TW201110489A - Folded lasers system - Google Patents

Folded lasers system Download PDF

Info

Publication number
TW201110489A
TW201110489A TW099113593A TW99113593A TW201110489A TW 201110489 A TW201110489 A TW 201110489A TW 099113593 A TW099113593 A TW 099113593A TW 99113593 A TW99113593 A TW 99113593A TW 201110489 A TW201110489 A TW 201110489A
Authority
TW
Taiwan
Prior art keywords
laser
lens assembly
laser system
light source
diode
Prior art date
Application number
TW099113593A
Other languages
Chinese (zh)
Inventor
Etienne Almoric
Jacques Gollier
Jr Lawrence Charles Hughes
Garrett Andrew Piech
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of TW201110489A publication Critical patent/TW201110489A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • H01S5/0035Simulations of laser characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0092Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique
    • H01S5/1085Oblique facets

Abstract

A folded laser system having an optical axis, the laser system comprising: (I) a coherent light source; (II) a reflector; (III) a lens component situated between the light source and the reflector; and (IV) a non-linear optical crystal, wherein the light source and the non-linear optical crystal are separated by a distance d > 50 μ m. The lens component is positioned to provide a collimated beam when intercepting light from the light source, such that the collimated beam is at an angle Θ ' to the optical axis, the reflector is situated to intercept the collimated beam and to reflect the collimated beam to the non-linear optical crystal through the lens; and the lens component is structured to provide an image on the non-linear optical crystal.

Description

201110489 六、發明說明: 【發明所屬之技術領域】 本發明一般係關於折疊雷射以及特別是關於具有非線 性光學波長轉換器例如倍頻綠色雷射之折疊雷射系統。 【先前技術】 可藉由紅外線的非線性倍頻以產生綠色的雷射光。— 般而言,如圖1A所示來自紅外線二極體3的光束2,會指向到 譬如週期性極化鈮酸链(PPLN)的非線性光學晶體4,在其中 轉換成綠色光線5。 製造這種型態的雷射現實面的挑戰有下列幾項。第— ’因為是使用小型光學波導來侷限二極體雷射和非線性光 學晶體的光線,元件(透鏡,非線性晶體和二極體雷射)的對 齊容限大約是數十微米。這便減t射最初的組裝和雷射 使用期間維縣齊的兩概戰。第二,非線性光學晶體的 輸出功率對溫度的波動和雷射提供紅外線光學波長的移位 很敏感。整個非線性光學晶體的溫度梯度可能導致綠色雷 射的輸出功率降低(即離開非線性光學晶體的輪出功率)。 【發明内容】201110489 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to folding lasers and, in particular, to a folded laser system having a nonlinear optical wavelength converter such as a frequency doubled green laser. [Prior Art] Green laser light can be generated by nonlinear multiplication of infrared rays. In general, the light beam 2 from the infrared diode 3 as shown in Fig. 1A is directed to a nonlinear optical crystal 4 such as a periodically poled tantalum chain (PPLN), in which it is converted into green light 5. The challenges of creating this type of laser reality face are as follows. The first—because the small optical waveguide is used to limit the light of the diode laser and the nonlinear optical crystal, the alignment tolerance of the component (lens, nonlinear crystal and diode laser) is about tens of microns. This will reduce the initial assembly and the two battles of the county during the use of the laser. Second, the output power of a nonlinear optical crystal is sensitive to temperature fluctuations and the displacement of the laser that provides infrared optical wavelengths. The temperature gradient across the nonlinear optical crystal may result in a decrease in the output power of the green laser (i.e., the exit power leaving the nonlinear optical crystal). [Summary of the Invention]

本發明的—卿性是具有光㈣财式雷射系統,此 系統包括:⑴_光源;⑼反射ϋ;(ΙΠ)位於光源以及 ^射器之間的透鏡組件;和⑽雜性光學晶體,光源和非 =^學晶體之間以距離d>5G_分開。當從光源搁截光 Μ,’ ί位透鏡組件以提鮮直縣减準直光束和光軸 度,構成非線性光學晶體上同調光源的影像。讓反 201110489 射器經由透麵鮮絲束,並反鱗直絲到非線性光 學晶體。 同5周光源和非線性光學晶體最好是以空氣間隙隔開。 依據-些實施例,雷射系統是綠色的雷射,光源是紅外線( 11〇二極體雷射’接收器是非線性光學晶體譬如第二諧波產 生器(SHG),用來將IR光線轉換成綠色光線。 本發明雷射系統實施例的綠色雷射提供的優點是:光 學元件具有相對寬鬆的對齊容限;對二極體雷射產生的熱 有低敏感性;和由於改善二極體雷射和非線性光學晶體之 間輕合產生最大化綠色觀效能。本侧實_提供的其 它優點是:最小化整個非線性光學晶體的溫度梯度,和最小 化由於到達二極體雷射的雜性光學晶體令人討厭的反射 和/或向後散射所造成的光學反饋影響。 本發明其他特性及優點揭示於下列說明,以及部份可 由說明清楚瞭解,簡㈣施下列說明以及㈣專利範圍 以及附圖而明瞭。 人們瞭解先前-般說明及τ列詳細說明只作為範例性 及說明性,以及預期提供概要或架構以瞭解申請專利範圍 界定出本發明原理及特性。所包含附圖將更進一步提供了 解本發明以及在此加入以及構成說明書之一部份。 【實施方式】 現在參考本發明優先實施例詳細作說明,其範例顯示 於附圖中。儘可能地,整個附圖中相同的參考數字代表相 同的或類似的元件。本發明雷射祕之—項範例性實施例 201110489 說明書中以參考數字10表示。 腔設計的倍式雷射系、统10為具有指疊空 束22的料。w射。在缉射系統10中,光線以發散光 取並準狀源2G發出光線並由—個透鏡組件30擷 件3〇最好是在遠心的情況下運作。也就 在無線、土卢。-置透鏡組件3,以使光學系統的射出光瞳位 :遇处。同5周光源2〇最好是小(❿心,相對高功率(〉 =,並以高逮(約1()MHz或較高)調節 。在這個實施例中 ’調光源2G是紅外線⑽半導體雷射(IR二極體雷射2〇,) 波=體雷射20’包括二極體波導2〇, a。ir光線從二極體 / A的輸出面以發散光束烈放射。二極體波導的輸出 w以垂直於波導細形成,或者可以減波導軸的一個 角度(未穿過。發散光束22是以Ι/e2放射的半形θ, 例如錢,方向是2G度,而在另—方向(垂直)是7度。放射 、半幵ν Θ疋相對於同調光源提供的平均放射角度(光束中 來則里。準直⑽光束40以角度㊀’朝向反射器50,然 ^攸反射器50反射回透鏡組件30。依據-些實施例,最好 5弧度$㊀$ 〇. 2弧度,更好是〇. 〇9弧度g㊀’ $ 〇. 17 弧度/例如,反射器5〇可以是平面的鏡子。反射光束經由 f鏡、、且件30朝向影像平面60聚焦在非線性光學晶體7〇,的 曰曰體波導A(波導部份)的輸人面。也就是說,透鏡組件 30在非線性光學晶體70,的晶體波導70, A的輸入面上提供 二極體波導2G,A輪出面的影像。 例如’非線性光學晶體70,可以是譬如週期性極化鈮酸 201110489 鐘(PPLN)晶體的第二諧波產生器(SHG)。也可以使用其他 非線性光學晶體。在這個實施例中,非線性光學晶體7〇,接 收透鏡組件30提供的IR光線,並將其轉換為綠色光線5。 透鏡組件30最好有較短的焦距(最好小於5mm,更好小 於3麵,再更好小於2刪,),和低像散現象以達到同調光源2〇 和非線性光學晶體7〇,的晶體波導70, A之間最佳的光學耗 合,一方面最小化(i)溫度改變導致的失焦,和(ii)整個雷 射系統10的尺寸。 反射器50可以是傳統的(固定的)平面鏡子,或者是以 傾斜/偏斜角度啟動的鏡子譬如微電機械系統(MEMS)的鏡 子。二極體波導2〇, a和晶體波導70, A之間光線的耦合可以 兩種主要的方式調整。第一,透鏡組件30的位置可以x,y, 或z(焦距)方向移動。第二,可以傾斜鏡子5〇。因為鏡子是 位在紅外線光束的準直空間,角度調整會導致晶體輸入面 反射和聚焦光束的位置(x,y)移動。非線性光學晶體7〇(餘 如PPLN晶體)將從晶體波導7〇, A輸出面射出的一部分紅=卜 線轉換成綠色光線(® 1B)。因此,可婦透鏡組件3〇的位 置或反射II 50的角度以移動非線性光學晶體7Q’晶體波導 7〇’ A輸入面上的焦點。The present invention is a light (four) financial laser system comprising: (1) a light source; (9) a reflective pupil; (a) a lens assembly between the light source and the emitter; and (10) a hybrid optical crystal, The light source and the non-^^ crystal are separated by a distance d > 5G_. When the light is intercepted from the light source, the lens assembly reduces the straight beam and the optical axis to form an image of the coherent light source on the nonlinear optical crystal. Let the anti-201110489 emitter pass through the fresh-spun strands and straighten the filaments to the nonlinear optical crystal. The same 5 week light source and nonlinear optical crystal are preferably separated by an air gap. According to some embodiments, the laser system is a green laser and the light source is infrared (the 11 〇 diode laser 'receiver is a nonlinear optical crystal such as a second harmonic generator (SHG) for converting IR light Green light. The green laser of the laser system embodiment of the present invention provides the advantages of optical components having relatively loose alignment tolerances; low sensitivity to heat generated by diode lasers; and improved diodes The light coupling between the laser and the nonlinear optical crystal produces a maximum green performance. Other advantages provided by this side are: minimizing the temperature gradient of the entire nonlinear optical crystal, and minimizing the arrival of the diode laser Optical feedback effects caused by unpleasant reflections and/or backscattering of the hybrid optical crystals. Other features and advantages of the present invention are disclosed in the following description, and some of the following descriptions can be clearly understood, the following descriptions and the scope of patents and The prior art is well understood and the detailed description of the τ column is for exemplary and illustrative purposes only, and it is intended to provide a summary or architecture to understand the patent application. The principles and features of the present invention are defined by the accompanying drawings, which are set forth in the accompanying drawings. In the drawings, the same reference numerals are used throughout the drawings to refer to the same or similar elements. The exemplary embodiment of the present invention is disclosed by reference numeral 10. The laser system 10 is a material having a stack of empty beams 22. In the radiation system 10, the light is taken out by divergent light and the source 2G emits light and is driven by a lens assembly 30. It is best to operate in a telecentric situation. It is also in the wireless, Tulu. - Lens assembly 3, so that the optical system's exit pupil position: encounter. The same 5 weeks light source 2 is preferably small (heart , relatively high power (> =, and adjusted at high (about 1 () MHz or higher). In this embodiment 'the light source 2G is an infrared (10) semiconductor laser (IR diode laser 2 〇,) Wave = body laser 20' includes a diode waveguide 2〇, The ir ray radiates from the output face of the diode/A with a divergent beam. The output w of the diode waveguide is formed perpendicular to the waveguide, or can be reduced at an angle of the waveguide axis (not traversed. The divergent beam 22 is The half-shape θ emitted by Ι/e2, such as money, is 2G degrees in the direction, and 7 degrees in the other direction (vertical). The average radiation angle provided by the radiation, half 幵ν Θ疋 relative to the homogenous light source (in the light beam The collimating (10) beam 40 is angled ' toward the reflector 50, and the reflector 50 is reflected back to the lens assembly 30. According to some embodiments, preferably 5 radians $1 〇. 2 radians, more preferably 〇. 〇9 radians g_' 〇. 17 radians/for example, the reflector 5〇 can be a planar mirror. The reflected beam is focused on the nonlinear optical crystal 7〇 via the f-mirror, and the member 30 is directed toward the image plane 60. The input surface of the body waveguide A (waveguide portion). That is, the lens assembly 30 provides an image of the diode exit 2G, the A wheel face, on the input face of the crystal waveguide 70, A of the nonlinear optical crystal 70. For example, the 'non-linear optical crystal 70' may be, for example, a second harmonic generator (SHG) of a periodically-polarized decanoic acid 201110489 clock (PPLN) crystal. Other nonlinear optical crystals can also be used. In this embodiment, the nonlinear optical crystal 7 is received by the IR light supplied from the lens assembly 30 and converted into green light 5. Lens assembly 30 preferably has a shorter focal length (preferably less than 5 mm, more preferably less than 3 faces, and even less preferably less than 2), and a low astigmatism to achieve a coherent light source 2 非线性 and a nonlinear optical crystal 7 〇, The optimal optical fit between the crystal waveguides 70, A minimizes (i) defocusing due to temperature changes, and (ii) the size of the entire laser system 10. The reflector 50 can be a conventional (fixed) planar mirror, or a mirror that is activated at a tilt/deflection angle, such as a microelectromechanical system (MEMS) mirror. The coupling of the light between the diode waveguide 2A, a and the crystal waveguide 70, A can be adjusted in two main ways. First, the position of the lens assembly 30 can be moved in the x, y, or z (focal length) direction. Second, the mirror 5 can be tilted. Since the mirror is in the collimating space of the infrared beam, the angle adjustment causes the crystal input surface to reflect and the position (x, y) of the focused beam to move. The nonlinear optical crystal 7 〇 (e.g., PPLN crystal) converts a part of the red = line emitted from the crystal waveguide 7 〇, A output surface into green light (® 1B). Thus, the position of the lens assembly 3〇 or the angle of the reflection II 50 is moved to shift the focus on the input face of the nonlinear optical crystal 7Q' crystal waveguide 7〇'.

在這個例子中,光源2〇和接收器(非線性光學晶體7〇,) 相對著光軸GA(透鏡組件3g的光軸)分開,並且相對光轴對 稱或近乎對稱地放置(離對稱軸士1〇〇微米内,最好是±5〇 微米内),。更明確地說,為了最小化非線性光學晶體7〇,晶 體波導70, A輸入面上光束的像差,紅外線二極體2〇,的二: 6 201110489 體波導20’ A的輸出面’和非線性光學晶體7〇,晶體波導7〇, A 的輸入面就要分開小小的空氣_,和透鏡組件3{)的焦距 比起來還小的距離d(即d《f)。優先地,透鏡3Q之焦距f為i ^ 1mm, 1. 3mm, 1. 5mm, 1. 7mm, 2mm, 或2· 5mm。優先地,光源20與非線性光學晶體?〇,間之分離 為30微米SdS1500微米,更優先地5〇微米微米, 更優先地100彳政米SdS600微米,更優先地15〇微米; 500微米以及最優先地300微米$dS500微米。例如,距離 d為75微米’ 100微米,125微米,150微米,2〇〇微米,250微米, 300微米,400微米,或450微米。因而,在該實施例中光源 (二極體雷射20’)以及接收器7〇(非線性光學晶體)沿著 γ軸相對於光軸偏心達到距離d,=d/2,例如為d,=d/2±1〇〇 U米。優先地,偏心距離d’等於d/2或在d/2之50微米内(即 d’=d/2±50 微米)。 這裡描述的指疊式雷射系統設計(譬如請見圖1B,2, 6, 8A和8B),因為光控本身折疊,具有減少雷射腔整個長度(因 而是減少雷射套組大小)的優點。因為同樣的透鏡組件3〇 使用兩次,一次是準直光束,一次是再聚焦光線在非線性光 子曰日體70晶體波導70’ A的輸入面上,摺疊式雷射系統設計 也可以很有利地最小化透鏡組件3〇所產生非對稱光學像差 的效果。有了穩定和精準的技術,雷射系統10可以完全是 被動的(亦即可不包括移動元件)。(此種設計顯示於圖1〇) 。或者,如上所述,雷射系統10可以很容易利用譬如MEMS鏡 子的可調整反射器,在PPU輸入面的兩個橫向主動對齊聚 201110489 焦光束。 摺疊式設計的時做會產生很多挑戰。第―,因為摺曼 式雷射系統設計利用相對著透鏡組件30光軸分開的光源( -極體雷射20)和接收附線性晶體7()),呈現_的光學 ,差可能娜加以控制。必縣持很小的絲像差以達到 從二極體雷射2G’ ί彳非線性光學晶體7()’的高度搞合。本發 明綠色雷射實施例1G的優財,即使透鏡組件3()沒有對 也^持很小的離軸像差。第二,二極體雷射2G,和非線性’ 光予曰曰體70非常靠近,也可能導致從二極體雷射20,傳輸 到非線性光學晶體7〇’的熱。非線性光學晶體中的熱梯度 會降低從紅外線光到綠色光的轉換效能。由於二極體雷射 2〇_的一極體波導2〇’ A和非線性光學晶體70,晶體波導7〇, ^ 以空氣間隙AG分開,本發明綠色雷射實施例的優點是可最 Mb一極體雷射到晶體的熱傳輸。第三,藉著移動反射器 ^或透鏡組件3〇至少有些雷射系統)〇的實施例不需要啟重 器來控制光束的焦點。這些雷射系統10的實施例不會失焦 (或者有最小的失焦)也不會明顯改變光學元件的橫向定位 _溫度_數(要不然要妥協晶體波導70’ A輸入面和二 極體波導20’ A之間的絲齡可能耗損光學輸出功率)。 ^後’雷射系統1〇的實施例也可以有舰控制或最小化光 饋的_。例如在這裡描述的綠色雷射實施範例,非 性光學晶體川’晶體波導7G’ A正面的反射,不會引起來自 紅外線二極體雷射2G,,令人討厭的賴跳躍行為。 81 2顯示組裴成綠色雷射系統10的實施例所安裝的光 201110489 學組件°非線性光學晶體70,(PPLN晶體)放在二極體雷射 20’上方,以小型的空氣間隙AG分開兩個波導70, A,20’的端 點。空氣間隙AG的存在和尺寸是很重要的,有數種原因說 明於下。第一,附加一個或以上的焊線23到二極體雷射2〇’ 的各個區段以提供電流和電壓控制訊號到二極體雷射。這 些焊線形成具有最小彎曲半徑的迴路23,,在二極體雷射2〇, 上方,以有限的高度延伸。最小的焊線迴路高度可以是譬 如100微米-150微米,定義紅外線二極體雷射2〇,的二極體 波導20 A和非線性光學晶體7〇,的晶體波導7〇,八之間的最 小可能垂直間隔。 "第一,空氣間隙AG熱隔絕非線性光學晶體7〇’和運作時 當作熱源的二極體雷射2〇,。尤其空氣和金屬或很多其他 固體材料比起來可以作為很好的熱隔絕避免二極體雷 =〇’的_達非線性光學晶體7G,。因為熱會在非線性光 :曰曰體7G内產生熱梯度因此負面影響晶體波導爪A的非 =I·生轉換,最好可以防止熱到達非線性光學晶體7〇,。 月^地5兒,非線性光學晶體7〇,内的熱梯度可能是有害的In this example, the light source 2〇 and the receiver (nonlinear optical crystal 7〇,) are separated from each other with respect to the optical axis GA (the optical axis of the lens assembly 3g), and are placed symmetrically or nearly symmetrically with respect to the optical axis (from the axis of symmetry) Within 1 μm, preferably within ±5 μm). More specifically, in order to minimize the nonlinear optical crystal 7〇, the crystal waveguide 70, the aberration of the beam on the A input surface, the infrared diode 2〇, the second: 6 201110489 the output surface of the bulk waveguide 20' A and The nonlinear optical crystal 7〇, the crystal waveguide 7〇, the input surface of A is separated by a small air _, and the focal length of the lens assembly 3{) is smaller than the distance d (i.e., d "f). Preferentially, the focal length f of the lens 3Q is i ^ 1 mm, 1. 3 mm, 1. 5 mm, 1. 7 mm, 2 mm, or 2.5 mm. Preferentially, source 20 and nonlinear optical crystal? 〇, the separation between the 30 micron SdS 1500 micron, more preferentially 5 〇 micron micron, more preferentially 100 彳 SmS 600 micron, more preferential 15 〇 micron; 500 micron and most preferentially 300 micron $ dS500 micron. For example, the distance d is 75 microns '100 microns, 125 microns, 150 microns, 2 microns, 250 microns, 300 microns, 400 microns, or 450 microns. Thus, in this embodiment the source (diode laser 20') and the receiver 7〇 (nonlinear optical crystal) are eccentrically with respect to the optical axis along the γ axis to a distance d, = d/2, for example d, =d/2±1〇〇U meters. Preferably, the eccentric distance d' is equal to d/2 or within 50 microns of d/2 (i.e., d' = d/2 ± 50 microns). The finger-studded laser system design described here (see, for example, Figures 1B, 2, 6, 8A, and 8B), because the light control itself folds, has the ability to reduce the entire length of the laser cavity (and thus reduce the size of the laser set). advantage. Because the same lens assembly 3 is used twice, once is a collimated beam, and once is a refocusing beam on the input face of a nonlinear photon 曰 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 The effect of asymmetric optical aberrations produced by the lens assembly 3 is minimized. With stable and precise technology, the laser system 10 can be completely passive (ie, without moving components). (This design is shown in Figure 1〇). Alternatively, as described above, the laser system 10 can easily utilize an adjustable reflector such as a MEMS mirror to actively align the 201110489 focal beam on two laterally transposed surfaces of the PPU. Folding design can create many challenges. First, because the fold-type laser system design utilizes a light source (-polar laser 20) and a linear crystal 7() that are separated from the optical axis of the lens assembly 30, presenting _ optics, the difference may be controlled . Bixian holds a small amount of silk aberration to achieve the height of the 2G' 彳 nonlinear optical crystal 7()' from the diode laser. The superiority of the green laser embodiment 1G of the present invention maintains a small off-axis aberration even if the lens assembly 3() is not aligned. Second, the diode laser 2G, which is in close proximity to the nonlinear 'light to the body 70, may also cause heat from the diode laser 20 to be transmitted to the nonlinear optical crystal 7'. Thermal gradients in nonlinear optical crystals reduce the conversion efficiency from infrared light to green light. Since the diode waveguide 2〇' A of the diode laser 2〇_ and the nonlinear optical crystal 70, the crystal waveguide 7〇, ^ are separated by the air gap AG, the advantage of the green laser embodiment of the present invention is that it is the most Mb The heat transfer of a polar body laser to the crystal. Third, embodiments that move at least some of the laser system by moving the reflector ^ or lens assembly 3 do not require a jack to control the focus of the beam. Embodiments of these laser systems 10 do not lose focus (or have minimal out-of-focus) nor significantly change the lateral positioning of the optical element_temperature_number (or otherwise compromise the crystal waveguide 70' A input face and diode The age of the wire between the waveguides 20' A may deplete the optical output power). The embodiment of the 'post laser system 1' can also have ship control or minimize the _ of the optical feed. For example, in the green laser implementation example described herein, the reflection of the front side of the non-optical optical crystal crystal waveguide 7G' A does not cause an unpleasant hopping behavior from the infrared diode laser 2G. 81 2 shows the light installed in the embodiment of the green laser system 10. 201110489 Learning component ° Nonlinear optical crystal 70, (PPLN crystal) placed above the diode laser 20', separated by a small air gap AG The ends of the two waveguides 70, A, 20'. The presence and size of the air gap AG is important and there are several reasons for this. First, one or more wire bonds 23 are added to each section of the diode laser 2' to provide current and voltage control signals to the diode laser. These weld lines form a loop 23 having a minimum bend radius, extending above the diode laser 2 以, at a limited height. The minimum wire loop height can be, for example, 100 micrometers to 150 micrometers, defining an infrared diode laser 2 〇, a diode waveguide 20 A and a nonlinear optical crystal 7 〇, a crystal waveguide 7 〇, between eight The smallest possible vertical spacing. " First, the air gap AG thermally insulates the nonlinear optical crystal 7〇' and the diode laser 2, which acts as a heat source during operation. In particular, air and metal or many other solid materials can be used as a good thermal insulation to avoid the diode-converted non-linear optical crystal 7G. Since heat generates a thermal gradient in the nonlinear light: the body 7G, thus adversely affecting the non-I·n conversion of the crystal waveguide claw A, it is preferable to prevent the heat from reaching the nonlinear optical crystal 7〇. 5 months, the nonlinear optical crystal 7〇, the thermal gradient inside may be harmful

射鱼恤度會"1 響非線性光學晶體7〇,内晶體波導70, A的折 大致而言,綠色輸出的波長相關是sin(x)/x的函數( 體波導% A的均勻性),而熱梯度會扭 函數。(請注意符號X是表示波長A和最佳波長的 紙,、、模型,說明類似於圖2的雷射系統設叶中 熱如何從二極體雷射傳導。 , 等I明綠地§兄,圖3顯示以空氣間 201110489 隙AG分開的二極體雷射20,和懸臂式非線性光學晶體7〇,的 細部元件熱模型。雖然二極體雷射2〇,是作為熱源,如圖3 所示,空氣間隙AG將其熱隔絕。二極體雷射以金屬套組基 座支撐。如這個圖所示,幾乎所有二極體產生的熱被引^ 到金屬套組基座。也就是說,雖然精確的熱條件是根據材 料和特定的設計,但由於空氣間隙有相當高的熱阻,這個模 型顯示熱可藉由任何金屬接觸有效引出,並不會從二極體、 雷射20’通到非線性光學晶體7〇,。實驗資料也證實,由於 空氣間隙AG的存在,雜性光學晶體7(),的轉換效能並不會 因熱效應而劣化。 第三,兩個波導7〇, A, 2〇, A的距離應該儘可能地保持最 小,因為較大的距離要求二極體波導心的輸出面或非線 性光學晶體70,的晶體波導7〇, A的輸入面,或兩者,是相對 著光軸(Z軸)真正離叫㈣)。—般而言,透鏡組件3〇的 光軸是位在兩個波導70, A,2〇’ A之間的半途中。這提供兩 個波導70’ A,20, A之間光線的光學輕合,也讓主動式鏡子( 假使使用主動式鏡子)是在啟動範圍的中央,使得可以利用 鏡子的傾斜來補償波導的小型移動。(例如是因溫度和濕 度變化產生這些移動)。兩個波導的任一個離開透鏡的光 轴越遠,就會在非線性光學晶體7G,的晶體波導7(),a輸入面 t的=產生較多的光學像差。這種像差包括像散現象, ^差’和球面縣。圖4顯示的範例是說明兩個波導 ,Λ之間触合效能是隨著距離攸著γ軸的垂直距 離)的增加而減少。當距離d增加時,光學像差會扭曲光束, 201110489 A,2G’A之間_合功率會變的比較小。因為具有 的透鏡元件會產生較少光學像差的影像,當影像 和物件移開相同的距離d’,一種最小化這些像差的方式是 長焦距的透鏡组件。然而,我們試著保持最二 的雷射套組大小,這·我們必須儘量使用最短隹距 =。織透鏡組件3〇的焦距可_ 在曰體.=川也就是說,透鏡元件3〇最好是有短的焦距, 在曰曰體波_ A輸人面提供最小量的像差,魏 2較高_合效能,決定兩個波導7(),A和 間隔。(請注意,由於二極雜雷射2。,二 =圖4中的尖峰齡是知,微米而不是零(沒有間隔The ratio of the wavelength of the green output is a function of sin(x)/x (the uniformity of the body waveguide % A) is roughly the same as the wavelength of the inner crystal waveguide 70, A. ), while the thermal gradient will twist the function. (Note that the symbol X is the paper indicating the wavelength A and the optimum wavelength, and the model, which shows how the heat in the laser system similar to that in Fig. 2 is transmitted from the diode laser. Figure 3 shows the thermal model of the detail of the diode laser 20 separated by the air gap 201110489 gap, and the cantilever nonlinear optical crystal 7〇. Although the diode laser is 2 〇, it is used as a heat source, as shown in Figure 3. As shown, the air gap AG thermally insulates it. The diode laser is supported by a metal socket base. As shown in this figure, almost all of the heat generated by the diode is directed to the metal socket base. Say, although the exact thermal conditions are based on the material and the specific design, due to the relatively high thermal resistance of the air gap, this model shows that heat can be effectively extracted by any metal contact and does not come from the diode, the laser 20 'Through the nonlinear optical crystal 7〇. The experimental data also confirmed that the conversion efficiency of the hybrid optical crystal 7() is not deteriorated by the thermal effect due to the presence of the air gap AG. Third, the two waveguides 7〇 , A, 2〇, A should keep the distance as much as possible Small, because the larger distance requires the output face of the diode waveguide or the nonlinear optical crystal 70, the crystal waveguide 7〇, the input face of A, or both, is truly opposite to the optical axis (Z-axis) (4)). In general, the optical axis of the lens assembly 3〇 is located halfway between the two waveguides 70, A, 2〇' A. This provides optical coupling of the light between the two waveguides 70' A, 20, A, and also allows the active mirror (providing the active mirror to be used) to be centered in the starting range so that the tilt of the mirror can be used to compensate for the small size of the waveguide mobile. (For example, these movements occur due to changes in temperature and humidity). The farther away from the optical axis of either of the two waveguides, the more the optical aberration occurs in the input of the crystal plane 7(), a input plane t of the nonlinear optical crystal 7G. Such aberrations include astigmatism, ^ difference', and spherical county. Figure 4 shows an example in which the two waveguides are shown, and the contact efficiency between turns is reduced as the vertical distance from the γ axis increases. When the distance d increases, the optical aberration will distort the beam. In 201110489 A, the power between 2G'A will become smaller. Since the lens element has an image with less optical aberration, when the image and the object are moved by the same distance d', a way to minimize these aberrations is a long focal length lens assembly. However, we try to keep the size of the second laser set, which we must try to use the shortest distance =. The focal length of the woven lens assembly 3 可 can be _ in the 曰 body. = 川, that is, the lens element 3 〇 preferably has a short focal length, providing a minimum amount of aberration in the body wave _ A input surface, Wei 2 The higher _ combined performance determines the two waveguides 7(), A and spacing. (Please note that due to the dipole laser 2, the second = the peak age in Figure 4 is known, micron instead of zero (no gap)

微平最好Γ導間距是大於5G微米,但小於· 诚木’最好疋小於700微米。你lU A 約1. 5mm時,15G微米到45G微=組件3G的焦距是 。(當距離d繼糊彳㈣運作的很好 鑛大於或小㈣距f的透^ ί小於⑽微米時具有 最小的_是由二極 間焊線迴㈣,的適配能力 可以放在非線性光學晶體^^外,晶體波導7〇, A不 層二二=::=微米厚的嘗, 波導…顯示於圖層70c,以及其間的晶體 可能間隔是以娜小 201110489 焊線23所需的最小距離來設定。例如,假使焊線迴路23’需 要150微米的高度,假使非線性光學晶體7〇,有j〇〇微米厚的 帽蓋層70’ B,那麼可能的最小波導間隔距離d(中心到中心) 就疋350微米(200微米+150微米=350微米)。最大的波導距 離d主要是由透鏡組件30的光學像差所決定,因為兩個波導 70’ A和20 ’ A之間的光學耦合效能是隨著距離d的增加而減 少。 或者,非線性光學晶體70’不需要放在二極體雷射20’ 的上方。而是,非線性光學晶體7〇,可以放在二極體雷射2〇, 的兩侧。這種侧邊靠著側邊的設計顯示於圖6。這種設計 的優點是允許雷射焊線23較大的垂直空間。然而,由於二 極體雷射的結構已經有既定的寬度(約3〇〇微米),兩個波導 之間一般是需要較大的寬度,此外,晶體波導7〇’A可能不是 位在非線性光學晶體7〇’的邊緣。當使用圖6的設計時,為 了避免熱串擾,在二極體雷射和非線性晶體之間應該提供 空氣間隙AG作為分隔。這種側邊靠著側邊的設計非常類似 於圖2顯示的設計,除了在這個實施例中,二極體雷射2〇,和 非線性光學晶體70’旋轉9〇度,使得分隔是水平的(X軸),而 不是垂直的分隔。利用小型空氣間隙AG,以確保二極體雷 -射20’和非線性光學晶體70,之間的熱隔絕。圖6顯示的範 •例綠色雷射系統1〇也具有這項優點,讓系統沿著二極體雷 射健值孔徑或水平方向運作(亦即光束22沿著X轴比沿著 y軸有較少的發散),使得彗形像差比沿著垂直軸更慢降低 •光學麵合。這些說明顯示於圖7。更明確地說,圖7顯示兩 12 201110489 種不同雷射系統設計的耦合效能對波導間隔。在一個設計 中’非線性光學晶體70,放在雷射20,上方(沿著γ軸),如圖2 所示(請見曲線CC),而在另一個設計(s-s)中,非線性光學 晶體70位於靠近雷射2〇,(沿著X轴),如圖6的側邊靠著側 邊設計所示。有圓形的線對應於這種侧邊靠著側邊的設計 ,而有長方形的線對應於懸臂式設計。因為二極體雷射的 光束22在水平方向的數值孔徑較小(較少發散),圖6的側邊 靠著側邊設計會以比圖2懸臂式料較大的邮以產生較高 的耦合效能。因而側邊靠著側邊設計允許兩個波導之間較 大的間距d’ -方面達到同樣的搞合效能。優先地,在侧邊 靠著側邊 更進一步,最好從頂部表面架置非線性光學晶體7〇,, 亦即離波導最遠的表面對應於非線性光學晶體70,的頂層 c。這圖示於圖8A(側面圖)和8β(輸入端圖)。這種頂部 ,置技術的優點是可在同樣的雷射系統,互換使用各種帽 蓋厚度(晶體波導和非線性晶體底部表面之間的距離) 線性光學晶體7G,。這種互換㈣好處是可允許使用來自 =同來源(鎖售者)的非線性光學晶體70’,由於有不同的製 造技術’也因而有不同的帽蓋厚度。只要非線性光學晶體 70,頂部和二極體雷射2〇’之間的間距d不改變,二極體 20,的-極體料2Q’A和非雜光學晶體7^,的晶體波導 A之間的間隔也會縣固定。_魏的卿架置 也可運用在圖6所示的側邊靠著側邊架置設計,晶體架置矣 面是離二極體雷射最遠的表面。 又 201110489 圖1B,2, 6’ 8A和8B所示的雷射系統 20(二極體波導2〇, A的輸出面)和接收器她g日:^ 入面)之間的光徑長规有和二極^射= 樣的光瓜長度。帆也x Ni,其中Di是不同元件表面之 間的距離’Ni是這些表面之間的折射率)。也就是說,圖1B, 2’ 6’ 8A和8B所示的雷射系統1〇是設計在輕合腔的情況下運 作以使在二極體雷射2(),的二極體波導2()’ a輸出面和非線 性光學晶體70,的晶體波導7Q,A輸人面之間形成的腔和二 極體雷射_腔有同樣的光徑長度。_,例如假使通過 二極體雷射抓的二極體波導2〇, A的光徑長度是9. 5mm,那 麼通過雷射系統1 〇的光徑長度(從光源到接收器)鹿該 9. 5咖。因此’假使光源20是二極體雷射,從光源期透鏡 組件30經由透鏡組件30到反射器50的光徑長度(0PL)是經 由二極體波導2G’ A的〇PL的1/2。這種設計的優點是最小化 來自非線性光學晶體7〇’ #晶體波導7〇, A輸入面寄生反射 所造成的雷射波長不穩定。 最好使用透鏡組件30來準直二極體雷射2〇,提供的IR 光線,並且再聚焦光線到非線性光學晶體7〇,的晶體波導 70 A。透鏡組件30是以放大率m,映像二極體波導2〇, A的輪 出面在曰曰體波導70 A的輸入面。最好是〇. gg丨Μ丨1 更好疋0. 95 S I μ丨$1. 05。透鏡組件3〇的數值孔徑NA最 好是在約0. 35和約〇. 6之間,焦距長度是lmm到3麵,前端運 作距離_)是〇. 3mm到3mm,後端運作距離⑽)是〇. 5咖到 3mm。FWD是沿著光軸從光源20到透鏡組件3〇前端表面幻( 201110489 即面對光源的透鏡表面)的距離。勵是從透鏡纪件 表面S2到反射器50的距離。反射器5〇最好放在透鏡 的後端焦點表面,當光源2〇平均發射角度(光束中心)的方 向平行於接收H 70上的平均光束肖鱗(糾卩平行被非線 性光學晶體7G’輸人面麵的料光舞的巾^),可 最佳的光學耦合。 ’ 假使光源20提供最大半形θ的發散光束反射器5〇最 好放在透餘㈣的彳4職絲面,储辆2()平均發射 角度的方向平行於發射ϋ上的平均光麵度。最好是當離 心的光源位在透鏡組件的焦點平面,離軸75()微米以上田時 建構透鏡組件3(Ux提卿直光束,使得準直光束的角度㊀, (相對反射器表面的法線)是:〇. 05弧度$θ,^0. 2弧度。 ,建構範例透鏡組件30以提供在接收器上的光源影像, 影像的特性是⑴當透敎件光軸是靖能祕的轴(兩 個波導面之間的中線),或相對光源的平均發射角度(光束 中〜)/又有不對齊時,像散現象是超過〇. 〇5波腿,並小於 〇. 1波RMS;以及(ii)當透鏡組件是相對光源的平均發射角 度傾斜2則度時,傾斜角2則度的像散縣是小於〇. 05。 因此’很有用的是即使透鏡組件3〇在雷射系統i〇組裝期間 不對齊(譬如稍微傾斜或離心),接收器?〇上波前誤差(觀) 是S0.1入,其中;^是光源2〇提供的央波長。 要注意的是像散現象的產生可藉由⑴透鏡組件中的 楔形體’(11)某個透鏡組件表面互相之間的離心、,或(iii) 某個表面互相之間的傾斜。 201110489 最好可最佳化這裡描述的實施例透鏡組件30,以最小 的耦合代價允許二極體雷射20’和晶體波導70, A之間相當 寬的空氣間隙AG。也就是說,即使二極體波導20’A輸出面 和晶體波導70’ A輸入面以相當大的距離d分開,透鏡組件30 還是保持高的耗合效能。因為光徑是摺疊的,而且只使用 一個透鏡組件30,物體(二極體波導20’ A輸出面)和影像( 位在晶體波導70’ A輸入面)位置是離開透鏡組件的光軸。 如以上所討論的,透鏡組件30最好設計成有低的像散現象 (譬如在0. 01 λ和〇. 1 λ之間,其中λ是極體雷射2〇’提供的 波長)以提供位在波導20, Α,70, Α離軸影像平面上光束點最 . 小的扭曲。圖9顯示各式業界可取得的透鏡組件可達到的 耗合效能(CE)對LD-SHG垂直距離的比較。第一’個範例透鏡 組件(透鏡# 1)比第二個範例透鏡組件(透鏡#2)有較低的像 散現象造成波導分隔較大的容忍度。以2mm和2. 3刪兩種不 同的透鏡對鏡子距離(BWD)也可計算出第一個透鏡組件的 輕合曲線。 除此之外,透鏡組件30最好是較短的焦距,以最小化雷 射系統的長度。(鏡子50和兩個波導70’ A和20, A之間的距 離大約是兩個焦距)。更者,短焦距透鏡組件30比長焦距透 '鏡組件30’作為溫度的函數較少失焦。以第一近似而言,溫 .度引起透鏡組件30折射率的改變所導致的透鏡焦距 的近似值是df/dT=-(d—T )[f/(n_l)],其中f是焦距,n是 •透鏡材料標稱折射率,而dn/dT是折射麵著溫度的變化。 因此,較短的焦距透鏡組件在焦點位置(小於df/dT)提供較 201110489 .^的移動。因而焦距f最好是小於5mm,更好是 ’再更好是lmm沾2mm。最後,最好選擇有較低dn/dT值的 透鏡材料。 雖然透鏡組件30和鏡子5〇之間的大测隔(亦即後端 運,距離BWW是約-個焦距,但準確選擇讎會受數種其他 考罝所影響。第-個考量是來自二極體雷射2〇,的雷射光 束發射角度(光束22的平均發射角度,或光束中心的角度) 。假使一極體波導2〇’a有不平的分裂面,那麼發出的光線 就很容易發射離開z軸向上或向下好幾度。這意味著最佳 的BWD是稱微不同於一個焦距,使得反射的光束以最佳角度 (垂直於晶體波導7G’ A的輸人面)進人n皮導2G,A的輸 .入面。例如圖10A中所顯示的。然而,這種光學系統的不對 稱會造成定位兩個波導7〇, A,20’ A對齊容限的緊端,和透鏡 το件30置放容限的緊繃。假使雷光束22的發射角度不平行 於光軸,那麼雷射系統可保持對稱,而且是遠心的⑽1〇B), 造成定位兩個波導7〇, A,20, A較寬鬆的容限。因此,最好架 設使發射的IR光束22平行於透鏡組件30的透鏡光軸。這可 以藉著如圖11所示,以角度Θ架設二極體雷射2G’來達成。 在這個實施例中,架設角度θ=3. 3度,而帽蓋層是2〇〇微米 厚。藉由確保晶體波導7〇’a輸入面適當的入射角度,這種 -設計會同時增加耦合光線的量,並藉著使其遠心以加寬光 學系統的對齊容限。 • 選擇β WD的第二個考量是將二極體雷射輸出面和晶體 •波導70’A輸入面之間形成腔的光徑長度,設定成等於二極 201110489 體波導本身的長度。藉著從晶體本身的背後反射,形成空 腔的頻模間隔。雜性轉換處理的效能是减於IR雷射波 長的函數(頻寬△ λ大約m)。這使得雷射系統的綠 色輸出功率對於二極體雷射2G’提供的IR光線小型波長變 化敏感。因為二極體雷射對於很小量的反饋非常敏感,所 以晶體波導70’A的輸入面是抗反射塗層,而且分裂角度以 最小化反射,也因而是進到二極體雷射20,的反饋。即使如 此,仍然還有足夠的反射和背後散射以影冑二極體雷射20, 的模恶選擇。假使這飯饋經由雷射祕1G的任何光學組 件所形成的腔的熱變化或其他環境變化的改變為時間的函 數,那麼二極體雷射2G,可能經歷麵跳躍,而且雷射系統 的輸出功率(綠色光線輸出功率)也會波動。-種最小化這 些改變衝擊的方式是確斜腔(㈣體波導70, A輸入面和 了極體波導20’ A輸出面形成)是大約和二極體雷射本身相 同的自由頻雜圍。麵職或光學腔的 列的式子來決定: h Δ Afsr= A2/(2nL) :声二 *如二極體雷射的IR波長)几是如 長度(杨二極體波導的長度),“是腔⑽折射 由-極體雷射20’形成的二極體雷射㈣)。 :=長的InGaAs紅外線二極體雷一Preferably, the micro-flat spacing is greater than 5G microns, but less than · 诚木' is preferably less than 700 microns. When your lU A is about 1. 5mm, 15G micron to 45G micro = component 3G focal length is . (When the distance d follows the paste (4), the good mine is larger or smaller than the (4) distance f is less than (10) micrometers. The smallest _ is the inter-electrode bond line back (4), the adaptability can be placed in the nonlinear Outside the optical crystal, the crystal waveguide is 7 〇, A is not layer 2 =:: = micron thick taste, the waveguide... is shown in layer 70c, and the crystal between them may be the minimum required for the Naoma 201110489 bond wire 23 The distance is set. For example, if the wire loop 23' requires a height of 150 microns, if the nonlinear optical crystal 7〇 has a cap layer 70' B of j〇〇 micron thickness, then the minimum waveguide spacing distance d (center) To the center) 疋 350 μm (200 μm + 150 μm = 350 μm). The maximum waveguide distance d is mainly determined by the optical aberration of the lens assembly 30 because of the relationship between the two waveguides 70' A and 20 ' A The optical coupling efficiency is reduced as the distance d increases. Alternatively, the nonlinear optical crystal 70' need not be placed above the diode laser 20'. Instead, the nonlinear optical crystal 7〇 can be placed on the pole Body laser 2 〇, on both sides. This side is designed against the side Shown in Figure 6. The advantage of this design is that it allows for a larger vertical space of the laser bond wire 23. However, since the structure of the diode laser has a predetermined width (about 3 〇〇 micron), the two waveguides In general, a larger width is required. In addition, the crystal waveguide 7〇'A may not be located at the edge of the nonlinear optical crystal 7〇'. When using the design of Fig. 6, in order to avoid thermal crosstalk, in the diode laser An air gap AG should be provided as a separation between the nonlinear crystal and the side. The design of the side edge against the side is very similar to the design shown in Figure 2, except in this embodiment, the diode laser 2 〇, and The linear optical crystal 70' is rotated 9 degrees so that the separation is horizontal (X-axis) rather than vertical separation. A small air gap AG is used to ensure the diode-ray 20' and the nonlinear optical crystal 70, Thermal isolation between the two. The green laser system shown in Figure 6 also has this advantage, allowing the system to operate along the diode's laser-valued aperture or horizontal direction (ie, the beam 22 along the X-axis ratio). There is less divergence along the y-axis, making the image Slower than the vertical axis • Optical surface combination. These instructions are shown in Figure 7. More specifically, Figure 7 shows the coupling performance versus waveguide spacing for two different 2011 10489 different laser system designs. The linear optical crystal 70 is placed above the laser 20 (along the gamma axis) as shown in Figure 2 (see curve CC), while in another design (ss), the nonlinear optical crystal 70 is located near the laser 2〇, (along the X axis), as shown in the side of Figure 6 with the side design shown. The circular line corresponds to the design of the side edge against the side, and the rectangular line corresponds to the cantilever Design. Because the numerical aperture of the beam 22 of the diode laser is small (less divergent) in the horizontal direction, the side of the side of Figure 6 is designed to be larger than the cantilever of Figure 2. Higher coupling performance. Thus the side edges are designed to allow for the same fit by allowing the larger spacing d' between the two waveguides. Preferentially, the side is further moved against the side, preferably with a non-linear optical crystal 7〇 mounted from the top surface, i.e., the surface furthest from the waveguide corresponds to the top layer c of the nonlinear optical crystal 70. This is illustrated in Figure 8A (side view) and 8β (input diagram). The advantage of this top-mounted technology is that the same laser system can be used interchangeably with a variety of cap thicknesses (the distance between the crystal waveguide and the bottom surface of the nonlinear crystal) linear optical crystal 7G. The benefit of this interchange (iv) is that it allows the use of non-linear optical crystals 70' from the same source (locker), which have different cap thicknesses due to different manufacturing techniques. As long as the nonlinear optical crystal 70, the spacing d between the top and the diode lasers 2〇' does not change, the diodes 20, the -2 2' of the polar body material and the crystal waveguide A of the non-hybrid optical crystal 7 The interval between the two will also be fixed in the county. _Wei's erecting can also be used on the side shown in Figure 6 against the side mounting design, the crystal mounting surface is the farthest surface from the diode laser. Also 201110489 Figure 1B, 2, 6' 8A and 8B shows the optical path length between the laser system 20 (diode waveguide 2〇, the output surface of A) and the receiver her day: ^ There are two and two poles = the length of the light melon. The sail is also x Ni, where Di is the distance between the surfaces of the different elements 'Ni is the refractive index between these surfaces). That is to say, the laser system 1 所示 shown in FIG. 1B, 2' 6' 8A and 8B is designed to operate in the case of a light-combined cavity to make the diode 2 in the diode 2 (), the diode waveguide 2 (a) The output surface and the nonlinear optical crystal 70, the crystal waveguide 7Q, the cavity formed between the A input faces and the diode laser cavity have the same optical path length. _, for example, if the diode length of the diode is 2 〇, the length of the optical path of the A is 9. 5 mm, then the length of the optical path through the laser system 1 (from the light source to the receiver) deer 9 . 5 coffee. Therefore, if the light source 20 is a diode laser, the optical path length (0PL) from the light source lens assembly 30 to the reflector 50 via the lens assembly 30 is 1/2 of the 〇PL passing through the diode waveguide 2G' A. The advantage of this design is to minimize the instability of the laser wavelength caused by the parasitic reflection of the A input surface from the nonlinear optical crystal 7〇'. Preferably, the lens assembly 30 is used to collimate the diode laser 2, provide IR light, and refocus the light onto the nonlinear optical crystal 7A, the crystal waveguide 70 A. The lens unit 30 is at an amplification factor m, and the plane of the diode waveguide 2A is formed on the input surface of the body waveguide 70A. Preferably, 〇. gg丨Μ丨1 is better 疋0. 95 S I μ丨$1. 05. The numerical aperture NA of the lens assembly 3 最好 is preferably between about 0.35 and about 〇. 6, the focal length is from 1 mm to 3 faces, and the front end operating distance _) is 3. 3 mm to 3 mm, the back end operating distance (10)) It is 〇. 5 coffee to 3mm. The FWD is the distance from the light source 20 to the front end surface of the lens assembly 3 along the optical axis (201110489 is the lens surface facing the light source). The excitation is the distance from the lens surface S2 to the reflector 50. The reflector 5〇 is preferably placed on the rear end focus surface of the lens, and the direction of the average emission angle (beam center) of the light source 2 is parallel to the average beam scale on the receiving H 70 (corrected parallel by the nonlinear optical crystal 7G' The face-to-face matte dance towel ^) can be optimally optically coupled. 'If the light source 20 provides the largest half-shape θ of the divergent beam reflector 5 〇 is best placed on the ( 4 front 职 4 job surface, the direction of the storage 2 () average emission angle is parallel to the average spectacles on the emission ϋ . Preferably, when the centrifugal light source is in the focal plane of the lens assembly, the lens assembly 3 is constructed from the axis 75 () micrometers or more (Ux lifts the straight beam, so that the angle of the collimated beam is one, (relative to the surface of the reflector) Line) is: 〇. 05 radians $θ, ^0. 2 radians. The example lens assembly 30 is constructed to provide an image of the light source on the receiver. The characteristics of the image are (1) when the optical axis of the permeable member is the axis of Jingneng. (the center line between the two waveguide faces), or the average emission angle of the opposite light source (~ in the beam) / when there is misalignment, the astigmatism phenomenon is more than 〇. 〇5 wave legs, and less than 〇. 1 wave RMS And (ii) when the lens assembly is tilted by 2 degrees with respect to the average emission angle of the light source, the astigmatism of the inclination angle of 2 degrees is less than 〇. 05. Therefore, it is useful to use the lens assembly 3 even if it is laser. The system i〇 is not aligned during assembly (such as slightly tilting or centrifugation), and the receiver's upper wavefront error (view) is S0.1, where ^ is the central wavelength provided by the source 2〇. Note that the astigmatism The phenomenon can be generated by (1) the wedge body in the lens assembly '(11) the surface of a certain lens component The centrifugation, or (iii) the inclination of a certain surface to each other. 201110489 Preferably, the embodiment of the lens assembly 30 described herein is optimized to allow the diode laser 20' and the crystal waveguide with minimal coupling cost. A relatively wide air gap AG between 70, A. That is, even if the output face of the diode waveguide 20'A and the input face of the crystal waveguide 70' A are separated by a considerable distance d, the lens assembly 30 remains high. Since the optical path is folded and only one lens assembly 30 is used, the object (diode waveguide 20' A output face) and the image (position on the crystal waveguide 70' A input face) are the light leaving the lens assembly. Axis. As discussed above, lens assembly 30 is preferably designed to have low astigmatism (e.g., between 0.01 λ and 〇. 1 λ, where λ is the wavelength provided by the polar laser 2 〇 ') To provide the most small distortion of the beam spot on the off-axis image plane of the waveguides 20, Α, 70, 。. Figure 9 shows the achievable wear efficiency (CE) of the various commercially available lens assemblies to the LD-SHG vertical Comparison of distances. First 'example lens assembly (lens# 1) The lower dispersion of the waveguide is caused by the lower astigmatism than the second example lens assembly (Lens #2). Two different lens-to-mirror distances (BWD) can be deleted by 2mm and 2.3. The light-weight curve of the first lens assembly is calculated. In addition, lens assembly 30 is preferably a shorter focal length to minimize the length of the laser system (mirror 50 and two waveguides 70' A and 20, The distance between A is approximately two focal lengths. Further, the short focal length lens assembly 30 is less out of focus than the long focal length through mirror assembly 30' as a function of temperature. In the first approximation, the temperature causes the lens The approximate value of the focal length of the lens caused by the change in the refractive index of the component 30 is df / dT = - (d - T ) [f / (n - l)], where f is the focal length, n is the nominal refractive index of the lens material, and dn / dT is the change in temperature of the refracting surface. Therefore, the shorter focal length lens assembly provides a movement in the focus position (less than df/dT) than 201110489. Therefore, the focal length f is preferably less than 5 mm, more preferably 'and even more preferably 1 mm. Finally, it is best to choose a lens material with a lower dn/dT value. Although the large distance between the lens assembly 30 and the mirror 5〇 (ie, the back end, the distance BWW is about a focal length, the exact choice will be affected by several other exams. The first consideration is from two Polar laser beam emission angle (the average emission angle of the beam 22, or the angle of the beam center). If the one-pole waveguide 2〇'a has an uneven split surface, the emitted light is easy. The emission is a few degrees above or below the z-axis. This means that the best BWD is said to be slightly different from a focal length, so that the reflected beam enters at an optimal angle (perpendicular to the input face of the crystal waveguide 7G'A). The skin guide 2G, the input face of A. For example, as shown in Fig. 10A. However, the asymmetry of the optical system causes the tight end of the alignment tolerance of the two waveguides 7〇, A, 20' A, and The lens το member 30 places the tightness of the tolerance. If the emission angle of the lightning beam 22 is not parallel to the optical axis, then the laser system can remain symmetrical, and is telecentric (10) 1 〇 B), causing the positioning of the two waveguides 7 〇, A, 20, A is looser tolerance. Therefore, it is preferable to set the emitted IR beam 22 parallel to the lens optical axis of the lens assembly 30. This can be achieved by erecting a diode laser 2G' at an angle 如图 as shown in FIG. In this embodiment, the erection angle θ = 3. 3 degrees and the cap layer is 2 〇〇 micron thick. By ensuring the proper angle of incidence of the input face of the crystal waveguide 7〇'a, this design increases the amount of coupled light at the same time and broadens the alignment tolerance of the optical system by making it telecentric. • The second consideration for choosing β WD is to set the path length of the cavity between the diode laser output face and the crystal • waveguide 70'A input face to be equal to the length of the diode 201110489 body waveguide itself. The frequency mode interval of the cavity is formed by reflection from the back of the crystal itself. The performance of the hybrid conversion process is a function of the IR laser wavelength (frequency Δ λ approximately m). This makes the green output power of the laser system sensitive to small wavelength variations of the IR light provided by the diode laser 2G'. Since the diode laser is very sensitive to a small amount of feedback, the input face of the crystal waveguide 70'A is an anti-reflective coating, and the splitting angle is minimized to reflect, and thus to the diode laser 20, feedback of. Even so, there is still enough reflection and backscatter to affect the die-off choice of the diode laser 20. If the change in the thermal or other environmental changes in the cavity formed by any optical component of the laser 1G is a function of time, then the diode laser 2G may experience a surface jump and the output of the laser system Power (green light output power) also fluctuates. The way to minimize these shocks is to make the oblique cavity (the (four) body waveguide 70, the A input face and the polar body waveguide 20' A output face) is about the same free frequency span as the diode laser itself. The formula of the column of the face or optical cavity is determined: h Δ Afsr = A2 / (2nL) : the acoustic two * as the IR wavelength of the diode laser) is as long as the length (the length of the Yang diode waveguide), "It is the cavity (10) refracting the diode laser formed by the -pole laser 20' (4)). : = Long InGaAs infrared diode Lei Yi

=、力疋〇6nm。這意味著在這個範僧,可藉由使用^ 1. 5刪焦距f的透鏡組件3G,達到晶體波導 極體波導20’ A輸出面之間所需的〇pL 〇 月'J 18 201110489=, force 疋〇 6nm. This means that in this embodiment, the required 〇pL between the output faces of the crystal waveguide body waveguide 20' A can be achieved by using the lens assembly 3G of the cut-off distance f of 1.5.

圖12顯示兩個不同的範例透鏡組件,二極體波導20, A 和晶體波導70 A之卩摘紐長度作為_(透鏡到鏡子的間 隔或距離)的函數。所需的光徑紐是9. 36mm,匹配二極體 雷射20的腔模間隔。圖13顯示同樣兩個範例透鏡組件的 耦合效忐’作為BWD的函數。如圖13顯示,只需要小型調整 (數百微米或以下)BWD和最佳耦合距離以產生最佳光徑長 度。例如,圖13顯示提供〇pl=9. 36mm的間隔。 範例: 本發明藉由下列範例作更進一步說明。 範例1: :圖14說明圖11所示的透鏡組件30。在這個實施例中, 最佳化圖2和3的透鏡組件3〇,在_nm波長提供均方根’( RMS)小於〇. u波前誤差的土2〇〇微米場,〇. *的數值孔徑μ ,焦距和厚度加起來使得光源和接收器之間的光徑長度是 9. 36mm 〇 可選擇曲率半徑(1·】,n),厚度Th(點對點),和透鏡組 件30的非球面係數,以: 2化彗形像差和像散現象(兩㈣'統效能最糟的像差); =更大的視野:低場像差和較大的孔徑(譬如㈣.4), 射系統在二極體雷射20,的波導部份和非線性光學 d的波導部份之間棚微米的分隔㈣% 1木有良好的耦合效能;以及 距和厚度適當的組合,讓雷射系統ι〇在搞合腔的 况下運作以使在二極體雷射20’的輪出面和非線性光學 201110489 晶體70’(譬如SHG曰曰曰體)的輸入面之間形成的腔,和二極體 雷射的腔有同樣的光徑長度。 如以上所描述,透鏡組件30有前端表面S1和後端表面 S2。刖鈿表面si最好是凸面和非球面的,曲率半徑是门。 後端表面S2最好也是凸面和非球面的曲率半徑L2,以使I η I > | r2 I 0 ’ 圖Μ的透鏡組件30具有以下的特性: ⑴讓雷射纽是縣合腔的情況下運作(二光學晶體之間的〇PL等於二極體雷射長度的仏 1 ):〇PL=(0. 9mm+l. 744mraxl. 5+l. i8mm)x2=9> 3 · 射和 05 間·等於二極體雷射長度·u 744mmxL 5iL 18ram)x2=9·39m^· ^射率為 1. 5二76mm;(1V)在 _nm 下折 面S2之有效直徑為2刪地 徑為2. 5咖至3mm。 .,(川)透鏡組件之外 表面幻及S2之表面下垂由下列公式表示: z = 一 cxr2Figure 12 shows two different example lens assemblies, the length of the dipole waveguide 20, A and the crystal waveguide 70 A as a function of _ (lens to mirror spacing or distance). The required optical path is 9.36 mm, matching the cavity spacing of the diode 20 . Figure 13 shows the coupling effect of the same two example lens assemblies as a function of BWD. As shown in Figure 13, only a small adjustment (hundreds of micrometers or less) of BWD and an optimum coupling distance are required to produce the optimum path length. For example, Figure 13 shows an interval providing 〇 pl = 9.36 mm. EXAMPLES The present invention is further illustrated by the following examples. Example 1: Figure 14 illustrates the lens assembly 30 shown in Figure 11. In this embodiment, the lens assembly 3 of Figures 2 and 3 is optimized to provide a soil 2 〇〇 micron field with a root mean square '(RMS) less than 〇. u wavefront error at _nm wavelength, 〇. The numerical aperture μ, the focal length and the thickness are added such that the optical path length between the light source and the receiver is 9.36 mm 〇 selectable radius of curvature (1·), n), thickness Th (point to point), and aspherical surface of the lens assembly 30. Coefficients to: 2 彗 彗 aberration and astigmatism (two (four) 'the worst performance aberrations of the system'); = larger field of view: low field aberrations and larger apertures (such as (4). 4), shot The system has a good separation performance between the waveguide portion of the diode laser 20 and the waveguide portion of the nonlinear optical d (4)% 1 wood has good coupling performance; and the appropriate combination of distance and thickness allows the laser system Ι〇 operates in a cavity to form a cavity between the 20' turn of the diode laser and the input surface of the nonlinear optical 201110489 crystal 70' (such as the SHG body), and two The cavity of the polar body has the same path length. As described above, the lens assembly 30 has a front end surface S1 and a rear end surface S2. The crucible surface si is preferably convex and aspherical, and the radius of curvature is the gate. The rear end surface S2 is also preferably a convex surface and an aspherical curvature radius L2, so that the lens assembly 30 of the I η I > | r2 I 0 ' diagram has the following characteristics: (1) the case where the laser is a county cavity Operation (the 〇PL between the two optical crystals is equal to the 仏1 of the length of the diode laser): 〇PL=(0. 9mm+l. 744mraxl. 5+l. i8mm)x2=9> 3 · shot and 05 Between the equalizer diode length · u 744mmxL 5iL 18ram) x2 = 9 · 39m ^ · ^ the rate of 1. 5 two 76mm; (1V) at _nm lower the effective diameter of the S2 is 2 cut ground It is 2. 5 coffee to 3mm. Outside the lens assembly, the surface illusion and the surface sagging of S2 are represented by the following formula: z = one cxr2

+ al: ^a2xr4 + α3χ〆+ al: ^a2xr4 + α3χ〆

其中C + 〇r4xr8 + . 為圓錐係數 ^率半徑,r為離她件中心之徑向距 離以及k 圖14之透鏡组件3〇 的表面參數顯示於下列表i中。 20 201110489 表1 參數 S1 S2 半徑 1.716884 -1.193855 k -7.316630 -0.795432 αΐ 0 0 α2 0 0 α3 0 4.107084.10-3 α4 0 1.121478.10-3 a 川牡由射糸統10的透鏡組件30的效食匕 以及通常使用綠合應用上,兩健界的範例非球面=月匕, (1和2)的效能。如以上所描述紅外線二 = 出面和非線性光學晶體70,波導的正面 = 。圖15顯示的透鏡组件3G__驗,比兩個g可= 传的非球_合透鏡有較高_合效能。例^ ,極體20’波導的輪出面和非線性光學晶體?心^^ 疋以450微未(0.45咖)以上的距離d 3道或以上的最域合效能,而其他兩個透維 =:米的d值時,維持約9。嶋二 冋樣地,#外線:極㈣,波導的輸出 ^7〇,波導的正面是以謂微米的距離#開時,^且 =維持約_或以上的最幼合效能,而其他兩個透鏡只 =別在微林27嶋的d _,維持職的最大輕合 30 另—種適合用在雷射系統1〇的範例透鏡組件 3〇。圖16的透鏡組件3G具有以下的特性: ⑴讓雷㈣、統是她合關敎下運作體雷射和 201110489 非線性雷射系統之間的〇PL箄 mm内); η . 4於—極體雷射長度的+/-0. 05 折射率A〗,(111)焦距:f=1. 4mm; (1 V)在1 G6Gnm下玻璃 折射率為 1.784;(v)na=〇.4〇。 主圖16之透鏡組件3〇的表面參數顯示於下列表2中。 表2Where C + 〇r4xr8 + . is the conic coefficient ^ rate radius, r is the radial distance from the center of the member and k is the surface parameter of the lens assembly 3 图 shown in the following table i. 20 201110489 Table 1 Parameter S1 S2 Radius 1.716884 -1.193855 k -7.316630 -0.795432 αΐ 0 0 α2 0 0 α3 0 4.107084.10-3 α4 0 1.121478.10-3 a The effect of the lens assembly 30 of the 牡 由 10 For restaurants and the use of greens, the two examples of the spheres are aspheric = lunar, (1 and 2) performance. As described above, the infrared ray = the exit surface and the nonlinear optical crystal 70, the front side of the waveguide = . Figure 15 shows a lens assembly 3G__test that has a higher efficiency than an aspherical lens that can be transmitted by two g. Example ^, the polar body 20' waveguide wheel exit surface and the nonlinear optical crystal? ^^ 疋 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 : When the d value of the meter is maintained, it is maintained at about 9.嶋二冋样地,#External line: pole (four), the output of the waveguide is ^7〇, the front of the waveguide is at the distance of the micrometer, when it is opened, ^ and = maintains the best performance of about _ or above, while the other two The lens is only = d _ in the micro-forest 27 ,, the maximum light-weight 30 in the maintenance position, and the other is suitable for the example lens assembly 3 雷 in the laser system. The lens assembly 3G of Fig. 16 has the following characteristics: (1) Let Ray (four), the system is the laser between her working body and the laser of the 201110489 nonlinear laser system; η. 4 in the pole Body laser length +/-0.05. Refractive index A, (111) focal length: f = 1. 4 mm; (1 V) refractive index of 1.674 at 1 G6Gnm; (v)na=〇.4〇 . The surface parameters of the lens assembly 3A of the main diagram 16 are shown in Table 2 below. Table 2

範例3 圖17顯示適合用在雷射系統10的範例透鏡組件30。圖 2和3的透鏡組件3G具有以下的特性: (I)讓雷射系統是在耦合腔的情況下運作(二極體雷射和 非線性雷射系統之間的帆等於二極體雷射長度的仏〇. 〇5 mm 内); · (Π)具有下列參數:(i)FWD=l.〇lmm;(ii)厚度Th(頂點至 頁占)為 1. 578mm;(iii)焦距:f=i. 789mm;(iv)在 i〇6〇nm 下 玻璃折射率為15;(v)na=〇. 4〇。 22 201110489 圖 表3 Π之透鏡組件30的表面參數顯示於下列表3中。 非球面參數 下垂=C h。(丨+((丨 _(1+K)xCA2xhA2))A〇 5) +A4hA h;半徑 1Example 3 Figure 17 shows an example lens assembly 30 suitable for use in a laser system 10. The lens assembly 3G of Figures 2 and 3 has the following characteristics: (I) The laser system is operated in the case of a coupling cavity (the sail between the diode laser and the nonlinear laser system is equal to the diode laser) The length of the 仏〇. 〇5 mm); (Π) has the following parameters: (i) FWD = l. 〇 lmm; (ii) thickness Th (vertex to page) is 1. 578mm; (iii) focal length: f = i. 789 mm; (iv) refractive index of glass at i 〇 6 〇 nm is 15; (v) na = 〇. 4 〇. 22 201110489 Figure 3 The surface parameters of the lens assembly 30 are shown in Table 3 below. Aspherical parameters Droop = C h. (丨+((丨 _(1+K)xCA2xhA2))A〇 5) +A4hA h; radius 1

·· +A16hA16·· +A16hA16

透鏡組件最佳化: 最佳化透鏡系統的傳統方式是將所有光學組件放在其 標稱位置,觸光學設計倾邮可最佳魏的區域最小 值或者,為了使定位光學組件的容限儘可能的大,通常使 用的最佳化方式是最小化中間空間(即光學組件之間)的像 差也就疋說,在-般的最佳化期間,透鏡設計者試著證實 ,在每個提供光學功麵絲絲之後,㈣是儘可能接近 元美的(球面或平面)波前。藉由在最佳化功能包針間空 間(不同表面和光學組件之間的空間)Seidel 係數(像差)上 的一些限制通常都可以做到。Optimization of the lens assembly: The traditional way to optimize the lens system is to place all of the optical components in their nominal position, and the optical design can best optimize the area minimum or in order to maximize the tolerance of the positioning optical components. Probably large, the usual way to optimize is to minimize the aberrations in the intermediate space (ie between the optical components). In the general optimization period, the lens designer tries to confirm that in each After providing the optical work surface wire, (4) is as close as possible to the beautiful (spherical or planar) wave front. Some of the limitations on the Seidel coefficient (aberration) can be achieved by optimizing the space between the functional pins (space between different surfaces and optical components).

藉著運用此方法到折疊式設計,在二極體雷射到ppLN 23 201110489 晶體的距離d是G. 5醜以上的情況下,我們得到最佳的效果 。但很不巧地,__麵的最佳化所作的設計有很嚴 格的製造和組裝定位容限,最嚴苛的可能是透鏡組件的傾 斜限制在約1度上下。 在透鏡組件30或鏡子50上稍微傾斜的衝擊大多數是會 產生舞像差和像散縣這兩者都會造她合效能的降低θ (二極體雷射和非線性光學晶體之間較低效能_合)。 圖18顯示透鏡像差和透鏡傾斜,更明確地說,整個波前 誤差⑽)的演變,作為範例透鏡組件3G傾斜的函數。在這 項計算中,二極體細σ _晶體之間的距離d是保持固定 .35麵),並且為每個透賴斜的值調整驗。當傾斜增 加時,碧形像差(C)和像散現象⑷的幅度(主控的像差)就 會增加。結果是當越沒有傾斜時,波前誤 斜增加時就會快速劣化。 F吊-俏 為了要放寬這項容限,我們嘗試另一種最佳化的方法 二最佳化產生的透鏡組件,其形狀和非球面性非常類似先 =的透鏡組件。然而,容限分析指出透鏡傾斜,鏡子角度的 放寬5分之一。為了瞭解如何放寬容限,我們計算像 化作為透鏡傾斜的函數。圖19也說明透鏡像差和透 《 19 _見的’當傾斜是零的時候像散現象曲 :本(A)不是在最小值,岐透鏡_斜增加時會真正減少。 ^本上;這意味著當财的元錢在其標㈣沒有傾斜 ’本❸十提出-些殘餘的像散現象,當透鏡的傾斜增加時 ,補償出現的像散現象。 24 201110489 、,結果是,總像差在透鏡角度傾斜的大範圍,保持相對的 平坦。換句話說,標稱設計可容納更大範圍的定位容限。 圖2〇顯示兩種設計(透鏡設計#1和#2)計算的耦合效能 對透鏡的傾斜和鏡子的傾斜。如我們所看見的,當元件在 其標稱位置時,容限會鋪性地改善,而且不會 顯著的影響。 σ现 這項分析顯示定位的容限可藉由在設計中使用一些殘 餘的像散現象而戲劇性地改善。這種像散現象補償元料 對齊時產生的像散現象讓系統可以接納更多的定位容限。 熟知此技術者瞭解本發明能夠作許多變化及改變而並 不會脫離本發明之精神及_。職本發明含蓋本發明各 種變化及改變,制於下列申請專觀圍以及同等物 内。 【附圖簡單說明】 圖1Α顯示出先前技術雷射系統。 圖1Β示思性地顯示出依據本發明一項實施例摺疊式雷 射系統。 圖2為依據本發明一項實施例摺疊式空麟色雷射系 統。 固3為…、模擬,其顯示出圖2非線性晶體與二極體雷射 間之熱傳導。 ▲圖4顯示出二極體波導與晶體波導間之光學耗合效率 之變化為波導至波導間距d之函數; 圖5A顯不出範例性非線性晶體之斷面側視圖; 25 201110489 圖5B顯示出圖5A範例性非線性晶體之斷面端視圖; 圖6爲依據另一項實施例摺疊式空腔綠色雷射系統的 斷面圖。 圖7顯示出兩個不同雷射系統配置耦合效率與波導間 距cl關係。 圖从及犯顯示出在另一實施例中非線性光學晶體按 裝於二極體雷射上。 圖9為能夠使用於本發明一些實施例中商業可利用透 鏡組件4達成耦合效率(CE)曲線圖。 圖iOA及10B顯示出兩個範例性實施例之摺疊式空腔 綠色雷射系統。 圖11為依據本發明一項實施例透鏡組件,晶體波導, 以及傾斜二極體雷射波導之斷面圖。 圖12為兩個範例性透鏡組件光學路徑長度與後端運 作距離關係曲線圖。 〃 圖13為搞合效率與後端運作距離之曲線圖。 圖14為依據本發明—項實施例透鏡組件之斷面圖。 用逯雜本㈣—項實糊収制目商業可利 :且件之麵合性能及透鏡組件波導間距關係。 圖。Θ 16如出域本發明另—項實施舰敎件之斷面 _。 如出依據本發明另-項實施例透鏡組件之斷面 如出像差(波前誤差)的演變為範例性透鏡組件 26 201110489 傾斜的函數。 圖19顯示出像差(波前誤差)的演變為範例性透鏡組件 傾斜的函數。 圖20為搞合效率之曲線圖為兩個範例性透鏡組件傾斜 的函數。 【主要元件符號說明】 光束2;紅外線二極體3;非線性光學晶體4;綠色光 線5;雷射系'統10;光源20;二極體雷射20,;二極體波導 2〇 A;光束22;焊線23;焊線迴路23,;透鏡組件外準直 光束40;反射H 50;影像平面6〇;接收器7〇;線性曰 體70 ;晶體波導70’A;帽蓋層70,B;頂層70,C。 27By applying this method to the folding design, we get the best results in the case where the diode is irradiated to ppLN 23 201110489 and the distance d of the crystal is G. 5 ug or more. Unfortunately, the design of the __ surface is very rigid in manufacturing and assembly positioning tolerances. The most severe possibility is that the tilt of the lens assembly is limited to about 1 degree. The slight tilting of the impact on the lens assembly 30 or the mirror 50 is mostly due to the fact that both the dance aberration and the astigmatism county will result in a reduction in the efficiency of the θ (lower between the diode laser and the nonlinear optical crystal) Performance _ combined). Figure 18 shows the evolution of lens aberration and lens tilt, more specifically the entire wavefront error (10), as a function of the tilt of the example lens assembly 3G. In this calculation, the distance d between the fine σ _ crystals of the diode is kept constant .35 faces), and the value of each oscillating slope is adjusted. When the tilt increases, the amplitude of the coma (C) and the astigmatism (4) (the aberration of the master) increases. As a result, when there is no tilt, the wavefront error increases rapidly as it increases. F hanging - pretty In order to relax this tolerance, we try another optimization method. Secondly, the lens assembly is optimized, and its shape and asphericity are very similar to those of the first lens assembly. However, the tolerance analysis indicates that the lens is tilted and the mirror angle is relaxed by one-fifth. To understand how to relax the tolerance, we calculate the image as a function of the tilt of the lens. Fig. 19 also illustrates the lens aberration and the astigmatism phenomenon when the tilt is zero: this (A) is not at the minimum value, and the 岐 lens _ obliquely increases when it is increased. ^本上; This means that when the money of the money is not tilted in its standard (four) ❸ ❸ ❸ 提出 - some residual astigmatism phenomenon, when the tilt of the lens increases, compensate for the astigmatism phenomenon. 24 201110489 , the result is that the total aberration is relatively flat at a wide range of lens angles. In other words, the nominal design accommodates a wider range of positioning tolerances. Figure 2 shows the coupling performance calculated by the two designs (Lens Design #1 and #2). The tilt of the lens and the tilt of the mirror. As we have seen, when the component is in its nominal position, the tolerance is improved and does not have a significant effect. σ This analysis shows that the tolerance of positioning can be dramatically improved by using some residual astigmatism in the design. This astigmatism compensates for the astigmatism that occurs when the elements are aligned, allowing the system to accommodate more positioning tolerances. It is apparent to those skilled in the art that the present invention is capable of various changes and modifications without departing from the spirit of the invention. The present invention encompasses various changes and modifications of the present invention and is made in the following application and in the equivalents. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1A shows a prior art laser system. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a pictorial representation of a folding laser system in accordance with one embodiment of the present invention. 2 is a folded airborne laser system in accordance with one embodiment of the present invention. Solid 3 is ..., simulation, which shows the heat conduction between the nonlinear crystal of FIG. 2 and the diode laser. ▲ Figure 4 shows the change in optical fit efficiency between the diode waveguide and the crystal waveguide as a function of the waveguide-to-waveguide spacing d; Figure 5A shows a cross-sectional side view of an exemplary nonlinear crystal; 25 201110489 Figure 5B shows 5A is a cross-sectional end view of an exemplary nonlinear crystal of FIG. 5A; FIG. 6 is a cross-sectional view of a folded cavity green laser system in accordance with another embodiment. Figure 7 shows the coupling efficiency of two different laser system configurations versus the waveguide spacing cl. The diagram shows that in another embodiment the nonlinear optical crystal is mounted on a diode laser. Figure 9 is a graph showing coupling efficiency (CE) that can be utilized with commercially available lens assembly 4 in some embodiments of the invention. Figures iOA and 10B show a folded cavity green laser system of two exemplary embodiments. Figure 11 is a cross-sectional view of a lens assembly, a crystal waveguide, and a tilted diode laser waveguide in accordance with one embodiment of the present invention. Figure 12 is a graph of optical path length versus back end operating distance for two exemplary lens assemblies. 〃 Figure 13 is a graph of the efficiency and back-end operating distance. Figure 14 is a cross-sectional view of a lens assembly in accordance with an embodiment of the present invention. With the miscellaneous (four) - item real paste, the business is profitable: and the face-to-face performance and the waveguide component pitch relationship. Figure. Θ 16 If the domain of the invention is another item, the section of the ship 实施 is implemented. The cross-section of the lens assembly according to another embodiment of the present invention, such as aberration (wavefront error), evolves as a function of the tilt of the exemplary lens assembly 26 201110489. Figure 19 shows the evolution of aberrations (wavefront error) as a function of the tilt of the exemplary lens assembly. Figure 20 is a plot of the efficiency curve for the tilting of two exemplary lens assemblies. [Description of main component symbols] Beam 2; Infrared diode 3; Nonlinear optical crystal 4; Green light 5; Laser system 10; Light source 20; Diode laser 20, Diode waveguide 2A ; beam 22; bond wire 23; wire loop 23; lens assembly outer collimated beam 40; reflection H 50; image plane 6 〇; receiver 7 〇; linear 曰 body 70; crystal waveguide 70'A; cap layer 70, B; top layer 70, C. 27

Claims (1)

201110489 七、申請專利範圍 1. 一種具有光軸的摺疊式雷射系統,此雷射系統包括: (I)同調光源; (Π)反射器; ·( 111)位於光源和反射器之間的透鏡組件;和 (IV)非線性光學晶體,其中光源和非線性光學晶體之間 以距離d&gt;50微米以及空氣間隙分開; 其中:(a)當從光源攔截光線時,定位透鏡組件以提供準 直光束,使得準直光束和光軸成㊀,角度,(b)置放反射器使 其經由透鏡攔戴準直光束,並反射準直光束到非線性光學 晶體;以及(c)建構透鏡組件以提供非線性光學晶體上的影 像。 ’、 2. —種具有光軸的摺疊式雷射系統,此雷射系統包括: (I)同調光源; (Π)反射器; (III) 位於光源和反射器之間的透鏡組件;和 (IV) 非線性光學晶體,其中光源和非線性光學晶體位於 貫質上對稱於光軸,以及分隔距離d&gt;5〇微米以及空氣間隙 分開; ' 其中.(a)當k光源攔截光線時,定位透鏡組件以提供準 直光束,使得準直光束和光軸成㊀,角度,(b)置放反射器使 其經由透鏡攔截準直光束,並反射準直光束到非線性光學 .體;以及(c)建構透鏡組件以提供非線性光學晶體上的影 像。 ' 28 201110489 3. 依據申請專利範圍第2項之雷射系統,其中同調光源為二 極體雷射,以及非線性光學晶體以及二極體雷射相對彼此 傾斜。 4. 依據申請專利範圍第1項之雷射系統,其中非線性光學晶 體為懸臂出二極體。 5. 依據申請專利範圍第2項之雷射系統,其巾同調光源為二 極體雷射以及非線性光學晶體制二極體雷射之晶體面加 以固定。 d〈1500 微米。 d$500微米。 150微米 6. 依據申請專利範圍第2項之雷射系統,其中 7. 依據申請專利範圍第6項之雷射系統,其中 8. 依據申请專利範圍第7項之雷射系統,其中 500微米。 9产依據申請細謂2項之雷射蛾財f縣統特徵 在於像散現象是超過〇. 〇5波戰並小於Q丨波腦。 m申請專利範圍第2項之雷射系統,其中反射器位於 =、赠之焦面中,使得光源平均發㈣度之方向平行於 接收器上平均光束角度。 、 專利卿丨項之则統財透鏡組件位 於以放大率Μ成像以及〇. 9$丨Μ丨i 其中光源為二極 實質上等之絲路徑距離_ 細12㈣吻,㈣學路徑距 29 201110489 14·依據申請專利範圍第2項之雷射系統,其中透鏡組件為 雙—非球面單透鏡,其數值孔徑ΝΑ為0. 35至0. 60;以及焦距 為 f,其中 ImmSf$3mm。 15. 依據申請專利範圍第2項之雷射系統,其中前工作距離 FWD 為 〇· 3mm 至 3mm。 16. 依據申請專利範圍第2項之雷射系統,其中後工作距離 BWD為1. 5刪至3刪。 17. 依據申請專利範圍第2項之雷射系統,其中由光源發出 光線在到達接收器之前經過透鏡組件兩次。 18. 依據申請專利範圍第2項之雷射系統,其中 (a)當攔截光源發出光線時,定位透鏡組件以提供準直光 束;以及 (b)反射器放置成攔戴準直光束以及反射準直光束經由 透鏡到非雜光學晶體;以及使得準直絲城於光轴為 角度Θ ’ ’ 0· 05孤度$ θ、〇· 2弧度於光源位於透鏡焦面中 時,以及偏離透鏡組件光軸距離d, 隸據申請專利範圍第18項之紙=中角度㊀,為: 0. 09孤度S Θ $〇. 17弧度。 20.依據帽專利範圍第2項之雷㈣統,其中透鏡組件具 有: ' Γ2 是η,以使| η | &gt; 21.依據申請專利範圍第2項之雷射系統,其中反射器位於 201110489 . 透鏡組件之影像焦面中,使得光源平均發射角度之方向平 行於接收器上平均光束角度。 22.依據申請專利範圍第1項之雷射系統,其中二極體雷射 按裳角度將補償二極體之分裂角度,使得由雷射二極體發、 . 射出光束中心平行透鏡組件光軸情況。 31201110489 VII. Patent application scope 1. A folding laser system with an optical axis, the laser system comprising: (I) a homology light source; (Π) a reflector; (111) a lens between the light source and the reflector And a (IV) nonlinear optical crystal in which the light source and the nonlinear optical crystal are separated by a distance d &gt; 50 microns and an air gap; wherein: (a) when intercepting the light from the light source, positioning the lens assembly to provide collimation a beam such that the collimated beam and the optical axis are at an angle, (b) the reflector is placed to intercept the collimated beam through the lens, and the collimated beam is reflected to the nonlinear optical crystal; and (c) the lens assembly is constructed to provide An image on a nonlinear optical crystal. ', 2. A folding laser system with an optical axis, the laser system comprising: (I) a coherent light source; (Π) a reflector; (III) a lens assembly between the light source and the reflector; IV) a nonlinear optical crystal in which the light source and the nonlinear optical crystal are located symmetrically to the optical axis, and the separation distance d &gt; 5 μm and the air gap are separated; 'where. (a) when the k light source intercepts the light, positioning a lens assembly to provide a collimated beam such that the collimated beam and the optical axis are at an angle, (b) the reflector is placed to intercept the collimated beam via the lens, and the collimated beam is reflected to the nonlinear optical body; and (c The lens assembly is constructed to provide an image on a nonlinear optical crystal. ' 28 201110489 3. A laser system according to the scope of claim 2, wherein the coherent light source is a diode laser, and the nonlinear optical crystal and the diode laser are tilted relative to each other. 4. A laser system according to claim 1 wherein the nonlinear optical crystal is a cantilevered diode. 5. According to the laser system of claim 2, the homophone source is a diode laser and the crystal surface of the nonlinear optical crystal diode laser is fixed. d < 1500 microns. d$500 microns. 150 micron 6. According to the laser system of claim 2, 7. The laser system according to the scope of claim 6 of the patent application, 8. The laser system according to the scope of claim 7 of the patent, which is 500 micrometers. 9 production according to the application of the detailed description of the two items of the laser moth f county characteristics is that the astigmatism phenomenon is more than 〇. 〇 5 wave warfare and less than Q chop brain. m. The laser system of claim 2, wherein the reflector is located in the focal plane of the =, so that the average direction of the light source (four degrees) is parallel to the average beam angle on the receiver. The patented 丨 之 则 则 统 透镜 透镜 透镜 透镜 透镜 透镜 透镜 透镜 透镜 透镜 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 The laser system according to claim 2, wherein the lens assembly is a double-aspheric single lens having a numerical aperture ΝΑ of 0.35 to 0.60; and a focal length of f, wherein ImmSf is $3 mm. 15. According to the laser system of claim 2, the front working distance FWD is 〇·3mm to 3mm. 16. Deleted according to the scope of the patent application scope 2, the post-working distance BWD is 1. 5 delete to 3 delete. 17. The laser system of claim 2, wherein the light emitted by the light source passes through the lens assembly twice before reaching the receiver. 18. A laser system according to claim 2, wherein (a) positioning the lens assembly to provide a collimated beam when the intercepting source emits light; and (b) placing the reflector to block the collimated beam and reflecting a straight beam passing through the lens to the non-missing optical crystal; and causing the collimating filament to be at an angle Θ ' ' 0· 05 solitude $ θ, 〇 · 2 radians when the light source is in the focal plane of the lens, and deviating from the lens assembly The axial distance d, according to the paper of the 18th item of the patent application scope = medium angle one, is: 0. 09 degree of S Θ $〇. 17 radians. 20. According to the second aspect of the patent scope of the cap, the lens assembly has: ' Γ2 is η, so that | η | &gt; 21. According to the laser system of claim 2, wherein the reflector is located at 201110489 In the image focal plane of the lens assembly, the direction of the average emission angle of the light source is parallel to the average beam angle on the receiver. 22. The laser system according to claim 1, wherein the diode laser compensates for the splitting angle of the diode according to the skirting angle, so that the laser diode emits light, and the beam center parallel lens assembly optical axis Happening. 31
TW099113593A 2009-04-30 2010-04-28 Folded lasers system TW201110489A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15570709P 2009-04-30 2009-04-30

Publications (1)

Publication Number Publication Date
TW201110489A true TW201110489A (en) 2011-03-16

Family

ID=43032549

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099113593A TW201110489A (en) 2009-04-30 2010-04-28 Folded lasers system

Country Status (5)

Country Link
JP (1) JP2012525610A (en)
KR (1) KR20120024682A (en)
CN (1) CN102422494B (en)
TW (1) TW201110489A (en)
WO (1) WO2010127060A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018577A1 (en) * 2010-08-06 2012-02-09 Corning Incorporated Frequency doubled laser with folded optical path
US20130044773A1 (en) * 2011-08-18 2013-02-21 Venkata Adiseshaiah Bhagavatula Optical sources having proximity coupled laser source and waveguide
US20130044778A1 (en) * 2011-08-18 2013-02-21 Jacques Gollier Optical sources having a cavity-matched external cavity
CN111830531A (en) * 2019-04-12 2020-10-27 华为技术有限公司 Optical scanning assembly and laser radar

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9218482D0 (en) * 1992-09-01 1992-10-14 Dixon Arthur E Apparatus and method for scanning laser imaging of macroscopic samples
US6073846A (en) * 1994-08-17 2000-06-13 Metrologic Instruments, Inc. Holographic laser scanning system and process and apparatus and method
US5986779A (en) * 1995-08-18 1999-11-16 Matsushita Electric Industrial Co., Ltd. Multiple focus lens, an optical head apparatus and an optical information recording-reproducing apparatus
US5835650A (en) * 1995-11-16 1998-11-10 Matsushita Electric Industrial Co., Ltd. Optical apparatus and method for producing the same
US6285702B1 (en) * 1999-03-05 2001-09-04 Coherent, Inc. High-power external-cavity optically-pumped semiconductor laser
AT406989B (en) * 1999-05-18 2000-11-27 Femtolasers Produktions Gmbh Focusing device
US7457031B1 (en) * 2007-07-20 2008-11-25 Corning, Incorporated Optical configurations for wavelength-converted laser sources

Also Published As

Publication number Publication date
CN102422494B (en) 2014-05-07
JP2012525610A (en) 2012-10-22
CN102422494A (en) 2012-04-18
KR20120024682A (en) 2012-03-14
WO2010127060A1 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
EP2636111B1 (en) Optical element for vertical external-cavity surface-emitting laser
CN103688426B (en) Pump light arrangement for a disc laser
KR102342203B1 (en) Optical device having a disk-shaped laser active medium
US6765725B1 (en) Fiber pigtailed high power laser diode module with high brightness
EP2467910A2 (en) A vertical cavity surface emitting laser device with angular-selective feedback
JP2005222049A (en) Method and apparatus for adjusting path of optical beam in waveguide
EP2562892A1 (en) Disc-shaped solid laser
JP2014120560A (en) Semiconductor laser device, and laser beam generation method for the same
CN208753726U (en) Unsteady cavity spectrum beam combination device
WO2020078197A1 (en) Semiconductor laser
TW201110489A (en) Folded lasers system
JP2016525803A (en) Q switch solid state laser
WO2019155668A1 (en) Semiconductor laser device
TW200921233A (en) Optical configurations for wavelength-converted laser sources
WO2016039481A1 (en) Ld module
CN102365574B (en) Folded optical system and lens for use in optical system
KR100288967B1 (en) Optical system for beam shaping and optical pickup employing the same
WO1998015994A1 (en) External cavity micro laser apparatus
TW200425602A (en) Laser light coupler device
CN209148980U (en) It is a kind of for generating the optical system of multiple local hollow area light beams
CN106099634A (en) A kind of disc solid laser amplifier
JPH08307006A (en) Semiconductor laser
CN104577682B (en) Non- steady imaging resonator
JP2000098190A (en) Semiconductor laser unit, semiconductor laser module and solid-state laser device
JP2009139395A (en) Wavelength conversion laser beam source