WO2013053329A1 - 一种在线测量高炉料面的系统和方法 - Google Patents

一种在线测量高炉料面的系统和方法 Download PDF

Info

Publication number
WO2013053329A1
WO2013053329A1 PCT/CN2012/082799 CN2012082799W WO2013053329A1 WO 2013053329 A1 WO2013053329 A1 WO 2013053329A1 CN 2012082799 W CN2012082799 W CN 2012082799W WO 2013053329 A1 WO2013053329 A1 WO 2013053329A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
blast furnace
laser
measuring
charge level
Prior art date
Application number
PCT/CN2012/082799
Other languages
English (en)
French (fr)
Inventor
高征铠
赵承平
高永�
高泰
高茜
Original Assignee
Gao Zhengkai
Zhao Chengping
Gao Yong
Gao Tai
Gao Qian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gao Zhengkai, Zhao Chengping, Gao Yong, Gao Tai, Gao Qian filed Critical Gao Zhengkai
Priority to ES12840247.6T priority Critical patent/ES2641936T3/es
Priority to US14/362,541 priority patent/US20140333752A1/en
Priority to EP12840247.6A priority patent/EP2787087B1/en
Publication of WO2013053329A1 publication Critical patent/WO2013053329A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/28Arrangements of monitoring devices, of indicators, of alarm devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/20Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0035Devices for monitoring the weight of quantities added to the charge
    • F27D2021/0042Monitoring the level of the solid charge

Definitions

  • the present invention relates generally to the field of blast furnace measurement, and more particularly to a system and method for in-line measurement of a blast furnace surface. Background technique
  • Smelting blast furnaces are usually operated in a closed state and have an environment inside the furnace such as high temperature, high pressure, high dust, and high humidity. Therefore, the operator cannot directly observe the information in the furnace, such as the material surface of the charge, the charging process, the operating state of the furnace equipment, etc., and can only be inferred by the values of the conventional measuring instruments such as temperature, pressure, and flow rate.
  • infrared scanning and microwave scanning have been used to detect the inside of the blast furnace, but these detection methods require complicated detection and receiving devices and also require a complicated calculation system to process the acquired detection data.
  • the detection data obtained by these detection means are distance information, and these distance information needs to be reconstructed into simulated image information, and the "what you see is what you get" observation image cannot be directly obtained.
  • the inventors of the present application have proposed a detecting device for infrared imaging in Chinese patents ZL02121548. 0 and ZL200310122476. 4, which obtain an observation image by photographing infrared light emitted by the blast furnace charge itself.
  • this type of detection device can only work at specific times and conditions.
  • the inventor of the present application has creatively utilized a laser detecting device to acquire in-furnace information in Chinese Patent ZL200610089415.
  • a plurality of laser beams are simultaneously propagated in the furnace space to form a planar fan beam (or two intersecting planar fan beams); and a laser beam is used to capture the laser propagation pattern.
  • the laser beam is blocked, and the laser pattern is changed (ie, the laser pattern is used for tracing), which can be taken from the camera.
  • the operation of the equipment in the furnace is obtained.
  • a similar effect is produced when the charge is passed through the fan beam to obtain a charge condition in the furnace.
  • the Chinese patent ZL200610089415. 6 can also be used to obtain the material information (such as position and / or shape) of the furnace charge.
  • the end point of each laser beam on the material surface corresponds to an actual detection point of the material surface.
  • this end point (actual detection point) will behave For a laser "bright spot”.
  • the end point of multiple laser beams on the material surface corresponds to a plurality of discrete bright spots in the image.
  • the camera captures images containing these bright spots.
  • the images can be directly output to the display device.
  • the operator can know the shape and position of the current material surface by observing the distribution of bright spots in the captured images (that is, "what you see is what you get.”
  • the position of the bright spot in the image can be extracted by the computer, and the position of the camera and the angle of the shooting angle can be combined to calculate the actual position of each bright spot in the furnace, and the fitting algorithm can be further applied to these
  • the discrete points are fitted into a continuous profile shape curve and output to the display device.
  • Another Chinese patent, ZL200710005609.8 also discloses a method for measuring the shape of a blast furnace surface using a laser. It utilizes the principle of laser ranging, and calculates the distance information of each measuring point on the material surface by measuring the time difference between the emitted laser light and the receiving reflected laser light, thereby obtaining the material shape.
  • This patent does not use a camera or other instrument to obtain the aforementioned "bright spot" image illuminated by laser, so it is impossible to observe the furnace information by means of "what you see is what you get”.
  • the method principle of this patent is actually similar to the other methods of ranging detection such as microwaves described above.
  • each of the planar fan beams needs to contain a sufficient number of laser beams, for example, 10 or more laser beams are usually required, so that a dense laser can be formed in the furnace space.
  • the use of such a large number of lasers on the one hand makes the device very expensive.
  • the use of so many lasers makes the device very bulky, protecting the device from high temperatures, high pressures, high dust, high humidity.
  • the "bright spot" of each laser beam on the material surface corresponds to an actual detection point, and the positions on the material surface other than the actual detection point are not detected, or It is fitted by an algorithm through post-image processing. If you want to get a detection result closer to the actual situation, you need more actual detection points. For this device, this can only be achieved by adding more lasers. It is easy to understand that the number of lasers in the device cannot be increased without limitation. Therefore, the device is obtained on the material surface. Inter-detection points can only be increased indefinitely. Summary of the invention
  • a system for measuring a blast furnace surface on-line for detecting material information in a blast furnace comprising:
  • the laser beam emitted by the laser capable of continuously scanning at least a portion of the surface
  • a camera for capturing a face image, the face image comprising a pattern of detection points formed by the laser beam incident on a surface;
  • An image processing device that receives the surface image output from the camera and outputs the material information.
  • a method for online measurement of a blast furnace surface for detecting material information in a blast furnace comprising:
  • the number of actual detection points of the material surface which can be obtained by the system and method for measuring the blast furnace surface of the present invention is limited only by the laser scanning speed and the sampling frequency of the camera, and The number of lasers used is independent. This aspect can greatly reduce the system cost.
  • by extracting a large number of actual detection points it is also possible to obtain a corresponding amount of actual detection data, so that whether through the "what you see is what you get" image or through The generated surface shape curve can obtain more realistic material information.
  • Figure 2 is a schematic view of a second embodiment of the present invention.
  • Figure 3 is an example of a surface shape curve generated from the material image acquired by the camera. detailed description
  • the blast furnace 1 is generally in the shape of a center symmetry along the central axis L, and the material surface 2 of the charge therein is also generally formed into a substantially central symmetrical shape along the central axis L.
  • this central symmetry appears to be symmetrical about the left and right axis of the axis L.
  • the system for in-line measurement of the blast furnace level of the present invention comprises a laser 3 and a camera 5 disposed above the level 2.
  • the position and/or arrangement of the laser 3 and the camera 5 on the blast furnace 1 can be carried out in a conventional manner, as described in the Chinese patent ZL200610089415.
  • the laser 3 emits a laser beam 4 which is "visible” to the camera 5.
  • visible to the camera as used herein means that the photosensitive element of the camera 5 used is sensitive to the frequency of the laser beam 4, that is, the camera 5 can capture light of that frequency.
  • the laser beam 4 itself may be visible laser light, or may be an invisible laser such as an infrared laser or an ultraviolet laser.
  • the laser beam 4 is capable of continuously scanning at least a part or all of the material plane 1.
  • the laser 3 is disposed in the furnace wall of the blast furnace 1.
  • the solid line indicated by reference numeral 4 indicates the current position of the laser beam 4, and the other laser beams drawn by broken lines indicate exemplary positions that may be passed when the laser beam 4 is scanned, while the solid lines at both ends of the arrow A are solid lines. Then, it indicates the boundary position of the scanning range of the laser beam 4.
  • the laser 3 is arranged to be pivotable about a pivot axis such that the laser beam 4 can scan the level 2 in direction A.
  • the laser 3 can be a laser scanner with a laser deflection device. In such a laser scanner, the laser light is incident on a deflection device (such as a mirror or a prism), and the angle of the outgoing laser light is changed by rotating the deflection device so that the laser beam 4 can scan the material surface 2 in the direction A.
  • the laser can be placed on a beam above the level of the furnace, and the laser scans the web 2 by moving it over the beam or by a beam moving the laser. In the example shown in Figure 1, the laser beam 4 is rotated along the direction A. A straight path (e.g., one diameter of the blast furnace 1) scans the level 2, and in other embodiments, the laser beam 4 can also scan the level 2 along other predetermined paths.
  • the camera 5 is used to take a picture of the level of the surface 2, which is actually composed of a series of frame images obtained in chronological order, and contains a pattern of detection points formed by the laser beam 4 incident on the surface 2.
  • the detection point pattern formed by the end point of the laser beam 4 on the material surface 2 appears as a bright spot 4 in the frame image of the material image, and this bright spot 4, that is, the laser The actual detection point of the bundle 4 on the level 2.
  • the bright spot 4 continuously moves on the material plane 2 as the laser beam 4 continuously moves, thereby forming a scanning trajectory.
  • the camera 5 In order to make the image of the image taken by the camera 5 reflect the shape change of the material surface, the camera 5 should be disposed outside the plane of the scanning track of the laser beam 4 and at a certain angle. As shown in Fig. 1, the camera 5 can be disposed at a wall facing the plane of the scanning trajectory of the laser beam 4.
  • the camera 5 can output a matte image to an image processing device (not shown) external to the blast furnace 1.
  • the image processing apparatus can process the planing image in a variety of ways.
  • the image processing device can include a display that can be displayed to the operator directly via the display.
  • the bright spot 4 that continues to travel can be seen in the display.
  • the operator can see the current material information, such as the shape and/or position of the material level, by observing the position of the bright spot 4' in the material image.
  • the image processing apparatus may further include a calculation processing system that receives the surface image in real time, and superimposes the received current frame image with the previously received frame image, and displays the image in real time through the display.
  • the image formed by the superposition thus, with the continuous scanning of the laser beam 4, a pattern composed of a plurality of bright spots 4 in the multi-frame image can be seen in real time in the display. If the sampling frequency of the camera 5 is sufficiently high, a continuously extending surface shape curve formed by the bright dots 4 in the multi-frame image can be seen in the display in real time.
  • the superimposed image is the surface shape curve of the material plane 2 along the straight line path.
  • the computing processing system of the image processing apparatus can process the image of the surface to obtain the position information of the bright spot in each frame image or the selected multi-frame image, and can combine the scanning direction and speed of the laser. , camera position and angle information The number is calculated to obtain the surface information data corresponding to the bright spot 4' in each frame image.
  • the level information data may include the actual position data of the actual detection point represented by the bright spot 4 in the processed frame image.
  • the calculation processing system can also generate the calculated surface letter, the data into a surface shape curve, and output it to an output device such as a display. An example of a profile shape curve generated in this manner is shown in FIG. It should be noted that this processing can also be performed in real time.
  • the calculation processing system calculates and processes the current frame image in real time, and obtains the surface information data of the bright spot 4 in the current frame image, and generates the surface shape curve in real time by using the surface information data obtained from the current frame image and the previous frame image.
  • the generated surface shape curve is output to the display in real time, it can be seen that as the laser beam 4 is continuously scanned, the display displays a pattern composed of a plurality of actual detection points. If the sampling frequency of the camera 5 is sufficiently high, a continuously extending surface shape curve formed by a plurality of actual detection points can be seen in the display in real time.
  • the number of actual detection points (bright spots 4, ) that can be captured by the camera 5 is limited only by the laser scanning speed and the sampling frequency of the camera. For example, for a continuous scan trajectory, the laser beam 4 passes a horizontal distance of 0.5 m in a period of one second, and the sampling frequency of the camera is 24 frames/second, then within a distance of 0.5 m. 24 actual detection points will be captured. If the image captured by the camera at 24 frames per second is displayed directly through the display, the operator will see a scanned image with the bright spot moving continuously. If the surface image is generated by the computational processing system, the actual number of detection points that the computational processing system can utilize is far greater than that described in Chinese Patent ZL200610089415. 6 to produce an image that is more consistent with the actual surface condition.
  • FIG. 2 shows a schematic view of a second embodiment of the invention.
  • the system for measuring the blast furnace surface of the present invention comprises two lasers 3 and 3' which are disposed opposite each other along the diameter of the blast furnace 1.
  • the laser 3' can be used. Scan to get the bright spot 6, and the probe points in the vicinity.
  • the illumination distance of the laser 3 cannot meet the requirement of scanning the entire material surface.
  • a part of the material adjacent to it can be scanned separately (for example, until the surface is scanned).
  • the lasers 3 and 3 can scan the surface 2 at different times, at which time the image obtained by the camera 5 will be included in the image. There is a bright spot 4, or 6,. In another embodiment, the lasers 3 and 3 can also scan the material plane 2 at the same time. At this time, the image obtained by the camera 5 will have two bright spots 4, and 6, at the same time.
  • the arrangement of the laser and the camera and the processing of the image of the image by the image processing apparatus can be performed in the same manner as the embodiment of Fig. 1.
  • system for measuring the blast furnace level in-line of the present invention may also include other numbers and other arrangements of lasers as long as the lasers operate in a scanning manner and the camera can obtain "what you see is what you get”.
  • the image of the material is within the intended scope of the application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

一种在线测量高炉(1)料面(2)的系统,用于探测高炉(1)内的料面(2)信息。该系统包括设置在料面(2)上方的激光器(3),该激光器(3)发出的激光束(4)能够对料面(2)的至少一部分进行连续扫描。摄像仪(5)用于拍摄料面(2)图像,料面(2)图像包含激光束(4)入射到料面(2)上形成的探测点图案。图像处理装置接收从所述摄像仪(5)输出的所述料面(2)图像,并输出所述料面(2)信息,由此降低系统成本,并通过获取极大量的实际探测点,可以获得更符合实际的料面(2)信息。且该在线测量高炉(1)料面(2)的系统可以使用较少数量的激光器(3),从而够简化激光器(3)防护措施。此外,还提供了一种在线测量高炉(1)料面(2)的方法。

Description

一种在线测量高炉料面的系统和方法 技术领域
本发明总体上涉及高炉测量领域, 更具体是涉及一种在线测量高 炉料面的系统和方法。 背景技术
冶炼高炉通常在封闭状态下运行, 并且具有高温、 高压、 高粉尘、 高 湿度等炉内环境。 因此, 操作人员无法直接观测到炉内信息, 如炉料的料 面、 装料过程、 炉内设备运行状态等, 而只能通过温度、 压力、 流量等常 规检测仪表的数值来进行推断。
为了获取所需的炉内信息,人们已经利用红外扫描和微波扫描等手段 来探测高炉内部,但是这些探测手段需要使用复杂的探测和接受装置并且 还需要复杂的计算系统来处理所获取的探测数据。 另外, 这些探测手段所 获得探测数据均为距离信息, 需要将这些距离信息重建为模拟的图像信 息, 并不能直接获得 "所见即所得" 的观测图像。
本申请的发明人在中国专利 ZL02121548. 0和 ZL200310122476. 4提出 了红外摄像的探测装置,其通过拍摄高炉炉料自身所发出的红外光来获得 观测图像。 但是在装料过程或炉料温度较低的状态下, 红外光强度弱, 就 无法获取清晰的红外图像, 从而无法实时探测炉内信息。 因此, 这种类型 的探测装置只能在特定的时间和条件下工作。
本申请的发明人在中国专利 ZL200610089415. 6中曾创造性地利用激 光探测装置来获取炉内信息。 在该专利中, 多根激光束同时在炉内空间传 播, 并组成一个平面扇形束(或者两个相互交叉的平面扇形束); 并且用 摄像仪来拍摄激光传播图案。 这样, 当炉内设备如布 殳备穿过该扇形束 时则会阻断激光束的传播, 从而改变激光图案(即, 利用激光图案进行示 踪), 这就可以从摄像仪所拍摄的图像中获得炉内设备的运行情况。 当所 装炉料穿过该扇形束时也会产生类似效果, 从而获得炉内装料状况。
值得注意的是, 该中国专利 ZL200610089415. 6也可用于获得炉内炉 料的料面信息 (如位置和 /或形状) 。 当平面扇形束中的各根激光束入射 到高炉的料面上时,每一激光束在料面上的终点则对应该料面的一个实际 探测点。 在用摄像仪拍摄的炉内图像中, 这个终点(实际探测点)会表现 为一个激光 "亮点" 。 多根激光束在料面上的终点则对应为图像中多个离 散的亮点。摄像仪拍摄包含这些亮点的图像, 一方面可以直接将图像输出 至显示装置,操作人员通过观测所拍摄的图像中的亮点分布即可获知当前 料面的形状和位置(也就是 "所见即所得" ); 另一方面可以用计算机提 取图像中的亮点位置, 并结合摄像仪的位置和拍摄角度信息, 来计算各亮 点在炉内所对应的实际位置,而且还可进一步应用拟合算法将这些离散的 点拟合成一条连续的料面形状曲线, 并输出至显示装置。
进一步分析可知, 中国专利 ZL200610089415. 6实际上是利用对摄像 仪可见的、 高穿透性的激光来 "照亮" 高炉内部, 当然, 由于激光良好的 方向性, 所 "照亮" 的部分仅呈现为传播路径中的线和点。 由于这种 "照 亮,, , 所以操作人员可以通过摄像仪以一种 "所见即所得" 的方式来观测 炉内信息。 这显然不同于之前的利用测距方式的的探测手段。
另一中国专利 ZL200710005609. 8也公开了一种利用激光来测量高炉 料面形状的方法。 其利用的是激光测距原理, 通过测量从发射激光到接收 反射激光之间的时间差来计算料面上各个测量点的距离信息,从而获得料 面形状。该专利并没有用摄像仪等仪器来获取前述的用激光照亮的 "亮点" 图像, 因此也无法通过 "所见即所得" 的方式来观测炉内信息。 该专利的 方法原理实际上与前面描述的其它用微波等测距探测手段类似。
再回到中国专利 ZL200610089415. 6中的激光探测装置。在该装置中, 为了获取足够的探测信息,其每一个平面扇形束中需要包含足够多数量的 激光束, 例如通常需要 10根或以上的激光束, 这样才能在炉内空间形成 较为密集的激光图案(对于探测炉内设备运行情况和装料过程 )且在料面 上形成较为密集的亮点(对于探测料面信息)。 这样就需要该装置具有相 应数量的激光器。 使用如此多数量的激光器一方面会使得装置成本非常 高, 另一方面, 使用这么多激光器会使得装置的体积非常大, 对该装置进 行防护以使其能在高温、 高压、 高粉尘、 高湿度的恶劣炉内环境中长时间 正常运行也是一件困难的事情。 进一步, 对于探测料面信息来说, 每一根 激光束在料面上的 "亮点"对应于一个实际探测点, 而料面上除实际探测 点之外的各个位置是没有探测的,或者是通过后期的图像处理用算法拟合 的。 如果想获取更接近实际情况的探测结果, 则需要更多的实际探测点, 对于该装置来说, 这只能通过增加更多的激光器来实现。 很容易理解, 该 装置的激光器数量并不能无限制地增加, 因此, 该装置在料面上获取的实 际探测点只能有限度地增加。 发明内容
本发明的目的是克服现有技术中的一个或多个缺陷, 从而提供一 种在线测量高炉料面的系统和方法。
根据本发明的一个方面, 提供了一种在线测量高炉料面的系统, 用于探测高炉内的料面信息, 该系统包括:
设置在料面上方的激光器, 该激光器发出的激光束能够对所述料 面的至少一部分进行连续扫描;
摄像仪, 用于拍摄料面图像, 所述料面图像包含所述激光束入射 到料面上形成的探测点图案;
图像处理装置, 所述图像处理装置接收从所迷摄像仪输出的所述 料面图像, 并输出所述料面信息。
根据本发明的另一方面, 提供了一种在线测量高炉料面的方法, 用于探测高炉内的料面信息, 包括:
用激光束对高炉内的料面的至少一部分进行连续扫描; 所述激光 束入射到所述料面上形成探测点图案;
获取所述料面的料面图像, 所述料面图像包含所述探测点图案; 根据所述料面图像获取料面信息。
本发明具有如下有益效果:
1 )相比于中国专利 ZL200610089415. 6 , 本发明的在线测量高炉料 面的系统和方法所能获取的料面实际探测点的数量仅受激光扫描速度 和摄像仪的采样频率的限制, 而与所采用的激光器的数量无关。 这一 方面可以大大降低系统成本, 另一方面, 通过荻取极大量的实际探测 点, 也能获取对应的大量实际探测数据, 这样, 不论是通过 "所见即 所得" 的料面图像还是通过所生成的料面形状曲线, 都可以获得更符 合实际的料面信息。
2 )相比于中国专利 ZL200610089415. 6 , 本发明的在线测量高炉料 面的系统可以使用较少数量的激光器 (甚至一个激光器) , 因此在系 统的小型化方面更具优势, 且能够简化激光器防护措施。 附图说明 图 1是按照本发明的第一实施方式的示意图;
图 2是按照本发明的第二实施方式的示意图;
图 3 是按照摄像仪获取的料面图像生成的料面形状曲线的一个示 例。 具体实施方式
下面结合附图和具体实施方式对本发明进一步详细说明。
参见图 1, 高炉 1总体上为沿中心轴线 L成中心对称的形状, 其内 的炉料的料面 2通常也呈现为沿中心轴线 L成大致中心对称的形状。 在图 1的剖视图中, 这种中心对称呈现为沿轴线 L的左右轴对称。
在图 1 所示的实施方式中, 本发明的在线测量高炉料面的系统包 括设置在料面 2上方的一个激光器 3和一个摄像仪 5。激光器 3和摄像 仪 5在高炉 1上的位置和 /或设置方式可以采用常规的方式, 如参考中 国专利 ZL200610089415. 6中那样。
激光器 3发出一根激光束 4, 该激光束 4对于摄像仪 5来说是 "可 见" 的。 需要注意的是, 这里所说的对摄像仪 "可见" 的意思是: 所 使用的摄像仪 5的感光元件对于激光束 4的频率是敏感的,即摄像仪 5 可以捕获该频率的光线。 在实际应用中, 激光束 4 本身可以是可见激 光, 也可以是红外激光、 紫外激光等不可见激光。
通过适当设置激光器 3 ,使得该激光束 4能够对料面 1的至少一部 分或全部进行连续扫描。 在图 1的示例中, 激光器 3设置在高炉 1的 炉壁中。 标号 4所指向的实线表示激光束 4的当前位置, 其它用虚线 画出的激光束表示激光束 4 进行扫描时所可能经过的示例性位置, 而 位于箭头 A两个端部处的实线则表示激光束 4扫描范围的边界位置。
在一种实施方式中, 激光器 3 设置成可绕一枢转轴进行枢转, 使 得激光束 4可以沿方向 A对料面 2进行扫描。 在另一种实施方式中, 激光器 3 可以是带有激光偏转装置的激光扫描仪。 在这种激光扫描仪 中, 激光入射到偏转装置 (如反射镜或棱镜) , 通过转动偏转装置来 改变出射激光的角度, 使得激光束 4可以沿方向 A对料面 2进行扫描。 在又一种未示出的实施方式中, 激光器可以设置在炉内料面上方的一 个横梁上, 激光器通过在横梁上移动或者由横梁带动激光器移动而对 料面 2进行扫描。 在图 1所示出的示例中, 激光束 4沿方向 A转动沿 一条直线路径 (例如高炉 1 的一条直径) 对料面 2进行扫描, 在其它 的实施方式中, 激光束 4也可以沿其它的预定路径对料面 2进行扫描。
摄像仪 5用于拍摄料面 2的料面图像, 该料面图像实际上是由按 时间顺序获得的一系列帧图像组成, 并且包含激光束 4 入射到料面 2 上形成的探测点图案。 激光束 4在对料面 2进行扫描时, 激光束 4在 料面 2 上的终点所形成的探测点图案在料面图像的帧图像中表现为一 个亮点 4, , 这个亮点 4, 也就是激光束 4在料面 2上的实际探测点。 在扫描过程中,该亮点 4, 随着激光束 4的连续移动而在料面 2上连续 移动, 从而形成扫描的轨迹。
为了使得摄像仪 5 所拍摄的料面图像能够反映料面的形状变化, 摄像仪 5应设置在激光束 4的扫描轨迹所在平面之外并有一定角度。 如图 1所示, 摄像仪 5可以设置在与激光束 4的扫描轨迹所在平面相 面对的炉壁处。
摄像仪 5可以将料面图像输出到高炉 1外部的图像处理装置 (未 示出) 中。 按照本发明, 图像处理装置能够采用多种方式处理该料面 图像。
在一种方式中, 该图像处理装置可以包括一个显示器, 料面图像 可以直接经由显示器显示给操作员。 这样, 随着激光束 4的连续扫描, 在显示器中可以看到不断行进的亮点 4, 。操作员通过观测料面图像中 亮点 4 ' 的位置移动即可了解当前的料面信息, 如料面的形状和 /或位 置。
在另一种方式中, 图像处理装置还可以包括计算处理系统, 该计 算处理系统实时接收料面图像, 并将所接收的当前帧图像与之前已接 收的帧图像进行叠加, 并通过显示器实时显示所叠加形成的图像。 这 样, 随着激光束 4 的连续扫描, 可以在显示器中实时地看到由多帧图 像中的多个亮点 4, 组成的图案。如果摄像仪 5的采样频率足够高的话, 在显示器中可以实时地看到由多帧图像中的亮点 4, 形成的一条不断 延伸的料面形状曲线。 当激光束 4 是沿一条直线路径对料面进行扫描 时, 所叠加形成的图像为料面 2沿该条直线路径的料面形状曲线。
在又一种方式中, 该图像处理装置的计算处理系统可以对料面图 像进行处理, 获取每一帧图像或者选定的多帧图像中的亮点位置信息, 并可以结合激光器的扫描方向和速度、 摄像仪的位置和角度信息等参 数, 计算获得各帧图像中的亮点 4 ' 所对应的料面信息数据。 该料面信 息数据可包括所处理的该帧图像中的亮点 4, 所代表的实际探测点的 实际位置数据。 该计算处理系统还可以将计算获得的料面信, ¾数据生 成为料面形状曲线, 并输出到输出装置如显示器中。 按照这种方式所 生成的料面形状曲线的一个示例如图 3 所示。 需要注意的是, 这种处 理方式也是可以以实时的方式进行的。 计算处理系统实时计算处理当 前帧图像, 并获得当前帧图像中的亮点 4, 的料面信息数据, 并利用从 当前帧图像及之前的帧图像获得的料面信息数据实时生成料面形状曲 线。 这样, 当将所生成的料面形状曲线实时地输出到显示器时, 可以 看到, 随着激光束 4 的连续扫描, 显示器会显示由多个实际探测点组 成的图案。 如果摄像仪 5 的采样频率足够高的话, 在显示器中可以实 时地看到由多个实际探测点形成的一条不断延伸的料面形状曲线。
可以理解的是, 由于激光束 4对料面 2进行连续扫描, 那么摄像 仪 5所能拍摄到的实际探测点(亮点 4, )的数量仅受到激光扫描速度 和摄像仪的采样频率的限制。 例如, 对于某一段连续扫描轨迹, 激光 束 4在 1秒的时间内经过 0. 5米的水平距离, 而摄像仪的采样频率为 24帧 /秒, 那么在这 0. 5米的距离内将会拍摄到 24个实际探测点。 摄 像仪以 24 帧 /秒采集的图像如果直接通过显示器显示, 操作员将会看 到亮点连续移动的扫描图像。 如果通过计算处理系统来生成料面图像, 计算处理系统所能利用的实际探测点数量也远远超过中国专利 ZL200610089415. 6 中描述的方式, 从而能够生成出与实际料面情况更相 符的图像。
图 1示出了本发明的第二实施方案的示意图。 在图 2 中, 本发明的 在线测量高炉料面的系统包括两个激光器 3和 3 ' ,这两个激光器沿着 高炉 1的直径相对设置。 如图 2所示, 当由于料面 2的形状原因, 使 得激光器 3存在扫描死角时(如激光器 3, 的激光束 6的当前扫描位置 所对应的亮点 6 ' 处) , 则可用激光器 3 ' 来扫描获取亮点 6, 及其附 近的探测点。 另外, 也可能由于激光器功率限制, 激光器 3 的照亮距 离不能满足扫描整个料面的需求, 这样通过设置激光器 3, , 则可分别 扫描与其相邻的一部分料面 (如直至扫描到料面的中心附近) , 从而 一起完成整个料面的扫描。 在一种实施方式中, 激光器 3和 3, 可以在 不同时间对料面 2进行扫描, 此时, 摄像仪 5获得的料面图像中将含 有一个亮点 4, 或 6, 。 在另一种实施方式中, 激光器 3和 3, 也可以 同时对料面 2进行扫描, 此时, 摄像仪 5获得料面图像中将同时含有 两个亮点 4, 和 6, 。
在图 2 的实施方案中, 激光器和摄像仪的设置方式以及图像处理 装置对料面图像的处理方式均可以采用与图 1的实施方案相同的方式。
本领域技术人员可以理解, 本发明的在线测量高炉料面的系统还 可以包括其它数量以及以其它方式布置的激光器, 只要这些激光器是 以扫描方式工作, 并且摄像仪能够获得 "所见即所得" 的料面图像, 则均在本申请的意图涵盖范围之内。

Claims

权 利 要 求
1、 一种在线测量高炉料面的系统, 用于探测高炉内的料面信息, 该系统包括:
设置在料面上方的激光器, 该激光器发出的激光束能够对所述料 面的至少一部分进行连续扫描;
摄像仪, 用于拍摄料面图像, 所述料面图像包含所述激光束入射 到料面上形成的探测点图案;
图像处理装置, 所述图像处理装置接收从所述摄像仪输出的所述 料面图像, 并输出所述料面信息。
2、根据权利要求 1所述的在线测量高炉料面的系统,其特征在于, 所述料面信息包括料面形状曲线。
3、根据权利要求 1所述的在线测量高炉料面的系统,其特征在于, 所述激光器设置成可绕一枢转轴进行枢转, 或者所述激光器为带有激 光偏转装置的激光扫描仪。
4、根据权利要求 1所述的在线测量高炉料面的系统,其特征在于, 所述激光器设置在高炉内的横梁上, 所述激光器通过在横梁上移动或 者由横梁带动激光器移动而对料面进行扫描。
5、根据权利要求 1所述的在线测量高炉料面的系统,其特征在于, 该系统包括一个所述激光器。
6、根据权利要求 1所述的在线测量高炉料面的系统,其特征在于, 该系统包括设置在不同位置的多个所述激光器。
7、根据权利要求 1所述的在线测量高炉料面的系统,其特征在于, 该系统包括沿所述高炉的直径方向相对设置的两个所述激光器。
8、根据权利要求 1所述的在线测量高炉料面的系统,其特征在于, 所述图像处理装置包括显示装置, 所述显示装置直接显示所述料面图 像。
9、根据权利要求 1所述的在线测量高炉料面的系统,其特征在于, 所述料面图像由按时间顺序获得的一系列帧图像组成, 所述图像处理 装置包括:
计算处理系统, 所述计算处理系统实时接收所述料面图像, 并将 所接收的当前帧图像与之前已接收的帧图像叠加; 显示装置, 所述显示装置实时显示所叠加形成的图像。
10、 根据权利要求 9 所述的在线测量高炉料面的系统, 其特征在 于, 所述的叠加形成的图像包含由探测点图案组成的料面形状曲线。
11、 根据权利要求 1 所述的在线测量高炉料面的系统, 其特征在 于, 所述图像处理装置包括计算处理系统, 所述计算处理系统用于计 算处理所述料面图像并获得与探测点图案对应的料面信息数据。
12、 根据权利要求 11所述的在线测量高炉料面的系统, 其特征在 于, 所述图像处理装置还包括输出装置, 所述计算处理系统还利用所 述料面信息数据生成料面形状曲线并输出至输出装置。
13、 根据权利要求 11所述的在线测量高炉料面的系统, 其特征在 于, 所述料面图像由按时间顺序获得的一系列帧图像组成, 所述计算 处理系统实时计算处理当前帧图像, 并获得当前帧图像中的探测点图 案的料面信息数据;
并且, 所述计算处理系统利用从当前帧图像及之前的帧图像获得 的料面信, 数据实时生成料面形状曲线。
14、 一种在线测量高炉料面的方法, 用于探测高炉内的料面信息, 包括:
用激光束对高炉内的料面的至少一部分进行连续扫描; 所述激光 束入射到所述料面上形成探测点图案;
获取所述料面的料面图像, 所述料面图像包含所述探测点图案; 根据所述料面图像获取料面信息。
15、 根据权利要求 14所述的在线测量高炉料面的方法, 其特征在 于, 所述料面信息包括料面形状曲线。
16、 根据权利要求 14所述的在线测量高炉料面的方法, 其特征在 于, 所述料面图像直接输出至显示装置。
17、 根据权利要求 14所述的在线测量高炉料面的方法, 其特征在 于, 所述料面图像由按时间顺序获得的一系列帧图像组成, 实时地将 当前帧图像与之前的帧图像叠加, 并实时地将所叠加形成的图像输出 至显示装置。
18、 根据权利要求 17所述的在线测量高炉料面的方法, 其特征在 于, 所述的叠加形成的图像包含由探测点图案组成的料面形状曲线。
19、 根据权利要求 14所述的在线测量高炉料面的方法, 其特征在 于, 计算处理所述料面图像, 以获得与探测点图案对应的料面信息数 据, 并利用所述料面信息数据生成料面形状曲线并输出至输出装置。
2 0、 根据权利要求 1 9所述的在线测量高炉料面的方法, 其特征在 于, 所述料面图像由按时间顺序获得的一系列帧图像组成, 实时地计 算处理当前帧图像, 并获得当前帧图像中的探测点图案的料面信息数 据; 并且, 利用从当前帧图像及之前的帧图像获得的料面信息数据实 时生成料面形状曲线。
PCT/CN2012/082799 2011-10-11 2012-10-11 一种在线测量高炉料面的系统和方法 WO2013053329A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES12840247.6T ES2641936T3 (es) 2011-10-11 2012-10-11 Sistema y método para medir en línea el nivel de carga de un alto horno
US14/362,541 US20140333752A1 (en) 2011-10-11 2012-10-11 System and method for on-line measuring a burden surface in a blast furnace
EP12840247.6A EP2787087B1 (en) 2011-10-11 2012-10-11 System and method for online measurement of blast furnace charge level

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110307101.X 2011-10-11
CN201110307101.XA CN102382918B (zh) 2011-10-11 2011-10-11 一种在线测量高炉料面的系统和方法

Publications (1)

Publication Number Publication Date
WO2013053329A1 true WO2013053329A1 (zh) 2013-04-18

Family

ID=45822747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082799 WO2013053329A1 (zh) 2011-10-11 2012-10-11 一种在线测量高炉料面的系统和方法

Country Status (5)

Country Link
US (1) US20140333752A1 (zh)
EP (1) EP2787087B1 (zh)
CN (1) CN102382918B (zh)
ES (1) ES2641936T3 (zh)
WO (1) WO2013053329A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2955236A1 (de) * 2014-06-13 2015-12-16 Siemens VAI Metals Technologies GmbH Verfahren zur Regelung der Füllhöhe eines Rohmaterials in einem Hochofen sowie deren Vorrichtung

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102382918B (zh) * 2011-10-11 2014-08-27 高征铠 一种在线测量高炉料面的系统和方法
CN103090814B (zh) * 2013-02-05 2015-11-11 武汉巨合科技有限公司 一种用于对推板窑内壁面状况执行在线监控的系统
CN104099436B (zh) * 2014-07-16 2016-06-01 首钢总公司 观测高炉炉料熔滴过程的方法及系统
CN105219904B (zh) * 2015-11-09 2017-09-19 马鞍山钢铁股份有限公司 一种测高炉料面形状的方法
JP6672051B2 (ja) * 2016-04-14 2020-03-25 日鉄テックスエンジ株式会社 高炉内装入物のプロフィル測定装置
JP7055355B2 (ja) * 2018-03-13 2022-04-18 株式会社Wadeco 高炉における装入物の装入及び堆積方法、並びに高炉の操業方法
CN109540259B (zh) * 2018-11-07 2020-07-10 北京德普新源生态技术有限公司 一种锅炉炉前料仓料位监控方法和系统
CN110819751B (zh) * 2020-01-09 2020-04-10 江苏金恒信息科技股份有限公司 一种基于雷达数据处理的高炉料线获取方法及装置
CN114858088A (zh) * 2022-04-06 2022-08-05 北京神网创新科技有限公司 工业窑炉检测方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2506329A1 (fr) * 1981-05-21 1982-11-26 Siderurgie Fse Inst Rech Procede de determination par voie optique du profil des charges dans le gueulard d'un haut fourneau
JPS6281513A (ja) * 1985-10-04 1987-04-15 Nec Corp プロフイルメ−タ
JP2002220610A (ja) * 2001-01-29 2002-08-09 Yokogawa Electric Corp 炉頂装入レベル監視システム
CN1877249A (zh) * 2006-06-23 2006-12-13 北京神网创新科技有限公司 炉内信息激光探测装置及方法
CN102382918A (zh) * 2011-10-11 2012-03-21 高征铠 一种在线测量高炉料面的系统和方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1877249A (en) * 1929-02-15 1932-09-13 Arthur C Mchugh Recording drift indicator
LU51941A1 (zh) * 1966-09-12 1968-03-21
LU74579A1 (zh) * 1976-03-17 1976-09-01
BE872578A (fr) * 1978-12-06 1979-03-30 Centre Rech Metallurgique Dispositif pour controler la surface de la charge d'un four a cuve
US4463437A (en) * 1981-04-27 1984-07-31 Bethlehem Steel Corp. Furnace burden thermographic method and apparatus
US4492472A (en) * 1981-07-27 1985-01-08 Kawasaki Steel Corporation Method and system for determining shape in plane to be determined in atmosphere of scattering materials
JPS5818103A (ja) * 1981-07-27 1983-02-02 Kawasaki Steel Corp 散乱体雰囲気中での被測定面の形状測定方法
US4588297A (en) * 1982-06-14 1986-05-13 Nippon Steel Corporation Optical profile measuring method
BE897331A (fr) * 1983-07-17 1984-01-19 Ct De Rech S Metallurg Procede de mesure de la carte topographique de la charge d'un four a cuve
US7879133B2 (en) * 2007-05-25 2011-02-01 China Steel Corporation Method for measuring an outline of a stratum of a reactant and a path of charging the reactant in a blast furnace
DE102008064142A1 (de) * 2008-12-19 2010-07-01 Z & J Technologies Gmbh Messvorrichtung und Messverfahren für einen Hochofen, Hochofen mit einer derartigen Vorrichtung und Schwenkvorrichtung für wenigstens eine Messsonde
CN201395608Y (zh) * 2009-04-30 2010-02-03 宝山钢铁股份有限公司 一种高炉风口监控装置
CN201442958U (zh) * 2009-06-08 2010-04-28 鞍钢股份有限公司 一种高炉料面形状雷达测量装置
TWI412598B (zh) * 2010-02-05 2013-10-21 China Steel Corp Design method of standing blast furnace material
US8609462B2 (en) * 2011-10-12 2013-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for forming 3DIC package

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2506329A1 (fr) * 1981-05-21 1982-11-26 Siderurgie Fse Inst Rech Procede de determination par voie optique du profil des charges dans le gueulard d'un haut fourneau
JPS6281513A (ja) * 1985-10-04 1987-04-15 Nec Corp プロフイルメ−タ
JP2002220610A (ja) * 2001-01-29 2002-08-09 Yokogawa Electric Corp 炉頂装入レベル監視システム
CN1877249A (zh) * 2006-06-23 2006-12-13 北京神网创新科技有限公司 炉内信息激光探测装置及方法
CN102382918A (zh) * 2011-10-11 2012-03-21 高征铠 一种在线测量高炉料面的系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2787087A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2955236A1 (de) * 2014-06-13 2015-12-16 Siemens VAI Metals Technologies GmbH Verfahren zur Regelung der Füllhöhe eines Rohmaterials in einem Hochofen sowie deren Vorrichtung

Also Published As

Publication number Publication date
US20140333752A1 (en) 2014-11-13
CN102382918B (zh) 2014-08-27
CN102382918A (zh) 2012-03-21
EP2787087B1 (en) 2017-07-26
EP2787087A1 (en) 2014-10-08
EP2787087A4 (en) 2015-09-02
ES2641936T3 (es) 2017-11-14

Similar Documents

Publication Publication Date Title
WO2013053329A1 (zh) 一种在线测量高炉料面的系统和方法
KR101948852B1 (ko) 비접촉식 균열 평가를 위한 이종영상 스캐닝 방법 및 장치
CN100424465C (zh) 炉内信息激光探测装置及方法
JPH03102202A (ja) 撮像手段による対象部分の検査方法
JP2013513807A (ja) 位置分解測定結果を可視化する方法、および、相応の測定装置
JP2007155357A (ja) 直径計測方法又は直径計測装置
JP3629532B2 (ja) 連続移動物体のリアルタイム形状計測方法及びシステム
JP2008215999A (ja) 流体計測システム、流体計測方法およびコンピュータプログラム
JP2011027447A (ja) 光学定位装置及びその定位方法
JP2008275366A (ja) ステレオ3次元計測システム
JP2009276140A (ja) 衝撃試験装置
KR101920682B1 (ko) 길이측정 기능을 갖는 촬상장치
JP2021187957A (ja) コークス炉撮影装置、コークス炉検査装置、画像処理装置および産業設備の撮影装置
US10432916B2 (en) Measurement apparatus and operation method of measurement apparatus
JP2008096298A (ja) 高炉装入物プロフィルの測定方法及び測定装置
CN202265588U (zh) 一种高炉料面激光扫描仪
JP2017161403A (ja) 撮像装置、方法、及びプログラム、表示制御装置及びプログラム
JP2020024286A (ja) 計測装置、計測装置の作動方法、およびプログラム
KR101649181B1 (ko) 비행물체의 비행정보 추정 장치 및 비행정보 추정 방법
JP2009069135A (ja) 撮像系校正装置と記録媒体
JP2007508562A (ja) デジタルカメラによる寸法測定方法
WO2018203429A1 (ja) 流速測定方法、流速測定装置及びプログラム
JP6400767B2 (ja) 計測内視鏡装置
US10386309B2 (en) Method and apparatus for determining features of hot surface
Naumov et al. Estimating the quality of stereoscopic endoscopic systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14362541

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012840247

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012840247

Country of ref document: EP