップ番号50は、第1ゾ-ン51に関するものであって、他のゾーンのサイクル番号やステップ番号は省略している。
  図5に示すように、例えば第1ゾ-ンにおいて、1サイクル目で、ステップ1で第1反応ガス(TEMAZ)供給工程、ステップ2で第1パージ工程(Purge1)、ステップ3で第2反応ガス(O)供給工程、ステップ4で第2パージ工程(Purge2)が行われ、続いて、2サイクル目、3サイクル目・・・と、同様の処理が繰り返される。
  また、第2ゾ-ン~第4ゾ-ンにおいても、1サイクル目で、ステップ1で第1反応ガス(TEMAZ)供給工程、ステップ2で第1パージ工程、ステップ3で第2反応ガス(O)供給工程、ステップ4で第2パージ工程が行われ、続いて、2サイクル目、3サイクル目・・・と、同様の処理が繰り返される。
  次に、第2ゾ-ン~第4ゾ-ンにおけるガス供給方法を説明する。
  第2ゾ-ンにおいては、ステップ1においてTEMAZガスが、第1反応ガス供給管232a、第1反応ガスノズル232を通り、ガス供給孔232hから第2ゾ-ン内に供給される。このとき、Nガスが、不活性ガス供給管232b、第1反応ガス供給管232a、第1反応ガス供給ノズル232を通り、ガス供給孔232hから第2ゾ-ン内に供給されるようにしてもよい。また、このとき、Nガスが、不活性ガス供給管332b、第2反応ガス供給管332a、第2反応ガス供給ノズル332を通り、ガス供給孔332hから第2ゾ-ン内に供給されるようにする。これにより、処理室201内に供給されたTEMAZガスが第2反応ガス供給ノズル332内へ侵入することを防止できる。
  次に、ステップ2では、第1パージガスであるNガスが、不活性ガス供給管232b、第1反応ガス供給管232a、第1反応ガスノズル232を通り、ガス供給孔232hから第2ゾ-ン内に供給されるとともに、不活性ガス供給管332b、第2反応ガス供給管332a、第2反応ガス供給ノズル332を通り、ガス供給孔332hから第2ゾ-ン内に供給される。
  次に、ステップ3では、Oガスが、第2反応ガス供給管332a、第2反応ガスノズル332を通り、ガス供給孔332hから第2ゾ-ン内に供給される。このとき、Nガスが、不活性ガス供給管332b、第2反応ガス供給管332a、第2反応ガス供給ノズル332を通り、ガス供給孔332hから第2ゾ-ン内に供給されるようにしてもよい。また、このとき、Nガスが、不活性ガス供給管232b、第1反応ガス供給管232a、第1反応ガス供給ノズル232を通り、ガス供給孔232hから第2ゾ-ン内に供給されるようにする。これにより、処理室201内に供給されたOガスが第1反応ガス供給ノズル232内へ侵入することを防止できる。
  次に、ステップ4では、第2パージガスであるNガスが、不活性ガス供給管332b、第2反応ガス供給管332a、第2反応ガスノズル332を通り、ガス供給孔332hから第2ゾ-ン内に供給されるとともに、不活性ガス供給管232b、第1反応ガス供給管232a、第1反応ガスノズル232を通り、ガス供給孔232hから第2ゾ-ン内に供給される。
  第3ゾ-ンにおいては、ステップ1においてTEMAZガスが、第1反応ガス供給管233a、第1反応ガスノズル233を通り、ガス供給孔233hから第3ゾ-ン内に供給される。このとき、Nガスが、不活性ガス供給管233b、第1反応ガス供給管233a、第1反応ガス供給ノズル233を通り、ガス供給孔233hから第3ゾ-ン内に供給されるようにしてもよい。また、このとき、Nガスが、不活性ガス供給管333b、第2反応ガス供給管333a、第2反応ガス供給ノズル333を通り、ガス供給孔333hから第2ゾ-ン内に供給されるようにする。これにより、処理室201内に供給されたTEMAZガスが第2反応ガス供給ノズル333内へ侵入することを防止できる。
  次に、ステップ2では、第1パージガスであるNガスが、不活性ガス供給管233b、第1反応ガス供給管233a、第1反応ガスノズル233を通り、ガス供給孔233hから第3ゾ-ン内に供給されるとともに、不活性ガス供給管333b、第2反応ガス供給管333a、第2反応ガス供給ノズル333を通り、ガス供給孔333hから第3ゾ-ン内に供給される。
  次に、ステップ3では、Oガスが、第2反応ガス供給管333a、第2反応ガスノズル333を通り、ガス供給孔333hから第3ゾ-ン内に供給される。このとき、Nガスが、不活性ガス供給管333b、第2反応ガス供給管333a、第2反応ガス供給ノズル333を通り、ガス供給孔333hから第3ゾ-ン内に供給されるようにしてもよい。また、このとき、Nガスが、不活性ガス供給管233b、第1反応ガス供給管233a、第1反応ガス供給ノズル233を通り、ガス供給孔233hから第3ゾ-ン内に供給されるようにする。これにより、処理室201内に供給されたOガスが第1反応ガス供給ノズル233内へ侵入することを防止できる。
  次に、ステップ4では、第2パージガスであるNガスが、不活性ガス供給管333b、第2反応ガス供給管333a、第2反応ガスノズル333を通り、ガス供給孔333hから第3ゾ-ン内に供給されるとともに、不活性ガス供給管233b、第1反応ガス供給管233a、第1反応ガスノズル233を通り、ガス供給孔233hから第3ゾ-ン内に供給される。
  第4ゾ-ンにおいては、ステップ1においてTEMAZガスが、第1反応ガス供給管234a、第1反応ガスノズル234を通り、ガス供給孔234hから第4ゾ-ン内に供給される。このとき、Nガスが、不活性ガス供給管234b、第1反応ガス供給管234a、第1反応ガス供給ノズル234を通り、ガス供給孔234hから第4ゾ-ン内に供給されるようにしてもよい。また、このとき、Nガスが、不活性ガス供給管334b、第2反応ガス供給管334a、第2反応ガス供給ノズル334を通り、ガス供給孔334hから第4ゾ-ン内に供給されるようにする。これにより、処理室201内に供給されたTEMAZガスが第2反応ガス供給ノズル334内へ侵入することを防止できる。
  次に、ステップ2では、第1パージガスであるNガスが、不活性ガス供給管234b、第1反応ガス供給管234a、第1反応ガスノズル234を通り、ガス供給孔234hから第4ゾ-ン内に供給されるとともに、不活性ガス供給管334b、第2反応ガス供給管334a、第2反応ガス供給ノズル334を通り、ガス供給孔334hから第4ゾ-ン内に供給される。
  次に、ステップ3では、Oガスが、第2反応ガス供給管334a、第2反応ガスノズル334を通り、ガス供給孔334hから第4ゾ-ン内に供給される。このとき、Nガスが、不活性ガス供給管334b、第2反応ガス供給管334a、第2反応ガス供給ノズル334を通り、ガス供給孔334hから第4ゾ-ン内に供給されるようにしてもよい。また、このとき、Nガスが、不活性ガス供給管234b、第1反応ガス供給管234a、第1反応ガス供給ノズル234を通り、ガス供給孔234hから第4ゾ-ン内に供給されるようにする。これにより、処理室201内に供給されたOガスが第1反応ガス供給ノズル234内へ侵入することを防止できる。
  次に、ステップ4では、第2パージガスであるNガスが、不活性ガス供給管334b、第2反応ガス供給管334a、第2反応ガスノズル334を通り、ガス供給孔334hから第4ゾ-ン内に供給されるとともに、不活性ガス供給管234b、第1反応ガス供給管234a、第1反応ガスノズル234を通り、ガス供給孔234hから第4ゾ-ン内に供給される。
  各ゾーンにおいて所定膜厚のジルコニウム酸化膜を成膜する処理が終了すると、バルブ261c~264c、261a~264a、361c~364c、361a~364aを閉じた状態で、バルブ261d~264d、261b~264b、361d~364d、361b~364bを開き、不活性ガス供給管231b~234b、331b~334bのそれぞれから不活性ガスとしてのNガスを処理室201内へ供給し排気管271から排気する。これにより、処理室201内に残留するガスや副生成物を処理室201内から排出するとともに、処理室201内の雰囲気を不活性ガスに置換する。その後、処理室201内の圧力を常圧に復帰させる(大気圧復帰)。
  その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口されるとともに、処理済のウエハ202がボート217に保持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済みのウエハ202はボート217より取り出される(ウエハディスチャージ)。このようにして、ウエハ202上に所定膜厚のジルコニウム酸化膜を形成する一連の処理が終了する。
  本実施形態では、上述したように、ゾーン数とステップ数を同じ数である4つとし、各ゾーンにおいて、1ステップずつ、タイミングをずらして処理を行うようにしている。つまり、本実施形態では、各ゾーンにおいて同時に行う工程が互いに異なる工程であり、換言すると、本実施形態は、各ゾーンにおいて同時に同じ工程を行わないものであり、各ゾーン間で各工程を行うタイミングを異ならせるものである。すなわち、本実施形態は、各ゾーンにて繰り返される第1反応ガス供給工程、第1パージ工程、第2反応ガス供給工程、第2パージ工程(ステップ1~4)を含むサイクルを、各ゾーン間で、非同期とする(同期させない)ものである。
  また、本実施形態では、どのタイミングにおいても、第1反応ガス供給工程、第1パージ工程、第2反応ガス供給工程、第2パージ工程が、各ゾーンのいずれかで必ず行われる。
  また、本実施形態では、第1反応ガス供給工程が行われるゾーンと、第2反応ガス供給工程が行われるゾーンとの間のゾーンにて、第1パージ工程又は第2パージ工程が行われる。
  このように、本実施形態では、各ゾーンにおいて、1ステップずつタイミングをずらして処理を行うので、第1の反応ガスを供給するゾーンに隣接するゾーンには、パージガスとして不活性ガスが供給され、また、第2の反応ガスを供給するゾーンに隣接するゾーンにも、パージガスとして不活性ガスが供給される。したがって、第1の反応ガスを供給するゾーンと第2の反応ガスを供給するゾーンとの間のゾーンには、第1の反応ガスと第2の反応ガスが混合することを抑制する障壁として、不活性ガスによるガスカーテンが形成される。
  また、本実施形態では、第1反応ガス供給工程を行うゾーン、あるいは、第2反応ガス供給工程を行うゾーンが、どのタイミングにおいても必ず存在するので、図7のように特定のタイミングにおいてのみ処理室内全体に同種の反応ガスを供給する従来の方法と比べて、ウエハ1枚当たりに対して供給される反応ガス流量をより大きくすることができ、これにより反応ガス供給時間を短縮できる。すなわち、従来の方法よりも、ウエハ1枚当たりに対する反応ガスの暴露量を増やすことができるので、ステップ1においてジルコニウム含有層を形成する時間や、ステップ3においてジルコニウム含有層を酸化させる時間を短縮する、つまり成膜時間を短縮することができ、スループットを向上させることができる。
  また、本実施形態では、ゾーン数とステップ数を同じ数としているので、ゾーン数がステップ数より大きい場合と比べて、反応ガス供給ノズルや反応ガス供給管や不活性ガス供給管の数を減らすことができ、ガス供給系を構成することが容易となる。また、ゾーン数がステップ数より小さい場合と比べて、ウエハ1枚当たりに対して供給される反応ガス流量をより大きくすることができ、反応ガス供給時間を短縮できる。すなわち、ゾーン数がステップ数より小さい場合と比べて、ウエハ1枚当たりに対する反応ガスの暴露量を増やすことができるので、ステップ1においてジルコニウム含有層を形成する時間や、ステップ3においてジルコニウム含有層を酸化させる時間を短縮する、つまり成膜時間を短縮することができ、スループットを向上させることができる。
  なお、本発明は、前記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々に変更が可能であり、また、前記実施形態の各構成要素を、必要に応じて任意にかつ適宜に組み合わせてもよい。
  例えば、前記実施形態においては、バッチ式縦型装置を用いて説明したが、これに限られるものではなく、本発明は、横型装置等にも適用することができる。
  また、前記実施形態においては、ウエハに処理が施される場合について説明したが、処理対象はホトマスクやプリント配線基板、液晶パネル、コンパクトディスクおよび磁気ディスク等であってもよい。
  また、前記実施形態においては、ゾーン数を4つとしたが、2つや3つ、あるいはその他の数、例えば6つとすることもできる。
  例えば、3元系薄膜のように3種類の元素で構成される薄膜を形成する際に、3種類の反応ガス(第1の反応ガス、第2の反応ガス、第3の反応ガス)を使用する場合、ゾーン数を6つとして成膜するようにしてもよい。この場合においても、各ゾーンにおいて同時に行う工程が互いに異なるように、どのタイミングにおいても、第1反応ガス供給工程、第1パージ工程、第2反応ガス供給工程、第2パージ工程、第3反応ガス供給工程、第3パージ工程を、各ゾーンのいずれかで必ず行うこととなる。また、第1反応ガス供給工程が行われるゾーンと、第2反応ガス供給工程が行われるゾーンと、第3反応ガス供給工程が行われるゾーンとの間のゾーンにて、第1パージ工程、第2パージ工程又は第3パージ工程を行い、各反応ガスが混合するのを抑制する不活性ガスによるガスカーテンを形成することとなる。また、3種類の反応ガスを使用する場合であっても、そのうち2種類のガスを混合して成膜することができる場合は、ゾーン数を4つとして成膜することもできる。また、3元系薄膜を形成する場合に、2種類の反応ガス(第1の元素を含む第1の反応ガス、第2の元素および第3の元素を含む第2の反応ガス)を用いて成膜できる場合は、ゾーン数を4つとして成膜することもできる。
  なお、4元系薄膜のように4種類の元素で構成される薄膜を形成する際に、4種類の反応ガスを使用する場合においても同様で、例えば、ゾーン数を8つとして成膜するようにしてもよいし、いずれかのガスを混合して成膜することができる場合は、ゾーン数を6つや4つとして成膜することもできる。また、4元系薄膜を形成する場合に、3種類の反応ガス(第1の元素を含む第1の反応ガス、第2の元素および第3の元素を含む第2の反応ガス、第4の元素を含む第3の反応ガス)を用いて成膜できる場合は、ゾーン数を6つとして成膜することもできる。また、4元系薄膜を形成する場合に、2種類の反応ガス(第1の元素および第2の元素を含む第1の反応ガス、第3の元素および第4の元素を含む第2の反応ガス)を用いて成膜できる場合は、ゾーン数を4つとして成膜することもできる。
  また、前記実施形態においては、図4に示すように、各ゾ-ンにおいて、第1反応ガス供給工程(ステップ1)、第1パージ工程(ステップ2)、第2反応ガス供給工程(ステップ3)、第2パージ工程(ステップ4)を連続して実施したが、図9に示すように、連続するステップとステップの間の時間において、つまり、各ゾ-ンにおいてガスを切り換える間に、全ゾーンをパージするか又は真空引きする工程を行ってもよい。図9は、本発明の他の実施形態の成膜シーケンスにおける処理炉内の雰囲気を示す図である。図9の例では、各ゾ-ンにおいてガスを切り換える間に、全ゾーンをパージする工程、図9(b),(d),(f),(h)を設けている。
  また、前記実施形態においては、第1の反応ガスとして、Zrを含む原料である、テトラキスエチルメチルアミノジルコニウム(Zr[N(C)(CH)]、略称TEMAZ)を用いる例について説明したが、この他、テトラキスジメチルアミノジルコニウム(Zr[(N(CH、略称TDMAZ]、テトラキスジエチルアミノジルコニウム(Zr[N(C、略称TDEAZ)などの有機原料を用いることができ、また、ジルコニウムテトラクロライド(ZrCl)などの無機原料を用いることもできる。
  また、前記実施形態においては、パージガスやキャリアガスとして、不活性ガスであるNガスを用いる例について説明したが、この他、Ar、He、Ne、Xe等の希ガスを用いてもよい。
  また、前記実施形態においては、第2の反応ガスとして、酸化性ガスであるオゾン(O)ガスを用いる例について説明したが、この他、酸化性ガスである酸素(O)ガスや一酸化窒素(NO)ガスや亜酸化窒素(NO)ガスや水蒸気(HO)等を用いてもよい。すなわち、酸化性ガスとしては、Oガス、Oガス、HOガス、NOガスおよびNOガスよりなる群から選択される少なくとも一つのガスを用いることができる。
  また、前記実施形態においては、TEMAZとOを用いてZrO膜を形成する例について説明したが、本発明はこれに限られるものではない。
  例えば、本発明は、TEMAHとHOとを用いたHfO膜の成膜や、TiClとHOとを用いたTiO膜の成膜等の他の高誘電率絶縁膜(High-k膜)の成膜にも適用できる。また、例えば、本発明は、TiClとNHとを用いたTiN膜の成膜や、TaClとNHとを用いたTaN膜の成膜や、HfClとNHとを用いたHfN膜の成膜や、ZrClとNHとを用いたZrN膜の成膜や、TiClとC等のカーボンソースとを用いたTiC膜の成膜や、TiClとC等のカーボンソースとNHとを用いたTiCN膜の成膜や、TiClとAl(CHとNHとを用いたTiAlN膜の成膜等のメタル膜の成膜にも適用できる。また例えば、本発明は、Ni(PF34とHとを用いたNi膜の成膜や、Ru(CとOとを用いたRu膜の成膜等のピュアメタルの成膜にも適用できる。
  このように、第1の反応ガスとして、Zrを含む原料の他、Ti、Ta、Hf、Ni、Ru、Si等のZr以外の元素を含む原料を用いることもでき、また、第2の反応ガスとして、酸化性ガスの他、アンモニア(NH)ガス等の還元性ガスを用いることもできる。還元性ガスとしては、処理プロセスに応じて、NHガス以外に、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス、水素(H)ガス、重水素(D)ガス、メタン(CH)ガス等を用いることができる。すなわち、還元性ガスとしては、Hガス、Dガス、NHガス、CHガス、Nガス、Nガス、Nガスよりなる群から選択される少なくとも一つのガスを用いることができる。
  また、上述の実施形態では、一度に複数枚、例えば25枚~150枚の基板を処理するバッチ式の基板処理装置を用いて薄膜を成膜する例について説明したが、本発明はこれに限定されず、一度に少数枚、例えば数枚の基板を処理する基板処理装置を用いて薄膜を成膜する場合にも、好適に適用できる。
  また、上述の各実施形態や各変形例や各応用例等は、適宜組み合わせて用いることができる。
  また、本発明は、例えば、既存の基板処理装置のプロセスレシピを変更することでも実現できる。プロセスレシピを変更する場合は、本発明に係るプロセスレシピを電気通信回線や当該プロセスレシピを記録した記録媒体を介して既存の基板処理装置にインストールしたり、また、既存の基板処理装置の入出力装置を操作し、そのプロセスレシピ自体を本発明に係るプロセスレシピに変更することも可能である。
以下、本発明の好ましい態様について付記する。
(付記1)
  本発明の一態様によれば、
  複数枚の基板を収容するように構成されるとともに、内部が複数のゾーンに分割された処理室と、
  前記処理室内の前記複数のゾーンのそれぞれに対して、第1の反応ガス、第2の反応ガスおよび不活性ガスを供給するガス供給系と、
  前記各ゾーン内のガスを排気するガス排気系と、
  複数枚の基板を収容した前記処理室内の前記各ゾーンに対して、第1の反応ガスを供給する第1反応ガス供給工程、不活性ガスを供給し第1の反応ガスを排出する第1パージ工程、第2の反応ガスを供給する第2反応ガス供給工程、不活性ガスを供給し第2の反応ガスを排出する第2パージ工程を含む複数の工程を繰り返し実施することで、前記各ゾーンにおける基板上に薄膜を形成し、その際、前記各ゾーンにおいて同時に行われる工程が互いに異なる工程となるように、前記ガス供給系および前記ガス排気系を制御する制御部と、
  を有する基板処理装置が提供される。
(付記2)
  付記1の基板処理装置において、好ましくは、
  前記制御部は、前記薄膜を形成する際に、前記各ゾーンにおいて同時に同じ工程が行われないように、前記ガス供給系および前記ガス排気系を制御するよう構成される。
(付記3)
  付記1または2の基板処理装置において、好ましくは、
  前記制御部は、前記薄膜を形成する際に、前記各ゾーン間で、前記各工程を行うタイミングを異ならせるように、前記ガス供給系および前記ガス排気系を制御するよう構成される。
(付記4)
  付記1乃至3のいずれかの基板処理装置において、好ましくは、
  前記制御部は、前記薄膜を形成する際に、前記各ゾーンにて繰り返される前記複数の工程を含むサイクルを、前記各ゾーン間で、非同期とするように、前記ガス供給系および前記ガス排気系を制御するよう構成される。
(付記5)
  付記1乃至4のいずれかの基板処理装置において、好ましくは、
  前記制御部は、前記薄膜を形成する際に、どのタイミングにおいても、前記第1反応ガス供給工程、前記第1パージ工程、前記第2反応ガス供給工程、前記第2パージ工程が、前記各ゾーンのいずれかで必ず行われるように、前記ガス供給系および前記ガス排気系を制御するよう構成される。
(付記6)
  付記1乃至5のいずれかの基板処理装置において、好ましくは、
  前記制御部は、前記薄膜を形成する際に、前記第1反応ガス供給工程が行われるゾーンに隣接するゾーン及び前記第2反応ガス供給工程が行われるゾーンに隣接するゾーンにおいて、前記第1パージ工程又は前記第2パージ工程が行われるように、前記ガス供給系および前記ガス排気系を制御するよう構成される。
(付記7)
  付記1乃至6のいずれかの基板処理装置において、好ましくは、
  前記制御部は、前記薄膜を形成する際に、前記第1反応ガス供給工程が行われるゾーンと、前記第2反応ガス供給工程が行われるゾーンとの間のゾーンにて、前記第1パージ工程または前記第2パージ工程が行われるように、前記ガス供給系および前記ガス排気系を制御するよう構成される。
(付記8)
  付記1乃至7のいずれかの基板処理装置において、好ましくは、
  前記制御部は、前記薄膜を形成する際に、前記第1反応ガス供給工程が行われるゾーンと、前記第2反応ガス供給工程が行われるゾーンとの間のゾーンにて、前記第1パージ工程または前記第2パージ工程が行われることで不活性ガスによるガスカーテンが形成されるように、前記ガス供給系および前記ガス排気系を制御するよう構成される。
(付記9)
  付記1乃至8のいずれかの基板処理装置において、好ましくは、
  前記各ゾーンに対してガスを供給する前記ガス供給系のガス供給孔と前記各ゾーン内のガスを排出する前記ガス排気系のガス排出孔は、前記各ゾーンごとに設けられる。
(付記10)
  付記1乃至9のいずれかの基板処理装置において、好ましくは、
  前記各ゾーンに対してガスを供給する前記ガス供給系のガス供給孔と前記各ゾーン内のガスを排出する前記ガス排気系のガス排出孔は、前記各ゾーンごとに、それぞれが対向するよう設けられる。
(付記11)
  付記1乃至10のいずれかの基板処理装置において、好ましくは、
  前記処理室の外部に前記処理室内を加熱する加熱部が前記各ゾーンごとに設けられ、
  前記制御部は、前記各ゾーンごとに設けられた加熱部を、前記各ゾーンごとに独立して温度制御するよう構成される。
(付記12)
  付記1乃至11のいずれかの基板処理装置において、好ましくは、
  前記処理室は、鉛直方向に長手方向を有する筒状の反応管により画成され、
  該反応管内の内壁には、前記各ゾーンの境界部分に、前記反応管の中心方向に突出する仕切り板が設けられる。
(付記13)
  付記1乃至12のいずれかの基板処理装置において、好ましくは、
  前記処理室は、鉛直方向に長手方向を有する筒状の反応管により画成され、
  前記ガス供給系は、前記反応管内に鉛直方向に延在するガス供給ノズルを有し、該ガス供給ノズルは前記反応管の中心方向に向かって開口する複数のガス供給孔を有し、
  前記ガス排気系は、前記反応管の前記ガス供給ノズルに対向する側に、鉛直方向に延在するよう設けられた複数のガス排出孔を有し、該ガス排出孔と前記ガス供給孔の水平方向の位置は、前記反応管内に収容された基板と基板の間の位置であるよう構成される。
(付記14)
  本発明の他の態様によれば、
  内部が複数のゾーンに分割された処理室内に複数枚の基板を収容する工程と、
  複数枚の基板を収容した前記処理室内の前記各ゾーンに対して、第1の反応ガスを供給する第1反応ガス供給工程、不活性ガスを供給し第1の反応ガスを排出する第1パージ工程、第2の反応ガスを供給する第2反応ガス供給工程、不活性ガスを供給し第2の反応ガスを排出する第2パージ工程を含む複数の工程を繰り返し実施することで、前記各ゾーンにおける基板上に薄膜を形成する工程と、
  を有し、
  前記薄膜を形成する工程では、前記各ゾーンにおいて同時に行われる工程が互いに異なる工程となるようにする半導体装置の製造方法。
(付記15)
  付記14の半導体装置の製造方法において、好ましくは、
  前記薄膜を形成する工程では、前記各ゾーンにおいて同時に同じ工程が行われないようにする。
(付記16)
  付記14または15のいずれかの半導体装置の製造方法において、好ましくは、
  前記薄膜を形成する工程では、前記各ゾーン間で、前記各工程を行うタイミングを異ならせる。
(付記17)
  付記14乃至16のいずれかの半導体装置の製造方法において、好ましくは、
  前記薄膜を形成する工程では、前記各ゾーンにて繰り返される前記複数の工程を含むサイクルを、前記各ゾーン間で、非同期とするようにする。
(付記18)
  付記14乃至17のいずれかの半導体装置の製造方法において、好ましくは、
  前記薄膜を形成する工程では、どのタイミングにおいても、前記第1反応ガス供給工程、前記第1パージ工程、前記第2反応ガス供給工程、前記第2パージ工程が、前記各ゾーンのいずれかで必ず行われるようにする。
(付記19)
  付記14乃至18のいずれかの半導体装置の製造方法において、好ましくは、
  前記薄膜を形成する工程では、前記第1反応ガス供給工程が行われるゾーンに隣接するゾーン及び前記第2反応ガス供給工程が行われるゾーンに隣接するゾーンにおいて、前記第1パージ工程又は前記第2パージ工程が行われるようにする。
(付記20)
  付記14乃至19のいずれかの半導体装置の製造方法において、好ましくは、
  前記薄膜を形成する工程では、前記第1反応ガス供給工程が行われるゾーンと、前記第2反応ガス供給工程が行われるゾーンとの間のゾーンにて、前記第1パージ工程又は前記第2パージ工程が行われるようにする。
(付記21)
  付記14乃至20のいずれかの半導体装置の製造方法において、好ましくは、
  前記薄膜を形成する工程では、前記第1反応ガス供給工程が行われるゾーンと、前記第2反応ガス供給工程が行われるゾーンとの間のゾーンにて、前記第1パージ工程または前記第2パージ工程が行われることで、不活性ガスによるガスカーテンが形成されるようにする。
(付記22)
  本発明のさらに他の態様によれば、
  内部が複数のゾーンに分割された処理室内に複数枚の基板を収容する工程と、
  複数枚の基板を収容した前記処理室内の前記各ゾーンに対して、第1の反応ガスを供給する第1反応ガス供給工程、不活性ガスを供給し第1の反応ガスを排出する第1パージ工程、第2の反応ガスを供給する第2反応ガス供給工程、不活性ガスを供給し第2の反応ガスを排出する第2パージ工程を含む複数の工程を繰り返し実施することで、前記各ゾーンにおける基板上に薄膜を形成する工程と、
  を有し、
  前記薄膜を形成する工程では、前記各ゾーンにおいて同時に行われる工程が互いに異なる工程となるようにする基板処理方法。
(付記23)
  本発明のさらに他の態様によれば、
  内部が複数のゾーンに分割された処理室内に複数枚の基板を収容する手順と、
  複数枚の基板を収容した前記処理室内の前記各ゾーンに対して、第1の反応ガスを供給する第1反応ガス供給手順、不活性ガスを供給し第1の反応ガスを排出する第1パージ手順、第2の反応ガスを供給する第2反応ガス供給手順、不活性ガスを供給し第2の反応ガスを排出する第2パージ手順を含む複数の手順を繰り返し実施することで、前記各ゾーンにおける基板上に薄膜を形成する手順と、
  をコンピュータに実行させ、
  前記薄膜を形成する手順では、前記各ゾーンにおいて同時に行われる手順が互いに異なる手順となるようにするプログラムが提供される。
(付記24)
  本発明のさらに他の態様によれば、
  内部が複数のゾーンに分割された処理室内に複数枚の基板を収容する手順と、
  複数枚の基板を収容した前記処理室内の前記各ゾーンに対して、第1の反応ガスを供給する第1反応ガス供給手順、不活性ガスを供給し第1の反応ガスを排出する第1パージ手順、第2の反応ガスを供給する第2反応ガス供給手順、不活性ガスを供給し第2の反応ガスを排出する第2パージ手順を含む複数の手順を繰り返し実施することで、前記各ゾーンにおける基板上に薄膜を形成する手順と、
  をコンピュータに実行させ、
  前記薄膜を形成する手順では、前記各ゾーンにおいて同時に行われる手順が互いに異なる手順となるようにするプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。
  200…処理炉、202…ウエハ(基板)、201…処理室、201a…排気室、203…反応管、207…ヒータユニット(加熱部)、217…ボート、219…シールキャップ、231~234…第1反応ガス供給ノズル、231a~234a…第1反応ガス供給管、231b~234b…不活性ガス供給管、231h~234h…ガス供給孔、241…第1反応ガス供給源、242…第2反応ガス供給源、243…不活性ガス供給源、251a~254a…MFC、251b~254b…MFC、261a~264a…開閉バルブ、261b~264b…開閉バルブ、261c~264c…開閉バルブ、261d~264d…開閉バルブ、271…排気管、272…APCバルブ、273…真空ポンプ、274…圧力センサ、280…コントローラ、290…外部記憶装置、331~334…第2反応ガス供給ノズル、331a~334a…第2反応ガス供給管、331b~334b…不活性ガス供給管、331h~334h…ガス供給孔、351a~354a…MFC、351b~354b…MFC、361a~364a…開閉バルブ、361b~364b…開閉バルブ、361c~364c…開閉バルブ、361d~364d…開閉バルブ、2071…第1ゾーンヒータ、2072…第2ゾーンヒータ、2073…第3ゾーンヒータ、2074…第4ゾーンヒータ。

Claims (10)

  1.   複数枚の基板を収容するように構成されるとともに、内部が複数のゾーンに分割された処理室と、
      前記処理室内の前記複数のゾーンのそれぞれに対して、第1の反応ガス、第2の反応ガスおよび不活性ガスを供給するガス供給系と、
      前記各ゾーン内のガスを排気するガス排気系と、
      複数枚の基板を収容した前記処理室内の前記各ゾーンに対して、第1の反応ガスを供給する第1反応ガス供給工程、不活性ガスを供給し第1の反応ガスを排出する第1パージ工程、第2の反応ガスを供給する第2反応ガス供給工程、不活性ガスを供給し第2の反応ガスを排出する第2パージ工程を含む複数の工程を繰り返し実施することで、前記各ゾーンにおける基板上に薄膜を形成し、その際、前記各ゾーンにおいて同時に行われる工程が互いに異なる工程となるように、前記ガス供給系および前記ガス排気系を制御する制御部と、
      を有する基板処理装置。
  2.   前記制御部は、前記薄膜を形成する際に、前記各ゾーンにて繰り返される前記複数の工程を含むサイクルを、前記各ゾーン間で、非同期とするように、前記ガス供給系および前記ガス排気系を制御するよう構成される請求項1に記載の基板処理装置。
  3.   前記制御部は、前記薄膜を形成する際に、前記第1反応ガス供給工程が行われるゾーンと、前記第2反応ガス供給工程が行われるゾーンとの間のゾーンにて、前記第1パージ工程または前記第2パージ工程が行われるように、前記ガス供給系および前記ガス排気系を制御するよう構成される請求項2に記載の基板処理装置。
  4.   前記制御部は、前記薄膜を形成する際に、前記第1反応ガス供給工程が行われるゾーンと、前記第2反応ガス供給工程が行われるゾーンとの間のゾーンにて、前記第1パージ工程または前記第2パージ工程が行われることで不活性ガスによるガスカーテンが形成されるように、前記ガス供給系および前記ガス排気系を制御するよう構成される請求項3に記載の基板処理装置。
  5.   前記各ゾーンに対してガスを供給する前記ガス供給系のガス供給孔と前記各ゾーン内のガスを排出する前記ガス排気系のガス排出孔は、前記各ゾーンごとに設けられる請求項4に記載の基板処理装置。
  6.   前記各ゾーンに対してガスを供給する前記ガス供給系のガス供給孔と前記各ゾーン内のガスを排出する前記ガス排気系のガス排出孔は、前記各ゾーンごとに、それぞれが対向するよう設けられる請求項5に記載の基板処理装置。
  7.   前記処理室は、鉛直方向に長手方向を有する筒状の反応管により画成され、
      該反応管内の内壁には、前記各ゾーンの境界部分に、前記反応管の中心方向に突出する仕切り板が設けられる請求項6に記載の基板処理装置。
  8.   内部が複数のゾーンに分割された処理室内に複数枚の基板を収容する工程と、
      複数枚の基板を収容した前記処理室内の前記各ゾーンに対して、第1の反応ガスを供給する第1反応ガス供給工程、不活性ガスを供給し第1の反応ガスを排出する第1パージ工程、第2の反応ガスを供給する第2反応ガス供給工程、不活性ガスを供給し第2の反応ガスを排出する第2パージ工程を含む複数の工程を繰り返し実施することで、前記各ゾーンにおける基板上に薄膜を形成する工程と、
      を有し、
      前記薄膜を形成する工程では、前記各ゾーンにおいて同時に行われる工程が互いに異なる工程となるようにする基板処理方法。
  9.   内部が複数のゾーンに分割された処理室内に複数枚の基板を収容する工程と、
      複数枚の基板を収容した前記処理室内の前記各ゾーンに対して、第1の反応ガスを供給する第1反応ガス供給工程、不活性ガスを供給し第1の反応ガスを排出する第1パージ工程、第2の反応ガスを供給する第2反応ガス供給工程、不活性ガスを供給し第2の反応ガスを排出する第2パージ工程を含む複数の工程を繰り返し実施することで、前記各ゾーンにおける基板上に薄膜を形成する工程と、
      を有し、
      前記薄膜を形成する工程では、前記各ゾーンにおいて同時に行われる工程が互いに異なる工程となるようにする半導体装置の製造方法。
  10.   内部が複数のゾーンに分割された処理室内に複数枚の基板を収容する手順と、
      複数枚の基板を収容した前記処理室内の前記各ゾーンに対して、第1の反応ガスを供給する第1反応ガス供給手順、不活性ガスを供給し第1の反応ガスを排出する第1パージ手順、第2の反応ガスを供給する第2反応ガス供給手順、不活性ガスを供給し第2の反応ガスを排出する第2パージ手順を含む複数の手順を繰り返し実施することで、前記各ゾーンにおける基板上に薄膜を形成する手順と、
      をコンピュータに実行させ、
      前記薄膜を形成する手順では、前記各ゾーンにおいて同時に行われる手順が互いに異なる手順となるようにするプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2012/074272 2011-10-11 2012-09-21 基板処理装置、基板処理方法、半導体装置の製造方法、および記録媒体 WO2013054652A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147009341A KR20140070590A (ko) 2011-10-11 2012-09-21 기판 처리 장치, 기판 처리 방법, 반도체 장치의 제조 방법 및 기록 매체
US14/350,723 US20140256152A1 (en) 2011-10-11 2012-09-21 Substrate processing apparatus, substrate processing method, method of manufacturing semiconductor device and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011223819 2011-10-11
JP2011-223819 2011-10-11

Publications (1)

Publication Number Publication Date
WO2013054652A1 true WO2013054652A1 (ja) 2013-04-18

Family

ID=48081709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074272 WO2013054652A1 (ja) 2011-10-11 2012-09-21 基板処理装置、基板処理方法、半導体装置の製造方法、および記録媒体

Country Status (4)

Country Link
US (1) US20140256152A1 (ja)
JP (1) JPWO2013054652A1 (ja)
KR (1) KR20140070590A (ja)
WO (1) WO2013054652A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009724A (ja) * 2014-06-23 2016-01-18 東京エレクトロン株式会社 成膜装置および成膜方法
CN105316656A (zh) * 2014-07-28 2016-02-10 东京毅力科创株式会社 成膜装置
US20170081761A1 (en) * 2012-12-03 2017-03-23 Taiwan Semiconductor Manufacturing Company, Ltd. Atomic Layer Deposition Method
US9613838B2 (en) 2013-03-21 2017-04-04 Tokyo Electron Limited Batch-type vertical substrate processing apparatus and substrate holder
JPWO2018008088A1 (ja) * 2016-07-05 2019-01-31 株式会社Kokusai Electric 基板処理装置、ガスノズルおよび半導体装置の製造方法
JP2019518139A (ja) * 2016-06-02 2019-06-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 連続化学気相堆積(cvd)マルチゾーン処理キット
CN114250452A (zh) * 2020-09-23 2022-03-29 株式会社国际电气 基板处理装置、半导体装置的制造方法以及基板处理方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408084B1 (ko) * 2011-11-17 2014-07-04 주식회사 유진테크 보조가스공급포트를 포함하는 기판 처리 장치
KR101364701B1 (ko) * 2011-11-17 2014-02-20 주식회사 유진테크 위상차를 갖는 반응가스를 공급하는 기판 처리 장치
US10113236B2 (en) * 2014-05-14 2018-10-30 Applied Materials, Inc. Batch curing chamber with gas distribution and individual pumping
US10090396B2 (en) 2015-07-20 2018-10-02 Taiwan Semiconductor Manufacturing Company, Ltd. Method for fabricating metal gate devices and resulting structures
TWI611043B (zh) * 2015-08-04 2018-01-11 Hitachi Int Electric Inc 基板處理裝置、半導體裝置之製造方法及記錄媒體
KR102138985B1 (ko) * 2015-09-04 2020-07-28 가부시키가이샤 코쿠사이 엘렉트릭 반응관, 기판 처리 장치 및 반도체 장치의 제조 방법
CN108342772B (zh) * 2017-01-23 2021-07-23 中国科学院过程工程研究所 一种连续化生长二维原子晶体材料的生长单元、系统和设备
JP6909762B2 (ja) * 2018-07-23 2021-07-28 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
JP6896682B2 (ja) * 2018-09-04 2021-06-30 株式会社Kokusai Electric 基板処理装置および半導体装置の製造方法
JP6651591B1 (ja) * 2018-09-27 2020-02-19 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109711A (ja) * 2005-10-11 2007-04-26 Tokyo Electron Ltd 処理装置、処理方法及び記憶媒体
JP2011187485A (ja) * 2010-03-04 2011-09-22 Hitachi Kokusai Electric Inc 基板処理装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304328B2 (en) * 2006-03-20 2012-11-06 Hitachi Kokusai Electric Inc. Manufacturing method of semiconductor device and substrate processing apparatus
JP4899744B2 (ja) * 2006-09-22 2012-03-21 東京エレクトロン株式会社 被処理体の酸化装置
JP2010073822A (ja) * 2008-09-17 2010-04-02 Tokyo Electron Ltd 成膜装置、成膜方法、プログラム及びコンピュータ可読記憶媒体
US20100098851A1 (en) * 2008-10-20 2010-04-22 Varian Semiconductor Equipment Associates, Inc. Techniques for atomic layer deposition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109711A (ja) * 2005-10-11 2007-04-26 Tokyo Electron Ltd 処理装置、処理方法及び記憶媒体
JP2011187485A (ja) * 2010-03-04 2011-09-22 Hitachi Kokusai Electric Inc 基板処理装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170081761A1 (en) * 2012-12-03 2017-03-23 Taiwan Semiconductor Manufacturing Company, Ltd. Atomic Layer Deposition Method
US10858736B2 (en) * 2012-12-03 2020-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Atomic layer deposition method
US9613838B2 (en) 2013-03-21 2017-04-04 Tokyo Electron Limited Batch-type vertical substrate processing apparatus and substrate holder
JP2016009724A (ja) * 2014-06-23 2016-01-18 東京エレクトロン株式会社 成膜装置および成膜方法
JP2016034020A (ja) * 2014-07-28 2016-03-10 東京エレクトロン株式会社 成膜装置
KR20160017608A (ko) * 2014-07-28 2016-02-16 도쿄엘렉트론가부시키가이샤 성막 장치
KR101905242B1 (ko) * 2014-07-28 2018-11-30 도쿄엘렉트론가부시키가이샤 성막 장치
CN105316656A (zh) * 2014-07-28 2016-02-10 东京毅力科创株式会社 成膜装置
JP2019518139A (ja) * 2016-06-02 2019-06-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 連続化学気相堆積(cvd)マルチゾーン処理キット
JP7090035B2 (ja) 2016-06-02 2022-06-23 アプライド マテリアルズ インコーポレイテッド 連続化学気相堆積(cvd)マルチゾーン処理キット
JPWO2018008088A1 (ja) * 2016-07-05 2019-01-31 株式会社Kokusai Electric 基板処理装置、ガスノズルおよび半導体装置の製造方法
CN114250452A (zh) * 2020-09-23 2022-03-29 株式会社国际电气 基板处理装置、半导体装置的制造方法以及基板处理方法
JP2022052103A (ja) * 2020-09-23 2022-04-04 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法およびプログラム
US11542603B2 (en) 2020-09-23 2023-01-03 Kokusai Electric Corporation Substrate processing apparatus, method of manufacturing semiconductor device and substrate processing method
JP7271485B2 (ja) 2020-09-23 2023-05-11 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法およびプログラム

Also Published As

Publication number Publication date
JPWO2013054652A1 (ja) 2015-03-30
US20140256152A1 (en) 2014-09-11
KR20140070590A (ko) 2014-06-10

Similar Documents

Publication Publication Date Title
WO2013054652A1 (ja) 基板処理装置、基板処理方法、半導体装置の製造方法、および記録媒体
JP5562434B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
US9837262B2 (en) Method of manufacturing a SiOCN film, substrate processing apparatus and recording medium
JP5775947B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP5864503B2 (ja) 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体
KR102019955B1 (ko) 반도체 장치의 제조 방법, 기록 매체 및 기판 처리 장치
JP5686487B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6222833B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP5855691B2 (ja) 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体
JP5886366B2 (ja) 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体
KR101520844B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치, 기록 매체 및 반도체 장치
TW201513219A (zh) 半導體裝置之製造方法,基板處理裝置及記錄媒體
JP2014082457A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP2016058676A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US20190189432A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
CN110310886A (zh) 半导体装置的制造方法、基板处理装置以及存储介质
JP6604801B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US20200411330A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20220093386A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
JP7079340B2 (ja) 半導体装置の製造方法、基板処理装置、及びプログラム
JP6030746B2 (ja) 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538486

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147009341

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14350723

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839750

Country of ref document: EP

Kind code of ref document: A1