KR20100043257A - 파장-변환 레이저원을 위한 광학 구성 - Google Patents

파장-변환 레이저원을 위한 광학 구성 Download PDF

Info

Publication number
KR20100043257A
KR20100043257A KR1020107003749A KR20107003749A KR20100043257A KR 20100043257 A KR20100043257 A KR 20100043257A KR 1020107003749 A KR1020107003749 A KR 1020107003749A KR 20107003749 A KR20107003749 A KR 20107003749A KR 20100043257 A KR20100043257 A KR 20100043257A
Authority
KR
South Korea
Prior art keywords
lens assembly
wavelength conversion
conversion device
optical component
semiconductor laser
Prior art date
Application number
KR1020107003749A
Other languages
English (en)
Inventor
자크 골리어
Original Assignee
코닝 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝 인코포레이티드 filed Critical 코닝 인코포레이티드
Publication of KR20100043257A publication Critical patent/KR20100043257A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3503Structural association of optical elements, e.g. lenses, with the non-linear optical device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0092Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

반도체 레이저, 파장 변환 장치, 렌즈 어셈블리, 및 하나 또는 그 이상의 조절가능한 광학 구성요소를 포함하는 광학 패키지가 제공된다. 상기 렌즈 어셈블리와 상기 조절가능한 광학 구성요소는 상기 반도체 레이저의 출력 빔을 상기 파장 변환 장치의 입력면 쪽으로 보내 상기 파장 변환 장치의 상기 입력면 상에 상기 출력 빔의 위치를 변경하도록 구성된다. 상기 렌즈 어셈블리와 상기 조절가능한 광학 구성요소는 상기 반도체 레이저로부터 상기 파장 변환 장치까지의 광 경로를 따라 전파되는 레이저 광이 상기 조절가능한 광학 구성요소에 의해 반사되기 전 상기 렌즈 어셈블리에 의해 조준 또는 거의 조준되고 상기 조절가능한 광학 구성요소에 의해 반사된 후 상기 파장 변환 장치의 상기 입력면 상에 상기 렌즈 어셈블리에 의해 포커싱되도록 또한 구성된다. 추가 실시 예들이 개시되고 청구된다.

Description

파장-변환 레이저원을 위한 광학 구성{OPTICAL CONFIGURATIONS FOR WAVELENGTH-CONVERTED LASER SOURCES}
본 발명은 파장-변환 레이저원을 위한 광학 구성에 대해 동시 계류중이고 공통으로 양도되며 2007년 7월 20일에 출원된 미국 특허출원 일련번호 제11/880,250호에 관한 것으로, 이에 대한 우선권을 주장한다.
본 발명은 일반적으로 반도체 레이저, 레이저 컨트롤러, 광학 패키지 및 기반도체 레이저를 포함하는 기타 광학 시스템에 관한 것이다. 보다 자세하게, 제한하는 것이 아닌 일례로서, 본 발명의 실시 예들은 일반적으로 광학 배열장치, 그 중에서도 반도체 레이저 및 2차 고조파 생성(second harmonic generation; SHG) 크리스탈 또는 또 다른 타입의 파장 변환 장치를 포함하는 광학 배열장치에 관한 것이다.
단파장(short wavelength) 광원들은 적외선 또는 근적외선 분포 궤환형(distributed feedback; DFB) 레이저, 분포 브래그 반사(distributed Bragg reflector; DBR) 레이저 또는 페브리-페로(Fabry-Perot) 레이저와 같은 상대적으로 긴 단일-파장(single-wavelength) 반도체 레이저와 2차 고조파 생성(SHG) 크리스탈과 같은 광 파장 변환 장치를 조합하여 형성될 수 있다. 전형적으로, 상기 SHG 크리스탈은 기본 레이저 신호의 더 높은 고조파를 생성하는데 사용된다. 그렇게 하기 위해, 상기 레이징 파장(lasing wavelenth)은 바람직하게 파장 변환 SHG 크리스탈의 스펙트럼 중심으로 조정되고 상기 레이저의 출력은 바람직하게 상기 파장 변환 크리스탈의 입력면에서 도파관 부(waveguide portion)와 일렬로 놓인다.
MgO 도핑된 PPLN(periodically poled lithium niobate) 크리스탈과 같은 전형적인 SHG 크리스탈의 모드 직경은 수 마이크론 범위 내에 있을 수 있다. 그 결과, 본 발명자들은 상기 레이저 다이오드 및 상기 SHG 크리스탈의 도파관으로부터 빔을 적절히 정렬시키는 것이 매우 큰 과제임을 알았다. 따라서, 본 발명의 한 가지 목적은 더 긴 파장원(wavelength source)(예컨대, 근적외선 레이저 다이오드)으로부터 더 짧은 파장 복사(wavelength radiation)(예컨대, 녹색 레이저광)를 생성하기 위한 SHG 크리스탈 또는 기타 다른 타입의 파장 변환 장치들을 이용하는 광학 패키지에 적합한 광학 구성들을 제공하는 것이다.
본 발명의 일 실시 예에 따르면, 광학 패키지는 반도체 레이저, 파장 변환 장치, 렌즈 어셈블리, 및 하나 또는 그 이상의 조절가능한 광학 구성요소를 포함하여 제공된다. 상기 렌즈 어셈블리와 상기 조절가능한 광학 구성요소는 상기 반도체 레이저의 출력 빔을 상기 파장 변환 장치의 입력면 쪽으로 보내 상기 파장 변환 장치의 상기 입력면 상의 상기 출력 빔의 위치를 변경하도록 구성된다. 상기 렌즈 어셈블리와 상기 조절가능한 광학 구성요소는 상기 반도체 레이저에서 상기 파장 변환 장치까지의 광 경로를 따라 전파되는 레이저 광이 상기 조절가능한 광학 구성요소에 의해 반사되기 전에 상기 렌즈 어셈블리에 의해 조준되거나 거의 조준되고, 상기 조절가능한 광학 구성요소에 의해 반사된 후 상기 파장 변환 장치의 상기 입력면 상에 상기 렌즈 어셈블리에 의해 포커싱되는 폴디드식folded) 광 경로를 정의하도록 또한 구성된다. 추가 실시 예들이 개시되고 고려된다.
본 발명의 추가적인 바람직한 실시 예들은 본 발명의 개념(concepts)에 따라 반도체 레이저들을 동작하도록 프로그램된 레이저 컨트롤러들을 포함하는 광학 패키지에 관한 것이다. 본 발명의 다양한 개념들이 컬러 이미지-형성 레이저 프로젝션 시스템, 자동차의 헤드-업(heads-up) 디스플레이와 같은 레이저 기반 디스플레이, 또는 광학 배열장치 및/또는 파장 조정이 사용되는 소정의 레이저 어플리케이션에 적용가능할 것으로 예상된다. 또한, 여기서 논의된 광학 구성들은 제한하는 것은 아니나 DBR 및 DFB 레이저, 페브리-페로 레이저 및 많은 타입의 외부 공진기 레이저를 포함하는 다양한 타입의 반도체 레이저들에 사용될 것으로 예상된다.
본 발명은 파장-변환 레이저원을 위한 광학 구성을 제공하기 위한 것이다.
반도체 레이저, 파장 변환 장치, 렌즈 어셈블리, 및 하나 또는 그 이상의 조절가능한 광학 구성요소를 포함하는 광학 패키지가 제공된다.
상기 렌즈 어셈블리와 상기 조절가능한 광학 구성요소는 상기 반도체 레이저의 출력 빔을 상기 파장 변환 장치의 입력면 쪽으로 보내 상기 파장 변환 장치의 상기 입력면 상에 상기 출력 빔의 위치를 변경하도록 구성된다.
상기 렌즈 어셈블리와 상기 조절가능한 광학 구성요소는 상기 반도체 레이저로부터 상기 파장 변환 장치까지의 광 경로를 따라 전파되는 레이저 광이 상기 조절가능한 광학 구성요소에 의해 반사되기 전 상기 렌즈 어셈블리에 의해 조준 또는 거의 조준되고 상기 조절가능한 광학 구성요소에 의해 반사된 후 상기 파장 변환 장치의 상기 입력면 상에 상기 렌즈 어셈블리에 의해 포커싱되도록 또한 구성된다.
본 발명은 파장-변환 레이저원을 위한 광학 구성을 제공하기 위해 더 긴 파장원으로부터 더 짧은 파장 복사를 생성하기 위한 SHG 크리스탈 또는 기타 다른 타입의 파장 변환 장치들을 이용하는 광학 패키지에 적합한 광학 구성들을 제공할 수 있다.
본 발명의 특정 실시 예들의 하기 상세한 설명은 하기 도면과 함께 읽을 때 가장 잘 이해될 수 있으며, 도면들에서 동일한 구조는 동일한 참조 부호로 표시하였다.
도 1은 본 발명의 일 실시 예에 따른 MEMS 미러 사용식(mirror-enabled) 광학 배열 패키지를 나타내는 개략적인 도면이다.
도 2는 파장 변환 장치의 입력면 상의 빔 스폿(beam spot)을 나타내는 개략적인 도면이다.
먼저, 도 1을 참조하면, 본 발명의 특정 실시 예들의 개념이 포함될 수 있는 다양한 타입의 광학 패키지들의 일반적인 구조가 주파수 또는 파장-변환식 반도체 레이저원의 설계 및 제조에 관련하여 쉽게 이용가능한 기술적 문헌에 교시되었으나, 본 발명의 특정 실시 예들의 개념들은 예를 들어, 반도체 레이저(10) 및 파장 변환 장치(20)를 포함하는 광학 패키지에 대해 편의상 일반적인 참조와 함께 도시될 수 있다. 도 1의 구성에서, 상기 반도체 레이저(10)에 의해 방출된 근적외광은 하나 또는 그 이상의 조절가능한 광학 구성요소(30) 및 적절한 광학 어셈블리(35)에 의해 상기 파장 변환 장치(20)의 도파관 부로 결합되며, 상기 광학 어셈블리(35)는 단일(unitary) 또는 멀티 구성요소 구성으로 된 하나 또는 그 이상의 광학 요소를 포함할 수 있다. 도 1에 도시된 상기 광학 패키지는 다양한 더 긴 파장 반도체 레이저로부터 다양한 더 짧은 파장 레이저 빔을 생성하는데 특히 유용한데, 예를 들면, 레이저 프로젝션 시스템에서 가시적 레이저원으로 사용될 수 있다.
상기 조절가능한 광학 구성요소(30)는 종종 상기 레이저(10)에 의해 방출된 출력 빔을 상기 파장 변환 장치(20)의 도파관 부로 포커싱하는 것이 어렵기 때문에 특히 유용하다. 예를 들어, MgO 도핑된 PPLN(periodically poled lithium niobate) 크리스탈과 같은 전형적인 SHG 크리스탈의 모드 직경은 수 마이크론 범위 내에 있을 수 있다. 도 1과 2를 함께 참조하면, 상기 광학 어셈블리(35)는 상기 파장 변환 장치(20)의 면(face)(22) 상에 비교가능한 크기의 빔 스폿(beam spot)(15)을 생성하도록 조절가능한 광학 구성요소(30)를 돕는다. 상기 조절가능한 광학 구성요소(30)는 조절 시 빔 각도 편차(beam angular deviation)가 도입되도록 구성되고, 이와 같이, 상기 파장 변환 장치(20)의 도파관 부(24)와 일적선으로 놓일 때까지 상기 파장 변환 장치(20)의 면(22) 상의 빔 스폿(15)의 위치를 변경함으로써 상기 파장 변환 장치(20)의 상기 도파관 부(24)와 상기 빔 스폿(15)을 능동적으로 정렬하는데 사용될 수 있다.
본 발명은 적절한 정렬 또는 정렬 정도를 결정하는 소정의 특정 방식으로 제한되는 것은 아니나, 상기 파장 변환 장치(20)의 상기 파장 변환된 출력의 광 경로에 예를 들어, 빔 스플리터(beam splitter; 40) 및 강도 센서(intensity sensor; 50)를 제공함으로써 모니터링 될 수 있음이 예상된다. 피드백 컨트롤러(feedback controller; 60)는 상기 강도 센서(50)에 의해 생성된 신호의 기능에 따라 상기 조절가능한 광학 구성요소(30)의 위치 또는 상태를 제어하는데 사용될 수 있다. 본 발명에 따른 정렬 루틴들(routines)은 상기 광학 패키지의 동작 동안 또는 상기 광학 패키지의 수명 주기의 소정 지점에서 광학 패키지를 설정할 때 수행될 수 있다.
도 1에 개략적으로 도시된 상기 조절가능한 광학 구성요소는 다양한 종래 또는 이미 개발된 형태들을 취할 수 있다. 예를 들어, 상기 조절가능한 광학 구성요소(30)는 하나 또는 그 이상의 이동가능한 마이크로-광-전자기계식(micro-opto-electromechanical) 미러들, 또는 상기 파장 변환 장치(20)의 입력면(22) 상의 상기 빔 스폿(15)의 위치가 변하도록 구성 및 배열된 기타 MEMS 또는 MOEMS 장치들을 포함할 수 있는 것으로 예상된다. 대안으로 또는 추가로, 상기 조절가능한 광학 구성요소(30)는 빔 조정 및/또는 빔 포커싱을 위해 구성된 하나 또는 그 이상의 액정 렌즈를 포함할 수 있다. 또한, 상기 조절가능한 광학 구성요소(30)는 마이크로-액추에이터에 장착된 하나 또는 그 이상의 미러 및/또는 렌즈를 포함할 수 있는 것으로 예상된다. 하나의 바람직한 실시 예에서, 상기 조절가능한 광학 구성요소는 상기 광학 어셈블리(35)에서 이동가능하거나 조절가능한 렌즈 형태를 취하고, 또 다른 조절 가능한 광학 구성요소(30)는 고정형 미러 형태를 취한다.
상기 조절가능한 광학 구성요소들이 이동가능한 마이크로-광-전자기계식 미러들을 포함할 때, 상기 미러들은 약 1 또는 2도의 정도의 값들로 상기 미러들에 의해 정의된 굴절각의 범위를 제한함으로써 상기 광학 패키지에서 진동에 대한 감도를 저하시키도록 설계될 수 있다. 실제, 본 발명자들은 1 내지 2도의 범위가 상기 광학 시스템의 초점 길이에 따라 50 내지 100마이크론 정도의 측상 빔 스폿 오정렬을 커버하기에 충분한 것으로 인식했다. 상기 바람직한 실시 예에서, 상기 조절가능한 광학 구성요소(30)의 표면 위의 입사각은 상기 미러에 의해 반사된 레이저광이 그것이 온 방향으로부터 동일한 렌즈 어셈블리(35)로 다시 보내기 위해 거의 1-2도 정도가 되도록 유지될 수 있다. 그 결과, 상기 조절가능한 광학 구성요소(30)에서 소정 미러 곡률 또는 더 큰 입사각에서 과장될 기타 광학적 에러들은 상기 렌즈 어셈블리(35) 또는 또 상기 광 경로의 기타 광학적 구성요소에 의해 쉽게 보정될 수 있다. 실제, 본 발명자들은 미러가 작은 입사각에서 사용될 때, 미러 곡률에 대한 결과가 상기 렌즈의 광학 축을 따라 한 구성요소를 이동시킴으로써 쉽게 보정될 수 있는 이미지 초점 위치에서의 변화임을 알았다. 반대로, 미러들이 상대적으로 큰 입사각에서 사용될 때, 미러 곡률은 비점(astigmatism) 또는 코마(coma)와 같은 수차를 생성할 수 있으며, 그 광학 구성요소들을 이동시키는 것만으로 바로잡기는 어렵다.
도 1에 도시된 상기 광학 구성에서, 마이크로-광-전자기계식 미러(30)는 상대적으로 컴팩트한 폴드드식-광 경로 광학 시스템에 포함된다. 상기 도시된 구성에서, 상기 마이크로-광-전자기계식 미러(30)는 광이 처음에 조준된 또는 거의 조준된 빔에 따라 상기 미러(30)에 도달하도록 상기 렌즈 어셈블리(35)를 통해 통과하고 이어 상기 파장 변환 장치(20)에 포커싱될 상기 동일한 렌즈 어셈블리(35)를 통해 귀환되도록 상기 광 경로를 폴딩(fold)하도록 구성된다. 이러한 타입의 광학 구성은 상기 반도체 레이저에 의해 생성된 레이저 빔의 단면 크기가 상기 파장 변환 장치(20)의 입력면 상의 빔 스폿을 포커싱하는데 있어 최적의 커플링을 산출하는 것과 가까운 크기인 상기 파장 변환 장치(20)의 입력면의 단면 크기에 가까울 경우, 파장 변환된 레이저원에 특히 적용가능하다. 본 발명을 정의하고 설명하기 위해, 여기서 "조준된 또는 거의 조준된" 빔에 대한 기준은 빔 디버전스(divergence) 또는 컨버전스(convergence) 정도가 감소되는 경우 더 조준된 상태를 향해 상기 빔을 보내는 소정의 빔 구성을 포함하도록 한다는 것을 염두에 두어야 한다.
상기 렌즈 어셈블리(35)는 그것이 상기 패키지의 광 경로를 따라 전파되는 상기 레이저 광을 조준 및 포커싱하도록 제공되기 때문에 광학 구성요소를 조준하고 포커싱하는 두 가지 기능으로 설명될 수 있다. 이와 같은 두 가지 기능의 광학 구성요소는 단일 렌즈 어셈블리(35)가 조준 및 포커싱 모두에 사용되기 때문에 그와 가까운 증폭도를 필요로 하는 어플리케이션에 매우 적합하다. 보다 자세하게, 도 1에 도시된 바와 같이, 상기 반도체 레이저(10)로부터 레이저 광 출력이 연속적으로 상기 렌즈 어셈블리(35)의 제1 면(31)에서 굴절되고, 상기 렌즈 어셈블리(35)의 제2 면(32)에서 굴절되며, 상기 렌즈 어셈블리(35)의 방향으로 상기 조절가능한 광학 구성요소(30)에 의해 반사된다. 일단 상기 레이저 광이 상기 렌즈 어셈블리(35)의 방향으로 다시 반사되면, 그 광은 먼저 상기 렌즈 어셈블리(35)의 제2 면(32)에서 굴절되고, 이어 상기 파장 변환 장치(20)의 입력면 상에 포커싱하기 위해 상기 렌즈 어셈블리(35)의 제1 면(31)에서 굴절된다.
본 발명의 특정 실시 예에서, 상기 조절가능한 광학 구성요소(30)는 상기 파장 변환 장치(20)의 입력면(22) 상에 입사된 주요 광선이 상기 광학 패키지의 출력에서 상기 주요 광선과 거의 평행하도록 상기 렌즈 어셈블리(35)의 이미지 초점에 충분히 가깝게 배치된다. 또한, 도 1에 도시된 구성에서도 수차라는 일부 이점을 나타낸 것이 도시될 수 있다. 실제, 상기 반도체 레이저(10)의 출력면과 상기 파장 변환 장치(20)의 입력면이 상기 렌즈 어셈블리(35)의 물체 초점면과 근접한 배열로 위치되고, 상기 반도체 레이저(10)의 출력 도파관과 상기 파장 변환 장치(20)의 입력 도파관이 상기 렌즈 어셈블리(35)의 광축에 대해 대칭일 때, 코마와 같은 반 대칭계 수차(anti symmetric field aberrations)가 자동으로 보정될 수 있을 것으로 예상된다.
본 발명의 전술한 상세 설명은 청구된 것처럼 본 발명의 성격과 특성을 이해하기 위한 개요 또는 프레임워크를 제공하는 것으로 간주 된다는 것을 이해해야 한다. 다양한 변형 및 변경은 본 발명의 정신과 범위를 벗어나지 않고 본 발명에 대해 작성될 수 있다는 점은 본 발명이 속하는 분야에서 통상의 지식을 갖는 자들에게 명백할 것이다. 예를 들어, 상기 광학 패키지는 상기 파장 변환 장치의 입력면에 비례해 상기 반도체 레이저에 의해 생성된 빔 스폿의 포커스 위치를 변경하도록 구성된 하나 또는 그 이상의 액정 렌즈 구성요소와 같은 초점 조절가능한 광학 구성요소를 더 포함할 수 있다. 따라서, 본 발명은 그것들이 수반된 청구항과 그 상응물의 범위 내에 오도록 제공된 이러한 발명의 변형 및 변경을 포함하도록 의도된다.
본 명세서에서 본 발명을 기재하고 정의하기 위해서, 용어 "실질적으로" 및 "거의"는, 소정의 양적인 비교, 값, 측정 또는 그 밖의 표현에 기여할 수 있는 고유한 정도의 불확실성을 나타내는데 사용된다. 또한, 본 명세서에서 용어 "실질적으로" 및 "거의"는, 양적인 표현이 논쟁중인 주제의 기본 기능에 있어서의 변화되는 없이 언급된 기준으로부터 변할 수 있는 정도를 표현하는데 사용된다.
특정한 성질 또는 기능을 구현하기 위해서 특정 방식으로 "구성된" 본 발명의 구성요소의 본 명세서에서의 기재는 의도된 사용의 상술에 대향하는 것으로 구조적인 기재이다.
"바람직하게는", "통상적으로" 및, "전형적으로"와 같은 용어는, 본 명세서에서 사용될 때, 청구된 발명의 범위를 제한하거나 소정의 형태가 임계적이거나, 기본적이거나 또는 청구된 발명의 구조 또는 기능에 대해서 중요한 것을 의미하려는 의도는 아니다. 게다가, 이들 용어는 단지, 본 발명의 특정 실시 예에서 사용되거나 사용되지 않을 수 있는 가장 중요한 대안 또는 추가적인 형태만을 의도한다.
10: 반도체 레이저 20: 파장 변환 장치
30: 조절가능한 광학 구성요소 35: 광학 어셈블리
40: 빔 스플리터 50: 강도 센서
60: 피드백 컨트롤러

Claims (19)

  1. 반도체 레이저, 파장 변환 장치, 렌즈 어셈블리, 및 하나 또는 그 이상의 조절가능한 광학 구성요소를 포함하는 광학 패키지에 있어서,
    상기 렌즈 어셈블리와 상기 조절가능한 광학 구성요소는 상기 반도체 레이저의 출력 빔을 상기 파장 변환 장치의 입력면을 쪽으로 보내 상기 파장 변환 장치의 입력면 상의 상기 출력빔의 위치를 변경하도록 구성되며;
    상기 렌즈 어셈블리와 상기 조절가능한 광학 구성요소는 광 경로를 따라 상기 반도체 레이저로부터 상기 파장 변환 장치로 전파되는 레이저 광이 상기 조절가능한 광학 구성요소에 의해 반사되기 전 상기 렌즈 어셈블리에 의해 먼저 조준되고, 상기 조절가능한 구성요소에 의해 반사된 후 상기 파장 변환 장치의 입력면 상에 상기 동일한 렌즈 어셈블리에 의해 포커싱되도록 폴디드식 광 경로를 정의하도록 더 구성되는 것을 특징으로 하는 광학 패키지.
  2. 청구항 1에 있어서, 상기 렌즈 어셈블리와 상기 조절가능한 광학 구성요소는,
    상기 반도체 레이저로부터의 레이저 광 출력이 연속적으로 상기 렌즈 어셈블리의 제1 면에서 굴절되고, 상기 렌즈 어셈블리의 제2 면에서 굴절되며, 상기 조절가능한 광학 구성요소에 의해 상기 렌즈 어셈블리의 방향으로 반사되며;
    상기 레이저 광이 상기 렌즈 어셈블리의 방향으로 다시 반사되면, 상기 렌즈 어셈블리의 상기 제2면에서 먼저 굴절되고, 이어 상기 파장 변환 장치의 입력면 상에 포커싱하기 위해 상기 렌즈 어셈블리의 상기 제1면에서 굴절되는 것을 특징으로 하는 광학 패키지.
  3. 청구항 1에 있어서, 상기 조절가능한 광학 구성요소는 상기 파장 변환 장치의 입력면 상에 입사된 주요 광선이 상기 광학 패키지의 출력에서 상기 주요 광선과 평행하도록 상기 렌즈 어셈블리의 이미지 초점에 충분히 가깝게 배치되는 것을 특징으로 하는 광학 패키지.
  4. 청구항 1에 있어서, 상기 반도체 레이저, 상기 파장 변환 장치 및 상기 렌즈 어셈블리는 상기 반도체 레이저의 출력면과 상기 파장 변환 장치의 입력면이 상기 렌즈 어셈블리의 물체 초점면과 근접 배열로 위치되는 것을 특징으로 하는 광학 패키지.
  5. 청구항 1에 있어서, 상기 반도체 레이저, 상기 파장 변환 장치, 및 상기 렌즈 어셈블리는 상기 반도체 레이저의 출력 도파관과 상기 파장 변환 장치의 입력 도파관이 상기 렌즈 어셈블리의 광축에 대해 대칭되도록 구성되는 것을 특징으로 하는 광학 패키지.
  6. 청구항 1에 있어서,
    상기 반도체 레이저, 상기 파장 변환 장치, 및 상기 렌즈 어셈블리는,
    상기 반도체 레이저의 출력면과 상기 파장 변환 장치의 입력면이 상기 렌즈 어셈블리의 물체 초점면에 근사 배열로 위치되고;
    상기 반도체 레이저의 출력 도파관과 상기 파장 변환 장치의 입력 도파관이 상기 렌즈 어셈블리의 광축에 대해 대칭되도록 구성되는 것을 특징으로 하는 광학 패키지.
  7. 청구항 1에 있어서, 상기 렌즈 어셈블리와 상기 조절가능한 광학 구성요소는 광이 처음에 조준된 빔에 따라 상기 조절가능한 광학 구성요소에 도달하도록 상기 렌즈 어셈블리를 통해 통과하고, 이어 상기 파장 변환 장치에 포커싱될 상기 동일한 렌즈 어셈블리를 통해 귀환되도록 광 경로를 폴딩하도록 구성되는 것을 특징으로 하는 광학 패키지.
  8. 청구항 1에 있어서, 상기 렌즈 어셈블리와 상기 조절가능한 광학 구성요소는 상기 조절가능한 광학 구성요소의 표면 위에 상기 렌즈 어셈블리로부터 전파되는 레이저광의 입사각이 1 내지 2도 정도가 되도록 더 구성되는 것을 특징으로 하는 광학 패키지.
  9. 청구항 1에 있어서, 상기 반도체 레이저와 상기 파장 변환 장치는 상기 파장 변환 장치의 입력면 상에 상기 반도체 레이저의 출력 빔의 빔 스폿을 포커싱하기 위해 상기 요구된 광학적 크기가 1과 같도록 구성되는 것을 특징으로 하는 광학 패키지.
  10. 청구항 1에 있어서, 상기 반도체 레이저는 적외선 또는 근적외선 방출을 위해 구성되고 상기 파장 변환 장치는 상기 레이저 방출을 파장 변환된 녹색 또는 청색 방출로 변환되도록 구성되는 것을 특징으로 하는 광학 패키지.
  11. 청구항 1에 있어서,
    상기 광학 패키지는 피드백 컨트롤러에 결합된 강도 센서를 더 포함하며,
    상기 강도 센서는 상기 파장 변환 장치의 입력면 상의 출력 빔의 위치가 변함에 따라 상기 파장 변환 장치의 파장 변환된 출력의 강도를 모니터링하도록 구성되는 것을 특징으로 하는 광학 패키지.
  12. 청구항 11에 있어서, 상기 피드백 컨트롤러는 상기 강도 센서에 의해 생성된 신호의 기능에 따라 조절가능한 광학 구성요소의 위치 또는 상태를 제어하도록 구성되는 것을 특징으로 하는 광학 패키지.
  13. 청구항 1에 있어서, 상기 조절가능한 광학 구성요소는 상기 파장 변환 장치의 입력면 상의 빔 스폿의 위치를 변경하도록 구성되고 배열된 하나 또는 그 이상의 이동가능한 마이크로-광-전자기계식(micor-opto-electromechanical) 미러를 포함하는 것을 특징으로 하는 광학 패키지.
  14. 청구항 1에 있어서, 상기 파장 변환 장치의 입력면에 대한 상기 반도체 레이저에 의해 생성된 빔 스폿의 초점 위치를 변경하도록 구성된 초점 조절가능한 광학 구성요소를 더 포함하는 것을 특징으로 하는 광학 패키지.
  15. 청구항 1에 있어서, 렌즈 어셈블리를 형성하는 단일 렌즈 및 상기 조절가능한 광학 구성요소를 형성하는 단일 MEMS 또는 MEOMS 미러를 포함하는 것을 특징으로 하는 광학 패키지.
  16. 청구항 1에 있어서, 상기 조절가능한 광학 구성요소는 조절시 빔 각도 편차를 도입하도록 구성된 것을 특징으로 하는 광학 패키지.
  17. 청구항 1에 있어서,
    상기 렌즈 어셈블리는 상기 조절가능한 광학 구성요소에 따라 조절가능한 렌즈 구성요소를 포함하며;
    상기 폴디드식 광학 경로에 고정형 미러를 더 포함하는 것을 특징으로 하는 광학 패키지.
  18. 반도체 레이저, 파장 변환 장치, 렌즈 어셈블리, 및 하나 또는 그 이상의 조절가능한 광학 구성요소를 포함하는 광학 패키지에 있어서,
    상기 렌즈 어셈블리와 상기 조절가능한 광학 구성요소는 상기 반도체 레이저의 출력 빔을 상기 파장 변환 장치의 입력면 쪽으로 보내 상기 파장 변환 장치의 상기 입력면 상의 상기 출력 빔의 위치를 변경하도록 구성되고;
    상기 렌즈 어셈블리와 상기 조절가능한 광학 구성요소는 상기 반도체 레이저의 레이저 광 출력이 연속적으로 상기 렌즈 어셈블리의 제1면에서 굴절되고, 상기 렌즈 어셈블리의 제2면에서 굴절되고, 상기 렌즈 어셈블리의 방향으로 상기 조절가능한 광학 구성요소에 의해 굴절되며, 일단 상기 레이저 광이 상기 렌즈 어셈블리의 방향으로 다시 반사되면, 상기 레이저 광이 상기 렌즈 어셈블리의 상기 제2면에서 먼저 굴절되고, 이어 상기 렌즈 어셈블리의 상기 제1면에서 굴절되도록 구성된 것을 특징으로 하는 광학 패키지.
  19. 반도체 레이저, 파장 변환 장치, 렌즈 어셈블리, 및 하나 또는 그 이상의 조절가능한 광학 구성요소를 포함하는 광학 패키지에 있어서,
    상기 반도체 레이저의 출력 빔은 상기 파장 변환 장치의 입력면 쪽으로 보내 상기 파장 변환 장치의 상기 입력면 상의 상기 출력 빔의 위치를 변경하도록 구성되고;
    상기 렌즈 어셈블리와 상기 조절가능한 광학 구성요소는 상기 반도체 레이저로부터 상기 파장 변환까지의 광 경로를 따라 전파되는 레이저 광이 상기 조절가능한 광학 구성요소에 의해 반사되기 전 상기 렌즈 어셈블리에 의해 조준되고, 상기 조절가능한 광학 구성요소에 의해 반사된 후 상기 파장 변환 장치의 입력면 상에 상기 렌즈 어셈블리에 의해 포커싱되도록 폴디드식 광학 경로를 정의하고;
    상기 반도체 레이저로부터 출력된 레이저 광이 연속적으로 상기 렌즈 어셈블리의 제1면에서 굴절되고, 상기 렌즈 어셈블리의 제2면에서 굴절되며, 상기 렌즈 어셈블리의 방향으로 상기 조절가능한 광학 구성요소에 의해 반사되고;
    일단 상기 레이저 광이 상기 렌즈 어셈블리의 방향으로 다시 반사되면, 상기 파장 변환 장치의 입력면 상에 포커싱하기 위해 먼저 상기 렌즈 어셈블리의 상기 제2면에서 굴절되고, 이어 상기 렌즈 어셈블리의 상기 제1면에서 굴절되고;
    상기 조절가능한 광학 구성요소는 상기 렌즈 어셈블리로부터 상기 파장 변환 장치까지 전파되는 레이저 광의 광 경로가 상기 파장 변환 장치의 상기 입력면과 수직하게 되도록 상기 렌즈 어셈블리의 이미지 초점 지점에 충분히 가깝게 배치되고;
    상기 렌즈 어셈블리와 상기 조절가능한 광학 구성요소는 처음에 조준된 빔에 따라 상기 조절가능한 광학 구성요소에 도달하기 위해 상기 렌즈 어셈블리를 통해 통과하고, 이어 상기 파장 변환 장치상에 포커싱될 상기 동일한 렌즈 어셈블리를 통해 귀환되도록 상기 광 경로를 폴딩하고;
    상기 조절가능한 광학 구성요소의 표면 위에 상기 렌즈 어셈블리로부터 전파되는 레이저 광의 입사각이 1 내지 2도 정도이며;
    상기 파장 변환 장치의 입력면 상에 상기 반도체 레이저의 출력 빔의 빔 스폿을 포커싱하기 위해 상기 요구된 광학적 크기가 1과 같은 것을 특징으로 하는 광학 패키지.
KR1020107003749A 2007-07-20 2008-07-18 파장-변환 레이저원을 위한 광학 구성 KR20100043257A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/880,250 2007-07-20
US11/880,250 US7457031B1 (en) 2007-07-20 2007-07-20 Optical configurations for wavelength-converted laser sources

Publications (1)

Publication Number Publication Date
KR20100043257A true KR20100043257A (ko) 2010-04-28

Family

ID=40029500

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107003749A KR20100043257A (ko) 2007-07-20 2008-07-18 파장-변환 레이저원을 위한 광학 구성

Country Status (7)

Country Link
US (1) US7457031B1 (ko)
EP (1) EP2176705A2 (ko)
JP (1) JP2010534356A (ko)
KR (1) KR20100043257A (ko)
CN (1) CN101779161B (ko)
TW (1) TWI366727B (ko)
WO (1) WO2009014664A2 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7756170B2 (en) * 2007-07-20 2010-07-13 Corning Incorporated Frequency modulation in the optical alignment of wavelength-converted laser sources
US7542492B2 (en) * 2007-08-01 2009-06-02 Corning Incorporated Controlled misalignment in wavelength-converted laser sources
US7751045B2 (en) * 2008-01-30 2010-07-06 Corning Incorporated Methods and system for aligning optical packages
US7835065B2 (en) * 2008-01-30 2010-11-16 Corning Incorporated Optical packages and methods for aligning optical packages
US7729397B1 (en) * 2008-12-16 2010-06-01 Corning Incorporated Multi-variable control methods for optical packages
US7898750B2 (en) * 2009-02-26 2011-03-01 Corning Incorporated Folded optical system and a lens for use in the optical system
TW201110489A (en) * 2009-04-30 2011-03-16 Corning Inc Folded lasers system
US8325332B2 (en) 2010-07-30 2012-12-04 Corning Incorporated Start-up methods for frequency converted light sources

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213823A (ja) * 1989-02-15 1990-08-24 Fuji Photo Film Co Ltd 光波長変換装置
JPH04318819A (ja) * 1991-04-18 1992-11-10 Pioneer Electron Corp 光波長変換装置
US5216729A (en) 1991-11-18 1993-06-01 Harmonic Lightwaves, Inc. Active alignment system for laser to fiber coupling
JPH05224264A (ja) * 1992-02-17 1993-09-03 Sumitomo Electric Ind Ltd 光波長変換モジュール
KR0174775B1 (ko) * 1994-03-28 1999-04-01 스기야마 가즈히꼬 파장변환 도파로형 레이저 장치
US6178188B1 (en) 1997-12-11 2001-01-23 Photera Technologies, Inc Laser assembly platform with silicon base
AU2002327432A1 (en) * 2001-08-08 2003-02-24 Santur Corporation Method and system for selecting an output of a vcsel array
JP3954434B2 (ja) 2002-05-22 2007-08-08 ペンタックス株式会社 光通信装置
AUPS266302A0 (en) 2002-05-30 2002-06-20 Clvr Pty Ltd Solid state uv laser
US6806986B2 (en) * 2002-06-14 2004-10-19 Nippon Telegraph And Telephone Corporation Wavelength converter and wavelength converting apparatus
EP1595172A2 (en) 2002-11-08 2005-11-16 Nanolign, Inc. Dynamic micro-positioning and aligning apparatus and method
JP4493538B2 (ja) * 2005-03-31 2010-06-30 富士通株式会社 波長選択スイッチ
JP4515963B2 (ja) * 2005-06-03 2010-08-04 日本電信電話株式会社 光クロスコネクトシステムの接続状態監視装置
JP2007109978A (ja) * 2005-10-14 2007-04-26 Konica Minolta Opto Inc 半導体光源モジュール
JP2007109979A (ja) * 2005-10-14 2007-04-26 Konica Minolta Opto Inc 半導体光源モジュール
US7511880B2 (en) 2005-10-14 2009-03-31 Konica Minolta Opto, Inc. Semiconductor light source module
US7941051B2 (en) 2006-07-21 2011-05-10 Konica Minolta Opto, Inc. Laser optical device and control method of actuator

Also Published As

Publication number Publication date
CN101779161A (zh) 2010-07-14
WO2009014664A2 (en) 2009-01-29
TW200921233A (en) 2009-05-16
WO2009014664A3 (en) 2009-07-09
EP2176705A2 (en) 2010-04-21
TWI366727B (en) 2012-06-21
CN101779161B (zh) 2012-10-03
JP2010534356A (ja) 2010-11-04
US7457031B1 (en) 2008-11-25

Similar Documents

Publication Publication Date Title
EP2179481B1 (en) Alignment method in wavelength-converted, wavelength-modulated semiconductor lasers
US7751045B2 (en) Methods and system for aligning optical packages
US7835065B2 (en) Optical packages and methods for aligning optical packages
KR20100043257A (ko) 파장-변환 레이저원을 위한 광학 구성
US7542492B2 (en) Controlled misalignment in wavelength-converted laser sources
US20100272134A1 (en) Rapid Alignment Methods For Optical Packages
US8294130B2 (en) Methods and systems for optimizing the alignment of optical packages
US8553734B2 (en) Frequency conversion of laser radiation
US7991254B2 (en) Optical package with multi-component mounting frame
KR20220077447A (ko) 광학 파라메트릭 발진기 및 이를 포함한 레이저 표적지시 및 거리측정 장치
JP6763121B2 (ja) レーザ装置
JP2015510273A (ja) レーザアーキテクチャ
WO2024202182A1 (ja) 光源装置
WO2024202183A1 (ja) 光源装置
JPH052202A (ja) 高調波発生装置

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid