JP2011027447A - 光学定位装置及びその定位方法 - Google Patents

光学定位装置及びその定位方法 Download PDF

Info

Publication number
JP2011027447A
JP2011027447A JP2009170674A JP2009170674A JP2011027447A JP 2011027447 A JP2011027447 A JP 2011027447A JP 2009170674 A JP2009170674 A JP 2009170674A JP 2009170674 A JP2009170674 A JP 2009170674A JP 2011027447 A JP2011027447 A JP 2011027447A
Authority
JP
Japan
Prior art keywords
optical
axis direction
optical sensing
sensing unit
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009170674A
Other languages
English (en)
Inventor
Yu-Hsiang Chen
侑祥 陳
An-Shun Cheng
安順 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cheng Uei Precision Industry Co Ltd
Original Assignee
Cheng Uei Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheng Uei Precision Industry Co Ltd filed Critical Cheng Uei Precision Industry Co Ltd
Publication of JP2011027447A publication Critical patent/JP2011027447A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/30Interpretation of pictures by triangulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • G01P3/38Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light using photographic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/7803Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/783Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
    • G01S3/784Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems using a mosaic of detectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • G06F3/0325Detection arrangements using opto-electronic means using a plurality of light emitters or reflectors or a plurality of detectors forming a reference frame from which to derive the orientation of the object, e.g. by triangulation or on the basis of reference deformation in the picked up image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • G06T7/85Stereo camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/97Determining parameters from multiple pictures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】光学定位装置の設置が簡単で、使用が容易となる光学定位装置及びその定位方法の提供。
【解決手段】光学定位装置は、被測定装置6の空間中における第一軸方向、第二軸方向、第三軸方向の座標位置を定位し、メインフレーム2、校正装置4を備え、メインフレーム2上には第一、第二光学感知ユニット8、10、処理ユニット14を設置し、光学定位方法は、第一、第二光学感知ユニット8、10は第一距離を隔て、第一、第二光学感知ユニット8、10は、校正装置4をそれぞれ感知し、処理ユニット14は、校正ステップを執行し、第一、第二光学感知ユニット8、10は、被測定装置6をそれぞれ感知し、処理ユニット14は定位ステップを執行し、これにより、光学定位装置は、固定距離を隔てる第一、第二光学感知ユニット8、10を使用し、校正装置4を経て校正後、視差原理を使用して、被測定装置6の座標を計算し、被測定装置6を定位する。
【選択図】図1

Description

本発明は定位装置に関し、特に光学定位装置及びその定位方法に関する。
テレビゲーム、コンピューターゲームは、現代生活になくてはならないエンターテイメントであり、娯楽である。一般のコンピューターゲームを例とすれば、多くは、コンピューターのメインフレーム中にゲームソフトをインストールし、コンピューターの周辺機器であるマウス、キーボード、ジョイスティック、コントロールハンドルなどのインターフェースを通して、コンピューターゲームのコントロールを行なう。さらに、ディスプレー、スピーカーなどの出力装置を経て、ゲームの進行過程及びゲーム進行の情報を、プレーヤーに表示する。
一方、この所のインタラクティブゲームの流行で、ゲームメーカーの製品トレンドは、徐々にインタラクティブゲームへと向かっている。よって、インタラクティブゲームと関連のある定位装置は、電子メーカー各社が先を争って進出する製品になっている。
本発明の主な目的は、使用が容易な光学定位装置及びその定位方法を提供することである。
前述目的を実現する為に、本発明は下記の光学定位装置及びその定位方法を提供する。
光学定位装置は、メインフレーム、校正装置を備え、
被測定装置の空間中における第一軸方向、第二軸方向、第三軸方向の座標を定位し、第一軸方向、第二軸方向、第三軸方向は相互に垂直で、
該メインフレームには、少なくとも第一光学感知ユニット、第二光学感知ユニット、及び該第一光学感知ユニット、該第二光学感知ユニットに電気的に連接する処理ユニットを設置し、該第一光学感知ユニットの第一軸方向における座標と、該第二光学感知ユニットの第一軸方向における座標は、相互に第一距離を隔て、第一距離の中間点を第一軸方向、第二軸方向、第三軸方向の原点に設定し、
該被測定装置は、該第一光学感知ユニット、該第二光学感知ユニットの感知範囲内に設置し、
該校正装置は、該第一光学感知ユニット、該第二光学感知ユニットの感知範囲内に設置し、該校正装置は第二軸方向の座標において、該第一光学感知ユニットの第二軸方向における座標と、該第二光学感知ユニットの第二軸方向における座標と、それぞれ第二距離を隔て、
該第一光学感知ユニットと該第二第一光学感知ユニットは、該校正装置をそれぞれ感知後、第一イメージを生じ、
該処理ユニットは、該校正装置の実際のサイズと第一イメージ中で該校正装置が示す画素を計算し、比率を求め、
光学定位方法は、測定装置の座標を定位可能で、そのステップは以下を含み、
先ず、メインフレーム上に第一光学感知ユニットと第二光学感知ユニットを設置し、該第一光学感知ユニットと該第二光学感知ユニットは、第一軸方向上において、相互に第一距離を隔て、
次に、校正装置を設置し、該校正装置の第二軸方向における座標と、該第一光学感知ユニットと該第二光学感知ユニットは、第二軸方向上の座標において、第二距離を隔て、
さらに、該第一光学感知ユニットと該第二光学感知ユニットは、該校正装置をそれぞれ感知し、第一イメージを取得し、
続いて、該校正装置の実際のサイズと第一イメージとの比率を計算し、
次に、該第一光学感知ユニットと該第二光学感知ユニットは、該被測定装置をそれぞれ感知し、第二イメージと第三イメージをそれぞれ発生し、
さらに、処理ユニットは、該被測定装置の第二イメージ中における第一座標と、該被測定装置の第三イメージ中における第二座標を計算し、
続いて、該処理ユニットは、比率、第二距離、第一座標を計算し、該被測定装置と該第一光学感知ユニットが構成する第一挟角を計算し、該処理ユニットは、比率、第二距離、第二座標を計算し、該被測定装置と該第二光学感知ユニットが構成する第二挟角を計算し、該処理ユニットは、比率、第二距離及び第一座標と第二座標の内の一つを計算し、該被測定装置と該第二軸方向が構成する第三挟角を計算し、
次に、該処理ユニットは、第一距離、第一挟角、第二挟角を計算し、該被測定装置の第一軸方向座標と第二軸方向座標を計算し、
続いて、該処理ユニットは、第一距離、第一挟角、或いは第二挟角の内の何れかを計算し、該被測定装置の第一軸方向座標を取得し、
最後に、該処理ユニットは、第三挟角と該被測定装置の第二軸方向座標を計算し、該被測定装置の第三軸方向座標を求め、
こうして該被測定装置の第一軸方向、第二軸方向、第三軸方向の座標を取得することができる。
本発明光学定位装置は、間隔が第一距離に固定された第一光学感知ユニットと第二光学感知ユニットを使用し、校正装置を経て校正後に、視差原理を利用し、被測定装置の座標を計算することができる。よって、本発明光学定位装置は設置が簡単で、使用が容易である。
本発明光学定位装置第一実施例の模式図である。 本発明光学定位装置第一実施例において、メインフレームの機能を示すブロックチャートである。 本発明光学定位装置の視差原理の模式図である。 本発明光学定位装置の視差原理の模式図である。 本発明光学定位装置の被測定装置の模式図である。 本発明光学定位装置視差原理の別種の模式図である。 本発明光学定位装置視差原理の別種の模式図である。 本発明光学定位装置第二実施例の模式図である。 本発明光学定位装置第二実施例において、制御装置の機能を示すブロックチャートである。 本発明光学定位方法のステップを示すフローチャートである。
本発明光学定位装置第一実施例の模式図である図1、本発明光学定位装置第一実施例において、メインフレーム2の機能を示すブロックチャートである図2に示すように、本発明光学定位装置には、メインフレーム2、校正装置4を設置し、被測定装置6の空間中における第一軸方向、第二軸方向、第三軸方向の座標を定位する。メインフレーム2には、第一光学感知ユニット8、第二光学感知ユニット10、制御ユニット12、処理ユニット14を設置する。
制御ユニット12は、第一光学感知ユニット8及び第二光学感知ユニット10と、処理ユニット14との間に設置する。これにより、第一光学感知ユニット8及び第二光学感知ユニット10を制御し、第一光学感知ユニット8及び第二光学感知ユニット10が発するデータを受け取り、そのデータを処理ユニット14に伝送する。こうして、光学定位装置は、被測定装置6の空間中における第一軸方向Xの座標、第二軸方向Zの座標、第三軸方向Yの座標を計算することができる。
本発明光学定位装置の視差原理の模式図である図3、本発明光学定位装置の視差原理の模式図である図4に示すように、第一光学感知ユニット8及び第二光学感知ユニット10は、第一軸方向Xの座標と第二軸方向Zの座標が構成する水平面上に、水平に設置する。これにより、第一光学感知ユニット8の第一軸方向Xにおける座標と、第二光学感知ユニット10の第一軸方向Xにおける座標とは、第一距離Dfを開ける。第一光学感知ユニット8及び第二光学感知ユニット10は、相補性金属酸化膜半導体イメージセンサー(CMOS)と電荷結合素子イメージセンサー(CCD)の内の1種である。本実施例中では、第一距離Dfの中間点を第一軸方向X、第二軸方向Z、第三軸方向Yの原点と設定する。
本発明光学定位装置の作動時には、先ず、光学定位装置を起動させる。次に、校正ステップを執行する。最後に、視差原理を利用し、定位ステップを執行する。校正ステップ中においては、先ず、校正装置4を第一光学感知ユニット8及び第二光学感知ユニット10の感知範囲内に設置する。これにより、校正装置4の第二軸方向Zにおける座標と、第一光学感知ユニット8及び第二光学感知ユニット10の第二軸方向Zにおける座標との間には、第二距離Dsを隔てる(図3では、校正装置4の第二軸方向Zにおける座標と、第一光学感知ユニット8との間の第二距離Dsのみを表示する)。
図3に示すように、第一光学感知ユニット8及び第二光学感知ユニット10は、校正装置4をそれぞれ感知し、第一イメージ16を生じする。次に、処理ユニット14は、校正装置4の実際のサイズと第一イメージ中の校正装置が示す画素を計算し、比率を求める。本実施例中において、その比率を求める計算式は、以下の通りである。
比率=実際サイズ÷占める画素
本実施例中において、校正装置4は、若干の黒色ブロックと若干の白色ブロックが、相互に間隔を隔てて組成する校正板である。校正装置4の黒色ブロック5の高さは10mmで、第一イメージ中の黒色ブロックの高度は20画素(pixel)である。よって、上記した計算式に基づいて計算すれば、その比率は0.5(mm/pixel)である。
図6に合わせて示すように、定位ステップ中では、先ず被測定装置6を、第一光学感知ユニット8及び第二光学感知ユニット10の感知範囲内に設置する。被測定装置6と第一光学感知ユニット8は、第一挟角θ1を構成し、被測定装置6と第二光学感知ユニット10は、第二挟角θrを構成し、被測定装置6と第一軸方向X及び第二軸方向Zが構成する水平面は、第三挟角θを構成する。
本実施例中において、被測定装置6の第一軸方向Xと第二軸方向Zにおける座標、第一光学感知ユニット8の第一軸方向Xと第二軸方向Zにおける座標、及び第二軸方向は、第一挟角θ1を構成する。被測定装置6の第一軸方向Xと第二軸方向Zにおける座標、第二光学感知ユニット10の第一軸方向Xと第二軸方向Zにおける座標、及び第二軸方向は、第二挟角θrを構成する。被測定装置6の第二軸方向Zと第三軸方向Yにおける座標、第一光学感知ユニット8の第二軸方向Zと第三軸方向Yにおける座標、及び第二軸方向は、第三挟角θを構成する。
図4に示すように、第一光学感知ユニット8及び第二光学感知ユニット10は、被測定装置6をそれぞれ感知し、第二イメージ18と第三イメージ(図中では、第二イメージ18のみを表示)を生じる。処理ユニット14は、第二イメージ18中の被測定装置6が示す画素の第一座標と、第三イメージ中の被測定装置6が占める画素の第二座標を計算する。その後、処理ユニット14は逆三角関数計算式を利用し、比率、第二距離Dsと第一座標を計算し、第一挟角θ1の数値を得る。処理ユニット14は逆三角関数計算式を利用し、比率、第二距離Dsと第二座標を計算し、第二挟角θrの数値を得る。処理ユニット14は逆三角関数計算式を利用し、比率、第二距離Ds及び第一座標と第二座標の内の一つを計算し、第三挟角θの数値を得る。
図5に示すように、本実施例中では、被測定装置6は、ハンドルである。ハンドルの前端には、発光源20を設置する。第一光学感知ユニット8及び第二光学感知ユニット10は、ハンドルの発光源20をそれぞれ感知する。第二イメージ18と第三イメージ中では、この発光源20は、光点とし、第二イメージ18の第一座標と第三イメージ中の第二座標に位置する。
本実施例中では、第二イメージ18と第三イメージは、VGA画質のイメージである。よって、第二イメージ18と第三イメージは、640×480画素を備え、各画素を座標点とすることができる。そのため、横方向座標は左から右へと順番に0から639で、縦方向座標は上から下へと順番に0から479である。第一光学感知ユニット8及び第二光学感知ユニット10は、第一軸方向Xと第二軸方向Zが構成する水辺面上に水平に設置するため、第一座標の縦方向座標と第二座標の縦方向座標は、相同である。
本実施例中において、第一座標を(336、240)と仮定し、第二座標を(146、240)と仮定すると、その逆三角関数計算式は、以下の通りである。
挟角=arctan(座標×比率÷第二距離)
よって、上記した計算式を使用して、第一挟角θ1を計算する時、座標は、第一座標の横方向座標で、上記した計算式に基づけば、以下の通りとなる。
第一挟角θ1= arctan(336×0.5÷200)
よって、第一挟角θ1は40度である。
上記した計算式に基づけば、以下の通りとなる。
第二挟角θr= arctan(146×0.5÷200)
よって、第二挟角θrは20度である。
上記した計算式に基づけば、以下の通りとなる。
第三挟角θ= arctan(240×0.5÷200)
よって、第三挟角θは31度である。
次に、処理ユニット14は、三角関数計算式を使用し、第一距離Df、第一挟角θ1、第二挟角θrを計算し、被測定装置6の第二軸方向Z座標Dzを求める。被測定装置6の第二軸方向Z座標Dzを計算する時には、第一光学感知ユニット8及び第二光学感知ユニット10の感知範囲は、3区域に区分される。第一光学感知ユニット8と第二光学感知ユニット10との間の空間は、第一区域Iで、第一光学感知ユニット8が第二光学感知ユニット10片側から離れた空間は、第二区域IIで、第二光学感知ユニット10が第一光学感知ユニット8片側から離れた空間は、第三区域IIIである。
処理ユニット14は、先ず被測定装置6がどの区域に位置するかを判断する。本実施例中では、処理ユニット14は、第一座標の横方向座標と、第二座標の横方向座標を利用して、判断を行なう。被測定装置6が第一区域Iに位置する時には、三角関数計算式は以下の通りである。
Figure 2011027447
被測定装置6が第二区域IIに位置する時には、三角関数計算式は以下の通りである。
Figure 2011027447
被測定装置6が第三区域IIIに位置する時には、三角関数計算式は以下の通りである。
Figure 2011027447
本実施例中において、被測定装置6が第一区域Iにあり、第一距離が300mmであると仮定すると、上記した計算式に基づき、以下のようになる。
Figure 2011027447
よって、被測定装置6の第二軸方向Z座標Dzは、249である。
図7に合わせて示すように、さらに処理ユニット14は、三角関数計算式を利用し、第二軸方向Zの座標Dz、第一挟角θ1第一距離Dfを計算し、被測定装置6の第一軸方向X座標Dxを求める。本実施例における、三角関数計算式は以下の通りである。
第一軸方向座標DX =第二軸方向座標DZ ×tan(第一挟角θ1) - 第一距離/2
上記計算式に基づけば、以下のようになる。
第一軸方向座標DX =249 ×tan(40) - 300/2
よって、被測定装置6の第一軸方向X座標Dxは、59である。
本実施例において、第一距離Dfの中間点を原点と設定し、しかも原点が第一光学感知ユニット8に向かった方向を、第一軸方向Xのマイナス方向に設定する。これに対応して、原点が第二光学感知ユニット10に向かった方向を、第一軸方向Xのプラス方向に設定する。よって、上記した計算式を得ることができる。
実際に実施する時には、第一軸方向のプラス方向とマイナス方向を、任意に設定することができ、三角関数計算式を利用し、被測定装置6の原点までの距離の偏移量を計算する。もし、偏移量がプラスであるなら、第一軸方向Xの座標はプラスで、偏移量がマイナスであるなら、第一軸方向Xの座標はマイナスである。
最後に、処理ユニット14は、三角関数計算式を使用して、第三挟角θと被測定装置6の第二軸方向Zの座標を計算する。これにより、被測定装置6の第三軸方向Yの座標を求める。その三角関数計算式は、以下の通りである。
第三軸方向座標=第二軸方向座標 ×tan(第三挟角θ)
上記した計算式に基づけば、以下のようになる。
第三軸方向座標=249 ×tan(31)
よって、被測定装置6の第三軸方向Y座標は149である。
そのため、被測定装置6の座標は(59、249、149)である。
本発明光学定位装置第二実施例の模式図である図8、本発明光学定位装置第二実施例において、制御装置の機能を示すブロックチャートである図9に示すように、本実施例中のメインフレーム2はさらに、第三光学感知ユニット22、第四光学探知ユニット24を備える。第一光学感知ユニット8と第二光学感知ユニット10は、第一組感知ユニットで、第三光学感知ユニット22と第四光学探知ユニット24は、第二組感知ユニットである。
第三光学感知ユニット22と第四光学探知ユニット24は、第一光学感知ユニット8と第二光学感知ユニット10の片側にそれぞれ設置する。第三光学感知ユニット22と第四光学探知ユニット24との間は、第一距離Dfを隔て、第一軸方向Xと第二軸方向Zが構成する水平面上に、水平に設置する。
よって、第一光学感知ユニット8と第二光学感知ユニット10が構成する第一組感知ユニットと、第三光学感知ユニット22と第四光学探知ユニット24が構成する第二組感知ユニットとは、被測定装置6の第一組座標と第二組座標、及び毎秒30フレーム(Frame)の出力をそれぞれ提供することができる。よって、第一組感知ユニットと第二組感知ユニットは、正常な環境下では、毎秒60フレームの出力を提供することができる。環境が暗くなっても、毎秒30フレームの出力を提供可能で、これにより、被測定装置6の正確定位率を高めることができる。
別に、第一組感知ユニットと第二組感知ユニットは、毎秒60フレームの出力を提供可能であるため、被測定装置6のサンプル座標は、2倍に増加する。よって、光学定位装置は、被測定装置6の加速度を直接計算することができ、従来の技術では必須である加速センサーを省くことができる。第三光学感知ユニット22と第四光学探知ユニット24は、CMOSとCCDの内の一種である。
第二実施例中において、制御ユニット12には、フェーズロック回路ユニット26、パルス発生ユニット28、並列直列転換ユニット30、緩衝ユニット32を設置する。フェーズロック回路ユニット26は、第一光学感知ユニット8、第二光学感知ユニット10、第三光学感知ユニット22、第四光学探知ユニット24にそれぞれ連接し、第一光学感知ユニット8と第二光学感知ユニット10、及び第三光学感知ユニット22と第四光学探知ユニット24を順番に作動させる。
パルス発生ユニット28は、第一光学感知ユニット8、第二光学感知ユニット10、第三光学感知ユニット22、第四光学探知ユニット24にそれぞれ連接し、作動パルスを提供する。並列直列転換ユニット30は、第一光学感知ユニット8、第二光学感知ユニット10、第三光学感知ユニット22、第四光学探知ユニット24にそれぞれ連接し、第一光学感知ユニット8、第二光学感知ユニット10が発するデータ、及び第三光学感知ユニット22、第四光学探知ユニット24が発するデータを順番に受け取り、そのデータを、処理ユニット14へと伝送する。
緩衝ユニット32は、並列直列転換ユニット30に連接し、並列直列転換ユニット30が受け取ったデータを一時的に保存する。これにより、並列直列転換ユニット30は、第一光学感知ユニット8、第二光学感知ユニット10、第三光学感知ユニット22、第四光学探知ユニット24のデータを、一度に処理ユニット14へと伝送することができる。本実施例において、制御ユニット12は、プログラム可能ゲートアレー(FPGA)である。
本発明光学定位方法のステップを示すフローチャートである図10に示すように、本発明光学定位方法のステップは、以下を含む。
先ず、第一光学感知ユニット8と第二光学感知ユニット10を設置する。第一光学感知ユニット8と第二光学感知ユニット10は、第一軸方向X上において、相互に第一距離Dfを隔てる。
次に、校正装置4を設置する。校正装置4の、第二軸方向Z上の座標と、第一光学感知ユニット8及び第二光学感知ユニット10の、第二軸方向上の座標とは、第二距離Dsを隔てる。
さらに、第一光学感知ユニット8と第二光学感知ユニット10は、校正装置6をそれぞれ感知し、第一イメージ16を取得する。
続いて、処理ユニット14は、校正装置4の実際のサイズと第一イメージ16とを比較する。
次に、第一光学感知ユニット8と第二光学感知ユニット10は、被測定装置6をそれぞれ感知し、第二イメージ18と第三イメージをそれぞれ発生する。
続いて、処理ユニット14は、被測定装置6の第二イメージ18中での第一座標と、被測定装置6の第三イメージ中での第二座標を計算する。
その後、処理ユニット14は、比率、第二距離Dsと第一座標を計算し、被測定装置6と第一光学感知ユニット8が構成する第一挟角θ1を求める。処理ユニット14は、比率、第二距離Dsと第二座標を計算し、被測定装置6と第二光学感知ユニット10が構成する第二挟角θrを求める。処理ユニット14は、比率、第二距離Ds及び第一座標と第二座標の内の一つを計算し、被測定装置6と第二軸方向Zが構成する第三挟角θを求める。
さらに、処理ユニット14は、第一距離Df、第一挟角θ1と第二挟角θrを計算し、被測定装置6の第二軸方向Z座標を求める。
続いて、処理ユニット14は、第一距離Df、第一挟角θ1、或いは第二挟角θrの内の一つを計算し、被測定装置6の第一軸方向X座標を求める。
最後に、処理ユニット14を使用し、第一挟角θと被測定装置6の第二軸方向Z座標を計算し、被測定装置6の第三軸方向Y座標を求める。上記したステップにより、被測定装置6の第一軸方向X、第二軸方向Z、第三軸方向Yの座標をそれぞれ求める。
上記したように、本発明光学定位装置は、第一距離Dfを隔てる第一光学感知ユニット8と第二光学感知ユニット10を使用し、校正装置4を経て校正後に、視差原理を使用し、被測定装置6の空間中の三軸方向座標を算出する。これにより、本発明光学定位装置は、設置が簡単で、使用が容易となる。
別に、光学定位装置は、第一組感知ユニットと第二組感知ユニットを同時に使用可能で、毎秒60フレームの速度を提供することができる。これにより、加速センサーを省くことができ、被測定装置6の加速度を直接計算することができ、しかも、条件が劣る環境中においても、少なくとも毎秒30フレームの速度を提供することができるため、正確定位率を向上させることができる。
2 メインフレーム
4 校正装置
6 被測定装置
8 第一光学感知ユニット
10 第二光学感知ユニット
12 制御ユニット
14 処理ユニット
16 第一イメージ
18 第二イメージ
20 発光源
22 第三光学感知ユニット
24 第四光学感知ユニット
26 フェーズロック回路ユニット
28 パルス発生ユニット
30 並列直列転換ユニット
32 緩衝ユニット

Claims (18)

  1. 被測定装置の空間中における第一軸方向、第二軸方向、第三軸方向の座標を定位し、第一軸方向、第二軸方向、第三軸方向は相互に垂直で、
    メインフレーム、校正装置、制御ユニットを備え、
    前記メインフレームには、少なくとも第一光学感知ユニット、第二光学感知ユニット、及び前記第一光学感知ユニット、前記第二光学感知ユニットに電気的に連接する処理ユニットを設置し、前記第一光学感知ユニットの第一軸方向における座標と、前記第二光学感知ユニットの第一軸方向における座標は、相互に第一距離を隔て、第一距離の中間点を第一軸方向、第二軸方向、第三軸方向の原点に設定し、
    前記校正装置は、前記第一、第二光学感知ユニットの感知範囲内に設置し、前記校正装置は第二軸方向の座標において、前記第一光学感知ユニットの第二軸方向における座標と、前記第二光学感知ユニットの第二軸方向における座標と、それぞれ第二距離を隔て、
    前記制御ユニットは、前記第一光学感知ユニットと前記第二光学感知ユニット及び前記処理ユニットとの間に電気的に連接し、前記第一光学感知ユニットと前記第二光学感知ユニットを制御し、前記第一光学感知ユニットと前記第二光学感知ユニットが発するデータを受け取り、さらに前記データを前記処理ユニットへと伝送することを特徴とする光学定位装置。
  2. 請求項1記載の光学定位装置において、前記光学定位装置はさらに、前記処理ユニットにそれぞれ電気的に連接する第三光学感知ユニットと第四光学探知ユニットを備え、
    前記第一、第二光学感知ユニットと前記処理ユニットとは、前記被測定装置の第一組座標を計算し、前記第三、第四光学感知ユニットと前記処理ユニットとは、前記被測定装置の第二組座標を計算することを特徴とする光学定位装置。
  3. 請求項2記載の光学定位装置において、記制御ユニットは、前記第一光学感知ユニット、前記第二光学感知ユニット、前記第三光学感知ユニット、前記第四光学探知ユニットを制御し、前記第一光学感知ユニットから前記第四光学探知ユニットまでが送出するデータを受け取ることを特徴とする光学定位装置。
  4. 請求項3記載の光学定位装置において、前記制御ユニットは、プログラム可能ゲートアレー(FPGA)であることを特徴とする光学定位装置。
  5. 請求項4記載の光学定位装置において、前記制御ユニットには、フェーズロック回路ユニット、パルス発生ユニット、並列直列転換ユニット、緩衝ユニットを設置し、
    前記フェーズロック回路ユニットは、前記第一から第四光学探知ユニットにそれぞれ連接し、前記第一、第二光学感知ユニットと前記第三、第四光学感知ユニットを順番に作動させ、
    前記パルス発生ユニットは、前記第一から第四光学探知ユニットにそれぞれ連接し、作動パルスを前記第一から第四光学探知ユニットに提供し、
    前記並列直列転換ユニットは、前記第一から第四光学探知ユニットにそれぞれ連接し、前記第一、第二光学感知ユニットが発するデータ、及び前記第三、第四光学探知ユニットが発するデータを順番に受け取り、前記第一から第四光学探知ユニットが発するデータを前記処理ユニットへと伝送し、
    前記緩衝ユニットは、前記並列直列転換ユニットに連接し、前記並列直列転換ユニットが受け取ったデータを一時的に保存することを特徴とする光学定位装置。
  6. 請求項1記載の光学定位装置において、前記被測定装置は、発光源であることを特徴とする光学定位装置。
  7. 請求項5記載の光学定位装置において、前記第一光学感知ユニット、前記第二光学感知ユニット、前記第三光学感知ユニット、前記第四光学感知ユニットは、相補性金属酸化膜半導体イメージセンサー、或いは電荷結合素子イメージセンサーの内の1種であることを特徴とする光学定位装置。
  8. 請求項1記載の光学定位装置において、前記校正装置は、若干の黒色ブロックと若干の白色ブロックが、相互に間隔を隔てて組成する校正板であることを特徴とする光学定位装置。
  9. 被測定装置を空間中の第一軸方向、第二軸方向、第三軸方向の座標に定位し、第一軸方向、第二軸方向、第三軸方向は相互に垂直で、そのステップは以下を含み、
    先ず、第一光学感知ユニットと第二光学感知ユニットを設置し、前記第一光学感知ユニットと前記第二光学感知ユニットは、第一軸方向上において、相互に第一距離を隔て、
    次に、校正装置を設置し、前記校正装置の第二軸方向における座標と、前記第一光学感知ユニットと第二光学感知ユニットは、第二軸方向上の座標において、第二距離を隔て、 さらに、前記第一、第二光学感知ユニットは、前記校正装置をそれぞれ感知し、第一イメージを取得し、
    続いて、前記校正装置の実際のサイズと第一イメージとの比率を計算し、
    次に、前記第一、第二光学感知ユニットは、前記被測定装置をそれぞれ感知し、第二イメージと第三イメージをそれぞれ発生し、
    続いて、前記被測定装置の第二イメージ中における第一座標と、前記被測定装置の第三座標中における第二座標を計算し、
    さらに、比率、第二距離、第一座標を計算し、前記被測定装置と前記第一光学感知ユニットが構成する第一挟角を計算し、比率、第二距離、第二座標を計算し、前記被測定装置と前記第二光学感知ユニットが構成する第二挟角を計算し、比率、第二距離及び第一座標と第二座標の内の一つを計算し、前記被測定装置と前記第二軸方向が構成する第三挟角を計算し、
    次に、第一距離、第一挟角、第二挟角を計算し、前記被測定装置の第一軸方向座標と第二軸方向座標を計算し、
    最後に、第三挟角と前記被測定装置の第二軸方向座標を計算し、前記被測定装置の第三軸方向座標を求めることを特徴とする光学定位方法。
  10. 請求項9記載の光学定位方法において、前記比率は、前記校正装置の実際のサイズと、前記校正装置の第一イメージ中で占める画素を計算して取得し、比率計算の方式は、比率=実際サイズ÷占めている画素であることを特徴とする光学定位方法。
  11. 請求項9記載の光学定位方法において、前記第一座標は、横方向座標と縦方向座標を備え、計算式を使用して、比率、第二距離、第一座標の横方向座標を計算し、前記被測定装置の第一軸方向と第二軸方向における座標、前記第一光学感知ユニットの第一軸方向と第二軸方向における座標と、第二軸方向が構成する第一挟角を取得することを特徴とする光学定位方法。
  12. 請求項9記載の光学定位方法において、前記第二座標は、横方向座標と縦方向座標を備え、計算式を使用して、比率、第二距離、第二座標の横方向座標を計算し、前記被測定装置の第一軸方向と第二軸方向における座標、前記第二光学感知ユニットの第一軸方向と第二軸方向における座標と、第二軸方向が構成する第二挟角を取得することを特徴とする光学定位方法。
  13. 請求項11或いは請求項12記載の光学定位方法において、前記計算式は、挟角=arctan(横方向座標×比率÷第二距離)であることを特徴とする光学定位方法。
  14. 請求項9記載の光学定位方法において、前記被測定装置の第二軸方向と第三軸方向における座標、前記第一光学感知ユニットの第二軸方向と第三軸方向における座標と、第二軸方向が構成する前記第三挟角は、計算式を使用して、比率、第二距離と第一座標の縦方向座標と第二座標の縦方向座標を計算して、前記第三挟角を取得し、その計算式は、挟角=arctan(縦方向座標×比率÷第二距離)であることを特徴とする光学定位方法。
  15. 請求項9記載の光学定位方法において、前記第一軸方向座標の計算はさらに、以下を含み、
    前記第一光学感知ユニットと前記第二光学感知ユニットとの間の空間を、第一区域と設定し、
    前記第一光学感知ユニットが前記第二光学感知ユニット片側から離れた空間を、第二区域と設定し、
    前記第二光学感知ユニットが前記第一光学感知ユニット片側から離れた空間を、第三区域と設定し、
    前記被測定装置が、第一区域、第二区域、第三区域の何れに位置するかを判断し、
    前記被測定装置の位置に基づき、計算式を使用して、前記被測定装置の第二軸方向座標を計算することを特徴とする光学定位方法。
  16. 請求項9記載の光学定位方法において、前記被測定装置が第一区域に位置する時の計算式は、
    Figure 2011027447
    前記被測定装置が第二区域に位置する時の計算式は、
    Figure 2011027447
    前記被測定装置が第三区域に位置する時の計算式は、
    Figure 2011027447
    であることを特徴とする光学定位方法。
  17. 請求項9記載の光学定位方法において、前記第一距離の中間点を、第一軸方向、第二軸方向、第三軸方向の原点とし、計算式を使用して、第一距離と第一挟角を計算し、前記被測定装置の第一軸方向座標を取得し、その計算式は、
    被測定装置の第一軸方向座標=被測定装置の第二軸方向座標 × tan(第一挟角)-第一距離÷2
    であることを特徴とする光学定位方法。
  18. 請求項9記載の光学定位方法において、前記被測定装置の第三軸方向座標は、計算式を使用して、第三挟角と前記被測定装置の第二軸方向座標を計算して取得し、その計算式は、
    被測定装置の第三軸方向座標=被測定装置の第二軸方向座標 × tan(第三挟角)
    であることを特徴とする光学定位方法。
JP2009170674A 2009-06-30 2009-07-22 光学定位装置及びその定位方法 Pending JP2011027447A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098122157A TWI379224B (en) 2009-06-30 2009-06-30 Optical positing apparatus and positing method thereof

Publications (1)

Publication Number Publication Date
JP2011027447A true JP2011027447A (ja) 2011-02-10

Family

ID=41666914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009170674A Pending JP2011027447A (ja) 2009-06-30 2009-07-22 光学定位装置及びその定位方法

Country Status (6)

Country Link
US (1) US8204275B2 (ja)
JP (1) JP2011027447A (ja)
DE (1) DE102009059890A1 (ja)
FR (1) FR2947343A1 (ja)
GB (1) GB2471534A (ja)
TW (1) TWI379224B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109118543A (zh) * 2013-02-25 2019-01-01 康耐视公司 沿至少三个不连续平面对机器视觉摄像机进行校准的系统和方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497902B2 (en) * 2009-12-18 2013-07-30 Sony Computer Entertainment Inc. System for locating a display device using a camera on a portable device and a sensor on a gaming console and method thereof
TWI466112B (zh) * 2011-10-07 2014-12-21 Ind Tech Res Inst 光學設備及光學定址方法
CN104133076A (zh) * 2014-07-30 2014-11-05 宇龙计算机通信科技(深圳)有限公司 一种测速装置、方法及终端
TW201608256A (zh) * 2014-08-20 2016-03-01 Edison Opto Corp 多向光學定位方法及其裝置
CN113532329B (zh) * 2020-03-16 2024-03-19 天目爱视(北京)科技有限公司 一种以投射光斑为标定点的标定方法
CN115839667B (zh) * 2023-02-21 2023-05-12 青岛通产智能科技股份有限公司 一种高度测量方法、装置、设备及存储介质

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120257A (ja) * 1993-10-27 1995-05-12 Fuji Heavy Ind Ltd 車輌用距離検出装置
JPH1069543A (ja) * 1996-08-29 1998-03-10 Oki Electric Ind Co Ltd 被写体の曲面再構成方法及び被写体の曲面再構成装置
JPH11160021A (ja) * 1997-11-27 1999-06-18 Nippon Telegr & Teleph Corp <Ntt> 広域3次元位置計測方法及び装置
JPH11173840A (ja) * 1997-12-08 1999-07-02 Ishikawajima Harima Heavy Ind Co Ltd 測距装置及び測距方法
JP2001052177A (ja) * 1999-08-11 2001-02-23 Univ Waseda 画像処理装置および画像処理方法
JP2001067885A (ja) * 1999-05-14 2001-03-16 Gatefield Corp フイールドプログラム可能ゲートアレイの不揮発性メモリセルを消去する方法
JP2002031515A (ja) * 2000-07-17 2002-01-31 Central Res Inst Of Electric Power Ind カメラのキャリブレーション方法およびこれを利用する装置並びにキャリブレーションプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2003065714A (ja) * 2001-08-21 2003-03-05 Sony Corp カメラ・キャリブレーションのためのガイド装置及びガイド方法、並びに、カメラ・キャリブレーション装置
JP2003242485A (ja) * 2002-02-20 2003-08-29 Topcon Corp ステレオ画像用処理装置及び方法
JP2004354257A (ja) * 2003-05-29 2004-12-16 Olympus Corp キャリブレーションずれ補正装置及びこの装置を備えたステレオカメラ並びにステレオカメラシステム
WO2008155961A1 (ja) * 2007-06-21 2008-12-24 Konica Minolta Holdings, Inc. 測距装置
JP2009042082A (ja) * 2007-08-09 2009-02-26 Fujifilm Corp 三次元座標系の設定方法および装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660131A1 (en) * 1993-12-23 1995-06-28 Karl Osen Camera guidance system
US6690474B1 (en) * 1996-02-12 2004-02-10 Massachusetts Institute Of Technology Apparatus and methods for surface contour measurement
US6768509B1 (en) * 2000-06-12 2004-07-27 Intel Corporation Method and apparatus for determining points of interest on an image of a camera calibration object
FR2836215B1 (fr) * 2002-02-21 2004-11-05 Yodea Systeme et procede de modelisation et de restitution tridimensionnelle d'un objet
ES2209655B1 (es) * 2002-12-12 2005-12-16 Universidad De Malaga Sistema para medida de distancias y velocidades por procedimientos electroopticos no radiantes.
WO2005031253A1 (ja) * 2003-09-29 2005-04-07 Brother Kogyo Kabushiki Kaisha 3次元形状検出装置、撮像装置、及び、3次元形状検出プログラム
US7433021B2 (en) * 2004-08-10 2008-10-07 Joseph Saltsman Stereoscopic targeting, tracking and navigation device, system and method
US8050461B2 (en) * 2005-10-11 2011-11-01 Primesense Ltd. Depth-varying light fields for three dimensional sensing
KR20090062027A (ko) * 2007-12-12 2009-06-17 삼성전기주식회사 3차원자세측정장치 및 이를 이용한 3차원자세측정방법

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120257A (ja) * 1993-10-27 1995-05-12 Fuji Heavy Ind Ltd 車輌用距離検出装置
JPH1069543A (ja) * 1996-08-29 1998-03-10 Oki Electric Ind Co Ltd 被写体の曲面再構成方法及び被写体の曲面再構成装置
JPH11160021A (ja) * 1997-11-27 1999-06-18 Nippon Telegr & Teleph Corp <Ntt> 広域3次元位置計測方法及び装置
JPH11173840A (ja) * 1997-12-08 1999-07-02 Ishikawajima Harima Heavy Ind Co Ltd 測距装置及び測距方法
JP2001067885A (ja) * 1999-05-14 2001-03-16 Gatefield Corp フイールドプログラム可能ゲートアレイの不揮発性メモリセルを消去する方法
JP2001052177A (ja) * 1999-08-11 2001-02-23 Univ Waseda 画像処理装置および画像処理方法
JP2002031515A (ja) * 2000-07-17 2002-01-31 Central Res Inst Of Electric Power Ind カメラのキャリブレーション方法およびこれを利用する装置並びにキャリブレーションプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2003065714A (ja) * 2001-08-21 2003-03-05 Sony Corp カメラ・キャリブレーションのためのガイド装置及びガイド方法、並びに、カメラ・キャリブレーション装置
JP2003242485A (ja) * 2002-02-20 2003-08-29 Topcon Corp ステレオ画像用処理装置及び方法
JP2004354257A (ja) * 2003-05-29 2004-12-16 Olympus Corp キャリブレーションずれ補正装置及びこの装置を備えたステレオカメラ並びにステレオカメラシステム
WO2008155961A1 (ja) * 2007-06-21 2008-12-24 Konica Minolta Holdings, Inc. 測距装置
JP2009042082A (ja) * 2007-08-09 2009-02-26 Fujifilm Corp 三次元座標系の設定方法および装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109118543A (zh) * 2013-02-25 2019-01-01 康耐视公司 沿至少三个不连续平面对机器视觉摄像机进行校准的系统和方法
CN109118543B (zh) * 2013-02-25 2023-04-25 康耐视公司 沿至少三个不连续平面对机器视觉摄像机进行校准的系统和方法

Also Published As

Publication number Publication date
TWI379224B (en) 2012-12-11
US8204275B2 (en) 2012-06-19
TW201101154A (en) 2011-01-01
GB0921655D0 (en) 2010-01-27
US20110110559A1 (en) 2011-05-12
GB2471534A (en) 2011-01-05
FR2947343A1 (fr) 2010-12-31
DE102009059890A1 (de) 2011-01-13

Similar Documents

Publication Publication Date Title
JP2011027447A (ja) 光学定位装置及びその定位方法
US11625845B2 (en) Depth measurement assembly with a structured light source and a time of flight camera
US9210404B2 (en) Calibration and registration of camera arrays using a single circular grid optical target
KR100871595B1 (ko) 고속카메라를 이용한 구형물체의 비행정보 측정 시스템
US8971565B2 (en) Human interface electronic device
CN104769389B (zh) 用于确定物体的三维坐标的方法和装置
CN103797446A (zh) 输入体的动作检测方法以及使用了该方法的输入设备
US9978147B2 (en) System and method for calibration of a depth camera system
CN108463740A (zh) 使用结构化光和飞行时间的深度映射
CN109313263B (zh) 用于运行激光距离测量仪的方法
JP6465672B2 (ja) 情報処理装置および情報処理方法
JP6164679B2 (ja) カメラのキャリブレーション方法及びカメラのキャリブレーション装置
CN108303698B (zh) 追踪系统、追踪装置及追踪方法
CN103907138A (zh) 信息处理设备、显示控制方法和程序
US10638120B2 (en) Information processing device and information processing method for stereoscopic image calibration
WO2008054496A3 (en) 3- dimensional imaging by acoustic warping and defocusing
WO2013053329A1 (zh) 一种在线测量高炉料面的系统和方法
WO2011043645A1 (en) Display system and method for displaying a three dimensional model of an object
JP2015049200A (ja) 計測装置、方法及びプログラム
TWI457540B (zh) Mobile distance device
JP6494305B2 (ja) 情報処理装置、表示装置、および情報処理方法
US20160189422A1 (en) Process and Device for Determining the 3D Coordinates of an Object
JP2008014882A (ja) 三次元計測装置
US20200279401A1 (en) Information processing system and target information acquisition method
TW201133309A (en) Apparatus and method of combining optical image and touch panel to uni-axially interpreting position of object to be measured

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131