WO2013053264A9 - 光源系统与激光光源 - Google Patents

光源系统与激光光源 Download PDF

Info

Publication number
WO2013053264A9
WO2013053264A9 PCT/CN2012/079978 CN2012079978W WO2013053264A9 WO 2013053264 A9 WO2013053264 A9 WO 2013053264A9 CN 2012079978 W CN2012079978 W CN 2012079978W WO 2013053264 A9 WO2013053264 A9 WO 2013053264A9
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
lasers
light source
sets
Prior art date
Application number
PCT/CN2012/079978
Other languages
English (en)
French (fr)
Other versions
WO2013053264A1 (zh
Inventor
胡飞
杨佳翼
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Priority to KR1020147012683A priority Critical patent/KR101886133B1/ko
Priority to JP2014534925A priority patent/JP2015501508A/ja
Priority to US14/351,397 priority patent/US9819154B2/en
Priority to EP12840038.9A priority patent/EP2767859B1/en
Publication of WO2013053264A1 publication Critical patent/WO2013053264A1/zh
Publication of WO2013053264A9 publication Critical patent/WO2013053264A9/zh
Priority to US15/785,318 priority patent/US10530131B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4075Beam steering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0916Adapting the beam shape of a semiconductor light source such as a laser diode or an LED, e.g. for efficiently coupling into optical fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Definitions

  • the present invention relates to the field of optical technology, and more particularly to a light source system and a laser light source.
  • the single semiconductor laser commonly used in the prior art has an optical power of about several hundred milliwatts, and a larger power of 1-2 watts. It is currently difficult for a single semiconductor laser to achieve a power output of several watts or more.
  • arrays of semiconductor lasers can be used.
  • the prior art array arrangement of semiconductor lasers is to simply arrange a semiconductor laser such as a laser diode in two dimensions, and then collimate the light emitted by the laser diode with a collimating lens.
  • Figure 1a shows a laser diode array with a 4 x 4 arrangement.
  • the light emitted by the laser diode 11 is distributed as an elliptical Gaussian distribution with a large divergence angle.
  • the collimating lens (not shown) is generally a rotationally symmetrical lens that collimates the light emitted by the laser diode 11.
  • the prior art laser diode arrangement is generally a planar direct arrangement, and the laser diode 11 is mounted on the base 12.
  • the projected area of the base 12 is larger than the corresponding projected area of the laser diode 11.
  • an elliptical spot 13 is formed through a collimating lens (not shown), and the area of the elliptical spot 13 is much smaller than the area of the corresponding projection 14 of the base 12. Since the area of the projection 14 of the base 12 is larger than the corresponding projected area of the laser diode 11, the arrangement density of the laser diode 11 cannot be too small, and the area of the elliptical spot 13 is much smaller than the area of the corresponding projection 14 of the base 12, resulting in the spot 13 There will be a large gap between the arrays, that is, the spots 13 cannot be closely arranged together.
  • the optical power density is affected by the size of the base 12, and cannot be made higher, so that the advantage of the high energy density of the laser is not fully utilized.
  • the focused beams no longer maintain parallel light characteristics and have a large divergence angle, which is often detrimental to the design of subsequent optical path systems.
  • the patent CN101937163 provides a light source unit that realizes tight alignment of laser spots.
  • the light source unit 200 includes a light source group 210 and a mirror group 220.
  • the light source group 210 includes six light sources 201 composed of a light emitting element 205 and a collimating lens 207.
  • the mirror group 220 includes six mirrors 225 that are parallel to each other corresponding to the light source 201, and the mirrors 225 reflect the respective light beams emitted from the light sources 201 of the respective rows into the respective light beams that are spaced apart.
  • the total length of the light source group 210 in the column direction is 6a+5b. Since the light beams emitted from the collimator lens 207 of the light source 201 are all parallel light, the total length of the cross-sectional area of the light beam emitted from the light source group 210 in the column direction is also 6a+5b.
  • the total length of the cross section of the light beam reflected by the mirror 220e is 6a+5b.
  • each row different rectangular mirrors 225 are disposed, and the mirrors 225 are arranged such that the mirrors 225 are spaced apart from each other in the optical axis direction of the light source group 210. Therefore, the light beams reflected by the respective mirrors 225 are deleted.
  • the light beam in the state of the interval b between the respective rows of light sources 201 of the light source group 210 is such that the total length of the light beam in the column direction is 6a, and the laser spot is closely arranged.
  • the embodiment of the invention provides a light source system and a laser light source, which can realize close arrangement of laser spots, effectively increase optical power density, and effectively reduce product volume.
  • Embodiments of the present invention provide a light source system including at least one set of laser light sources, the set of laser light sources including:
  • Two sets of laser groups at least one set of lasers comprising at least two lasers, each beam generated by each set of lasers being in the same direction and parallel;
  • the at least one set of mirrors comprising at least two mirrors, the mirrors being disposed on the optical axis of the laser corresponding thereto; the mirror groups reflecting the beams generated by the laser group corresponding thereto Light, such that the spacing between the beams of light emerging from the set of mirrors is less than the spacing between the beams of light incident on the set of mirrors;
  • the beams emitted from the two sets of laser groups are parallel to each other, and the beams emitted from the two sets of mirror groups are in the same direction and parallel to each other;
  • the second projections of the first two projections of the two sets of laser beams on the cross section of the beams of respective outgoing rays partially overlap in a first direction, the first direction being the connection direction of at least two laser centers of a group of lasers .
  • the embodiment of the invention further provides a laser light source, comprising two groups of lasers, at least one group of lasers comprising at least two lasers, each of the two groups of laser beams generating the same direction and parallel; the two groups of lasers respectively emitting light
  • the second projection of the first projection on the cross section of the composed beam partially overlaps in a first direction, the first direction being the direction of the connection of at least two laser centers of a group of lasers.
  • the embodiment of the invention further provides a laser light source, comprising two groups of lasers, at least one group of lasers comprising at least two lasers, each beam generated by each group of lasers being in the same direction and parallel, the beams generated by the two groups of lasers
  • the light is reversed and parallel; two sets of mirrors are respectively used to reflect the beams of the two laser groups, so that the beams emitted by the two groups of lasers are reflected and then in the same direction and parallel to each other;
  • the second projection of the first projection on the cross section of the beam of the outgoing ray in the first direction partially overlaps, the first direction being the direction of the connection of at least two laser centers of a group of lasers.
  • the embodiments of the present invention include the following beneficial effects:
  • the partial overlap of the second projections of the first projections of the two laser groups in the first direction is referred to as a misalignment setting between the laser groups.
  • the dislocation setting of the laser diode group By using the dislocation setting of the laser diode group, the spacing between the laser diode beams between the groups can be compressed, which greatly reduces the volume of the optical system and increases the optical power density of the light source system compared to the existing solution.
  • 1a is a schematic view showing a semiconductor laser arrangement of a prior art semiconductor laser array
  • FIG. 1b is a schematic view showing the arrangement of spots generated by the laser array shown in FIG. 1;
  • FIG. 2 is a schematic structural view of a light source unit of the patent CN101937163;
  • FIG. 3 is a schematic structural view of an embodiment of a light source system according to an embodiment of the present invention.
  • FIG. 4 is a top plan view of a set of laser groups and a set of mirror groups in the light source system of FIG. 3;
  • Figure 5 is a schematic view of the adjacent spot of the screen as seen from the light incident direction of the screen of Figure 3;
  • FIG. 6 is a schematic diagram of a first projection and a second projection of the laser group of FIG. 3;
  • 7a and 7b are schematic views respectively showing projections of two groups of laser groups in respective light-emitting directions in two other embodiments of the light source system of the present invention.
  • 8a, 8b, and 8c are the spot patterns of the screen of the embodiment of FIG. 3, the conventional technology, and the patent CN101937163, which are viewed from the light entering direction of the screen;
  • FIG. 9 is a schematic structural view of another embodiment of a light source system according to an embodiment of the present invention.
  • Figure 10 is a schematic view showing the first projection of each laser diode group in the cross section of each of the outgoing beams in the embodiment shown in Figure 9;
  • Figure 11 is a spot pattern of the screen viewed from the light incident direction of the screen of Figure 9;
  • FIG. 12 is a schematic diagram of a first projection and a second projection of a laser group in the embodiment of FIG. 9;
  • FIG. 13 is a schematic diagram of a first projection of a laser group of another embodiment of a light source system according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a first projection of a laser group of another embodiment of a light source system according to an embodiment of the present invention.
  • 15 is a schematic structural view of an embodiment of a laser light source according to an embodiment of the present invention.
  • Figure 16 is a schematic illustration of a first projection and a second projection of a laser set in the embodiment of Figure 15;
  • FIG. 17 is a schematic structural view of another embodiment of a laser light source according to an embodiment of the present invention.
  • Figure 18 is a schematic illustration of a first projection and a second projection of a laser set in the embodiment of Figure 17;
  • FIG. 19 is a schematic structural view of another embodiment of a light source system according to an embodiment of the present invention.
  • Fig. 20 is a view showing a spot pattern of the screen viewed from the light incident direction of the screen in the embodiment shown in Fig. 19.
  • the light source system includes a set of laser light sources 300, and the laser light source 300 includes:
  • Two sets of laser sets 20a and 20b the laser set 20a includes two lasers 21a and 21b, and the laser set 20b includes two lasers 21c and 21d.
  • Two groups of lasers are arranged in parallel, and two beams generated by two lasers of the same laser group are in the same direction and parallel;
  • the mirror group 30a includes two mirrors 31a and 31b respectively corresponding to the two lasers 21a and 21b
  • the mirror group 30b includes Two mirrors 31c and 31d corresponding to the two lasers 21c and 21d, and the mirrors are disposed on the optical axis of the laser corresponding thereto;
  • the mirror group reflects the respective rays generated by the laser group corresponding to the mirror group.
  • the mirror group 30a reflects the two beams L1 generated by the laser group 20a
  • the mirror group 30b reflects the two beams generated by the laser group 20b.
  • L2 is such that the spacing between the beams of light emerging from the mirror group is less than the spacing between the beams of light incident on the mirror group.
  • FIG. 4 is a top view of a group of lasers and a set of mirror groups in the light source system of FIG.
  • the mirror group 30a includes a body 32 and two mirrors 31a and 31b disposed on the same side of the body 32.
  • the number of the mirrors on the same side of the body 32 may be other values, which are not limited in the embodiment of the present invention; wherein the adjacent mirrors 31a and 31b form a stepped structure, that is, the adjacent mirrors are layered and mutually Staggered.
  • the spacing between adjacent steps of the step that is, the difference in height between the bottom of the mirror 31a and the top of the mirror 31b is smaller than the spacing between the spots formed by the two beams L1 incident to the adjacent mirrors 31a and 31b,
  • the spacing of the spots is reduced by the spacing between the spots formed by the two beams L1 incident on the mirror group 30 to the distance between the spots formed by the two beams L1 emitted by the group of mirrors.
  • the projections of the adjacent two mirrors 31a and 31b in the respective light-emitting directions are adjacent, that is, the line connecting the bottom of the mirror 31a and the top of the mirror 31b is parallel to the light-emitting direction to reduce the mirror.
  • the volume of group 30a is adjacent, that is, the line connecting the bottom of the mirror 31a and the top of the mirror 31b is parallel to the light-emitting direction to reduce the mirror.
  • the mirror group reduces the spot spacing such that adjacent two beams of light generated by the same group of lasers, such as adjacent beams generated by the lasers 21a and 21b, are adjacent to adjacent spots reflected by the mirror.
  • the projections of the adjacent two mirrors 31a and 31b in the respective light-emitting directions are adjacent, as long as the width of the cross-section spot of the light emitted by the laser is equal to the projection of the mirror in the light-in direction of the mirror,
  • the width is the width of the projection of the section light spot in the second direction, and the second direction is parallel to the incident beam section of the mirror and the direction of the exit beam section, so that two adjacent rays are reflected by the mirror.
  • the adjacent spots are adjacent in the width direction of the spot.
  • the cross-sectional spot of the light emitted by the laser may also be any shape such as an ellipse, a rectangle, a regular hexagon, or a circle.
  • the incident angle of the light incident on the mirror can also be any angle.
  • the incident angle of the light incident on the mirror is 45 degrees
  • the cross-section spot of the light emitted by the laser is an elliptical shape.
  • the long-axis direction of the cross-section spot of the light emitted by the laser is parallel to the light and exits from the mirror.
  • the direction, that is, the long axis is the width of the projection of the cross-section spot in the second direction
  • the long axis of the cross-section spot of the ray is equal to the length of the right-angle side of the mirror that reflects the ray (ie, the projection of the mirror in its light-in direction)
  • FIG. 5 is a schematic view of the adjacent spot of the screen as seen from the light incident direction of the screen of FIG. 3.
  • the spots 51a, 51b are the light L1 generated by the lasers 21a and 21b, respectively.
  • the spot reflected by the mirror onto the screen 40, the adjacent spot of the adjacent two beams L1 reflected by the mirror is adjacent in the long axis direction of the spot (ie, the width direction), that is, the adjacent spot is in the long axis direction.
  • the distance is zero.
  • the short-axis direction of the cross-section spot of the light emitted by the laser may be parallel to the direction in which the light is emitted from the mirror, and the short axis is equal to the length of the right-angle side of the mirror that reflects the light, then the adjacent two beams of light L1
  • the adjacent spots reflected by the mirror are adjacent in the short-axis direction of the spot (in this case, the short-axis direction of the elliptical spot is the above-described width direction), that is, the distance of the adjacent spot in the short-axis direction is zero.
  • FIG. 6 is a schematic diagram of a first projection and a second projection of the laser set of FIG. 3. 3 and 6, the first projections of the laser group 20a (lasers 21a, 21b) on the cross section of the beam of the outgoing light are 61, 62, respectively, and the laser group 20b (lasers 21c, 21d) is composed of the emitted light.
  • the first projection on the cross section of the beam is 63, 64, and the second projections of the two sets of projections 61, 62 and 63, 64 in the first direction are line segments P and N, respectively, and the first direction is any one of the two groups.
  • the wiring direction of the two laser centers of the laser group, and the overlapping portion of the second projection line segments P and N are the M portions in the figure. Due to the overlap of the M portions, the spacing between the laser light between the groups is relatively small compared to the prior art, thereby increasing the optical power density. In this case, the limitation of the spot pitch is changed from the size of the laser to the size of the mirror, and the advantage of the mirror over the laser is that the mirror can be cut to the same size as the spot.
  • the height of the mirror ie the distance from the bottom to the top of the mirror
  • the height of the spot ie the distance from the bottom to the top of the spot
  • the projections of the two sets of mirrors in the direction of incidence of the mirror are adjacent , in which the light beams generated by one laser group in the two laser groups and the adjacent light beams generated by the other laser group are reflected by the mirror are adjacent in the second direction.
  • the second direction is the cross-section of the incident beam parallel to the mirror and the cross-section of the outgoing beam, thereby achieving the abutment between the spots of the two sets of lasers.
  • the direction from the top to the bottom is defined as the direction from the top to the bottom in the drawing.
  • each group of lasers is arranged in a straight line, and the two sets of lasers are arranged opposite each other (ie, one-to-one correspondence), and two sets of first projections of the two sets of laser beams in opposite directions are respectively in the respective light-emitting directions. Partially overlapping, the projection of the first projection in the first direction is partially overlapped. Specifically, as shown in Fig. 6, the lower portions of one set of lasers (lasers 21c and 21d) and the upper portions of the other set of lasers (lasers 21a and 21b) overlap in two sets of projections in respective light-emitting directions.
  • FIG. 7a and FIG. 7b are respectively schematic diagrams showing projections of two groups of laser groups in respective light-emitting directions in two other embodiments of the light source system of the present invention.
  • the two sets of lasers respectively overlap the second projections of the first projections 71 and 72 in the respective directions of light in the first direction, but the first projections 71 are separated from 72; as shown in FIG. 7b.
  • the two sets of lasers respectively overlap the second projections of the first projections 73 and 74 in the respective directions of light exiting in the first direction, but the first projections 73 and 74 are spaced apart.
  • FIG. 8a is a spot pattern of the screen viewed from the light incident direction of the screen 40 in the embodiment of FIG.
  • the mirrors 31a and 31b respectively reflect the lasers 21a and 21b to obtain the spots 51a and 51b
  • the mirror 31c and 31d reflects the lasers 21c and 21d, respectively, to obtain spots 51c and 51d.
  • the spots 51a, 51b and the spots 51c, 51d are in the second direction. Adjacent, the second direction is the cross-section of the incident beam parallel to the mirror and the cross-section of the outgoing beam, i.e., the top-to-bottom direction in the figure, resulting in a dense spot as shown in Figure 8a.
  • FIG. 8b and FIG. 8c are the spot pattern obtained by the conventional technology and the spot pattern obtained by the patent CN101937163.
  • the spot obtained by the conventional technology is shown in 51a ⁇ 51d in FIG. 8b, and the patent CN101937163 uses only one set.
  • the spot obtained by the mirror is shown as 51a to 51d in Fig. 8c.
  • the partial overlap of the second projections of the first projections of the two laser groups in the first direction is referred to as a misalignment setting between the laser groups.
  • the mirror can be used to compress the distance between the laser beams of the same group, and the misalignment setting of the laser group can compress the spacing between the laser beams between the groups, thereby achieving the purpose of compressing the laser diode spacing in two dimensions.
  • the volume of the optical system is greatly reduced, and the optical power density of the light source system is improved.
  • FIG. 9 is a schematic structural diagram of another embodiment of a light source system according to an embodiment of the present invention.
  • the light source system includes a set of laser light sources 900.
  • the laser source 900 comprises two laser groups 20a and 20b, in particular a laser diode group.
  • the laser diode group 20a includes laser diodes 21a and 21b, and the laser diode group 20b includes laser diodes 21c and 21d.
  • Each group of laser diodes is arranged in a straight line, and the two sets of laser diodes are arranged in the same plane, and each beam generated by each group of lasers is in the same direction and parallel, and the beam direction is perpendicular to the plane in which the laser diode is located.
  • the two sets of laser diodes are set in the same direction, where the same direction refers to the same direction of the two beams emitted by the two laser diodes; the dislocation setting refers to the first of the two laser groups in the cross section of the beams composed of the respective outgoing rays.
  • the second projections projected in the first direction partially overlap, the first direction being the direction of the connection of at least two laser centers of a group of lasers.
  • the collocated dislocation setting in this embodiment is specifically represented by: two straight lines of two sets of laser groups respectively located in the same cross section in the light emitting direction of the laser, and adjacent laser diodes 21a in the laser diode group 20a. with 21b is arranged at intervals. In the laser diode group 20b, adjacent laser diodes 21c and 21d are also spaced apart, and the two sets of laser diode groups are staggered and engaged with each other along respective straight lines.
  • the laser light source 900 further includes two sets of mirror groups corresponding to the laser group, and the mirror group 30a includes two mirrors 31a and 31b, respectively, and the laser diodes 21a and 21b.
  • the mirror group 30b includes two mirrors 31c and 31d, respectively, and laser diodes 21c and 21d.
  • the mirror is disposed on the optical axis of the laser corresponding thereto for reflecting the respective rays generated by the laser corresponding thereto, and the reflected beams are still parallel to each other, and the distance of the rays reflected by the mirror group is smaller than the incident. The spacing between the beams of light into the mirror set.
  • FIG. 10 is a schematic diagram showing a first projection of each laser diode group in a cross section of a beam composed of respective outgoing rays in the embodiment shown in FIG.
  • the outgoing light of each laser diode group constitutes a light beam
  • the plane of the cross section of the light beam is A
  • the beam cross section is as shown in FIG. 10
  • the light spots 51a to 51d correspond to the laser diode 21a, respectively.
  • ⁇ 21d illuminating beam, and circles 101 ⁇ 104 correspond to laser diode 21a
  • Each spot is oval.
  • the short axis of the elliptical spot of the light emitted by the laser is parallel to the direction of the exit of the mirror.
  • FIG. 11 is a spot pattern of the screen viewed from the light incident direction of the screen of FIG.
  • the working principle is the same as that of the embodiment shown in FIG. 3.
  • the mirrors 31a and 31b respectively reflect the lasers 21a and 21b to obtain the spots 51a and 51b adjacent to each other in the short-axis direction, and reflect The mirrors 31c and 31d reflect the lasers 21c and 21d, respectively, to obtain the spots 51c and 51d adjacent in the short-axis direction.
  • the projection of the mirror in the direction of the incident beam is slightly larger than the beam width, and the projection of the adjacent mirror in the direction of the exit of the reflected beam also maintains a certain pitch, thus
  • the spacing between the spots 51a and 51b, or the spacing between the spots 51c and 51d, may be slightly enlarged without being adjacent, but still less than the spacing of the beams emitted directly from the laser diodes 92 and 94.
  • FIG. 12 is a schematic diagram of a first projection and a second projection of a laser group in the embodiment of FIG. 9.
  • the first projections of the laser diode group 20a on the section A are 101 and 102
  • the second projections of the first projections 101 and 102 in the first direction are represented as 109
  • first The direction is the wiring direction of the two laser centers of any one of the two sets of laser groups
  • the first projection of the laser diode group 20a on the section A is 103 and 104
  • the first projections 103 and 104 are in the first direction.
  • the second projection is expressed as 1010.
  • the second projection 109 and the second projection 1010 overlap each other with the overlapping portion being M.
  • the vertical direction refers to a direction perpendicular to a plane formed by the light incident direction and the light exit direction of the mirror, and thus two groups
  • the positional relationship of the projection of the laser diode on the section A in the direction of the exit after the beam is reflected determines the positional relationship of the laser diode group 20a and the laser diode group 20b in the vertical direction. Therefore, the overlap of the projections 109 and 1010 means that the distances of the illuminating spots of the two sets of laser diodes in the vertical direction are closer than those arranged orthogonally in rows and columns.
  • FIG. 13 is a schematic diagram of a first projection of a laser group of another embodiment of the light source system in the embodiment of the present invention.
  • a set of laser diodes emits light spots 51a, 51b, the second projection in the first direction is represented as 1301; the other set of laser diode sets emits light spots 51c, 51d, the second projected representation in the first direction Is 1302, and the second projections 1301 and 1302 are adjacent to each other.
  • the mirror group in order to completely reflect the light beam reflected by the laser diode, the mirror group must be in close proximity to the mirror group in the vertical direction, and the reflected light spots formed on the screen by the two groups of laser diode groups must also be adjacent to each other in the vertical direction.
  • the spots 51a, 51b are adjacent to the spots 51c and 51d, respectively, in the longitudinal direction of the spot.
  • the two sets of laser groups in the same direction misalignment setting may also be embodied as follows: the two straight lines of the two sets of laser sets are respectively located in different sections of the laser light exiting direction, and in a group of laser sets, adjacent lasers are spaced apart, and In another group of lasers, adjacent lasers are also spaced apart, and the projections of the two laser groups in their respective light-emitting directions are staggered and engaged with each other along their respective straight lines.
  • biting in the present invention does not require the tangent of the projection of the adjacent two lasers in the respective light-emitting directions, and the projection phase separation is also possible (as shown in FIG. 14).
  • the two sets of laser groups in the same direction misalignment can compress the spacing between the laser diode beams between the groups, and adjust the misalignment mode, so that the light beams generated by one laser group in the two laser groups can be combined with another group.
  • the spot formed by the adjacent beam of light generated by the laser group is reflected by the mirror in a second direction, and the second direction is the cross section of the incident beam parallel to the mirror and the direction of the cross section of the outgoing beam.
  • the mirror can be used to compress the distance between the laser beams of the same group, and the dislocation setting of the laser diode group can compress the spacing between the laser diode beams between the groups, thereby realizing the compression of the laser diode in two dimensions.
  • the purpose of the spacing is to greatly reduce the volume of the optical system and increase the optical power density of the light source system relative to existing solutions.
  • the laser group is exemplified by a 1 ⁇ 2 array.
  • the number of lasers in the laser group and the arrangement thereof may be other numbers and modes, and the laser is not necessarily strict.
  • the arrangement of the matrix array is not limited in the embodiment of the present invention. It should be noted here that the laser light source can compress the distance between the laser beams of the group as long as the number of lasers of one laser group is two or more.
  • FIG. 15 is a schematic structural diagram of an embodiment of a laser light source according to an embodiment of the present invention
  • FIG. 16 is a schematic diagram of a first projection and a second projection of the laser group in the embodiment shown in FIG.
  • the laser light source 1500 includes two sets of laser sets 20a and 20b
  • the laser set 20a includes two lasers 21a, 21b
  • the other set of laser sets 20b includes a laser 21c
  • the two sets of laser beams generate the same beam of light.
  • the two sets of laser beams generate the same beam of light.
  • the first projections of the laser groups 20a and 20b on the cross section of the beams of the respective outgoing rays are 1501 and 1502, respectively, and the second projections of the first projections 1501 and 1502 in the first direction are respectively
  • the second projections 1503 and 1504 partially overlap, and the first direction is the wiring direction of the two laser centers of the laser group 20a. Since the second projections 1503 and 1504 partially overlap, the spot spacing of the laser light between the groups is smaller than in the prior art, thereby increasing the optical power density of the laser light source and reducing the volume of the light source.
  • each group of lasers is arranged in a straight line, and two straight lines of the two laser groups are respectively located on the same section in the light-emitting direction of the laser for assembly.
  • the heat sink of the laser group preferably, adjacent lasers of each group of lasers can be spaced apart, and the two sets of lasers are staggered and bitten along their respective straight lines. It can be understood that other technical features of the laser light source in the embodiment shown in Fig. 9 can also be applied to the present embodiment.
  • FIG. 17 is a schematic structural view of another embodiment of a laser light source according to an embodiment of the present invention
  • FIG. 18 is a schematic diagram of a first projection and a second projection of the laser group in the embodiment shown in FIG.
  • the laser light source 1700 includes two sets of laser sets 20a and 20b
  • the laser set 20a includes two lasers 21a, 21b
  • the other set of laser sets 20b includes a laser 21c, each of which generates the same beam of light.
  • the beams produced by the two sets of lasers are reversed and parallel.
  • the laser light source 1700 further includes two sets of mirror groups 30a and 30b for reflecting the respective light beams of the two sets of laser groups 20a and 20b, so that the light beams emitted by the two sets of laser groups are reflected and are in the same direction and parallel to each other.
  • the first projections of the laser groups 20a and 20b on the cross section of the beams respectively formed by the respective outgoing rays are 1701 and 1702, respectively, and the second projections of the first projections 1701 and 1702 in the first direction are respectively 1703 and 1704, the second projections 1703 and 1704 partially overlap, and the first direction is the wiring direction of the two laser centers of the laser group 20a. Since the second projections 1703 and 1704 partially overlap, the spot spacing of the laser light between the groups is smaller than in the prior art, thereby increasing the optical power density of the laser light source and reducing the volume of the light source.
  • each group of lasers can be arranged in a straight line, and the two groups of lasers are arranged opposite each other (ie, one-to-one correspondence), and the two sets of laser groups disposed opposite each other are respectively
  • the two sets of projections in the respective light-emitting directions overlap to reduce the volume of the light source and increase the optical power density.
  • adjacent lasers of each group of lasers can be tangent to further reduce the source volume and increase the optical power density. It can be understood that other technical features of the laser light source in the embodiment shown in Fig. 3 can also be applied to the present embodiment.
  • the laser light source of the present invention is described by only the simplest embodiment of three lasers. It can be understood that as long as a group of lasers includes at least two lasers, the spot spacing of the laser light between the groups can be compressed, so the other groups are The number of lasers in the laser group can be unlimited.
  • FIG. 19 is a schematic structural view of another embodiment of a light source system according to an embodiment of the present invention
  • FIG. 20 is a light spot pattern of the screen viewed from the light entering direction of the screen in the embodiment shown in FIG.
  • the light source system 1900 includes two sets of the above-mentioned laser light sources 1901 and 1902.
  • the light source system 1900 further includes a light combining device 60 and a reflection sheet 70.
  • the light L1 emitted from the laser light source 1901 is incident on the first surface of the light combining device 60, and the light L2 emitted from the laser light source 1902 is reflected by the reflection sheet 70 to the second surface of the light combining device 60.
  • the light combining device 60 transmits and reflects the two light rays L1 and L2 incident on both sides thereof, respectively, so that the spots formed by the two light rays transmitted and reflected at least partially overlap.
  • the light combining device 60 reflects the light reflected by one side of the light combining device 70 through the reflection sheet 70 and transmits the other light.
  • the light combining device does not limit which light is reflected or transmitted.
  • the position of the reflection sheet is adjustable such that the incident angle of light incident on the reflection sheet is adjustable to replace the laser light source.
  • the reflection sheet 70 can greatly reduce the size of the laser light source, so that the two laser groups that originally need to be vertically arranged can be arranged in parallel.
  • the manner in which the size of the light source is reduced by the reflection sheet is more obvious in the semiconductor laser;
  • the heat sink is easier to design in the heat dissipation air path than the vertically arranged air path.
  • the light L2 emitted from the laser light source 1902 can also be directly incident on the second surface of the light combining device 60. Therefore, the reflection sheet 70 can be omitted.
  • the polarization directions of the light beams emitted by the two sets of laser light sources may be perpendicular to each other.
  • the light combining device may be a polarization combining device that transmits and reflects the light emitted by the two sets of laser light sources, respectively.
  • the laser light source 1902 can be rotated by 90 degrees with respect to the laser light source 1901.
  • the purpose of the corner here is to cause the laser light that can pass through the polarization combining device to reflect at the polarization combining device after the corner, thereby making the two laser beams The spots are coincident. This way, light of different positions and different directions can be recombined with the same direction of propagation.
  • the polarization directions of the light beams emitted by the two sets of laser light sources may be the same, and the polarization direction of the light emitted by one of the laser light sources is converted into another by a 1/2 wave plate.
  • the phase of the group is perpendicular, and the light converted by the polarization direction is incident on the polarization combining device.
  • the wavelengths of the light emitted by the two sets of laser sources may be different.
  • the light combining device may employ a wavelength selective device that transmits light from one set of laser sources and reflects light from the other set of laser sources.
  • the centers of the spots formed by the two light rays after the transmission and the reflection are overlapped so that the spot overlap portion is large and the optical power density is large.
  • the spot emitted by one set of laser light sources is 2001
  • the spot emitted by the other set of laser light sources is 2002
  • the centers of the two sets of spots are coincident. .
  • the optical power density of the spot after the laser light source is integrated using the polarization combining device is 9 times that of the former.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Head (AREA)
  • Endoscopes (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Projection Apparatus (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

公开了一种光源系统与激光光源(300)。激光光源包括两组激光器组(20a,20b),至少一组激光器组包括至少两个激光器(21a,21b,21c,21d),两组激光器组产生的各束光线(L1)同向且平行。两组激光器组在各自出射光线组成的光束的截面上的第一投影在第一方向上的第二投影有部分交叠,第一方向为一组激光器组的至少两个激光器中心的连线方向。激光光源具有能够有效增大光功率密度,同时减小光源体积的效果。

Description

光源系统与激光光源
技术领域
本发明涉及光学技术领域,特别是涉及光源系统与激光光源。
背景技术
现有技术常用的单颗半导体激光器的光功率大致在几百毫瓦左右,更大功率的有1-2瓦。单颗半导体激光器想要实现几瓦甚至10瓦以上的功率输出,目前较为困难。
在一些要求高光功率半导体激光器的应用场景中,比如投影、舞台灯光系统等光功率要求达到几十瓦的应用场景中,可以采用阵列排布半导体激光器的方式。现有技术阵列排布半导体激光器的方案,是简单地将半导体激光器如激光二极管进行二维排列,然后采用准直透镜将激光二极管发出的光准直。
图1a显示了一个4×4排布结构的激光二级管阵列。通常激光二极管11发出的光其分布为一个椭圆高斯分布,发散角较大。准直透镜通常(图未示)是一个旋转对称的透镜,能将激光二极管11发出的光准直。
再如图1a所示,现有技术激光二极管排布通常为平面直射式排布,激光二极管11安装在底座12上,底座12的投影面积大于激光二极管11的相应投影面积。本申请发明人在长期研发中发现,上述平面直射式排布技术会导致一些技术问题的产生,具体描述如下:
一起参阅图1b,由于激光二极管11的发光是椭圆高斯分布,经过准直透镜(图未示)后形成一个椭圆光斑13,且椭圆光斑13的面积远小于底座12相应的投影14的面积。由于底座12的投影14的面积大于激光二极管11的相应投影面积,激光二极管11的排布密度也不能过小,加上椭圆光斑13的面积远小于底座12相应的投影14的面积,导致光斑13阵列之间会存在较大的空隙,即光斑13不能够紧密的排列在一起。因此,光功率密度受到底座12尺寸的影响,无法更高,进而使得激光高能量密度的优势得不到充分的发挥。虽然可以使用透镜聚焦各光束到一个光斑,但聚焦后的各光束不再保持平行光特性,具有一个较大的发散角,这对于后续光路系统的设计往往是不利的。
为了提高光功率密度,专利CN101937163提供了一种实现激光光斑紧密排列的光源单元。如图2所示,光源单元200包括光源组210与反射镜组220。光源组210包括6个光源201,光源201由发光元件205与准直透镜207组成。反射镜组220包括与光源201对应的相互平行的6个反射镜225,反射镜225将各行的光源201发出的各光束反射为间隔缩小的各光束。
如图2所示,若将光源201的准直透镜207的直径设为a,将光源间的行间隔设为b,则光源组210的列方向的全长由于具有6列而成为6a+5b,由于从光源201的准直透镜207射出的光束均为平行光,所以从光源组210射出的光束的截面面积的列方向的全长也成为6a+5b。倘若通过一片反射镜220e使从这种光源组210射出的光束相对于列方向而直接反射的情况下,由反射镜220e反射的光束的截面的列方向的全长成为6a+5b。然而,在每一行配置不同的长方形状的反射镜225,在光源组210的光轴方向缩短各反射镜225的相互间隔地配置这些反射镜225,因此,由各反射镜225反射的光束成为删除了光源组210的各行光源201间的间隔b的状态的光束,从而光束的列方向的全长成为6a,从而激光光斑紧密排列。
在对现有技术的研究过程中,本申请发明人发现,一组相互平行的反射镜只能压缩一个方向上的激光光斑间距,在另一个垂直的方向上激光光斑的间距较大;为了得到在两个方向上都压缩的光斑阵列,则需要使用两组反射镜,导致光源单元的空间体积很大,在实际产品中应用不便。
发明内容
本发明实施例提供一种光源系统与激光光源,能够实现激光光斑紧密排列,有效增大光功率密度,同时有效减小产品体积。
本发明实施例提供一种光源系统,包括至少一组激光光源,该一组激光光源包括:
两组激光器组,至少一组激光器组包括至少两个激光器,每组激光器组产生的各束光线同向且平行;
与激光器组对应的两组反射镜组,至少一组反射镜组包括至少两个反射镜,反射镜设置在与其对应的激光器的光轴上;反射镜组反射与其对应的激光器组产生的各束光线,使从该反射镜组出射的该各束光线间的间距小于入射到该反射镜组的各束光线间的间距;
从两组激光器组出射的各束光线相互平行,从两组反射镜组出射的各束光线同向且相互平行;
两组激光器组在各自出射光线组成的光束的截面上的第一投影在第一方向上的第二投影有部分交叠,第一方向为一组激光器组的至少两个激光器中心的连线方向。
本发明实施例还提供一种激光光源,包括两组激光器组,至少一组激光器组包括至少两个激光器,两组激光器组产生的各束光线同向且平行;两组激光器组在各自出射光线组成的光束的截面上的第一投影在第一方向上的第二投影有部分交叠,第一方向为一组激光器组的至少两个激光器中心的连线方向。
本发明实施例还提供一种激光光源,包括两组激光器组,至少一组激光器组包括至少两个激光器,每组激光器组产生的各束光线同向且平行,两组激光器组产生的各束光线反向且平行;两组反射镜组,分别用于反射两组激光器组的各束光线,使两组激光器组出射的各束光线被反射后同向且相互平行;两组激光器组在各自出射光线组成的光束的截面上的第一投影在第一方向上的第二投影有部分交叠,第一方向为一组激光器组的至少两个激光器中心的连线方向。
与现有技术相比,本发明实施例包括如下有益效果:
为便于描述,将上述两个激光器组的第一投影在第一方向上的第二投影有部分交叠称为激光器组间的错位设置。利用激光二极管组的错位设置,可以压缩组间激光二极管光束之间的间距,相对于现有解决方案则大大减小了光学系统的体积,并提高了光源系统的光功率密度。
附图说明
图1a是现有技术半导体激光器阵列的半导体激光器排布示意图;
图1b是图1所示激光器阵列所产生光斑的排布示意图;
图2是专利CN101937163的光源单元的结构示意图;
图3是本发明实施例中光源系统一个实施例的结构示意图;
图4是图3所示光源系统中一组激光器组、一组反射镜组的俯视图;
图5是从图3中屏幕的入光方向看往屏幕的相邻光斑的示意图;
图6是图3激光器组的第一投影与第二投影的示意图;
图7a和图7b分别是本发明光源系统的另两个实施例中两组激光器组在各自出光方向上的投影示意图;
图8a、8b、8c分别是图3实施例、传统技术、专利CN101937163中从屏幕的入光方向看往屏幕的光斑图案;
图9是本发明实施例中光源系统的另一实施例的结构示意图;
图10是图9所示实施例中各激光二极管组在各自出射光束的截面上的第一投影的示意图;
图11是从图9中屏幕的入光方向看往屏幕的光斑图案;
图12是图9实施例中激光器组的第一投影与第二投影的示意图;
图13是本发明实施例中光源系统的另一实施例的激光器组的第一投影的示意图;
图14是本发明实施例中光源系统的另一实施例的激光器组的第一投影的示意图;
图15是本发明实施例中激光光源的一个实施例的结构示意图;
图16是图15所示实施例中激光器组的第一投影和第二投影的示意图;
图17是本发明实施例中激光光源的另一实施例的结构示意图;
图18是图17所示实施例中激光器组的第一投影和第二投影的示意图;
图19是本发明实施例中光源系统的另一实施例的结构示意图;
图20是图19所示实施例中从屏幕的入光方向看往屏幕的光斑图案。
具体实施方式
参阅图3,本发明实施例中光源系统的一个实施例的结构示意图,光源系统包括一组激光光源300,该激光光源300包括:
两组激光器组20a与20b,激光器组20a包括两个激光器21a与21b,激光器组20b包括两个激光器21c与21d。两组激光器组平行设置,同个激光器组的两个激光器产生的两束光线同向且平行;
分别与两组激光器组20a与20b对应的两组反射镜组30a与30b,反射镜组30a包括分别与两个激光器21a与21b对应的两个反射镜31a与31b,反射镜组30b包括分别与两个激光器21c与21d对应的两个反射镜31c与31d,反射镜设置在与其对应的激光器的光轴上;
反射镜组反射与该反射镜组对应的激光器组产生的各束光线,具体地,反射镜组30a反射激光器组20a产生的两束光线L1,反射镜组30b反射激光器组20b产生的两束光线L2,使从反射镜组出射的该各束光线间的间距小于入射到该反射镜组的各束光线间的间距。
请参见图4,图4是图3所示光源系统中一组激光器组、一组反射镜组的俯视图。如图4所示,反射镜组30a包括本体32和设置于本体32同侧的两个反射镜31a与31b。当然,本体32同侧的反射镜数量可以是其他值,本发明实施例并不作限制;其中,相邻反射镜31a与31b之间构成阶梯结构,即相邻反射镜之间分层设置且相互错开。阶梯的相邻台阶之间的间距,即反射镜31a的底部与反射镜31b顶部之间的高度差小于入射至相邻反射镜31a与31b的两束光线L1所形成光斑之间的间距,使得光斑间距由从入射到反射镜组30的两束光线L1所形成光斑之间的间距缩小为该反射镜组出射的两束光线L1所形成光斑之间的间距,缩小的原理分析请参见专利CN101937163,此处不作赘述。
优选地,相邻两个反射镜31a与31b在各自的出光方向上的投影相邻接,即反射镜31a的底部与反射镜31b的顶部的连线平行于该出光方向,以减小反射镜组30a的体积。
更进一步地,反射镜组缩小光斑间距,使得同组激光器组产生的相邻两束光线,如激光器21a与21b分别产生的相邻两束光线被反光镜反射后的相邻光斑邻接。在相邻两个反射镜31a与31b在各自的出光方向上的投影相邻接时,只要满足激光器出射的光线的截面光斑的宽度等于该反射镜在该反射镜入光方向上的投影,该宽度是该截面光斑沿第二方向的投影的宽度,第二方向同时平行于反射镜的入射光束截面和出射光束截面的方向,即可使得两束相邻光线被反光镜反射后的两个相邻光斑在光斑的宽度方向上邻接。激光器出射的光线的截面光斑也可以为椭圆形、长方形、正六边形、圆形等任意图形。入射到反射镜的光线的入射角也可以为任意角度。
为便于理解,以入射到反射镜的光线的入射角为45度,激光器出射的光线的截面光斑为椭圆形为例,激光器出射的光线的截面光斑的长轴方向平行于该光线从反射镜出射的方向,即长轴是该截面光斑沿第二方向的投影的宽度,并且光线的截面光斑的长轴等于反射该光线的反射镜的直角边长度(即反射镜在其入光方向上的投影)时,如图5所示,图5是从图3中屏幕的入光方向看往屏幕的相邻光斑的示意图,结合图4,光斑51a、51b分别为激光器21a与21b产生的光线L1经反射镜反射到屏幕40上的光斑,相邻两束光线L1被反光镜反射后的相邻光斑在光斑的长轴方向(即上述宽度方向)上邻接,即该相邻光斑在长轴方向的距离为零。同理,可以使得激光器出射的光线的截面光斑的短轴方向平行于该光线从反射镜出射的方向,且该短轴等于反射该光线的反射镜的直角边长度,那么相邻两束光线L1被反光镜反射后的相邻光斑在光斑的短轴方向上邻接(此时椭圆光斑的短轴方向为上述宽度方向),即该相邻光斑在短轴方向的距离为零。
上述主要是针对同组激光器组的激光器的光斑间距缩小进行描述,下面针对组间激光器之间的光斑间距的缩小进行说明。
如图3所示,从两组激光器组分别出射的光线L1与L2相互平行,从两组反射镜组分别出射的光线L1与L2同向且相互平行。再请参见图6,图6是图3激光器组的第一投影与第二投影的示意图。结合图3和图6,激光器组20a(激光器21a、21b)在其出射光线组成的光束的截面上的第一投影分别为61、62,激光器组20b(激光器21c、21d)在其出射光线组成的光束的截面上的第一投影为63、64,两组投影61、62与63、64在第一方向上的第二投影分别为线段P和N,第一方向为两组中任一组激光器组的两个激光器中心的连线方向,第二投影线段P和N的交叠部分为图中的M部分。由于有M部分的交叠,使得组间激光器光线之间的间距相对现有技术较小,从而提高了光功率密度。这种情况下,光斑间距的限制条件由激光器的尺寸变为反射镜的尺寸,反射镜相比激光器的优势在于反射镜可以切割成与光斑相同的尺寸。只要反射镜的高度(即反射镜的底部到顶部的距离)等于光斑的高度(即光斑的底部到顶部的距离),且两组反射镜组在反射镜的入光方向上的投影相邻接,则可以使得两组激光器组中,一组激光器组所产生的各束光线,与另一组激光器组所产生的相邻束光线被反射镜反射后所形成的光斑在第二方向上邻接,第二方向为同时平行于该反射镜的入射光束的截面与出射光束的截面的方向,从而实现两组激光器组的光斑之间相邻接。本发明中,定义上述顶部到底部的方向为图中的上方到下方的方向。
本实施例中,由于光线入射到反射镜的入射角为45度,因此反射镜的出光方向平行于同激光器组的激光器中心之间的连线方向,因此,也可以说,第一投影在反射镜的出光方向上的第二投影有部分交叠。具体来说,在本实施例中,每组激光器组直线排布,两组激光器组相向设置(即一一对应),相向设置的两组激光器组分别在各自出光方向上的两组第一投影部分交叠,即可使得该第一投影在第一方向上的投影有部分交叠。具体如图6所示,一组激光器组(激光器21c与21d)的下部与另一组激光器组(激光器21a与21b)的上部在各自出光方向上的两组投影交叠。
图3所示实施例中,两组激光器组在各自出光方向上的第一投影也可以不一一对应,而相分离。请参见图7a和图7b,图7a和图7b分别为本发明光源系统的另两个实施例中两组激光器组在各自出光方向上的投影示意图。如图7a所示,两组激光器组分别在各自出光方向的第一投影71与72在第一方向上的第二投影有交叠,但第一投影71与72相分离;如图7b所示,两组激光器组分别在各自出光方向的第一投影73与74在第一方向上的第二投影有交叠,但第一投影73与74相间隔。
请参见图8a,图8a是图3实施例中从屏幕40的入光方向看往屏幕的光斑图案。如图3和图8a所示,若激光器出射的光线的椭圆光斑的长轴平行于反光镜的出光方向,那么反射镜31a与31b分别反射激光器21a与21b得到光斑51a与51b,反射镜31c与31d分别反射激光器21c与21d得到光斑51c与51d。由于反射镜的高度等于椭圆光斑的高度(即短轴),且两组反射镜组在反射镜的入光方向上的投影相邻接,所以光斑51a、51b与光斑51c、51d在第二方向上邻接,第二方向为同时平行于该反射镜的入射光束的截面与出射光束的截面的方向,即图中从上到下的方向,得到如图8a所示的密集光斑。而作为对比,请参见图8b和图8c,分别是传统技术得到的光斑图案和专利CN101937163得到的光斑图案,传统技术得到的光斑如图8b中的51a~51d所示,专利CN101937163只使用一组反射镜得到的光斑如图8c中的51a~51d所示。
为便于描述,将上述两个激光器组的第一投影在第一方向上的第二投影有部分交叠称为激光器组间的错位设置。综上,利用反射镜可以压缩同组激光器光束之间的间距,而利用激光器组的错位设置,可以压缩组间激光器光束之间的间距,从而实现了在两个维度上压缩激光二极管间距的目的,相对于现有解决方案则大大减小了光学系统的体积,并提高了光源系统的光功率密度。
请参见图9,图9是本发明实施例中光源系统的另一实施例的结构示意图。光源系统包括一组激光光源900。激光光源900包括两个激光器组20a与20b,具体为激光二极管组。激光二极管组20a包括激光二极管21a和21b,激光二极管组20b包括激光二极管21c和21d。每组激光二极管组沿直线排布,两组激光二极管组设置于同一平面内,每组激光器组产生的各束光线同向且平行,且光束方向垂直于激光二极管所处的平面。
两组激光二极管组同向错位设置,此处的同向是指两组激光二极管发出的各束光线同向;错位设置是指两个激光器组在各自出射光线组成的光束的截面上的第一投影在第一方向上的第二投影有部分交叠,第一方向为一组激光器组的至少两个激光器中心的连线方向。如图9所示,本实施例中的同向错位设置具体表现为:两组激光器组分别所在的两条直线位于激光器的出光方向上的同一截面,激光二极管组20a中,相邻激光二极管21a和 21b间隔设置,激光二极管组20b中,相邻激光二极管21c和21d也间隔设置,两组激光二极管组沿各自所在直线相互错开并咬合。
激光光源900还包括与激光器组对应的两组反射镜组,反射镜组30a包括两个反射镜31a和31b,分别与激光二极管21a和21b 相对应,反射镜组30b包括两个反射镜31c和31d,分别与激光二极管21c和21d 相对应,反射镜设置在与其对应的激光器的光轴上,用于反射与其对应的激光器产生的各束光线,反射后的各束光束仍然相互平行,且反射镜组反射后的光线间距小于入射到该反射镜组的各束光线间的间距。
请参见图10,图10是图9所示实施例中各激光二极管组在各自出射光线组成的光束的截面上的第一投影的示意图。如图10所示,各激光二极管组的出射光线组成一个光束,该光束的截面所在的平面为A,光束截面如图10所示,光斑51a~51d分别对应于激光二极管21a ~21d的发光光束,而圆101~104分别对应于激光二极管21a ~21d的外轮廓在A上的第一投影。每一个光斑都呈椭圆形。激光器出射的光线的椭圆光斑的短轴平行于反光镜的出光方向。
请参见图11,图11是从图9中屏幕的入光方向看往屏幕的光斑图案。与图3所示实施例相同的工作原理,如图11所示,本实施例中,反射镜31a与31b分别反射激光器21a与21b得到在短轴方向上相邻接的光斑51a与51b,反射镜31c与31d分别反射激光器21c与21d得到在短轴方向上邻接的光斑51c与51d。实际操作中,为了减小组装的难度,往往使反射镜在入射光束方向上的投影比光束宽度稍大,相邻反射镜在反射光束的出射方向上的投影也会保留一定的间距,这样就会使得光斑51a与51b之间的间距,或者光斑51c与51d之间的间距稍微拉大而不再邻接,但是仍然比直接从激光二极管92和94发射出来的光束的间距小。
下面针对组间激光器光线之间的光斑间距的缩小进行说明。请参见图12,图12为图9实施例中激光器组的第一投影与第二投影的示意图。如图12所示,在本实施例中,激光二极管组20a在截面A上的第一投影是101和102,第一投影101和102在第一方向上的第二投影表示为109,第一方向为两组激光器组中任一组的两个激光器中心的连线方向;激光二极管组20a在截面A上的第一投影是103和104,第一投影103和104在第一方向上的第二投影表示为1010。第二投影109和第二投影1010相互交叠,交叠部分为M。
由于反射镜并不改变激光二极管组20a和激光二极管组20b在竖直方向上的位置关系,竖直方向是指垂直于由反射镜的入光方向与出光方向构成的平面的方向,因此两组激光二极管在截面A上的投影在光束反射后出射方向上的投影的位置关系,就决定了激光二极管组20a和激光二极管组20b在竖直方向上的位置关系。因此,投影109和1010的相互交叠,意味着这两组激光二极管的发光光斑在竖直方向上的间距,比按照行和列正交排列的方式要近。
本实施例中激光二极管排列的最佳形式如图13所示,图13是本发明实施例中光源系统的另一实施例的激光器组的第一投影的示意图。一组激光二极管组出射光线的光斑51a、51b,在第一方向上的第二投影表示为1301;另一组激光二极管组出射光线的光斑51c、51d,在第一方向上的第二投影表示为1302,第二投影1301和1302相互紧邻。此时,为了完全反射激光二极管反射的光束,反射镜组在竖直方向上必然与反射镜组相互紧邻,两组激光二极管组在屏幕上形成的反射光斑在竖直方向上也必然相互紧邻,如图11所示,光斑51a、51b分别与光斑51c与51d在光斑长轴方向上邻接。
上述两组激光器组同向错位设置也可以具体表现为,两组激光器组分别所在的两条直线位于激光器的出光方向上的不同截面,且在一组激光器组中,相邻激光器间隔设置,并且另一组激光器组中,相邻激光器也间隔设置,两组激光器组在各自出光方向上的投影沿各自所在直线相互错开并咬合。此处需要说明的是,本发明中的“咬合”并不要求相邻两个激光器在各自出光方向上的投影相切,该投影相分离也是可以的(如图14所示)。总而言之,两组激光器组同向错位设置可以压缩组间激光二极管光束之间的间距,调整错位的方式,可以使得两组激光器组中,一组激光器组所产生的各束光线,与另一组激光器组所产生的相邻束光线被反射镜反射后所形成的光斑在第二方向上邻接,第二方向为同时平行于该反射镜的入射光束的截面与出射光束的截面的方向。
综上,利用反射镜可以压缩同组激光二极管光束之间的间距,而利用激光二极管组的错位设置,可以压缩组间激光二极管光束之间的间距,从而实现了在两个维度上压缩激光二极管间距的目的,相对于现有解决方案则大大减小了光学系统的体积,并提高了光源系统的光功率密度。
上述实施例中,激光器组以1×2阵列为例进行说明,但在其他实施例中,激光器组中激光器的数量及其排布方式也可以是其他数量和方式,而且激光器也不一定以严格的矩阵阵列排列方式,本发明实施例并不作限制。此处需要说明的是,激光光源中只要有一组激光器组的激光器数量为2个以上即可压缩组间激光器光束之间的间距。
请参见图15和图16,图15是本发明实施例中激光光源的一个实施例的结构示意图,图16是图15所示实施例中激光器组的第一投影和第二投影的示意图。如图15所示,激光光源1500包括两组激光器组20a与20b,激光器组20a包括两个激光器21a、21b,另一组激光器组20b包括一个激光器21c,两组激光器组产生的各束光线同向且平行。如图15和图16所示,激光器组20a与20b在各自出射光线组成的光束的截面上的第一投影分别为1501与1502,第一投影1501与1502在第一方向上的第二投影分别为1503与1504,第二投影1503与1504有部分交叠,第一方向为激光器组20a的两个激光器中心的连线方向。由于第二投影1503与1504有部分交叠,使得组间激光器光线的光斑间距相对现有技术较小,从而提高了激光光源的光功率密度,并减小了光源的体积。
如图9所示实施例中的描述,本实施例中,优选地,每组激光器组直线排布,两组激光器组分别所在的两条直线位于激光器的出光方向上的同一截面上,以便组装激光器组的散热装置。此外,每组激光器组的相邻激光器可以间隔设置,两组激光器组沿各自所在直线相互错开并咬合。可以理解的是,图9所示实施例中激光光源的其它技术特征也可应用到本实施例中。
请参见图17和图18,图17是本发明实施例中激光光源的另一实施例的结构示意图,图18是图17所示实施例中激光器组的第一投影和第二投影的示意图。如图17所示,激光光源1700包括两组激光器组20a与20b,激光器组20a包括两个激光器21a、21b,另一组激光器组20b包括一个激光器21c,每组激光器组产生的各束光线同向且平行,两组激光器组产生的各束光线反向且平行。
激光光源1700还包括两组反射镜组30a与30b,分别用于反射两组激光器组20a与20b的各束光线,使两组激光器组出射的各束光线被反射后同向且相互平行。
如图17与图18所示,激光器组20a与20b在各自出射光线组成的光束的截面上的第一投影分别为1701与1702,第一投影1701与1702在第一方向上的第二投影分别为1703与1704,第二投影1703与1704有部分交叠,第一方向为激光器组20a的两个激光器中心的连线方向。由于第二投影1703与1704有部分交叠,使得组间激光器光线的光斑间距相对现有技术较小,从而提高了激光光源的光功率密度,并减小了光源的体积。
如图3所示实施例中的描述,本实施例中,优选地,每组激光器组可以直线排布,两组激光器组相向设置(即一一对应),相向设置的两组激光器组分别在各自出光方向上的两组投影部分交叠,以减小光源体积并提高光功率密度。此外,每组激光器组的相邻激光器之间可以相切,以进一步减小光源体积并提高光功率密度。可以理解的是,图3所示实施例中激光光源的其它技术特征也可应用到本实施例中。
本实施例只以3个激光器这个最简单的实施例描述本发明的激光光源,可以理解的是,只要有一组激光器组包括至少两个激光器即可压缩组间激光器光线的光斑间距,因此其它组激光器组的激光器数量可以不作限制。
请参见图19和图20,图19是本发明实施例中光源系统的另一实施例的结构示意图,图20是图19所示实施例中从屏幕的入光方向看往屏幕的光斑图案。本实施例中,光源系统1900包括两组上述激光光源1901与1902,光源系统1900还包括合光器件60与反射片70。激光光源1901出射的光线L1入射至合光器件60的第一面,激光光源1902出射的光线L2通过反射片70反射至合光器件60的第二面。合光器件60对入射至其两面的两路光线L1与L2分别进行透射和反射,使透射和反射后的两路光线所形成的光斑至少部分重叠。
具体地,本实施例中,合光器件60对通过反射片70反射至该合光器件70的一面的光线进行反射,对另一路光线进行透射。可以理解的是,合光器件对哪路光线反射或透射并不限制。此外,优选地,反射片的位置可调,使得光线入射到该反射片的入射角可调,以便更换激光光源。反射片70可以大幅度减少激光光源的尺寸,使原本需要垂直排布的两个激光组可以平行排布,这种利用反射片减小光源尺寸的方式在半导体激光器越多时越明显;尤其同向的散热器在散热风路设计上比垂直排列的风路更容易设计。事实上,激光光源1902出射的光线L2也可以直接入射至合光器件60的第二面,因此,反射片70是可以省略的。
两组激光光源出射的光线的偏振方向可以相互垂直,此时合光器件可以为偏振合光器件,该偏振合光器件分别透射和反射两组激光光源出射的光线。例如,激光光源1902可以相对激光光源1901转角90度,此处转角的目的是为了使原本可以通过偏振合光器件的激光在转角后,在偏振合光器件处发生反射,从而使两束激光的光斑重合,这种方式可以使不同位置、不同方向的光得以重合并有相同的传播方向。当然,合光器件为偏振合光器件时,两组激光光源出射的光线的偏振方向也可以相同,而通过1/2波片将其中一组激光光源出射的光线的偏振方向转变为与另一组的相垂直,再将偏振方向转变后的光线入射至偏振合光器件。
两组激光光源出射的光线的波长可以不同,此时合光器件可以采用波长选择器件,该波长选择器件透射一组激光光源的光线并反射另一组激光光源的光线。
优选地,上述透射和反射后的两路光线所形成的光斑的中心重合,以使光斑重叠部分较多,光功率密度较大。例如,当两组激光光源出射的光线的偏振方向相互垂直时,如图20所示,一组激光光源出射的光斑为2001,另一组激光光源出射的光斑为2002,两组光斑的中心重合。
与传统技术的激光光源光斑的光功率密度相比,使用偏振合光器件整合激光光源后的光斑的光功率密度为前者的9倍。
应当注意的是,本发明上述实施例或其技术特征之间可以以任何合理的方式进行组合,得到新的产生新技术效果的实施例。
以上仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (1)

1、一种光源系统,包括至少一组激光光源,其特征在于,所述一组激光光源包括:
两组激光器组,至少一组激光器组包括至少两个激光器,每组激光器组产生的各束光线同向且平行;
与所述激光器组对应的两组反射镜组,至少一组反射镜组包括至少两个反射镜,反射镜设置在与其对应的激光器的光轴上;所述反射镜组反射与其对应的激光器组产生的各束光线,使从该反射镜组出射的该各束光线间的间距小于入射到该反射镜组的各束光线间的间距;
从所述两组激光器组出射的各束光线相互平行,从所述两组反射镜组出射的各束光线同向且相互平行;
所述两组激光器组在各自出射光线组成的光束的截面上的第一投影在第一方向上的第二投影有部分交叠,第一方向为一组激光器组的至少两个激光器中心的连线方向。
2、根据权利要求1所述的光源系统,其特征在于:
包括至少两个反射镜的反射镜组的相邻两个反射镜呈阶梯状。
3、根据权利要求2所述的光源系统,其特征在于:所述相邻两个反射镜在各自出光方向上的投影相邻接。
4、根据权利要求3所述的光源系统,其特征在于:所述激光器出射的光线的截面光斑的宽度等于该反射镜在其入光方向上的投影,使得同组激光器组的相邻束光线被反光镜反射后的相邻光斑在光斑的宽度方向上邻接,所述宽度是该光斑沿第二方向的投影的宽度,第二方向同时平行于反射镜入射光束截面和出射光束截面的方向。
5、根据权利要求4所述的光源系统,其特征在于:所述截面光斑的形状为椭圆形、长方形或圆形。
6、根据权利要求4所述的光源系统,其特征在于:
激光器入射到反射镜上的光线的入射角为45度;
所述光线的截面光斑的宽度等于反射该光线的反射镜的直角边长度,使得所述相邻束光线被反光镜反射后的相邻光斑在光斑的宽度方向上邻接。
7、根据权利要求1所述的光源系统,其特征在于:两组激光器组中,组间激光器产生的相邻束光线被反射镜反射后所形成的光斑在第二方向上邻接,第二方向为同时平行于该反射镜的入射光束的截面与出射光束的截面的方向。
8、根据权利要求1所述的光源系统,其特征在于:每组激光器组直线排布,并且所述两组激光器组同向错位设置。
9、根据权利要求8所述的光源系统,其特征在于:
两组激光器组同向错位设置具体为,两组激光器组分别所在的两条直线位于激光器的出光方向上的同一截面,且在一组激光器组中,相邻激光器间隔设置,并且另一组激光器组中,相邻激光器也间隔设置,两组激光器组沿各自所在直线相互错开并咬合。
10、根据权利要求8所述的光源系统,其特征在于:
两组激光器组同向错位设置具体为,两组激光器组分别所在的两条直线位于激光器的出光方向上的不同截面,且在一组激光器组中,相邻激光器间隔设置,并且另一组激光器组中,相邻激光器也间隔设置,两组激光器组在各自出光方向上的投影沿各自所在直线相互错开并咬合。
11、根据权利要求1所述的光源系统,其特征在于:所述两组激光器组出射的各束光线反向。
12、根据权利要求11所述的光源系统,其特征在于:
每组激光器组直线排布,两组激光器组相向设置,相向设置的两组激光器组分别在各自出光方向上的两组投影部分交叠。
13、根据权利要求12所述的光源系统,其特征在于:两组激光器组中,一组激光器组所产生的各束光线,与另一组激光器组所产生的相邻束光线被反射镜反射后所形成的光斑在第二方向上邻接,第二方向为同时平行于该反射镜的入射光束的截面与出射光束的截面的方向。
14、根据权利要求1所述的光源系统,其特征在于,该光源系统包括两组所述激光光源;
所述光源系统还包括合光器件,所述两组激光光源出射的光线分别入射至该合光器件的两面,该合光器件对入射至该两面的两路光线分别进行透射和反射,使透射和反射后的两路光线所形成的光斑至少部分重叠。
15、根据权利要求14所述的光源系统,其特征在于:所述透射和反射后的两路光线所形成的光斑的中心重合。
16、根据权利要求14所述的光源系统,其特征在于:所述光源系统还包括反射片,所述两组激光光源中的一组激光光源出射的光线通过该反射片反射至所述合光器件的一面。
17、根据权利要求16所述的光源系统,其特征在于:所述合光器件对通过所述反射片反射至该合光器件的一面的光线进行反射。
18、根据权利要求16所述的光源系统,其特征在于:所述反射片的位置可调,使得光线入射到该反射片的入射角可调。
19、根据权利要求14所述的光源系统,其特征在于,所述两组激光光源出射的光线的偏振方向相互垂直;所述合光器件为偏振合光器件。
20、根据权利要求14所述的光源系统,其特征在于:所述两组激光光源出射的光线的波长不同;所述合光器件为波长选择器件。
21、根据权利要求1至20中任一项所述的光源系统,所述激光器为激光二极管。
23、一种激光光源,其特征在于,包括:
两组激光器组,至少一组激光器组包括至少两个激光器,两组激光器组产生的各束光线同向且平行;
所述两组激光器组在各自出射光线组成的光束的截面上的第一投影在第一方向上的第二投影有部分交叠,第一方向为一组激光器组的至少两个激光器中心的连线方向。
24、根据权利要求23所述的激光光源,其特征在于,每组激光器组直线排布,两组激光器组分别所在的两条直线位于激光器的出光方向上的同一截面。
25、根据权利要求24所述的激光光源,其特征在于,每组激光器组的相邻激光器间隔设置,两组激光器组沿各自所在直线相互错开并咬合。
26、一种激光光源,其特征在于,包括:
两组激光器组,至少一组激光器组包括至少两个激光器,每组激光器组产生的各束光线同向且平行,两组激光器组产生的各束光线反向且平行;
两组反射镜组,分别用于反射所述两组激光器组的各束光线,使两组激光器组出射的各束光线被反射后同向且相互平行;
所述两组激光器组在各自出射光线组成的光束的截面上的第一投影在第一方向上的第二投影有部分交叠,第一方向为一组激光器组的至少两个激光器中心的连线方向。
27、根据权利要求26所述的激光光源,其特征在于,每组激光器组直线排布,两组激光器组相向设置,相向设置的两组激光器组分别在各自出光方向上的两组投影部分交叠。
28、根据权利要求26所述的激光光源,其特征在于,每组激光器组的相邻激光器之间相切。
PCT/CN2012/079978 2011-10-11 2012-08-10 光源系统与激光光源 WO2013053264A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147012683A KR101886133B1 (ko) 2011-10-11 2012-08-10 광원 시스템 및 레이저 광원
JP2014534925A JP2015501508A (ja) 2011-10-11 2012-08-10 光源システムおよびレーザ光源
US14/351,397 US9819154B2 (en) 2011-10-11 2012-08-10 Light source system and laser light source
EP12840038.9A EP2767859B1 (en) 2011-10-11 2012-08-10 Light source system and laser light source
US15/785,318 US10530131B2 (en) 2011-10-11 2017-10-16 Light source system and laser light source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110306719.4 2011-10-11
CN201110306719.4A CN103048792B (zh) 2011-10-11 2011-10-11 光源系统与激光光源

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/351,397 A-371-Of-International US9819154B2 (en) 2011-10-11 2012-08-10 Light source system and laser light source
US15/785,318 Continuation US10530131B2 (en) 2011-10-11 2017-10-16 Light source system and laser light source

Publications (2)

Publication Number Publication Date
WO2013053264A1 WO2013053264A1 (zh) 2013-04-18
WO2013053264A9 true WO2013053264A9 (zh) 2013-08-15

Family

ID=48061492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079978 WO2013053264A1 (zh) 2011-10-11 2012-08-10 光源系统与激光光源

Country Status (6)

Country Link
US (2) US9819154B2 (zh)
EP (1) EP2767859B1 (zh)
JP (1) JP2015501508A (zh)
KR (1) KR101886133B1 (zh)
CN (3) CN103048792B (zh)
WO (1) WO2013053264A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9147990B2 (en) * 2012-02-07 2015-09-29 Robert H. Dueck Two-dimensional laser system employing two dispersive elements
JP6156722B2 (ja) * 2013-02-05 2017-07-05 Zero Lab株式会社 アレイ光源、アレイ光源を用いた照明光学系
CN103868472B (zh) * 2013-12-23 2016-09-07 黑龙江科技大学 一种用于高反射率零件的面结构光三维测量装置与方法
WO2015166596A1 (ja) * 2014-05-02 2015-11-05 Zero Lab株式会社 アレイ光源およびアレイ光源を用いた照明光学系
EP3249465B1 (en) 2015-01-23 2019-10-23 Mitsubishi Electric Corporation Laser light source device and video display device
CN104880829A (zh) * 2015-06-16 2015-09-02 吕志伟 光束平移反射器及采用该反射器实现光束平移的方法
JP6075580B1 (ja) * 2015-09-01 2017-02-08 ウシオ電機株式会社 光源装置及びミラー支持体
JP6544520B2 (ja) * 2015-10-09 2019-07-17 セイコーエプソン株式会社 照明装置およびプロジェクター
AT518083B1 (de) * 2015-12-22 2017-07-15 Zkw Group Gmbh Scheinwerfer für Fahrzeuge mit zumindest einem Laser-Lichtmodul
WO2017163793A1 (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 プロジェクタ
CN106229808B (zh) * 2016-09-20 2023-08-29 中国电子科技集团公司第十三研究所 脉冲激光器
JP2018059757A (ja) * 2016-10-04 2018-04-12 オムロンオートモーティブエレクトロニクス株式会社 投光光学系、物体検出装置
CN207122801U (zh) * 2017-04-17 2018-03-20 深圳市绎立锐光科技开发有限公司 一种舞台灯照明装置
CN107390374A (zh) * 2017-08-16 2017-11-24 深圳市杰普特光电股份有限公司 一种激光器偏振合束装置及激光器
CN110806674A (zh) * 2018-08-06 2020-02-18 深圳市Tcl高新技术开发有限公司 一种激光光源模组及投影显示系统
CN111384668A (zh) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 一种激光光源模组及激光投影系统
CN111796475B (zh) * 2019-04-09 2022-03-08 成都理想境界科技有限公司 一种光源合束模组、投影显示装置及投影显示设备
CN113064136A (zh) * 2020-01-02 2021-07-02 隆达电子股份有限公司 发光元件与发光模块
CN111146691B (zh) * 2020-01-19 2021-08-06 长春理工大学 一种面发射激光器阵列
DE102020118421B4 (de) * 2020-07-13 2023-08-03 Focuslight Technologies Inc. Laservorrichtung
WO2022061040A1 (en) * 2020-09-21 2022-03-24 Optonomous Technologies, Inc. Laser light sources and methods
CN113206436B (zh) * 2021-04-29 2022-05-20 华中科技大学 一种多层蓝光半导体激光光谱合束装置
CN113251348B (zh) * 2021-05-12 2023-10-27 宁波智鼎电器有限公司 一种可调控的led投光灯
CN113552726A (zh) * 2021-07-12 2021-10-26 广东粤港澳大湾区硬科技创新研究院 激光合束装置及其组合式阶梯反射镜和填充率计算方法
JPWO2023037729A1 (zh) * 2021-09-09 2023-03-16
CN115102025B (zh) * 2022-08-25 2022-11-08 苏州长光华芯光电技术股份有限公司 一种半导体激光二极管合束反射镜最优位置检测方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243620A (ja) * 1985-08-21 1987-02-25 Fuji Photo Film Co Ltd 半導体レ−ザ光源装置
JPH0260179A (ja) * 1988-08-26 1990-02-28 Fuji Photo Film Co Ltd 合波用レーザ光源装置
JP2641060B2 (ja) * 1988-08-26 1997-08-13 富士写真フイルム株式会社 合波用レーザ光源装置
US5475415A (en) * 1992-06-03 1995-12-12 Eastman Kodak Company Optical head and printing system forming interleaved output laser light beams
DE19780124B4 (de) * 1996-02-23 2007-02-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung zur Formung des geometrischen Querschnitts mehrerer Festkörper- und/oder Halbleiterlaser
US6240116B1 (en) * 1997-08-14 2001-05-29 Sdl, Inc. Laser diode array assemblies with optimized brightness conservation
US6356577B1 (en) * 1999-07-15 2002-03-12 Silicon Light Machines Method and apparatus for combining light output from multiple laser diode bars
US6805467B2 (en) * 2002-07-18 2004-10-19 Acr Electronics, Inc. Emergency laser array signal light
CN1523388A (zh) * 2003-02-21 2004-08-25 樊承钧 叠式半导体激光器阵列与光纤阵列间的耦合方法
US7006549B2 (en) * 2003-06-11 2006-02-28 Coherent, Inc. Apparatus for reducing spacing of beams delivered by stacked diode-laser bars
US6993059B2 (en) * 2003-06-11 2006-01-31 Coherent, Inc. Apparatus for reducing spacing of beams delivered by stacked diode-laser bars
US7450858B2 (en) * 2003-12-31 2008-11-11 Intel Corporation Apparatus and method for transmitting and receiving wavelength division multiplexing signals
DE502005010520D1 (de) * 2004-08-30 2010-12-23 Univ Weimar Bauhaus Verfahren und vorrichtung zur darstellung eines digitalen bildes auf einer geometrisch und photometrisch nicht-trivialen oberfläche
JP2007017925A (ja) * 2005-06-07 2007-01-25 Fujifilm Holdings Corp 合波レーザ光源
CN1933266A (zh) * 2006-09-29 2007-03-21 清华大学 一种激光阵列器件
CN100460977C (zh) * 2007-01-05 2009-02-11 北京工业大学 实现大功率激光二极管堆光束整形的装置
DE102007045845A1 (de) * 2007-09-26 2009-04-09 Arctos Showlasertechnik E.Kfm. Laservorrichtung
CN101144909A (zh) * 2007-10-25 2008-03-19 中国科学院长春光学精密机械与物理研究所 一种面阵半导体激光器的光束整形装置
US20090122272A1 (en) * 2007-11-09 2009-05-14 Silverstein Barry D Projection apparatus using solid-state light source array
US7871165B2 (en) 2007-11-30 2011-01-18 Eastman Kodak Company Stereo projection apparatus using polarized solid state light sources
US7959297B2 (en) 2008-05-15 2011-06-14 Eastman Kodak Company Uniform speckle reduced laser projection using spatial and temporal mixing
US8132919B2 (en) * 2009-04-30 2012-03-13 Eastman Kodak Company Digital projector using arrayed light sources
US8033666B2 (en) * 2009-05-28 2011-10-11 Eastman Kodak Company Beam alignment system using arrayed light sources
JP4711155B2 (ja) * 2009-06-30 2011-06-29 カシオ計算機株式会社 光源装置及びプロジェクタ
CN201507843U (zh) * 2009-09-27 2010-06-16 广州市地下铁道总公司 一种用于背投式灯箱的led光源模板
JP2011133782A (ja) * 2009-12-25 2011-07-07 Casio Computer Co Ltd 光源ユニット及びプロジェクタ
US8649094B2 (en) * 2010-05-21 2014-02-11 Eastman Kodak Company Low thermal stress birefringence imaging lens
US8437086B2 (en) * 2010-06-30 2013-05-07 Jds Uniphase Corporation Beam combining light source
JP5895226B2 (ja) * 2010-11-30 2016-03-30 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置
JP5790053B2 (ja) * 2011-03-22 2015-10-07 日亜化学工業株式会社 光源装置
JP5914808B2 (ja) * 2011-12-21 2016-05-11 パナソニックIpマネジメント株式会社 光源装置及び投写型映像表示装置

Also Published As

Publication number Publication date
EP2767859A1 (en) 2014-08-20
CN104868361B (zh) 2019-07-16
US20140240977A1 (en) 2014-08-28
CN104868361A (zh) 2015-08-26
CN104868362A (zh) 2015-08-26
CN103048792A (zh) 2013-04-17
KR20140094537A (ko) 2014-07-30
KR101886133B1 (ko) 2018-08-07
JP2015501508A (ja) 2015-01-15
US9819154B2 (en) 2017-11-14
US10530131B2 (en) 2020-01-07
EP2767859A4 (en) 2015-04-29
CN103048792B (zh) 2015-10-07
WO2013053264A1 (zh) 2013-04-18
EP2767859B1 (en) 2020-03-25
US20180294623A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
WO2013053264A9 (zh) 光源系统与激光光源
US10310278B2 (en) Semiconductor laser
TWI394627B (zh) Laser processing method, laser processing apparatus and manufacturing method thereof
KR100413648B1 (ko) 레이저빔에 의해 두 개이상의 공작물들을 선택적으로 가열하기 위한 방법 및 장치와 공작물들을 결합시키기 위한 방법.
US7668214B2 (en) Light source
WO2015176608A1 (zh) 光源模组及投影设备
WO2018166038A1 (zh) 光源装置及投影系统
US20210255467A1 (en) Semiconductor laser shaping device
JP2001083460A (ja) レーザ装置
KR20100043257A (ko) 파장-변환 레이저원을 위한 광학 구성
US7548364B2 (en) Ultra-fast beam dithering with surface acoustic wave modulator
JP2024040276A (ja) 発光装置
CN112803238A (zh) 一种光纤耦合激光系统
WO2015175647A1 (en) Light-source including a planar array of diode-laser bars
US8121171B2 (en) Optical systems for laser arrays
CN111694160A (zh) 一种激光光源装置
US20210376561A1 (en) Light emitting device
KR20210131510A (ko) 라인 빔 형성 장치
US7804866B1 (en) Pulse stretcher
CN212175039U (zh) 一种基于矩形积分镜的内孔熔覆激光系统
US20210197311A1 (en) Laser head configurations and techniques for materials processing
KR102192828B1 (ko) 레이저 솔더링 본딩 기술을 이용한 고출력 레이저 다이오드 모듈 제조 방법
JP2019125726A (ja) 半導体レーザモジュール及び半導体レーザモジュールの製造方法
JP7316098B2 (ja) 半導体レーザモジュール及びレーザ加工装置
KR102215365B1 (ko) 고출력 레이저 다이오드 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840038

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase in:

Ref document number: 2014534925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14351397

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012840038

Country of ref document: EP

ENP Entry into the national phase in:

Ref document number: 20147012683

Country of ref document: KR

Kind code of ref document: A