WO2013054476A1 - 非水電解質二次電池負極材用珪素酸化物、その製造方法、リチウムイオン二次電池及び電気化学キャパシタ - Google Patents

非水電解質二次電池負極材用珪素酸化物、その製造方法、リチウムイオン二次電池及び電気化学キャパシタ Download PDF

Info

Publication number
WO2013054476A1
WO2013054476A1 PCT/JP2012/006015 JP2012006015W WO2013054476A1 WO 2013054476 A1 WO2013054476 A1 WO 2013054476A1 JP 2012006015 W JP2012006015 W JP 2012006015W WO 2013054476 A1 WO2013054476 A1 WO 2013054476A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon oxide
negative electrode
carbon
secondary battery
electrode material
Prior art date
Application number
PCT/JP2012/006015
Other languages
English (en)
French (fr)
Inventor
福岡 宏文
上野 進
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US14/346,916 priority Critical patent/US20140302395A1/en
Priority to KR1020147009571A priority patent/KR101947620B1/ko
Priority to IN2704CHN2014 priority patent/IN2014CN02704A/en
Priority to EP12839695.9A priority patent/EP2768050B1/en
Priority to CN201280049685.8A priority patent/CN103857623B/zh
Publication of WO2013054476A1 publication Critical patent/WO2013054476A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material having a high capacity and good cycle characteristics when used as a negative electrode active material for a lithium ion secondary battery, a method for producing the same, and a lithium ion using the same
  • the present invention relates to a secondary battery and an electrochemical capacitor.
  • Non-aqueous electrolyte secondary batteries with high energy density from the viewpoints of economy and downsizing and weight reduction of devices.
  • negative electrode materials such as oxides such as B, Ti, V, Mn, Co, Fe, Ni, Cr, Nb, and Mo and composites thereof
  • Patent Document 4 A method using a silicon oxide as a negative electrode material (Patent Document 4), a method using Si 2 N 2 O, Ge 2 N 2 O and Sn 2 N 2 O as a negative electrode material (Patent Document 5), etc. are known. ing.
  • silicon oxide can be expressed as SiOx (where x is slightly larger than the theoretical value 1 because of the oxide film), but it is about several nm to several tens of nm in the analysis by X-ray diffraction.
  • the amorphous silicon is finely dispersed in silica. For this reason, although the battery capacity is small compared to silicon, it is 5 to 6 times higher by weight than carbon, furthermore, the volume expansion is small, and the cycle characteristics are relatively excellent, so it is close to practical use. It was considered a negative electrode material. However, for automotive use, the cycle characteristics are still insufficient, and it is necessary to improve the cycle characteristics to the same level as the carbon material that is the current negative electrode material.
  • the present invention has been made in view of the above problems, and by using it as a negative electrode material, a silicon oxide capable of producing a non-aqueous electrolyte secondary battery having excellent cycle characteristics and high battery capacity, a method for producing the same,
  • An object is to provide a lithium ion secondary battery and an electrochemical capacitor using the same.
  • the present invention is a silicon oxide for a negative electrode of a nonaqueous electrolyte secondary battery, which is a carbon-containing silicon oxide obtained by co-precipitation from a SiO gas and a carbon-containing gas. Also provided is a silicon oxide for a negative electrode of a nonaqueous electrolyte secondary battery, wherein the carbon content of the carbon-containing silicon oxide is 0.5 to 30%.
  • the carbon contained in the carbon-containing silicon oxide is not SiC.
  • the carbon contained is a carbon-containing silicon oxide that has not been converted to SiC, it becomes a silicon oxide for a negative electrode material capable of producing a non-aqueous electrolyte secondary battery having sufficiently high battery capacity and excellent cycle characteristics.
  • the carbon-containing silicon oxide preferably has an average particle size of 0.1 to 30 ⁇ m and a BET specific surface area of 0.5 to 30 m 2 / g.
  • the present invention also relates to a method for producing a silicon oxide for a negative electrode of a non-aqueous electrolyte secondary battery, wherein a raw material that generates SiO gas is heated to generate SiO gas.
  • Silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material characterized in that a carbon-containing gas is supplied in a temperature range of ⁇ 1100 ° C. to precipitate a carbon-containing silicon oxide having a carbon content of 0.5 to 30%.
  • a method for manufacturing a product is provided.
  • a carbon-containing silicon oxide having a carbon content of 0.5 to 30% can be efficiently deposited, the battery capacity is high, and the cycle characteristics are improved.
  • a silicon oxide capable of producing an excellent nonaqueous electrolyte secondary battery negative electrode material can be produced with high productivity.
  • the raw material from which the SiO gas is generated is preferably silicon oxide powder or a mixture of silicon dioxide powder and metal silicon powder.
  • the raw material from which the SiO gas is generated when heating the raw material from which the SiO gas is generated, it is preferably heated in the temperature range of 1100 to 1600 ° C. in the presence of an inert gas or under reduced pressure. By heating in this way, the reaction efficiently proceeds and SiO gas is sufficiently generated, and the productivity of the silicon oxide for the non-aqueous electrolyte secondary battery negative electrode material can be further improved.
  • the lithium ion secondary battery characterized by using the silicon oxide for non-aqueous electrolyte secondary battery negative electrode materials of this invention is provided.
  • the silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material of the present invention is used, a lithium ion secondary battery having a high capacity and excellent cycle characteristics is obtained.
  • the present invention also provides an electrochemical capacitor using the silicon oxide for a negative electrode material of a nonaqueous electrolyte secondary battery according to the present invention.
  • an electrochemical capacitor using the silicon oxide for a negative electrode material of a nonaqueous electrolyte secondary battery according to the present invention.
  • a high-quality nonaqueous electrolyte secondary battery capable of producing a nonaqueous electrolyte secondary battery having high battery capacity and excellent cycle characteristics can be produced.
  • a silicon oxide for a secondary battery negative electrode material can be provided.
  • the present inventors pay attention to a silicon oxide negative electrode material that is an active material that exceeds the battery capacity of a carbon material, and a silicon-based active material that can have a cycle characteristic similar to that of a carbon material while maintaining a high capacity. investigated. As a result, it was found that by forming a conductive network in the negative electrode material of silicon oxide, which is an insulating material, the cycle characteristics are remarkably improved, and it has been found that there is a high possibility that the above object can be achieved. Furthermore, as a result of intensive studies on a method of forming a conductive network on a silicon oxide negative electrode material, the present inventors have found that SiO gas is deposited and a silicon-containing gas is used to produce silicon oxide.
  • the silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material of the present invention is obtained by supplying and co-depositing a carbon-containing gas serving as a carbon source when depositing SiO gas, and the carbon content is 0.5. It is a carbon-containing silicon oxide of ⁇ 30%. With such a carbon-containing silicon oxide, when used as a negative electrode material for a non-aqueous electrolyte secondary battery, a high capacity can be obtained, and at the same time, excellent cycle characteristics can be obtained.
  • the carbon content of the carbon-containing silicon oxide of the present invention is less than 0.5%, when used as a negative electrode material for a non-aqueous electrolyte secondary battery, improvement in cycle characteristics is not confirmed as compared with normal silicon oxide. Conversely, when the carbon content is more than 30%, although the improvement of the cycle characteristics is confirmed, the battery capacity is lowered. In order to surely improve the cycle characteristics, the carbon content is preferably 1 to 25%, more preferably 1.5 to 20%.
  • the carbon content of the carbon-containing silicon oxide of the present invention is not converted to SiC.
  • the battery capacity and cycle characteristics can be reliably prevented from deteriorating, and a nonaqueous electrolyte secondary battery exhibiting excellent battery capacity and cycle characteristics can be produced. .
  • the physical properties other than the carbon content of the carbon-containing silicon oxide in the present invention are not particularly limited, but the average particle diameter is preferably 0.1 to 30 ⁇ m, particularly preferably 0.2 to 20 ⁇ m. Particles having an average particle diameter of 0.1 ⁇ m or more, particularly 0.2 ⁇ m or more are easy to produce, have a small specific surface area, and a small proportion of silicon dioxide on the particle surface. Therefore, when used as a negative electrode material for a non-aqueous electrolyte secondary battery, the battery capacity becomes higher. Further, if the average particle diameter is 30 ⁇ m or less, particularly 20 ⁇ m or less, it is difficult to become a foreign substance when applied to the electrode, and deterioration of battery characteristics can be prevented. Such an average particle diameter can be represented by, for example, a weight average particle diameter in particle size distribution measurement by a laser light diffraction method.
  • the BET specific surface area of the carbon-containing silicon oxide of the present invention is preferably 0.5 to 30 m 2 / g, particularly 1 to 20 m 2 / g.
  • the BET specific surface area is 0.5 m 2 / g or more, particularly 1 m 2 / g or more, the adhesiveness when applied to the electrode is good, and the battery characteristics are good.
  • it is 30 m 2 / g or less, particularly 20 m 2 / g or less, the proportion of silicon dioxide on the particle surface becomes small, and the battery capacity becomes high when used as a non-aqueous electrolyte secondary battery negative electrode material.
  • a method for producing the silicon oxide for a negative electrode material for a nonaqueous electrolyte secondary battery according to the present invention will be described.
  • a raw material from which SiO gas is generated is heated to generate SiO gas, and a carbon-containing gas is supplied to the generated SiO gas in a temperature range of 500 to 1100 ° C. 0.5-30% carbon-containing silicon oxide is deposited.
  • a high-quality non-aqueous electrolyte secondary battery can be obtained by efficiently depositing a carbon-containing silicon oxide having a carbon content of 0.5 to 30%, with high productivity.
  • a silicon oxide for a negative electrode material can be produced.
  • the carbon content is measured, for example, by an oxyfuel combustion method, and a specific measuring device is Horiba Seismic Medium Carbon Analyzer EMIA-110.
  • SiO gas (silicon oxide gas) is obtained by heating a raw material from which SiO gas is generated.
  • the raw material from which SiO gas is generated is reduced to silicon oxide powder or silicon dioxide powder. It is preferable to use a mixture with powder.
  • SiO gas is sufficiently generated.
  • Specific reduction powders include metal silicon compounds, carbon-containing powders, and the like, particularly those using metal silicon powders are effective in terms of (1) increasing the reactivity and (2) increasing the yield. And is preferably used.
  • the mixing ratio of the metal silicon powder and the silicon dioxide powder is appropriately selected, but considering the surface oxygen of the metal silicon powder and the presence of a trace amount of oxygen in the reactor, the mixing molar ratio is 1 ⁇ metal silicon powder. It is desirable that / silicon dioxide powder ⁇ 1.1, particularly 1.01 ⁇ metal silicon powder / silicon dioxide powder ⁇ 1.08.
  • the SiO gas when generating the SiO gas by heating the raw material as described above, it is preferable to heat and hold the raw material at a temperature of 1100 to 1600 ° C., particularly 1200 to 1500 ° C. to generate the SiO gas. If the reaction temperature is 1100 ° C. or higher, particularly 1200 ° C. or higher, the reaction proceeds efficiently and the amount of SiO gas generated is sufficient. Moreover, if it is 1600 degrees C or less, especially 1500 degrees C or less, a raw material will not melt
  • the furnace atmosphere is preferably in the presence of an inert gas or under reduced pressure, and thermodynamically under reduced pressure is more preferable because it has higher reactivity and enables low-temperature reaction. Therefore, it is particularly desirable to heat the raw material under reduced pressure at 1 to 200 Pa, particularly 5 to 100 Pa.
  • the deposition of the carbon-containing silicon oxide can be performed by supplying the carbon-containing gas when the SiO gas is deposited, for example, co-deposited on the deposition substrate, and the temperature range for deposition is set to 500 to 1100 ° C.
  • the thermal decomposition rate of the carbon-containing gas is reduced, so that silicon oxide containing no carbon is precipitated, or the carbon-containing silicon oxide having the carbon content of the present invention is used. It takes a long time and is not realistic.
  • the deposition temperature is particularly preferably 700 to 1000 ° C.
  • the temperature of the deposition chamber can be appropriately controlled by heating with a heater, heat insulating performance (heat insulating material thickness), forced cooling, or the like.
  • the type of the deposition base on which the carbon-containing silicon oxide is deposited is not particularly limited, but refractory metals such as SUS, molybdenum, and tungsten are preferably used from the viewpoint of workability.
  • the carbon content of the produced carbon-containing silicon oxide can be easily controlled by the flow rate, time, etc. of the carbon-containing gas to be supplied.
  • the carbon-containing silicon oxide deposited on the deposition substrate as described above can be pulverized by an appropriate means if necessary, for example, to obtain the above-described preferred average particle diameter and BET specific surface area.
  • the silicon oxide for secondary battery negative electrode material is preferably coated with carbon by chemical vapor deposition or mechanical alloying.
  • a hydrocarbon-based compound gas and / or vapor at a temperature of 600 to 1200 ° C., preferably 800 to 1100 ° C. under normal pressure or reduced pressure, and performing a known thermal chemical vapor deposition treatment, etc.
  • Silicon composite particles in which a carbon film is formed on the surface of the carbon-containing silicon oxide particles and at the same time, a silicon carbide layer is formed at the silicon-carbon layer interface may be used.
  • hydrocarbon-based compound one that is pyrolyzed at the above heat treatment temperature to generate carbon is selected.
  • hydrocarbon-based compound one that is pyrolyzed at the above heat treatment temperature to generate carbon is selected.
  • methane, ethane, propane, butane, pentane, hexane, etc. carbonization of ethylene, propylene, butylene, acetylene, etc.
  • Hydrogen alone or as a mixture or alcohol compounds such as methanol and ethanol, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene, etc. Examples thereof include 1 to 3 aromatic hydrocarbons or mixtures thereof.
  • gas gas oil, creosote oil, anthracene oil, and naphtha cracked tar oil obtained in the tar distillation step may be used alone or in a mixture.
  • the carbon coating amount is preferably 1 to 50% by mass, particularly 1 to 20% by mass on the silicon oxide coated with carbon.
  • the silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material obtained in the present invention can be processed to produce a lithium ion secondary battery.
  • the lithium ion secondary battery to be produced is characterized in that the silicon oxide for the negative electrode material of the non-aqueous electrolyte secondary battery of the present invention is used.
  • Other positive electrode, electrolyte, separator and other materials, battery shape, etc. A known material can be used, and is not limited.
  • oxides of transition metals such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , chalcogen compounds, and the like are used.
  • electrolyte for example, a non-aqueous solution containing a lithium salt such as lithium perchlorate is used.
  • non-aqueous solvent propylene carbonate, ethylene carbonate, dimethoxyethane, ⁇ -butyrolactone, 2-methyltetrahydrofuran, etc. The above is used in combination.
  • Various other non-aqueous electrolytes and solid electrolytes can also be used.
  • a conductive agent such as graphite can be added to the secondary battery negative electrode material.
  • the kind of the conductive agent is not particularly limited, and may be an electron conductive material that does not cause decomposition or alteration in the configured battery.
  • metal powder such as Al, Ti, Fe, Ni, Cu, Zn, Ag, Sn, Si, metal fiber or natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor grown carbon fiber, Graphite such as pitch-based carbon fiber, PAN-based carbon fiber, and various resin fired bodies can be used.
  • the electrochemical capacitor when obtaining an electrochemical capacitor, is characterized in that the silicon oxide (active material) of the present invention is used for an electrode.
  • Other materials such as an electrolyte and a separator and a capacitor shape are It is not limited.
  • a nonaqueous solution containing a lithium salt such as lithium hexafluorophosphate, lithium perchlorate, lithium borofluoride, lithium hexafluoroarsenate, etc. is used as the electrolyte.
  • nonaqueous solvent examples include propylene carbonate, ethylene carbonate, It is used alone or in combination of two or more kinds such as dimethyl carbonate, diethyl carbonate, dimethoxyethane, ⁇ -butyrolactone, 2-methyltetrahydrofuran.
  • nonaqueous electrolytes and solid electrolytes can also be used.
  • the battery characteristics such as battery capacity and cycle characteristics are excellent. Become.
  • Example 1 The carbon-containing silicon oxide was manufactured using the horizontal tubular furnace 10 of FIG.
  • the reaction tube 1 is made of alumina having an inner diameter of 80 mm, and an equimolar mixture of metal silicon powder having an average particle diameter of 5 ⁇ m and fumed silica powder (BET specific surface area: 200 m 2 / g) is used as a raw material 2. 50 g of raw material 2 was charged.
  • the temperature was raised to 1400 ° C. by the heater 6 at a temperature rising rate of 300 ° C./hour while the inside of the furnace was evacuated to 20 Pa or less while being evacuated by the vacuum pump 7.
  • the precipitation part heater 8 was heated to keep the precipitation part where the precipitation base 3 was disposed at 700 ° C.
  • CH 4 gas was introduced from the gas introduction pipe 5 through the flow meter 4 at a flow rate of 1 NL / min (the furnace pressure increased to 100 Pa).
  • the inflow of CH 4 gas and the heater heating were stopped and cooled to room temperature. After cooling, when the deposit deposited on the deposition substrate 3 was collected, the deposit was a black lump and the collected amount was 41 g.
  • silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material.
  • the obtained silicon oxide was a powder having an average particle size of 7.5 ⁇ m, a BET specific surface area of 4.3 m 2 / g, and a carbon content of 5.3%.
  • a battery evaluation using the obtained silicon oxide treated powder as a negative electrode active material was performed by the following method.
  • 45 wt% of artificial graphite (average particle diameter 10 ⁇ m) and 10 wt% of polyimide are added to the obtained treated powder, and further N-methylpyrrolidone is added to form a slurry, which is applied to a copper foil having a thickness of 12 ⁇ m.
  • the electrode was pressure-formed by a roller press, and this electrode was vacuum-dried at 350 ° C. for 1 hour, and then punched out to 2 cm 2 to obtain a negative electrode.
  • a lithium foil was used as a counter electrode, and lithium hexafluoride was mixed with 1/1 (volume ratio) of ethylene carbonate and diethyl carbonate as a non-aqueous electrolyte.
  • a lithium ion secondary battery for evaluation using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L and a polyethylene microporous film having a thickness of 30 ⁇ m as a separator was prepared.
  • the prepared lithium ion secondary battery was allowed to stand overnight at room temperature, and then charged with a secondary battery charge / discharge tester (manufactured by Nagano Co., Ltd.) until the test cell voltage reached 0 V at 0.5 mA / cm 2 .
  • Charging was performed at a constant current, and after reaching 0V, charging was performed by decreasing the current so as to keep the cell voltage at 0V. Then, the charging was terminated when the current value fell below 40 ⁇ A / cm 2 .
  • Discharging was performed at a constant current of 0.5 mA / cm 2 , discharging was terminated when the cell voltage exceeded 2.0 V, and the discharge capacity was determined.
  • the above charge / discharge test was repeated, and a charge / discharge test after 50 cycles of the evaluation lithium ion secondary battery was performed.
  • the initial charge capacity was 1440 mAh / g
  • the initial discharge capacity was 1090 mAh / g
  • the initial charge / discharge efficiency was 75.7%
  • the discharge capacity at the 200th cycle was 1070 mAh / g
  • the cycle retention rate after 200 cycles was 98%.
  • Example 2 A silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material was produced in the same manner as in Example 1 except that acetylene gas was used instead of CH 4 gas and the precipitation temperature was 550 ° C.
  • the obtained silicon oxide was a powder having an average particle size of 7.6 ⁇ m, a BET specific surface area of 14.3 m 2 / g, and a carbon content of 2.2%.
  • a negative electrode was produced in the same manner as in Example 1, and the battery was evaluated.
  • the initial charge capacity was 1460 mAh / g
  • the initial discharge capacity was 1100 mAh / g
  • the initial charge / discharge efficiency was 75.3%
  • the discharge capacity at the 200th cycle was 1080 mAh / g
  • the cycle retention rate after 200 cycles was 98%.
  • Example 3 A silicon oxide for a nonaqueous electrolyte secondary battery negative electrode material was produced in the same manner as in Example 2 except that the amount of acetylene gas was 1.5 NL / min and the precipitation temperature was 1000 ° C.
  • the obtained silicon oxide was a powder having an average particle size of 7.5 ⁇ m, a BET specific surface area of 2.8 m 2 / g, and a carbon content of 22.5%.
  • a negative electrode was produced in the same manner as in Example 1, and the battery was evaluated.
  • the initial charge capacity was 1320 mAh / g
  • the initial discharge capacity was 1020 mAh / g
  • the initial charge / discharge efficiency was 77.3%
  • the discharge capacity at 200th cycle was 1000 mAh / g
  • the cycle retention after 200 cycles was 98%.
  • Example 1 A silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material was produced in the same manner as in Example 1 except that silicon oxide was deposited without supplying the carbon-containing gas.
  • the obtained silicon oxide was an average particle size: 7.6 ⁇ m, BET specific surface area: 5.6 m 2 / g, and a powder containing no carbon.
  • a negative electrode was produced in the same manner as in Example 1, and the battery was evaluated.
  • the initial charge capacity was 1460 mAh / g
  • the initial discharge capacity was 1100 mAh / g
  • the initial charge / discharge efficiency was 75.3%
  • the discharge capacity at the 200th cycle was 990 mAh / g
  • the cycle retention after 200 cycles was 90%.
  • the lithium ion secondary battery was inferior in cycle characteristics.
  • Example 2 A silicon oxide for a negative electrode of a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that the amount of acetylene gas was 1 NL / min and the precipitation temperature was 450 ° C.
  • the obtained silicon oxide was a powder having an average particle size of 7.5 ⁇ m, a BET specific surface area of 34.2 m 2 / g, and a carbon content of 0.2%.
  • a negative electrode was produced in the same manner as in Example 1, and battery evaluation was performed.
  • the initial charge capacity was 1410 mAh / g
  • the initial discharge capacity was 1060 mAh / g
  • the initial charge / discharge efficiency was 75.1%
  • the discharge capacity at 200th cycle was 940 mAh / g
  • the cycle retention after 200 cycles was 89%.
  • the lithium ion secondary battery was clearly inferior in cycle characteristics.
  • Example 3 A silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material was produced in the same manner as in Example 2 except that the amount of acetylene gas was 2 NL / min and the precipitation temperature was 1000 ° C.
  • the obtained silicon oxide was a powder having an average particle size of 7.5 ⁇ m, a BET specific surface area of 3.2 m 2 / g, and a carbon content of 33.4%.
  • a negative electrode was produced in the same manner as in Example 1, and the battery was evaluated.
  • the initial charge capacity was 1260 mAh / g
  • the initial discharge capacity was 980 mAh / g
  • the initial charge and discharge efficiency was 77.8%
  • the discharge capacity at the 200th cycle was 960 mAh / g
  • the cycle retention after 200 cycles was 98%. It was confirmed that the lithium ion secondary battery was clearly inferior in battery capacity compared to 1-3.
  • Example 4 A silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material was produced in the same manner as in Example 1 except that the precipitation temperature was 1150 ° C.
  • the obtained silicon oxide had an average particle diameter of 7.5 ⁇ m, a BET specific surface area of 1.1 m 2 / g, and it was confirmed by X-ray diffraction analysis that SiC was generated.
  • a negative electrode was produced in the same manner as in Example 1, and the battery was evaluated.
  • the initial charge capacity was 1300 mAh / g
  • the initial discharge capacity was 950 mAh / g
  • the initial charge / discharge efficiency was 73.2%
  • the discharge capacity at the 200th cycle was 720 mAh / g
  • the cycle retention ratio after 200 cycles was 76%.
  • the battery capacity, initial charge / discharge efficiency, and cycle characteristics were clearly inferior to the lithium ion secondary battery.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 本発明は、非水電解質二次電池負極材用珪素酸化物であって、SiOガスと炭素含有ガスとから共析出させることで得られる炭素含有珪素酸化物であり、該炭素含有珪素酸化物の炭素含有量が0.5~30%である非水電解質二次電池負極材用珪素酸化物である。これによって、負極材として用いることで、優れたサイクル特性と高い電池容量の非水電解質二次電池を作製できる珪素酸化物、その製造方法、それを用いたリチウムイオン二次電池及び電気化学キャパシタが提供される。

Description

非水電解質二次電池負極材用珪素酸化物、その製造方法、リチウムイオン二次電池及び電気化学キャパシタ
 本発明は、リチウムイオン二次電池用負極活物質として用いた際に高容量及び良好なサイクル特性を有する非水電解質二次電池負極材用珪素酸化物、その製造方法、それを用いたリチウムイオン二次電池及び電気化学キャパシタに関する。
 近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の非水電解質二次電池が強く要望されている。従来、この種の非水電解質二次電池の高容量化策として、例えば、負極材料にB,Ti,V,Mn,Co,Fe,Ni,Cr,Nb,Mo等の酸化物及びそれらの複合酸化物を用いる方法(特許文献1,2)、熔湯急冷したM100-xSi(x>50at%,M=Ni,Fe,Co,Mn)を負極材として適用する方法(特許文献3)、負極材料に珪素の酸化物を用いる方法(特許文献4)、負極材料にSiO,GeO及びSnOを用いる方法(特許文献5)等が知られている。
特許第3008228号公報 特許第3242751号公報 特許第3846661号公報 特許第2997741号公報 特許第3918311号公報
 上記材料の中で珪素酸化物は、SiOx(ただし、xは酸化被膜のため理論値の1よりわずかに大きい)と表記することができるが、X線回折による分析では数nm~数十nm程度のアモルファスシリコンがシリカ中に微分散している構造をとっている。このため、電池容量は珪素と比較して小さいものの、炭素と比較すれば重量あたりで5~6倍と高く、さらには体積膨張も小さく、比較的サイクル特性も優れていることから実用化に近い負極材料と考えられていた。
 しかしながら、車載用としては、サイクル特性は未だ不十分であり、現行の負極材料である炭素材料並みのサイクル特性にまで向上させる必要がある。
 本発明は、上記問題点に鑑みてなされたものであって、負極材として用いることで、優れたサイクル特性と高い電池容量の非水電解質二次電池を作製できる珪素酸化物、その製造方法、それを用いたリチウムイオン二次電池及び電気化学キャパシタを提供することを目的とする。
 上記目的を達成するために、本発明は、非水電解質二次電池負極材用珪素酸化物であって、SiOガスと炭素含有ガスとから共析出させることで得られる炭素含有珪素酸化物であり、該炭素含有珪素酸化物の炭素含有量が0.5~30%であることを特徴とする非水電解質二次電池負極材用珪素酸化物を提供する。
 このような炭素含有珪素酸化物であれば、負極材として用いた場合に、電池容量が高く、かつ、サイクル特性に優れた非水電解質二次電池を作製することができるので、高品質の非水電解質二次電池負極材用珪素酸化物となる。
 このとき、前記炭素含有珪素酸化物の含有炭素が、SiC化していないものであることが好ましい。
 このように含有炭素がSiC化していない炭素含有珪素酸化物であれば、電池容量が十分に高く、サイクル特性の優れた非水電解質二次電池を作製可能な負極材用珪素酸化物となる。
 このとき、前記炭素含有珪素酸化物が、平均粒子径0.1~30μm、BET比表面積0.5~30m/gであることが好ましい。
 このような炭素含有珪素酸化物であれば、非水電解質二次電池負極材を作製した場合に、電極に塗布した際の接着性が良好で、電池容量を十分に高くすることができる非水電解質二次電池負極材用珪素酸化物となる。
 また、本発明は、非水電解質二次電池負極材用珪素酸化物を製造する方法であって、SiOガスが発生する原料を加熱してSiOガスを発生させ、該発生したSiOガスに、500~1100℃の温度域で炭素含有ガスを供給して、炭素含有量が0.5~30%の炭素含有珪素酸化物を析出させることを特徴とする非水電解質二次電池負極材用珪素酸化物の製造方法を提供する。
 このように炭素含有珪素酸化物を製造することで、炭素含有量が0.5~30%の炭素含有珪素酸化物を効率的に析出させることができ、電池容量が高く、かつ、サイクル特性に優れた非水電解質二次電池負極材が作製可能な珪素酸化物を生産性良く製造できる。
 このとき、前記SiOガスが発生する原料を、酸化珪素粉末、又は、二酸化珪素粉末と金属珪素粉末との混合物とすることが好ましい。
 このような原料を用いることで、SiOガスを効率的に発生させることができ、非水電解質二次電池負極材用珪素酸化物の生産性をより向上できる。
 このとき、前記SiOガスが発生する原料を加熱する際、不活性ガスの存在下もしくは減圧下、1100~1600℃の温度範囲で加熱することが好ましい。
 このように加熱することで、反応が効率的に進行してSiOガスが十分に発生し、非水電解質二次電池負極材用珪素酸化物の生産性をより向上できる。
 前記炭素含有ガスを、C2n+2(n=1~3)で表される炭化水素ガスとすることが好ましい。
 このような炭化水素ガスであれば、コスト的に有利であるため、非水電解質二次電池負極材用珪素酸化物を安価に製造できる。
 また、本発明の非水電解質二次電池負極材用珪素酸化物を使用したものであることを特徴とするリチウムイオン二次電池を提供する。
 このように、本発明の非水電解質二次電池負極材用珪素酸化物を使用したものであれば、高容量でサイクル特性に優れたリチウムイオン二次電池となる。
 また、本発明の非水電解質二次電池負極材用珪素酸化物を使用したものであることを特徴とする電気化学キャパシタを提供する。
 このように、本発明の非水電解質二次電池負極材用珪素酸化物を使用したものであれば、高容量でサイクル特性に優れた電気化学キャパシタとなる。
 以上のように、本発明によれば、負極材として用いた場合に、電池容量が高く、かつ、サイクル特性に優れた非水電解質二次電池を作製することができる高品質の非水電解質二次電池負極材用珪素酸化物を提供することができる。
実施例、比較例において用いた横型管状炉を示す概略図である。
 本発明者らは、炭素材料の電池容量を上回る活物質である酸化珪素系負極材に着目し、高容量を維持しつつ、炭素材料並のサイクル特性を有することが可能な珪素系活物質について検討した。
 その結果、絶縁材料である珪素酸化物の負極材に導電ネットワークを形成することで、著しくサイクル特性が向上することが判明し、上記目的を達成できる可能性が高いことを見出した。さらに、本発明者らは、珪素酸化物の負極材に導電ネットワークを形成させる方法について鋭意検討を行った結果、SiOガスを析出させ、珪素酸化物を製造する際に、炭素含有ガスにて共析出させることで、比較的容易に、導電性を有する炭素含有珪素酸化物を得ることができ、この炭素含有珪素酸化物を活物質として非水電解質二次電池負極材に用いることで、高容量でサイクル特性に優れた非水電解質二次電池を得られることを知見し、以下のような本発明をなすに至った。
 以下、本発明について、実施態様の一例として詳細に説明するが、本発明はこれに限定されるものではない。
 本発明の非水電解質二次電池負極材用珪素酸化物は、SiOガスを析出させる際に炭素源となる炭素含有ガスを供給して共析出させることで得られ、炭素含有量が0.5~30%である炭素含有珪素酸化物である。
 このような炭素含有珪素酸化物であれば、非水電解質二次電池負極材として用いた場合に高容量とすることができると同時に、優れたサイクル特性を得ることができる。
 本発明の炭素含有珪素酸化物の炭素含有量が0.5%より少ないと、非水電解質二次電池負極材として用いた場合、通常の珪素酸化物に比べてサイクル特性の向上は確認されない。逆に炭素含有量が30%より多いと、サイクル特性の向上は確認されるものの、電池容量が低下してしまう。また、サイクル特性の確実な向上のためには、炭素含有量は、1~25%が好ましく、1.5~20%がより好ましい。
 また、本発明の炭素含有珪素酸化物の含有炭素がSiC化していないものであることが好ましい。
 このように、含有された炭素がSiC化していないものであれば、電池容量やサイクル特性の劣化を確実に防止して、優れた電池容量とサイクル特性を示す非水電解質二次電池を作製できる。
 なお、本発明における炭素含有珪素酸化物の炭素含有量以外の物性は、特に限定されるものではないが、平均粒子径が0.1~30μm、特に0.2~20μmが好ましい。
 平均粒子径が0.1μm以上、特には0.2μm以上である粒子は、製造が容易であり、比表面積が小さく、粒子表面の二酸化珪素の割合が小さくなる。従って、非水電解質二次電池負極材として用いた際に電池容量がより高くなる。また、平均粒子径が30μm以下、特には20μm以下であれば、電極に塗布した際に異物となりにくく、電池特性の低下を防止できる。
 このような平均粒子径は、例えばレーザー光回折法による粒度分布測定における重量平均粒子径で表すことができる。
 また、本発明の炭素含有珪素酸化物のBET比表面積は、0.5~30m/g、特に1~20m/gが好ましい。
 BET比表面積が0.5m/g以上、特に1m/g以上であれば、電極に塗布した際の接着性が良く、電池特性が良好になる。一方、30m/g以下、特に20m/g以下であれば、粒子表面の二酸化珪素の割合が小さくなり、非水電解質二次電池負極材として用いた際に電池容量が高くなる。
 次に、上記した本発明の非水電解質二次電池負極材用珪素酸化物を製造する方法について説明する。
 本発明の製造方法では、SiOガスが発生する原料を加熱してSiOガスを発生させ、該発生したSiOガスに、500~1100℃の温度域で炭素含有ガスを供給して、炭素含有量が0.5~30%の炭素含有珪素酸化物を析出させる。
 このような本発明であれば、炭素含有量が0.5~30%の炭素含有珪素酸化物を効率的に析出させて得ることができ、生産性良く、高品質の非水電解質二次電池負極材用珪素酸化物を製造することができる。
 なお、炭素含有量は、例えば酸素燃焼法によって測定され、具体的な測定装置としては、堀場製作所金属中炭素分析装置EMIA-110が挙げられる。
 ここで、SiOガス(酸化珪素ガス)は、SiOガスが発生する原料を加熱することで得られ、この場合SiOガスが発生する原料としては、酸化珪素粉末、あるいは二酸化珪素粉末とこれを還元する粉末との混合物を用いることが好ましい。
 このように、酸化珪素粉末や、二酸化珪素粉末と還元粉末の混合物であれば、SiOガスが十分に発生する。具体的な還元粉末としては、金属珪素化合物、炭素含有粉末等が挙げられるが、特に金属珪素粉末を用いたものが、(1)反応性を高める、(2)収率を高めるといった点で効果的であり、好ましく用いられる。
 この場合、金属珪素粉末と二酸化珪素粉末との混合割合は適宜選定されるが、金属珪素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、1<金属珪素粉末/二酸化珪素粉末<1.1、特には1.01≦金属珪素粉末/二酸化珪素粉末≦1.08の範囲であることが望ましい。
 また、上記のような原料を加熱してSiOガスを発生させる際には、原料を1100~1600℃、特に1200~1500℃の温度に加熱、保持し、SiOガスを生成させることが好ましい。
 反応温度が1100℃以上、特に1200℃以上であれば、反応が効率的に進行し、SiOガスの発生量が十分になる。また、1600℃以下、特に1500℃以下であれば、原料が溶融することもなく、反応性が高い状態で維持でき、SiOガスが十分な量で発生し、また、あまり高温にならないため炉材が限定されない。
 この加熱の際、炉内雰囲気は不活性ガスの存在下もしくは減圧下とすることが好ましく、熱力学的には減圧下の方が反応性が高く、低温反応が可能となるため、より好ましい。
 従って、減圧下、1~200Pa、特に5~100Paで原料を加熱することが特に望ましい。
 また、このSiOガスを析出させる際に供給する炭素含有ガスについては、特に限定するものではなく、C2n+2(n=1~3)で表される炭化水素ガス、又はメタノール、エタノール等のアルコール化合物、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環乃至3環の芳香族炭化水素及びこれらの混合物、あるいはこれら還元性ガスとAr、Heガス等の不活性ガスとの混合物といった形で供給することができる。
 この中で、特に、C2n+2(n=1~3)で表される炭化水素ガスは、コスト的にも有利であることより、好適に使用することができる。
 炭素含有珪素酸化物の析出は、上記SiOガスが析出する際に炭素含有ガスを供給し、例えば析出基体上に共析出させることができ、析出する温度域を、500~1100℃に設定する。
 析出温度が500℃より低いと、炭素含有ガスの熱分解速度が低下し、全く炭素を含有しない珪素酸化物が析出したり、また、本発明の炭素含有量の炭素含有酸化珪素とするのに長時間を要し、現実的ではない。逆に1100℃より高いと、SiOガスと炭素含有ガスとの反応でSiCが生成してしまい、負極材として用いた際に、容量、サイクル特性といった電池特性が著しく低下する。また、析出効率等を考慮すると、析出温度は700~1000℃が特に好ましい。
 析出室の温度の制御は、ヒーター加熱、断熱性能(断熱材の厚み)、強制冷却等により適宜行うことができる。
 また、炭素含有珪素酸化物を析出させる析出基体の種類も特に限定されないが、加工性の点で、SUSやモリブデン、タングステンといった高融点金属が好適に用いられる。
 製造される炭素含有珪素酸化物の炭素含有量は、供給する炭素含有ガスの流量、時間等により容易に制御することが可能である。
 上記のような析出基体上に析出した炭素含有珪素酸化物は、必要により適宜の手段で粉砕し、例えば上記した好ましい平均粒径、BET比表面積とすることができる。
 上記のようにして製造された本発明の非水電解質二次電池負極材用珪素酸化物を負極材として用いる際には、更に導電性を増大するため、本発明で得られた非水電解質二次電池負極材用珪素酸化物に化学蒸着処理あるいはメカニカルアロイングによって炭素被覆することが好ましい。
 この場合、常圧下又は減圧下で600~1200℃、好ましくは800~1100℃の温度で炭化水素系化合物のガス及び/又は蒸気を導入して、公知の熱化学蒸着処理等を施すことにより、炭素含有珪素酸化物の粒子表面にカーボン膜を形成し、それと同時に、珪素-炭素層の界面に炭化珪素層が形成された珪素複合体粒子としてもよい。
 炭化水素系化合物としては、上記熱処理温度で熱分解して炭素を生成するものが選択され、例えばメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等の他、エチレン、プロピレン、ブチレン、アセチレン等の炭化水素の単独もしくは混合物、あるいは、メタノール、エタノール等のアルコール化合物、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環乃至3環の芳香族炭化水素もしくはこれらの混合物が挙げられる。また、タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油も単独もしくは混合物で用いられる。
 なお、炭素被覆する場合、炭素被覆量は、炭素被覆された珪素酸化物に1~50質量%、特に1~20質量%であることが好ましい。
 以上のように、本発明で得られた非水電解質二次電池負極材用珪素酸化物を加工し、リチウムイオン二次電池を製造することができる。
 この場合、製造するリチウムイオン二次電池は、本発明の非水電解質二次電池負極材用珪素酸化物を用いる点に特徴を有し、その他の正極、電解質、セパレータ等の材料及び電池形状などは公知のものを用いることができ、限定されない。
 例えば、正極活物質としてはLiCoO、LiNiO、LiMn、V、MnO、TiS、MoS等の遷移金属の酸化物及びカルコゲン化合物などが用いられる。電解質としては、例えば、過塩素酸リチウム等のリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジメトキシエタン、γ-ブチロラクトン、2-メチルテトラヒドロフラン等の単体又は2種類以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
 なお、上記本発明の珪素酸化物から得られる二次電池負極材を用いて負極を作製する場合、二次電池負極材に黒鉛等の導電剤を添加することができる。この場合においても、導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよい。具体的には、Al,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粉末や金属繊維又は天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。
 また、電気化学キャパシタを得る場合は、電気化学キャパシタは、電極に上記本発明の珪素酸化物(活物質)を用いる点に特徴を有し、その他の電解質、セパレータ等の材料及びキャパシタ形状などは限定されない。例えば、電解質として、六フッ化リン酸リチウム、過塩素リチウム、ホウフッ化リチウム、六フッ化砒素酸リチウム等のリチウム塩を含む非水溶液が用いられ、非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、γ-ブチロラクトン、2-メチルテトラヒドロフラン等の単体又は2種類以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
 以上のような、本発明の非水電解質二次電池負極材用珪素酸化物を用いたリチウムイオン二次電池や電気化学キャパシタであれば、電池容量やサイクル特性等の電池特性に優れたものとなる。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 図1の横型管状炉10を用い、炭素含有珪素酸化物を製造した。反応管1は内径80mmのアルミナ製であり、平均粒子径が5μmの金属珪素粉末とヒュームドシリカ粉末(BET比表面積;200m/g)の等モル混合物を原料2とし、反応管1内に原料2を50g仕込んだ。
 次に真空ポンプ7にて排気して、炉内を20Pa以下に減圧しながら、ヒーター6により、300℃/時間の昇温速度で1400℃まで昇温した。また、同時に析出部ヒーター8で加熱し、析出基体3が配置された析出部を700℃に保持した。原料が1400℃に到達後、流量計4を介して、ガス導入管5から1NL/分の流量でCHガスを流入させた(炉内圧は100Paに上昇)。この運転を3時間行った後、CHガスの流入及びヒーター加熱を停止し、室温まで冷却した。
 冷却後、析出基体3上に析出した析出物を回収したところ、析出物は黒色塊状物であり、回収量は41gであった。
 次に、この析出物30gを2Lアルミナ製ボールミルにて乾式粉砕を行い、非水電解質二次電池負極材用珪素酸化物を製造した。
 得られた珪素酸化物は、平均粒子径;7.5μm、BET比表面積;4.3m/g、炭素含有量が5.3%の粉末であった。
電池評価
 次に、得られた珪素酸化物の処理粉末を負極活物質として用いた電池評価を、以下の方法で行った。
 まず、得られた処理粉末に、人造黒鉛(平均粒子径10μm)を45wt%、ポリイミドを10wt%加え、更にN-メチルピロリドンを加えてスラリーとし、このスラリーを厚さ12μmの銅箔に塗布し、80℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、この電極を350℃で1時間真空乾燥した後、2cmに打ち抜き、負極とした。
 ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。
 作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、テストセルの電圧が0Vに達するまで0.5mA/cmの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が40μA/cmを下回った時点で充電を終了した。放電は0.5mA/cmの定電流で行い、セル電圧が2.0Vを上回った時点で放電を終了し、放電容量を求めた。
 以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の50サイクル後の充放電試験を行った。その結果、初回充電容量1440mAh/g、初回放電容量1090mAh/g、初回充放電効率75.7%、200サイクル目の放電容量1070mAh/g、200サイクル後のサイクル保持率98%となり、高容量で、かつ初回充放電効率及びサイクル特性に優れたリチウムイオン二次電池であることが確認された。
(実施例2)
 CHガスに代えてアセチレンガスを用い、析出部温度を550℃とした他は、実施例1と同様な方法で、非水電解質二次電池負極材用珪素酸化物を製造した。
 得られた珪素酸化物は、平均粒子径;7.6μm、BET比表面積;14.3m/g、炭素含有量が2.2%の粉末であった。
 次に、実施例1と同様な方法で負極を作製し、電池評価を行った。その結果、初回充電容量1460mAh/g、初回放電容量1100mAh/g、初回充放電効率75.3%、200サイクル目の放電容量1080mAh/g、200サイクル後のサイクル保持率98%となり、高容量で、かつ初回充放電効率及びサイクル特性に優れたリチウムイオン二次電池であることが確認された。
(実施例3)
 アセチレンガス量を1.5NL/minとし、析出部温度を1000℃とした他は、実施例2と同様な方法で非水電解質二次電池負極材用珪素酸化物を製造した。
 得られた珪素酸化物は、平均粒子径;7.5μm、BET比表面積;2.8m/g、炭素含有量が22.5%の粉末であった。
 次に、実施例1と同様な方法で負極を作製し、電池評価を行った。その結果、初回充電容量1320mAh/g、初回放電容量1020mAh/g、初回充放電効率77.3%、200サイクル目の放電容量1000mAh/g、200サイクル後のサイクル保持率98%となり、実施例1,2に比べ、容量は低下するものの、初回充放電効率及びサイクル特性に優れたリチウムイオン二次電池であることが確認された。
(比較例1)
 炭素含有ガスを供給せずに珪素酸化物を析出させた他は、実施例1と同様な方法で非水電解質二次電池負極材用珪素酸化物を製造した。
 得られた珪素酸化物は、平均粒子径;7.6μm、BET比表面積;5.6m/g、炭素を含まない粉末であった。
 次に、実施例1と同様な方法で負極を作製し、電池評価を行った。その結果、初回充電容量1460mAh/g、初回放電容量1100mAh/g、初回充放電効率75.3%、200サイクル目の放電容量990mAh/g、200サイクル後のサイクル保持率90%となり、実施例1-3に比べ、サイクル特性に劣るリチウムイオン二次電池であることが確認された。
(比較例2)
 アセチレンガス量を1NL/minとし、析出部温度を450℃とした他は、実施例2と同様な方法で非水電解質二次電池負極材用珪素酸化物を製造した。
 得られた珪素酸化物は、平均粒子径;7.5μm、BET比表面積;34.2m/g、炭素含有量が0.2%の粉末であった。
 次に、実施例1と同様な方法で負極を作製し、電池評価を行った。その結果、初回充電容量1410mAh/g、初回放電容量1060mAh/g、初回充放電効率75.1%、200サイクル目の放電容量940mAh/g、200サイクル後のサイクル保持率89%となり、実施例1-3に比べ、明らかにサイクル特性に劣るリチウムイオン二次電池であることが確認された。
(比較例3)
 アセチレンガス量を2NL/minとし、析出部温度を1000℃とした他は、実施例2と同様な方法で非水電解質二次電池負極材用珪素酸化物を製造した。
 得られた珪素酸化物は、平均粒子径;7.5μm、BET比表面積;3.2m/g、炭素含有量が33.4%の粉末であった。
 次に、実施例1と同様な方法で負極を作製し、電池評価を行った。その結果、初回充電容量1260mAh/g、初回放電容量980mAh/g、初回充放電効率77.8%、200サイクル目の放電容量960mAh/g、200サイクル後のサイクル保持率98%であり、実施例1-3に比べ、明らかに電池容量に劣るリチウムイオン二次電池であることが確認された。
(比較例4)
 析出部温度を1150℃とした他は、実施例1と同様な方法で非水電解質二次電池負極材用珪素酸化物を製造した。
 得られた珪素酸化物は、平均粒子径;7.5μm、BET比表面積;1.1m/gであり、X線回折分析により、SiCが生成している事が確認された。
 次に、実施例1と同様な方法で負極を作製し、電池評価を行った。その結果、初回充電容量1300mAh/g、初回放電容量950mAh/g、初回充放電効率73.2%、200サイクル目の放電容量720mAh/g、200サイクル後のサイクル保持率76%となり、実施例1-3に比べ、明らかに電池容量、初回充放電効率、サイクル特性に劣るリチウムイオン二次電池であることが確認された。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (9)

  1.  非水電解質二次電池負極材用珪素酸化物であって、SiOガスと炭素含有ガスとから共析出させることで得られる炭素含有珪素酸化物であり、該炭素含有珪素酸化物の炭素含有量が0.5~30%であることを特徴とする非水電解質二次電池負極材用珪素酸化物。
  2.  前記炭素含有珪素酸化物の含有炭素が、SiC化していないものであることを特徴とする請求項1に記載の非水電解質二次電池負極材用珪素酸化物。
  3.  前記炭素含有珪素酸化物が、平均粒子径0.1~30μm、BET比表面積0.5~30m/gであることを特徴とする請求項1又は請求項2に記載の非水電解質二次電池負極材用珪素酸化物。
  4.  非水電解質二次電池負極材用珪素酸化物を製造する方法であって、SiOガスが発生する原料を加熱してSiOガスを発生させ、該発生したSiOガスに、500~1100℃の温度域で炭素含有ガスを供給して、炭素含有量が0.5~30%の炭素含有珪素酸化物を析出させることを特徴とする非水電解質二次電池負極材用珪素酸化物の製造方法。
  5.  前記SiOガスが発生する原料を、酸化珪素粉末、又は、二酸化珪素粉末と金属珪素粉末との混合物とすることを特徴とする請求項4に記載の非水電解質二次電池負極材用珪素酸化物の製造方法。
  6.  前記SiOガスが発生する原料を加熱する際、不活性ガスの存在下もしくは減圧下、1100~1600℃の温度範囲で加熱することを特徴とする請求項4又は請求項5に記載の非水電解質二次電池負極材用珪素酸化物の製造方法。
  7.  前記炭素含有ガスを、C2n+2(n=1~3)で表される炭化水素ガスとすることを特徴とする請求項4乃至請求項6のいずれか一項に記載の非水電解質二次電池負極材用珪素酸化物の製造方法。
  8.  請求項1乃至請求項3のいずれか一項に記載の非水電解質二次電池負極材用珪素酸化物を使用したものであることを特徴とするリチウムイオン二次電池。
  9.  請求項1乃至請求項3のいずれか一項に記載の非水電解質二次電池負極材用珪素酸化物を使用したものであることを特徴とする電気化学キャパシタ。
PCT/JP2012/006015 2011-10-14 2012-09-21 非水電解質二次電池負極材用珪素酸化物、その製造方法、リチウムイオン二次電池及び電気化学キャパシタ WO2013054476A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/346,916 US20140302395A1 (en) 2011-10-14 2012-09-21 Silicon oxide for non-aqueous electrolyte secondary battery negative electrode material, method for manufacturing the same, lithium ion secondary battery, and electrochemical capacitor
KR1020147009571A KR101947620B1 (ko) 2011-10-14 2012-09-21 비수성 전해질 2차전지 음극재용 규소산화물, 그 제조방법, 리튬이온 2차전지 및 전기화학 캐패시터
IN2704CHN2014 IN2014CN02704A (ja) 2011-10-14 2012-09-21
EP12839695.9A EP2768050B1 (en) 2011-10-14 2012-09-21 Silicon oxide for nonaqueous electroltye secondary battery negative electrode material, method for manufacturing the same, lithium ion secondary battery, and electrochemical capacitor
CN201280049685.8A CN103857623B (zh) 2011-10-14 2012-09-21 非水电解质二次电池负极材料用硅氧化物、其制造方法、锂离子二次电池及电化学电容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-227079 2011-10-14
JP2011227079A JP5675546B2 (ja) 2011-10-14 2011-10-14 非水電解質二次電池負極材用珪素酸化物、その製造方法、リチウムイオン二次電池及び電気化学キャパシタ

Publications (1)

Publication Number Publication Date
WO2013054476A1 true WO2013054476A1 (ja) 2013-04-18

Family

ID=48081547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006015 WO2013054476A1 (ja) 2011-10-14 2012-09-21 非水電解質二次電池負極材用珪素酸化物、その製造方法、リチウムイオン二次電池及び電気化学キャパシタ

Country Status (7)

Country Link
US (1) US20140302395A1 (ja)
EP (1) EP2768050B1 (ja)
JP (1) JP5675546B2 (ja)
KR (1) KR101947620B1 (ja)
CN (1) CN103857623B (ja)
IN (1) IN2014CN02704A (ja)
WO (1) WO2013054476A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015077892A1 (fr) * 2013-11-28 2015-06-04 HYDRO-QUéBEC Procédé de préparation de siox à structure filamentaire nanométrique et son utilisation comme matériau d'anode de batterie lithium-ion
WO2022236985A1 (zh) * 2021-05-13 2022-11-17 溧阳天目先导电池材料科技有限公司 一种均匀改性的氧化亚硅负极材料及其制备方法和应用
JP2023523660A (ja) * 2021-03-31 2023-06-07 寧徳新能源科技有限公司 負極活物質並びにそれを含む電気化学装置及び電子装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104263372B (zh) * 2014-10-20 2018-02-06 风禾尽起科技(北京)有限公司 一种碳硅溶液的制备方法
CN105742695B (zh) * 2016-04-28 2018-03-27 深圳市力为锂能科技有限公司 一种锂离子电池及其制备方法
US10978701B2 (en) * 2016-11-18 2021-04-13 Samsung Electronics Co., Ltd. Porous silicon composite cluster structure, method of preparing the same, carbon composite using the same, and electrode, lithium battery, and device each including the same
CN108321362B (zh) * 2017-12-20 2020-09-11 合肥国轩高科动力能源有限公司 一种非水电解质二次电池负极材料用硅氧化物
CN108767241A (zh) * 2018-06-15 2018-11-06 中国民航大学 镁掺杂硅氧化物、制备方法及在二次锂离子电池中的应用
KR20200047879A (ko) 2018-10-25 2020-05-08 삼성전자주식회사 다공성 실리콘 함유 복합체, 이를 이용한 탄소 복합체, 이를 포함한 전극, 리튬 전지 및 전자소자
CN113258052A (zh) * 2021-05-13 2021-08-13 溧阳天目先导电池材料科技有限公司 均匀改性的硅基锂离子电池负极材料及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP3008228B2 (ja) 1991-12-18 2000-02-14 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその負極活物質の製造方法
JP3242751B2 (ja) 1992-04-24 2001-12-25 富士写真フイルム株式会社 非水二次電池
JP2003317717A (ja) * 2002-04-19 2003-11-07 Shin Etsu Chem Co Ltd 非水電解質二次電池負極材の製造方法
JP2004063433A (ja) * 2001-12-26 2004-02-26 Shin Etsu Chem Co Ltd 導電性酸化珪素粉末、その製造方法及び該粉末を用いた非水電解質二次電池用負極材
JP3846661B2 (ja) 1997-02-24 2006-11-15 日立マクセル株式会社 リチウム二次電池
JP2007053084A (ja) * 2005-07-21 2007-03-01 Sumitomo Titanium Corp リチウム二次電池用負極の製造方法
JP3918311B2 (ja) 1997-07-29 2007-05-23 ソニー株式会社 負極材料及びこれを用いた非水電解液二次電池
JP2008084842A (ja) * 2006-08-30 2008-04-10 Shin Etsu Chem Co Ltd 非水系二次電池用セパレータ及びその製造方法並びに非水電解質二次電池
JP2008098151A (ja) * 2006-09-14 2008-04-24 Shin Etsu Chem Co Ltd 非水電解質二次電池及びその製造方法
JP2011192453A (ja) * 2010-03-12 2011-09-29 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3722736B2 (ja) * 2001-10-11 2005-11-30 電気化学工業株式会社 低級酸化ケイ素粉末の製造方法
JP3952180B2 (ja) * 2002-05-17 2007-08-01 信越化学工業株式会社 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
JP5131429B2 (ja) 2006-12-15 2013-01-30 信越化学工業株式会社 非水電解質二次電池用負極及びその製造方法
JP5379026B2 (ja) * 2010-01-07 2013-12-25 信越化学工業株式会社 非水電解質二次電池負極材用珪素酸化物及び非水電解質二次電池負極材用珪素酸化物の製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
CN102812589B (zh) * 2010-03-26 2016-01-13 Nec能源元器件株式会社 非水电解液二次电池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3008228B2 (ja) 1991-12-18 2000-02-14 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその負極活物質の製造方法
JP3242751B2 (ja) 1992-04-24 2001-12-25 富士写真フイルム株式会社 非水二次電池
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP3846661B2 (ja) 1997-02-24 2006-11-15 日立マクセル株式会社 リチウム二次電池
JP3918311B2 (ja) 1997-07-29 2007-05-23 ソニー株式会社 負極材料及びこれを用いた非水電解液二次電池
JP2004063433A (ja) * 2001-12-26 2004-02-26 Shin Etsu Chem Co Ltd 導電性酸化珪素粉末、その製造方法及び該粉末を用いた非水電解質二次電池用負極材
JP2003317717A (ja) * 2002-04-19 2003-11-07 Shin Etsu Chem Co Ltd 非水電解質二次電池負極材の製造方法
JP2007053084A (ja) * 2005-07-21 2007-03-01 Sumitomo Titanium Corp リチウム二次電池用負極の製造方法
JP2008084842A (ja) * 2006-08-30 2008-04-10 Shin Etsu Chem Co Ltd 非水系二次電池用セパレータ及びその製造方法並びに非水電解質二次電池
JP2008098151A (ja) * 2006-09-14 2008-04-24 Shin Etsu Chem Co Ltd 非水電解質二次電池及びその製造方法
JP2011192453A (ja) * 2010-03-12 2011-09-29 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2768050A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015077892A1 (fr) * 2013-11-28 2015-06-04 HYDRO-QUéBEC Procédé de préparation de siox à structure filamentaire nanométrique et son utilisation comme matériau d'anode de batterie lithium-ion
CN105793194A (zh) * 2013-11-28 2016-07-20 魁北克电力公司 具有纳米级丝状结构的SiOx的制备方法和其在锂离子蓄电池中作为阳极材料的用途
US10329157B2 (en) 2013-11-28 2019-06-25 HYDRO-QUéBEC Process for the preparation of SiOx having a nanoscale filament structure and use thereof as anode material in lithium-ion batteries
JP2023523660A (ja) * 2021-03-31 2023-06-07 寧徳新能源科技有限公司 負極活物質並びにそれを含む電気化学装置及び電子装置
JP7470696B2 (ja) 2021-03-31 2024-04-18 寧徳新能源科技有限公司 負極活物質並びにそれを含む電気化学装置及び電子装置
WO2022236985A1 (zh) * 2021-05-13 2022-11-17 溧阳天目先导电池材料科技有限公司 一种均匀改性的氧化亚硅负极材料及其制备方法和应用

Also Published As

Publication number Publication date
JP5675546B2 (ja) 2015-02-25
KR101947620B1 (ko) 2019-02-14
IN2014CN02704A (ja) 2015-07-03
CN103857623A (zh) 2014-06-11
JP2013089364A (ja) 2013-05-13
EP2768050A1 (en) 2014-08-20
EP2768050B1 (en) 2018-02-21
EP2768050A4 (en) 2015-06-03
US20140302395A1 (en) 2014-10-09
KR20140090599A (ko) 2014-07-17
CN103857623B (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5454353B2 (ja) 非水電解質二次電池負極材用珪素酸化物及びその製造方法、ならびに負極、リチウムイオン二次電池及び電気化学キャパシタ
JP5675546B2 (ja) 非水電解質二次電池負極材用珪素酸化物、その製造方法、リチウムイオン二次電池及び電気化学キャパシタ
JP5379026B2 (ja) 非水電解質二次電池負極材用珪素酸化物及び非水電解質二次電池負極材用珪素酸化物の製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP5500047B2 (ja) 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP5245592B2 (ja) 非水電解質二次電池用負極材、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP5245559B2 (ja) 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP5196149B2 (ja) 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP5184567B2 (ja) 非水電解質二次電池用負極材並びにリチウムイオン二次電池及び電気化学キャパシタ
US20100243951A1 (en) Negative electrode material for nonaqueous electrolyte secondary battery, making method and lithium ion secondary battery
JP6156089B2 (ja) 珪素酸化物及びその製造方法、負極、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP2011076788A (ja) 非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2010272411A (ja) 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP5737265B2 (ja) 珪素酸化物及びその製造方法、負極、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP2013008696A (ja) 非水電解質二次電池用負極材の製造方法
JP4288455B2 (ja) 非水電解質二次電池負極材の製造方法
JP5182498B2 (ja) 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP5910479B2 (ja) 非水電解質二次電池用負極活物質、リチウムイオン二次電池及び電気化学キャパシタの製造方法
JP5320890B2 (ja) 負極材の製造方法
JP2013258135A (ja) 珪素酸化物粒子及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP6079651B2 (ja) 非水電解質二次電池用負極材の製造方法
JP6299248B2 (ja) リチウムイオン二次電池用負極材及びその製造方法、ならびに負極及びリチウムイオン二次電池
JP2016106358A (ja) 非水電解質二次電池用負極活物質の製造方法
JP6394498B2 (ja) 黒鉛被覆粒子及びその製造方法
JP2018032648A (ja) 非水電解質二次電池用負極材の製造方法
JP2010177070A (ja) 非水電解質二次電池用負極材の製造方法、並びにリチウムイオン二次電池及び電気化学キャパシタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14346916

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012839695

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147009571

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE