WO2019155668A1 - Semiconductor laser device - Google Patents

Semiconductor laser device Download PDF

Info

Publication number
WO2019155668A1
WO2019155668A1 PCT/JP2018/032700 JP2018032700W WO2019155668A1 WO 2019155668 A1 WO2019155668 A1 WO 2019155668A1 JP 2018032700 W JP2018032700 W JP 2018032700W WO 2019155668 A1 WO2019155668 A1 WO 2019155668A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
axis direction
output mirror
slow axis
light
Prior art date
Application number
PCT/JP2018/032700
Other languages
French (fr)
Japanese (ja)
Inventor
藤川 周一
智毅 桂
正人 河▲崎▼
菊池 弘
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019505080A priority Critical patent/JPWO2019155668A1/en
Publication of WO2019155668A1 publication Critical patent/WO2019155668A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present invention relates to a semiconductor laser device including a semiconductor laser element and an external resonator.
  • Conventional semiconductor lasers have a condensing property in the slow axis direction by installing a high reflector narrower than the width of the light emitting point in the slow axis direction directly or close to the light emitting point to suppress the generation of higher-order modes.
  • a high reflection region is formed by a coating technique at the center of the light emitting point in the slow axis direction in order to suppress the generation of higher order modes in the slow axis direction.
  • the thickness of the semiconductor laser element is usually about 100 ⁇ m, and the width of the light emitting point in the slow axis direction is about several tens ⁇ m to several hundreds ⁇ m.
  • applying a high-reflectance coating as in Patent Document 1 to a precise position in the region of the light emitting point having a small width in the slow axis direction to make the remaining region have a low reflectance is a coating.
  • Technical difficulty is high from the viewpoint of uniformity and adhesion.
  • the number of steps related to coating increases, there is a problem that the manufacturing cost increases.
  • the present invention has been made in view of the above, and an object thereof is to obtain a semiconductor laser device capable of easily improving the light condensing property in the slow axis direction.
  • the present invention corrects the divergence angle of the laser beam in the first axis direction, which is disposed on the optical path of the laser beam and the semiconductor laser element that emits the laser beam.
  • a first axis correction lens is disposed on the optical path of the laser beam and the semiconductor laser element that emits the laser beam.
  • the present invention further reflects a part of the laser beam from the first axis correction lens by changing the reflectance of the laser beam depending on the position of the laser beam in the slow axis direction, and reflects the reflected laser beam.
  • An output coupling element that returns to the semiconductor laser element and passes the remainder as output light is provided.
  • FIG. 1 is a schematic top view showing a configuration of a semiconductor laser device according to a first embodiment of the present invention.
  • Side surface schematic diagram which shows the structure of the semiconductor laser apparatus concerning Embodiment 1.
  • FIG. Schematic diagram showing the configuration of the output mirror according to the first embodiment.
  • Schematic top view showing the configuration of the semiconductor laser device according to the fourth embodiment of the present invention.
  • Side surface schematic diagram which shows the structure of the semiconductor laser apparatus concerning Embodiment 4.
  • FIG. Schematic diagram showing the configuration of the output mirror according to the fourth embodiment Schematic top view showing the configuration of the semiconductor laser device according to the fifth embodiment of the present invention.
  • FIG. Schematic diagram showing the configuration of the output mirror according to the sixth embodiment.
  • FIG. 10 Schematic top view showing the configuration of the semiconductor laser apparatus according to the ninth embodiment. Schematic top view showing the configuration of the semiconductor laser apparatus according to the tenth embodiment of the present invention. Side surface schematic diagram showing the configuration of the semiconductor laser device according to the tenth embodiment. Schematic top view showing the configuration of the semiconductor laser apparatus according to the eleventh embodiment of the present invention. Side surface schematic diagram showing the configuration of the semiconductor laser apparatus according to the eleventh embodiment. A perspective schematic view showing a configuration of an output mirror according to an eleventh embodiment. Schematic diagram showing the configuration of the output mirror according to the eleventh embodiment. Another schematic diagram showing the configuration of the output mirror according to the eleventh embodiment Schematic top view showing the configuration of the semiconductor laser apparatus according to the twelfth embodiment of the present invention.
  • FIG. 1 is a schematic top view showing the configuration of the semiconductor laser device 10 according to the first embodiment of the present invention.
  • FIG. 2 is a schematic side view illustrating the configuration of the semiconductor laser device 10 according to the first embodiment.
  • the semiconductor laser device 10 according to the first embodiment includes a semiconductor laser element 100, a first axis correction lens 2, and an output mirror 300 that is an output coupling element.
  • the semiconductor laser element 100, the first axis correction lens 2, and the output mirror 300 constitute an external resonator for laser light, and this external resonator outputs laser light from the semiconductor laser element 100.
  • the semiconductor laser device 10 uses an edge-emitting semiconductor laser element 100 that oscillates at a center wavelength of 975 nm.
  • FIG. 1 is a schematic diagram viewed from the y direction, which is a direction perpendicular to the bonding surface of the active layer 103 of the semiconductor laser element 100.
  • FIG. The schematic side view of FIG. 2 is a schematic diagram viewed from the x direction, which is a direction parallel to the bonding surface of the active layer 103 of the semiconductor laser device 100.
  • the bonding surface of the active layer 103 is a bonding surface where the active layer 103 is bonded to another layer by a junction such as a pn junction or a hetero junction.
  • the direction perpendicular to the bonding surface of the active layer 103 of the semiconductor laser element 100 is called the first axis direction of the laser light, and corresponds to the y direction in FIGS. 1 and 2.
  • the direction parallel to the bonding surface of the active layer 103 of the semiconductor laser element 100 is perpendicular to the fast axis direction and is called the slow axis direction of the laser beam, and corresponds to the x direction in FIGS. To do.
  • the optical axis of the laser light is along the z direction
  • both the fast axis direction and the slow axis direction are directions perpendicular to the optical axis of the laser light, that is, directions perpendicular to the z direction.
  • the semiconductor laser element 100 includes a semiconductor laser medium 104 that constitutes an active layer 103.
  • an appropriate electrode or the like is provided on the semiconductor laser element 100 and current is injected in the y direction, which is a direction orthogonal to the bonding surface of the active layer 103, so that light near the center wavelength of 975 nm is obtained.
  • the amplifying action works, and the semiconductor laser element 100 emits laser light.
  • the semiconductor laser medium 104 is not an area determined only by the layer structure of the semiconductor laser element 100 but an area to which a current is applied and has a laser amplification function.
  • the width of the semiconductor laser medium 104 in the slow axis direction, that is, in the x direction is substantially equal to the emission point width on the front end face 101 from which the laser light is emitted.
  • a semiconductor laser element 100 having a light emitting point width of 200 ⁇ m is used.
  • an antireflection coating for a wavelength of 975 nm is applied to the front end face 101 from which laser light is emitted, and a total reflection film for a wavelength of 975 nm is applied to the rear end face 102 of the semiconductor laser element 100.
  • the reflectance of the antireflection coating applied to the front end face 101 of the semiconductor laser element 100 is desirably 1% or less in order to suppress self-oscillation in the semiconductor laser element 100 alone.
  • the first axis correction lens 2 is arranged so as to face the front end face 101 of the semiconductor laser element 100. That is, the first axis correction lens 2 is disposed on the optical path of the laser light between the semiconductor laser element 100 and the output mirror 300.
  • the first axis correction lens 2 has a function of correcting the divergence angle of the laser beam in the first axis direction. Specifically, the first axis correction lens 2 reduces the divergence angle of the laser beam in the first axis direction.
  • the first axis correction lens 2 is constituted by a cylindrical convex lens.
  • the first axis correction lens 2 is disposed so that the direction of the generatrix of the cylindrical convex lens coincides with the slow axis direction (x direction) and the focal point of the cylindrical convex lens substantially coincides with the front end face 101. Thereby, the beam divergence angle with respect to the first axis direction (y direction) of the laser light emitted from the front end face 101 can be effectively reduced.
  • the laser beam that has passed through the first axis correction lens 2 enters the output mirror 300.
  • the output mirror 300 is constituted by a cylindrical plano-concave mirror.
  • the concave surface of the cylindrical plano-concave mirror is the incident surface 301 of the output mirror 300.
  • the output mirror 300 is disposed so that the concave incident surface 301 faces the semiconductor laser element 100 and the direction of the generatrix of the cylindrical plano-concave mirror coincides with the first axis direction (y direction).
  • the optical distance between the principal point of the output mirror 300 and the front end face 101 of the semiconductor laser element 100 is set to approximately 1 ⁇ 2 of the radius of curvature of the concave surface of the cylindrical plano-concave mirror constituting the output mirror 300.
  • the external resonator in the semiconductor laser device 10 according to the first embodiment constitutes a semi-conical resonator in the xz plane including the slow axis direction (x direction).
  • FIG. 3 is a schematic diagram illustrating a configuration of the output mirror 300 according to the first embodiment.
  • the output mirror 300 is constituted by the cylindrical plano-concave mirror as described above, and has the incident surface 301 on which the laser beam from the semiconductor laser element 100 is incident and the emission surface 303 that emits the laser beam.
  • the concave incident surface 301 is a reflection having a reflectance of 0% or almost 0% with respect to a laser beam having a wavelength of 975 nm, except for the high reflection portion 302 provided in the center in the slow axis direction (x direction) of the laser beam.
  • a protective coating is applied.
  • the high reflection portion 302 is provided only in a region having a width w1 with respect to the x direction in the center of the incident surface 301, and the other region is a low reflection portion to which an antireflection coating is applied. Yes. That is, the high reflection portion 302 is provided in a region having a width w1 including the center line 350 extending in the fast axis direction (y direction) at the center in the slow axis direction (x direction) of the laser light. The reflectance of the laser beam 301 is changed at the boundary between the high reflection portion 302 and the low reflection portion depending on the position of the laser beam in the slow axis direction.
  • the reflectance of the incident surface 301 with respect to the laser light does not increase even if it decreases from the reflectance at the center line 350 as it moves away from the center line 350 that is the center in the slow axis direction along the slow axis direction.
  • an antireflection coating for laser light having a wavelength of 975 nm is also applied to the emission surface 303 formed of a flat surface over the entire surface.
  • High incidence part 302 is provided in the entrance plane 301 of output mirror 300 concerning Embodiment 1 only in the field which has width w1 to the x direction which is the slow axis direction. Therefore, as shown in FIG. 1, in the slow axis direction (x direction), the main oscillation light 401 corresponding to the width w1 of the high reflection portion 302 is formed by light feedback by the high reflection portion 302. In addition, around the main oscillation light 401, peripheral amplification light 402 is generated in the semiconductor laser medium 104, which is amplified using the diffracted light of the main oscillation light 401 as a seed.
  • the incident surface 301 determined by the eigenmode passively selected according to the configuration of the external resonator.
  • the beam diameter in the slow axis direction (x direction) above is set to w2.
  • the eigenmode is an eigenmode of the transverse mode in the slow axis direction (x direction).
  • the width w1 of the high reflection portion 302 provided on the incident surface 301 of the output mirror 300 according to the first embodiment is set to a smaller value than the beam diameter w2 in the slow axis direction (x direction) on the incident surface 301.
  • the high reflection portion 302 functions as an opening that restricts the order of the transverse mode to the low order in the slow axis direction (x direction) of the external resonator.
  • the order of the transverse mode in the slow axis direction of the main oscillation light 401 formed corresponding to the width w1 of the high reflection portion 302 is an external resonator using a general output mirror having a uniform reflectance. As compared with the case of, the value becomes lower and the light condensing property can be improved.
  • peripheral amplified light 402 is amplified by the stimulated emission phenomenon using the diffracted light of the main oscillation light 401 as a seed, the coherency with the main oscillation light 401 is maintained, and the peripheral oscillation light 402 is also the main oscillation light.
  • the light condensing property equivalent to 401 can be obtained.
  • the laser light emitted from the light emitting point on the front end face 101 is easily In principle, the divergence full angle is very large, about 30 ° to 60 °.
  • the first axis correction lens 2 is disposed so as to face the front end face 101 of the semiconductor laser element 100, the laser light emitted from the front end face 101 is The divergence angle with respect to the first axis direction (y direction) can be effectively reduced.
  • the output mirror 300 can be installed by being separated from the semiconductor laser element 100 by a significant distance.
  • the significant distance is, for example, a distance of 10 mm or more.
  • the beam diameter in the slow axis direction (x direction) on the incident surface 301 of the output mirror 300 is set to the front side of the semiconductor laser element 100.
  • the width of the light emitting point on the end face 101 is 200 ⁇ m
  • the beam divergence angle in the slow axis direction is 5 in all angles.
  • the beam diameter in the slow axis direction on the incident surface 301 is about 1.1 mm, which allows an enlargement of about 5 times. If the distance between the output mirror 300 and the semiconductor laser element 100 is further increased, the beam diameter can be further expanded. Thereby, in the first embodiment in which the high reflection portion 302 is provided in the center portion of the incident surface 301 in the slow axis direction (x direction), there is an effect that the design and manufacture of the output mirror 300 can be facilitated. Since the reflectance of the incident surface 301 of the output mirror 300 is constant with respect to the first axis direction (y direction), the external resonator of the semiconductor laser device 10 according to the first embodiment has a normal external resonance. Functions like a vessel.
  • Equation (1) R h is the reflectance of the high reflection portion 302
  • R l is the reflectance of the region of the incident surface 301 excluding the high reflection portion 302.
  • R h > R 1 holds. It should be noted that the reflectance distribution viewed from the center line 350, which is the center in the slow axis direction, in the x direction or the -x direction is symmetric with respect to the center line 350.
  • the output is the optimum value that maximizes the output of the semiconductor laser device 10 according to the gain of the semiconductor laser medium 104.
  • w2 is calculated from the eigenmode in the slow axis direction (x direction) of the external resonator, and based on the target order of the transverse mode in the slow axis direction. Thus, the width w1 of the high reflection portion 302 is determined.
  • the high reflection portion 302 according to the first embodiment. Even when the output mirror 300 provided with is used, the laser light can be efficiently extracted from the semiconductor laser medium 104. That is, even when the output mirror 300 according to the first embodiment in which the reflectivity in the slow axis direction is changed by providing the high reflection portion 302 in order to improve the light collecting property, the laser from the semiconductor laser medium 104 is used. Light can be output efficiently.
  • the configuration in which the antireflection coating is applied to the incident surface 301 of the output mirror 300 except for the high reflection portion 302 is shown, but the configuration of the output mirror 300 is not limited to this. Even if a coating having a certain value of reflectance is applied to a region other than the high reflection portion 302, an appropriate width corresponding to the order of the transverse mode in the target slow axis direction at a position on the incident surface of the appropriate output mirror If the value of R h and R l is set so that the high reflection part of w1 is provided and the value of the equivalent reflectance R eq shown in the equation (1) substantially matches the optimum reflectance, The optical property can be easily improved, and the laser beam can be efficiently extracted from the semiconductor laser medium 104.
  • the configuration of the output mirror 300 of the external resonator is not limited to this, and the external resonance depends on the target beam mode.
  • the shape of the entrance surface and the exit surface of the output mirror 300 may be determined by designing the device appropriately.
  • the high reflection portion 302 is provided in the region of the width w1 at the center of the incident surface 301 of the output mirror 300 in the slow axis direction, and the antireflection coating is provided in the region other than the high reflection portion 302 of the incident surface 301.
  • the structure which gave is shown.
  • the incident surface and the exit surface having the same radius of curvature as the entrance surface 301 and the exit surface 303 of the output mirror 300 according to the first embodiment are provided, and the reflectivity of the entrance surface is the same as the reflectivity of the high reflection portion 302 and the width. It goes without saying that the same effect can be obtained even if the mirror of w1 is used instead of the output mirror 300.
  • the first laser beam is positioned at the position on the optical path of the laser beam between the semiconductor laser element 100 and the output mirror 300 and facing the semiconductor laser element 100.
  • the axis correction lens 2 By installing the axis correction lens 2, the beam divergence angle of the laser beam in the first axis direction is reduced.
  • the output mirror 300 constituting the external resonator can be installed without being close to the semiconductor laser element 100, the adjustment of the configuration of the external resonator is facilitated, and laser light is stably generated. Can be made.
  • the output mirror 300 does not need to be installed close to the semiconductor laser element 100, the beam diameter in the slow axis direction on the output mirror 300 is larger than the width of the light emitting point in the slow axis direction of the semiconductor laser element 100. Therefore, the positional accuracy of the change in reflectance provided in the slow axis direction of the output mirror 300 can be relaxed. As a result, the manufacturing cost of the output mirror 300 can be reduced and the adjustment margin of the output mirror 300 can be increased. Since the reflectance of the output mirror 300 with respect to the laser light incident on the output mirror 300 is changed in the slow axis direction, the target transverse mode is selectively amplified in the slow axis direction, and The light collecting property can be improved efficiently and easily.
  • FIG. FIG. 4 is a schematic diagram illustrating a configuration of the output mirror 310 according to the second embodiment of the present invention.
  • the configuration of the semiconductor laser device according to the second embodiment is the same as that in which the output mirror 300 that is the output coupling element in FIGS. 1 and 2 is replaced with the output mirror 310, and external resonance with respect to the laser light in the second embodiment.
  • the configuration of the vessel is the same as that of the first embodiment.
  • a first high reflection portion 304 having a width w ⁇ b> 3 is provided at the center of the incident surface 301 in the slow axis direction (x direction).
  • a second high reflection portion 305 is further provided on both sides of the first high reflection portion 304 in the region of the width w4 (> w3) in the slow axis direction (x direction).
  • the width w3 of the first high reflection portion 304 is set to a smaller value than the beam diameter w2 in the slow axis direction (x direction) on the incident surface 301.
  • the output surface 303 of the output mirror 310 in FIG. 4 is provided with an antireflection coating for laser light having a wavelength of 975 nm, as in the first embodiment.
  • the reflectance of the first high reflecting portion 304 and R h1 the reflectance of the second high reflective portion 305 and R h2, except for the first high-reflective portion 304 and the second high reflecting portion 305
  • the reflectance of the incident surface 301 is R l , R h1 , R h2, and R l satisfy the relationship expressed by the following formula (2).
  • the second high reflection portion 305 having different reflectivity is arranged along the slow axis direction (x direction) on the incident surface 301 of the output mirror 310.
  • the incident surface 301 of the output mirror 310 has a higher level of reflectance in the slow axis direction than the incident surface 301 of the output mirror 300 of the first embodiment provided with only one high reflection portion 302. Can be changed.
  • the reflectance of the incident surface 301 with respect to the laser light does not increase even though it decreases as the distance from the center line 350, which is the center in the slow axis direction, increases along the slow axis direction.
  • the reflectance distribution viewed from the center line 350, which is the center in the slow axis direction, in the x direction or the -x direction is a symmetric distribution with respect to the center line 350. Accordingly, the output mirror 310 can set the spatial distribution of the resonator loss with respect to the slow axis direction more precisely according to the target order of the transverse mode with respect to the slow axis direction. An effect is obtained that generation of laser light having the target order of the transverse mode can be realized more easily.
  • the equivalent reflectivity R eq of the output mirror 310 according to the second embodiment can be calculated according to the following mathematical formula (3).
  • the reflectance R l of the incident surface 301 is set so that the value of the equivalent reflectance R eq calculated by the equation (3) substantially matches the optimum reflectance, the output mirror 310 according to the second embodiment can be obtained. Even when it is used, laser light can be efficiently extracted from the semiconductor laser medium 104.
  • the output mirror 310 according to the second embodiment in which the first high reflection portion 304 and the second high reflection portion 305 are provided to change the reflectivity in the slow axis direction in order to improve the light collecting property is used. Even so, it is possible to efficiently generate laser light having a target order for the transverse mode in the slow axis direction.
  • the first high reflection portion 304 and the second high reflection portion 305 having different reflectivities are arranged in the slow axis direction (x direction) and provided on the incident surface 301.
  • the configuration in which the high reflection portion is provided on the incident surface of the output mirror is not limited to this.
  • the third and fourth high-reflecting parts which have different reflectivities from the first high-reflecting part 304 and the second high-reflecting part 305 and have different reflectivities, are arranged on the incident surface of the output mirror in the slow axis direction If arranged in an array, the spatial distribution of the resonator loss in the slow axis direction can be set more finely, and laser light having the target order for the transverse mode in the slow axis direction can be more easily obtained. Can be generated.
  • FIG. FIG. 5 is a schematic diagram showing the configuration of the output mirror 320 according to the third embodiment of the present invention.
  • the configuration of the semiconductor laser device according to the third embodiment is the same as that in which the output mirror 300 which is the output coupling element in FIGS. 1 and 2 is replaced by the output mirror 320, and external resonance with respect to the laser light in the third embodiment.
  • the configuration of the vessel is the same as that of the first embodiment.
  • the shape of the output mirror 320 is the same as that of the output mirror 300.
  • the incident surface 301 of the output mirror 320 has a constant reflectance along the fast axis direction (y direction), and the reflectance at the center in the slow axis direction (x direction).
  • a coating exhibiting a Gaussian-distributed reflectivity with a maximum is applied. That is, also in the output mirror 320, the reflectance of the incident surface 301 with respect to the laser light does not increase even though it decreases as the distance from the center line 350, which is the center in the slow axis direction, increases along the slow axis direction.
  • the reflectance distribution viewed from the center line 350, which is the center in the slow axis direction, in the x direction or the -x direction is a symmetric distribution with respect to the center line 350.
  • the reflectance with respect to the position along the slow axis direction (x direction) is shown in a graph.
  • an antireflection coating for a wavelength of 975 nm is also applied to the output surface consisting of a plane of the output mirror 320 over the entire surface.
  • the output mirror 300 When the output mirror 320 having the incident surface 301 whose reflectivity continuously changes in the slow axis direction as shown in FIG. 5 is used, the output mirror 300 according to the first embodiment and the second embodiment are used. In addition to the same effects as the output mirror 310, the degree of freedom in designing the resonator loss distribution in the slow axis direction is further improved. Thereby, since it is possible to set an optimal reflectance distribution according to the target order of the transverse mode in the slow axis direction, the laser beam having the target order of the transverse mode in the slow axis direction can be efficiently used. In addition, it can be generated more easily.
  • the configuration using the output mirror 320 having a Gaussian distribution type reflectance distribution with respect to the slow axis direction is shown, but the shape of the reflectance distribution is not limited to this, and the slow axis is not limited to this. Needless to say, it may be designed as appropriate according to the target order of the transverse mode of direction.
  • the reflectance of the incident surface 301 of the output mirror changes with respect to the slow axis direction
  • the output surface 303 of the output mirror has a wavelength corresponding to the wavelength of the laser beam.
  • the configuration in which the antireflection coating is applied is shown, the configuration of the output mirror is not limited to these. Specifically, even if the antireflection coating for the wavelength of the laser beam is applied to the incident surface 301 and the reflectance of the emission surface 303 is changed with respect to the slow axis direction, the first embodiment can be applied. The same effect as in the third embodiment can be obtained.
  • FIG. 6 is a schematic top view showing the configuration of the semiconductor laser apparatus 20 according to the fourth embodiment of the present invention.
  • FIG. 7 is a schematic side view showing the configuration of the semiconductor laser apparatus 20 according to the fourth embodiment.
  • FIG. 8 is a schematic diagram illustrating a configuration of the output mirror 330 according to the fourth embodiment.
  • the configuration of the semiconductor laser element 100 according to the fourth embodiment is the same as the configuration of the semiconductor laser element 100 according to the first embodiment.
  • the semiconductor laser device 20 includes a semiconductor laser element 100, a first axis correction lens 2, a first horizontal cylindrical lens 5, a first vertical cylindrical lens 6, and a second horizontal direction.
  • a cylindrical lens 7 and an output mirror 330 that is an output coupling element are provided.
  • the first axis correction lens 2 is a cylindrical lens having a focal length f1 in which a bus is arranged in the slow axis direction (x direction) of the semiconductor laser element 100 which is the horizontal direction.
  • the first horizontal cylindrical lens 5 is a cylindrical lens having a focal length f3 in which a bus is arranged in the vertical direction (y direction).
  • the first vertical cylindrical lens 6 is a cylindrical lens having a focal length f2 in which a bus is arranged in the horizontal direction (x direction).
  • the second horizontal cylindrical lens 7 is a cylindrical lens having a focal length f4 in which a bus is arranged in the vertical direction (y direction).
  • the semiconductor laser element 100, the first axis correction lens 2, the first horizontal cylindrical lens 5, the first vertical cylindrical lens 6, the second horizontal cylindrical lens 7, and the output mirror 330 are external resonators for laser light.
  • the external resonator causes the semiconductor laser element 100 to output laser light having a wavelength of 975 nm.
  • the output mirror 330 is configured by a plane mirror.
  • the width w1 is narrower than the beam diameter w2 of the laser light incident on the incident surface 301 at the center in the x direction, which is the slow axis direction of the laser light incident on the incident surface 301.
  • a highly reflective portion 302 is provided.
  • the width w1 of the high reflection portion 302 is determined based on the target order of the transverse mode in the slow axis direction.
  • An antireflection coating for a wavelength of 975 nm is applied to the region of the incident surface 301 excluding the high reflection portion 302.
  • the reflectance of the incident surface 301 with respect to the laser light does not increase even though it decreases as the distance from the center line 350, which is the center in the slow axis direction, increases along the slow axis direction.
  • the reflectance distribution viewed from the center line 350, which is the center in the slow axis direction, in the x direction or the -x direction is a symmetric distribution with respect to the center line 350.
  • the output surface 303 opposite to the incident surface 301 of the output mirror 330 is provided with an antireflection coating for the wavelength of 975 nm over the entire surface.
  • the first axis correction lens 2 having a focal length f1 with a bus line arranged in the slow axis direction (x direction) is positioned at a distance f1 from the front end face 101 of the semiconductor laser element 100.
  • a first vertical cylindrical lens 6 with a focal length f2 having a bus line arranged in the slow axis direction (x direction) is arranged at a distance f1 + f2 from the first axis correction lens 2, and an output mirror 330 is disposed at a distance f2 from the first vertical cylindrical lens 6.
  • the distances indicated by f1 and f2 are optical distances between principal points of the respective optical elements.
  • an afocal imaging optical system with respect to the first axis direction (y direction) is configured between the front end face 101 of the semiconductor laser element 100 and the incident surface 301 of the output mirror 330. Therefore, the front end surface 101 of the semiconductor laser element 100 and the incident surface 301 of the output mirror 330 are optically conjugate with respect to the fast axis direction (y direction).
  • the first horizontal cylindrical lens 5 having the focal length f3 in which the bus is arranged in the vertical direction (y direction) is arranged from the front end face 101 of the semiconductor laser element 100.
  • the output mirror 330 is disposed at a distance f4 from the second horizontal cylindrical lens 7.
  • the distances indicated by f3 and f4 are optical distances between principal points of the optical elements.
  • an afocal imaging optical system is configured between the front end face 101 of the semiconductor laser element 100 and the incident surface 301 of the output mirror 330 in the slow axis direction (x direction). Therefore, also in the slow axis direction (x direction), the front end face 101 of the semiconductor laser element 100 and the incident face 301 of the output mirror 330 are optically conjugate.
  • the front end face 101 of the semiconductor laser element 100 is imaged on the output mirror 330.
  • the beam width w2 in the slow axis direction on the output mirror 330 is equal to a value obtained by multiplying the light emitting point width of the semiconductor laser element 100 in the slow axis direction by M.
  • the front end face 101 of the semiconductor laser element 100 and the incident surface 301 of the output mirror 330 are optically conjugate with respect to at least the slow axis direction (x direction). Therefore, a configuration in which a high reflection portion is provided in a region having a width of w1 / w2 as compared with the width of the light emitting point in the slow axis direction (x direction) at the center of the light emitting point on the front end face 101 of the semiconductor laser element 100. Is optically equivalent.
  • the semiconductor laser device 20 according to the fourth embodiment has a configuration that is optically equivalent to a general Fabry-Perot type optical resonator in which a partial reflection coating is provided on the front end face 101 of the semiconductor laser element 100.
  • the selectivity of the order of the transverse mode with respect to the slow axis direction (x direction) is remarkably improved as compared with the semiconductor laser device 10 according to the first to third embodiments. It is possible to more efficiently generate laser light having the following order.
  • the semiconductor laser device 20 according to the fourth embodiment is optically equivalent to a configuration in which a high reflection portion is provided in a limited region of the light emitting point of the semiconductor laser element 100 in the slow axis direction.
  • an external resonator is formed in which the front end face 101 of the semiconductor laser element 100 is imaged on the output mirror 330 at least in the slow axis direction.
  • the light emission point of the semiconductor laser element 100 can be enlarged and imaged on the output mirror 330.
  • the high reflection portion formed on the incident surface 301 of the output mirror 330 is larger than the width of the high reflection portion when the high reflection portion is directly formed on the front end face 101 of the semiconductor laser element 100.
  • the width w1 of 302 can be increased.
  • the output mirror 330 can be manufactured easily technically and at a low cost.
  • the semiconductor laser device 20 according to the fourth embodiment has been described as configuring an external resonator using the output mirror 330 having the single high reflection portion 302 on the incident surface 301 shown in FIG.
  • the configuration of the output mirror is not limited to this.
  • an output mirror in which a plurality of high reflection portions having different reflectivities are arranged in the slow axis direction may be used, or the output mirror according to the third embodiment.
  • An output mirror in which the reflectance of the incident surface is continuously changed along the slow axis direction as in 320 may be used.
  • the transverse mode in the slow axis direction can be used. The order selectivity may be further improved.
  • FIG. FIG. 9 is a schematic top view showing the configuration of the semiconductor laser device 30 according to the fifth embodiment of the present invention.
  • FIG. 10 is a schematic side view illustrating the configuration of the semiconductor laser device 30 according to the fifth embodiment.
  • the semiconductor laser device 30 according to the fifth embodiment uses the output mirror 330 shown in FIG.
  • the external resonator of the semiconductor laser device 30 according to the fifth embodiment includes the diffraction grating 8 as shown in FIG. 9, and the optical axis of the external resonator is bent by the diffraction effect.
  • the diffraction grating 8 does not exhibit a lens action, in the schematic side view shown in FIG.
  • FIG. 10 in order to clarify the technical characteristics of the semiconductor laser device 30, an external part extending from the semiconductor laser element 110 to the output mirror 330 is used.
  • the configuration of the resonator is schematically shown so that the optical axis is a straight line. Further, in order to clarify the direction after the optical axis is bent by the diffraction grating 8, FIG. 9 clearly shows the orientation of the coordinate system indicating the x ′ direction, the y ′ direction, and the z ′ direction.
  • the semiconductor laser device 30 includes a semiconductor laser element 110, a first axis correction lens 2, a first horizontal cylindrical lens 5, a first vertical cylindrical lens 6, a diffraction grating 8, A second horizontal cylindrical lens 7 and an output mirror 330 are provided.
  • the single semiconductor laser element 110 included in the semiconductor laser device 30 is configured by a semiconductor laser array including a plurality of semiconductor laser media.
  • the semiconductor laser element 110 is a semiconductor laser array composed of three semiconductor laser media: a first semiconductor laser medium 1041, a second semiconductor laser medium 1042, and a third semiconductor laser medium 1043.
  • the front end face 101 of the semiconductor laser device 110 according to the fifth embodiment is provided with an antireflection coating for a broadband laser beam centered on a wavelength of 975 nm, and the rear end face 102 is centered on a wavelength of 975 nm.
  • a total reflection coating for broadband laser light is applied.
  • the semiconductor laser device 30 according to the fifth embodiment is illustrated as having a configuration using a semiconductor laser element 110 including a semiconductor laser array including three semiconductor laser media.
  • the configuration of is not limited to this. That is, the number of semiconductor laser media may be a plurality of numbers other than three.
  • the first axis correction lens 2 is a cylindrical lens in which a bus is arranged in the slow axis direction (x direction) of the semiconductor laser element 110 which is the horizontal direction.
  • the first horizontal cylindrical lens 5 is a cylindrical lens in which a bus is arranged in the vertical direction (y direction) that is the first axis direction.
  • the first vertical cylindrical lens 6 is a cylindrical lens in which a bus is arranged in the horizontal direction (x direction). In the diffraction grating 8, grooves along the vertical direction (y direction) are formed in parallel.
  • the second horizontal cylindrical lens 7 is a cylindrical lens in which a bus is arranged in the vertical direction (y ′ direction).
  • the y ′ direction is the same as the first axis direction (y direction). Further, the direction perpendicular to the plane of the plane mirror constituting the output mirror 330 is the z ′ direction, and the direction perpendicular to the y ′ direction and the z ′ direction is the x ′ direction. Therefore, the slow axis direction of the laser light diffracted by the diffraction grating 8 is the x ′ direction, and the first axis direction is the y ′ direction.
  • the semiconductor laser element 110, the first axis correction lens 2, the first horizontal cylindrical lens 5, the first vertical cylindrical lens 6, the diffraction grating 8, the second horizontal cylindrical lens 7 and the output mirror 330 are laser beams. And an external resonator for outputting the laser beam to the semiconductor laser device 110.
  • the first horizontal cylindrical lens 5 in which the bus is arranged in the vertical direction (y direction) is the focal length of the first horizontal cylindrical lens 5 from the semiconductor laser element 110.
  • the diffraction grating 8 is also disposed at a distance substantially equal to the focal length of the first horizontal cylindrical lens 5 from the first horizontal cylindrical lens 5.
  • the laser light emitted from each of the first to third semiconductor laser media 1041, 1042, and 1043 has a divergence angle in the slow axis direction (x direction) made parallel by the first horizontal cylindrical lens 5,
  • the principal ray is condensed so as to substantially overlap one point.
  • the output mirror 330 constituting the external resonator is common to the first to third semiconductor laser media 1041, 1042, and 1043, and in the z ′ direction with respect to the output mirror 330 formed of a plane mirror.
  • the cavity loss of vertically incident laser light is minimized. Accordingly, the laser oscillation wavelengths of the first to third semiconductor laser media 1041, 1042, and 1043 are set so that the diffraction angle by the diffraction grating 8 coincides with the angle at which the diffracted laser light is perpendicularly incident on the output mirror 330. Passively selected.
  • the plurality of laser beams emitted from the first to third semiconductor laser media 1041, 1042, and 1043 are superimposed on the same axis in the optical path between the diffraction grating 8 and the output mirror 330. Therefore, by selecting the oscillation wavelength, the diffraction grating 8 is consequently arranged at a position where the optical axes of the plurality of laser beams are superimposed, and wavelength coupling of the plurality of laser beams into one beam. Then, the light is emitted toward the output mirror 330.
  • the horizontal direction of the slow axis (x direction, x ′ direction) is the first.
  • the horizontal cylindrical lens 5, the second horizontal cylindrical lens 7 and the output mirror 330 are apart from each other by an appropriate distance, the front end surface 101 of the semiconductor laser element 110 is connected to the incident surface 301 of the output mirror 330.
  • An optical system for imaging is configured.
  • the fast axis correction lens 2 For the fast axis direction (y direction, y ′ direction) that is the vertical direction, the fast axis correction lens 2, the first vertical cylindrical lens 6, and the output mirror 330 are installed at an appropriate distance, An optical system that forms an image of the front end surface 101 of the semiconductor laser element 110 on the incident surface 301 of the output mirror 330 is configured. Accordingly, the front end face 101 of the semiconductor laser element 110 and the incident face 301 of the output mirror 330 are optically conjugate in both directions.
  • a semiconductor laser element 110 that is a semiconductor laser array including a plurality of semiconductor laser media such as first to third semiconductor laser media 1041, 1042, and 1043 is used. External resonators corresponding to the first to third semiconductor laser media 1041, 1042, and 1043 share a single output mirror 330, respectively. Furthermore, in the semiconductor laser device 30, a plurality of laser beams emitted from a plurality of semiconductor laser media including the first to third semiconductor laser media 1041, 1042, and 1043 are obtained by wavelength coupling using the wavelength dispersion effect of the diffraction grating 8. Laser light is superimposed coaxially. As a result, the semiconductor laser device 30 according to the fifth embodiment increases the output without reducing the light condensing performance as compared with the case where the semiconductor laser device 100 including the single semiconductor laser medium 104 is used. Is easily possible.
  • the incident surface 301 of the output mirror 330 according to the fifth embodiment is provided with the high reflection portion 302 only in the range set corresponding to the target order of the transverse mode in the slow axis direction. Even when the semiconductor laser element 110 including a plurality of semiconductor laser media is used, it is possible to simultaneously improve the light condensing properties in the slow axis direction corresponding to each of the plurality of semiconductor laser media. Also in the semiconductor laser device 30 according to the fifth embodiment, since the front end face 101 of the semiconductor laser element 110 and the incident surface 301 of the output mirror 330 are optically conjugate, the semiconductor laser device according to the fourth embodiment. As in the case of 20, the selectivity of the order of the transverse mode with respect to the slow axis direction (x direction) can be significantly improved as compared with the semiconductor laser device 10 according to the first to third embodiments.
  • FIG. 11 is a schematic top view showing the configuration of the semiconductor laser apparatus 40 according to the sixth embodiment of the present invention.
  • FIG. 12 is a schematic side view illustrating the configuration of the semiconductor laser device 40 according to the sixth embodiment.
  • FIG. 13 is a schematic diagram illustrating a configuration of an output mirror 340 according to the sixth embodiment.
  • the configuration of the semiconductor laser device 110 according to the sixth embodiment is the same as the configuration of the semiconductor laser device 110 according to the fifth embodiment, but is not limited to this configuration as in the fifth embodiment.
  • the optical axis is bent by the diffraction grating 8 as in the semiconductor laser device 30 according to the fifth embodiment.
  • FIG. 11 is a schematic top view showing the configuration of the semiconductor laser apparatus 40 according to the sixth embodiment of the present invention.
  • FIG. 12 is a schematic side view illustrating the configuration of the semiconductor laser device 40 according to the sixth embodiment.
  • FIG. 13 is a schematic diagram illustrating a configuration of an output mirror 340 according to the sixth embodiment.
  • the optical axis is schematically shown as being linear. Further, in order to clarify the direction after the optical axis is bent by the diffraction grating 8, FIG. 11 clearly shows the direction of the coordinate system indicating the x ′ direction, the y ′ direction, and the z ′ direction.
  • the rotating optical element 11 is installed between the first axis correction lens 2 and the first vertical cylindrical lens 6.
  • a second vertical cylindrical lens 9 is installed between the diffraction grating 8 and the second horizontal cylindrical lens 7.
  • the semiconductor laser element 110, the first axis correction lens 2, the rotating optical element 11, the first vertical cylindrical lens 6, the first horizontal cylindrical lens 5, the diffraction grating 8, the second The vertical cylindrical lens 9, the second horizontal cylindrical lens 7 and the output mirror 340 as an output coupling element constitute an external resonator for the laser light, and this external resonator causes the semiconductor laser element 110 to output the laser light.
  • a plurality of laser beams having different optical axes are emitted from one semiconductor laser element 110, and the diffraction grating 8 emits the plurality of laser beams by wavelength coupling to one beam. .
  • FIG. 14 is a perspective view showing an example of the configuration of the rotating optical element 11 according to the sixth embodiment.
  • the rotating optical element 11 is a 90 ° image rotating optical system array, and a pair of opposed cylindrical convex lenses are inclined by 45 ° with respect to the y direction that is the direction of the reference axis, and a plurality of light emitting points of the semiconductor laser element 110 are arranged. They are arranged at the same pitch as the interval.
  • the focal length of the cylindrical convex lens is f
  • the interval L between the opposing cylindrical convex lenses is set to 2f.
  • the rotating optical element 11 When the major axis or minor axis of the flat light is incident on the rotating optical element 11 at an angle parallel to the y direction which is the direction of the reference axis, the major axis and the minor axis are switched in the emitted light. That is, the rotating optical element 11 emits light obtained by rotating each incident laser beam by 90 ° with each optical axis as a rotation axis. Accordingly, the image of the light emitted from the rotating optical element 11 is obtained by rotating the image of the incident light on the rotating optical element 11 by 90 °.
  • the rotating optical element 11 has been commercialized by, for example, LIMO Lissotschenko Mikropik GmbH of Germany, and can be easily obtained under the product name Beam Transformation System.
  • the laser beams emitted from the first to third semiconductor laser media 1041, 1042, and 1043 of the semiconductor laser element 110 are transmitted in the first axis direction ( The divergence angle in the y direction is made substantially parallel.
  • each laser beam is rotated by 90 ° around the optical axis by passing through the rotating optical element 11. Therefore, the component in the slow axis direction (x direction) of each laser beam when emitted from the semiconductor laser element 110 is converted into the component in the vertical direction (y direction), and each component when emitted from the semiconductor laser element 110 is converted.
  • the components in the first axis direction (y direction) of the laser light are converted into components in the horizontal direction (x direction), respectively.
  • the laser light that has passed through the rotating optical element 11 has a divergence angle in the slow axis direction (y direction) substantially parallelized by the first vertical cylindrical lens 6 having a bus line arranged in the horizontal direction (x direction), and is vertical.
  • the light enters the first horizontal cylindrical lens 5 in which the bus is arranged in the direction (y direction).
  • the first horizontal cylindrical lens 5 condenses each laser beam on the diffraction grating 8 with respect to the fast axis direction (x direction) so that the chief ray overlaps almost one point.
  • grooves along the vertical direction (y direction) are formed in parallel.
  • the slow axis direction of the laser beam after diffraction by the diffraction grating 8 is y.
  • the fast axis direction is the x' direction.
  • the y ′ direction is the same direction as the y direction, and the x ′ direction and the z ′ direction perpendicular to the y ′ direction are perpendicular to the plane of the plane mirror constituting the output mirror 340.
  • the first to third semiconductor laser media 1041, 1042, and 1043 share a single output mirror 340, similarly to the semiconductor laser device 30 according to the fifth embodiment.
  • Each of the first to third semiconductor laser media 1041, 1042, and 1043 is oscillated so that the diffraction angle by the diffraction grating 8 coincides with the angle at which the diffracted laser light is perpendicularly incident on the output mirror 340.
  • the wavelength is selected passively.
  • the laser beams emitted from the first to third semiconductor laser media 1041, 1042, and 1043 are coaxial in the optical path between the diffraction grating 8 and the output mirror 340. Is superimposed on.
  • the laser beam superimposed coaxially by the diffraction grating 8 is condensed with respect to the slow axis direction (y ′ direction) by the second vertical cylindrical lens 9 having a bus line arranged in the horizontal direction (x ′ direction). Then, the light enters the second horizontal cylindrical lens 7 in which the bus is arranged in the vertical direction (y ′ direction).
  • the laser light incident on the second horizontal cylindrical lens 7 is incident on the output mirror 340 with the divergence angle in the fast axis direction (x ′ direction) being substantially parallelized.
  • the first horizontal cylindrical lens 5, the second horizontal cylindrical lens 7 and the output mirror 340 are arranged in the horizontal direction (x direction, x ′ direction).
  • An optical system that forms an image of the front end surface 101 of the semiconductor laser element 110 on the incident surface 301 of the output mirror 340 is configured by being separated by an appropriate distance.
  • the first axis correction lens 2, the first vertical cylindrical lens 6, the second vertical cylindrical lens 9, and the output mirror 340 are separated by an appropriate distance.
  • the semiconductor laser element 110 which is a semiconductor laser array including a plurality of semiconductor laser media is used, and the first to third semiconductor laser media 1041, 1042, and 1043 are used. Each corresponding external resonator shares a single output mirror 340.
  • laser light emitted from a plurality of semiconductor laser media including the first to third semiconductor laser media 1041, 1042, and 1043 is obtained by wavelength coupling using the wavelength dispersion effect of the diffraction grating 8. Coaxially superimposed. Therefore, as in the fifth embodiment, the semiconductor laser device 40 according to the sixth embodiment reduces the light condensing performance as compared with the case where the semiconductor laser element 100 including the single semiconductor laser medium 104 is used. Therefore, it is possible to easily increase the output.
  • the semiconductor laser device 40 In the semiconductor laser element 110 having a plurality of semiconductor laser media, a deformation called “smile” due to the manufacturing process occurs, and the installation heights in the y direction of the first to third semiconductor laser media 1041, 1042, and 1043 respectively. There may be differences.
  • the semiconductor laser device 40 according to the sixth embodiment further uses the rotating optical element 11 so that the laser light emitted from each of the first to third semiconductor laser media 1041, 1042, and 1043. Is rotated 90 ° around the optical axis. As a result, the direction of optical axis deviation that occurs during beam superimposition due to the difference in installation height can be converted from the y direction to the x direction.
  • the direction of the optical axis deviation that occurs when the beam is superimposed is relatively low in the light condensing property compared to the first axis direction, and the rate of decrease in the light condensing property with respect to the amount of optical axis deviation is set to the slow axis direction. Therefore, it is possible to obtain an effect that the output can be stably increased while suppressing the reduction ratio of the light condensing property as compared with the semiconductor laser device 30 according to the fifth embodiment.
  • the incident surface 301 of the output mirror 340 has an area of the width w1 in the y ′ direction determined based on the target order of the transverse mode in the slow axis direction. Only the high reflection portion 302 is provided. Also in the output mirror 340, the reflectance of the incident surface 301 with respect to the laser light decreases as the distance from the center line 350, which is the center of the diffracted laser light in the slow axis direction (y ′ direction), increases along the slow axis direction. Will not increase.
  • the reflectance distribution viewed from the center line 350, which is the center in the slow axis direction, in the y ′ direction or the ⁇ y ′ direction is symmetric with respect to the center line 350.
  • the semiconductor laser device 30 even when the semiconductor laser device 110 including the first to third semiconductor laser media 1041, 1042, and 1043 is used by using the output mirror 340, the semiconductor laser device 30 according to the fifth embodiment and Similarly, it is possible to simultaneously improve the light condensing property in the slow axis direction corresponding to each of the plurality of semiconductor laser media. Further, also in the semiconductor laser device 40 according to the sixth embodiment, the front end face 101 of the semiconductor laser element 110 and the incident surface 301 of the output mirror 340 are optically conjugate, and therefore the semiconductor laser device according to the fourth embodiment. 20 and the semiconductor laser device 30 according to the fifth embodiment, the selectivity of the order of the transverse mode with respect to the slow axis direction (x direction) is markedly higher than that of the semiconductor laser device 10 according to the first to third embodiments. Can be improved.
  • FIG. FIG. 15 is a schematic top view showing the configuration of the semiconductor laser apparatus 50 according to the seventh embodiment of the present invention.
  • the first semiconductor laser element 121 and the second semiconductor laser element 122 which are two semiconductor laser elements, are used, and the laser is generated using the diffraction grating 8 under the common output mirror 340. By superimposing the light, the output is increased while maintaining the light condensing property.
  • Each of the first semiconductor laser element 121 and the second semiconductor laser element 122 has the same configuration as the semiconductor laser element 110 according to the fifth and sixth embodiments, and each includes a plurality of semiconductor laser media.
  • the first semiconductor laser element 121 includes first to third semiconductor laser media 1051, 1052, and 1053
  • the second semiconductor laser element 122 includes first to third semiconductor laser media 1061, 1062, and so on. 1063.
  • the configuration of the output mirror 340 according to the seventh embodiment is the same as that of the output mirror 340 according to the sixth embodiment. Therefore, the configuration of the external resonator for each of the first semiconductor laser element 121 and the second semiconductor laser element 122 is the same as that of the sixth embodiment.
  • a plurality of semiconductor laser elements ie, a first semiconductor laser element 121 and a second semiconductor laser element 122 are used, and laser light is superimposed by a diffraction grating 8 and is shared.
  • the external resonator is configured using the output mirror 340, the same effect as the semiconductor laser device 40 according to the sixth embodiment can be obtained, and the output can be easily increased while maintaining the light condensing property. Is even more possible.
  • the configuration in which wavelength coupling is performed using the diffraction grating 8 using two semiconductor laser elements is shown.
  • the number of is not limited to this as long as it is plural.
  • the plurality of semiconductor laser elements may not be formed of a semiconductor laser array that includes a plurality of semiconductor laser media. That is, a part of the plurality of semiconductor laser elements may be a semiconductor laser element having only a single semiconductor laser medium, such as the semiconductor laser element 100.
  • the laser light emitted from a plurality of semiconductor laser media is coaxially formed in the external resonator of the semiconductor laser element by using the wavelength dispersion effect of the diffraction grating 8.
  • the means for superimposing the laser beam is not limited to this. For example, using a plurality of semiconductor laser media having gains in different oscillation wavelength bands, utilizing the wavelength dependence of the coating reflectivity in a dichroic mirror or the like in an external resonator sharing a single output mirror, Even when laser beams emitted from a plurality of semiconductor laser media are coaxially superimposed, the same effects as those of the fifth to seventh embodiments can be obtained.
  • the external resonator is configured using the output mirrors 330 and 340 provided with the single high reflection portion 302 on the incident surface 301.
  • the configuration is not limited to this.
  • an output mirror in which a plurality of high reflection portions having different reflectivities are arranged in the slow axis direction may be used, or the output mirror according to the third embodiment.
  • An output mirror in which the reflectance of the incident surface is continuously changed along the slow axis direction as in 320 may be used.
  • the transverse mode in the slow axis direction can be used. The order selectivity may be further improved.
  • the external resonator that images the front end surface 101 of the semiconductor laser element onto the incident surface 301 of the output mirrors 330 and 340 is shown.
  • the configuration of the external resonator is as follows.
  • the present invention is not limited to this, and it may be appropriately designed according to the target beam characteristics.
  • Embodiment 8 FIG.
  • the light confinement in the slow axis direction of the edge-emitting semiconductor laser element in the semiconductor laser device according to the first to seventh embodiments is not limited to the gain guide function in which light is concentrated in a region having an optical amplification function, It is thought that the lens action by the refractive index distribution based on the distribution and the carrier concentration distribution works. These light confinement effects become stronger when the laser output is high. As a result, even if the external resonator is configured to improve the beam condensing property in the slow axis direction as in the first to seventh embodiments, the condensing property may not be improved in a region where the laser output is high. is there.
  • a refractive index distribution is formed to reduce the light confinement effect in the slow axis direction. That is, since the refractive index distribution in the slow axis direction of the semiconductor laser medium of the semiconductor laser elements 100, 110, 121, and 122 is a distribution that suppresses the confinement effect of the laser light in the slow axis direction, The effect of light confinement in the direction can be suppressed. This makes it possible to obtain a high light collecting property even in a high output region.
  • FIG. 16 is a diagram showing a refractive index distribution in the slow axis direction formed inside the semiconductor laser device according to the eighth embodiment of the present invention.
  • FIG. 16 is an example of a refractive index distribution in the slow axis direction of the semiconductor laser medium that suppresses the confinement effect of the laser light in the slow axis direction.
  • the refractive index of the semiconductor laser medium that is the light emitting region is the refraction of the non-light emitting region around the light emitting region. It is lower than the rate.
  • the confinement effect of the laser light is lowered. If the semiconductor laser device according to the eighth embodiment is used, the action of suppressing higher-order mode confinement works both in the semiconductor laser device and in the external resonator. Can be further improved.
  • FIG. 17 is a schematic top view showing the configuration of the semiconductor laser apparatus 60 according to the ninth embodiment of the present invention.
  • FIG. 18 is a schematic side view illustrating the configuration of the semiconductor laser device 60 according to the ninth embodiment.
  • the distribution along the slow axis direction of the ratio of the reflection of the laser beam by the output mirror 352 to the light emitting point of the semiconductor laser element 100 in the ninth embodiment is different from that in the first to eighth embodiments.
  • the laser beam in the central area in the slow axis direction is reflected more toward the light emitting point of the semiconductor laser element than in the peripheral area.
  • the output mirror 352 that is the output coupling element of the ninth embodiment actively reflects the laser beam in the peripheral region as compared with the laser beam in the central region in the slow axis direction.
  • the output mirror 352 includes one of the peripheral amplified light 402 that is laser light that passes through the peripheral region in the slow axis direction (x direction) of the main oscillation light 401 and the peripheral amplified light 402. It is inserted so that only a part is reflected.
  • the incident surface 351 of the output mirror 352 is coated with a high reflectance with respect to the laser light.
  • the output surface 353 of the output mirror 352 may be coated with AR (Anti Reflection), which is a coating with low reflectance, or may be roughened such as a sanded surface without being coated. Good.
  • the output mirror 352 reflects the peripheral amplified light 402
  • the rear end face 102 of the semiconductor laser element 100 and the output mirror 352 constitute a semiconductor laser resonator
  • All the main oscillation light 401 is output. This makes it possible to increase the ratio of the laser light output from the semiconductor laser device 60 to the main condensing light 401 having high condensing property as compared with the case where the output mirror 352 is not provided. That is, it is possible to improve the light condensing property of the laser beam output from the semiconductor laser device 60 in the slow axis direction.
  • the region in the laser beam into which the output mirror 352 is inserted is a region on one side where the energy of the laser beam is included in the profile that is the spatial distribution of the energy of the laser beam along the slow axis.
  • the profile of the laser beam in the slow axis direction is substantially symmetric with respect to the laser beam axis.
  • the output mirror 352 is inserted only on one side of the symmetrical beam profile.
  • the ratio of the reflection of the laser light by the output mirror 352 can be adjusted.
  • the output mirror 352 By moving the output mirror 352 toward the center of the laser optical axis, more laser light energy can be reflected. Increasing the energy of the laser light reflected by the output mirror 352 can improve the light condensing performance, but the power of the laser light output from the semiconductor laser device 60 is reduced.
  • the ratio of the energy of the laser beam reflected by the output mirror 352 is 5% to 10% of the whole, the power reduction is suppressed and the light condensing property in the slow axis direction is improved. I was able to.
  • FIG. FIG. 19 is a schematic top view showing the configuration of the semiconductor laser apparatus 70 according to the tenth embodiment of the present invention.
  • FIG. 20 is a schematic side view illustrating the configuration of the semiconductor laser device 70 according to the tenth embodiment.
  • the output mirrors inserted in one side of the profile along the slow axis of the laser beam in the ninth embodiment are inserted in both sides.
  • the output mirror 360 and the output mirror 370 constituting the output coupling element of the tenth embodiment are arranged symmetrically with respect to the laser optical axis in the slow axis direction (x direction).
  • the reflectance of the central part in the slow axis direction becomes a value lower than the reflectance of the peripheral part existing on both sides of the central part in the slow axis direction.
  • the reflectance has a symmetrical distribution with respect to the center in the slow axis direction. Since the reflectance distribution is symmetric, the spatial symmetry of the beam output from the semiconductor laser device 70 can be improved, and the anisotropy of laser processing can be suppressed.
  • the incident surface 361 of the output mirror 360 and the incident surface 371 of the output mirror 370 are coated with a high reflectivity with respect to the laser beam, similarly to the incident surface 351 of the output mirror 352 of the ninth embodiment.
  • the output surface 363 of the output mirror 360 and the output surface 373 of the output mirror 370 have the same configuration as the output surface 353 of the output mirror 352 of the ninth embodiment.
  • the output mirror 360 and the output mirror 370 are inserted in symmetrical positions with the laser optical axis as the central axis along the slow axis direction. It is possible to make the beam profile along the slow axis direction of the output laser light symmetrical with the laser optical axis as the center.
  • the output mirror 360 and the output mirror 370 to the semiconductor laser element 100 are adjusted by adjusting the positions of the output mirror 360 and the output mirror 370 in the slow axis direction of the laser light. It is possible to adjust the ratio of the reflection of the laser beam by.
  • the total ratio of reflection by the output mirror 360 and the output mirror 370 is 2% to 40% of the energy of the laser beam.
  • the energy of the laser light reflected by the output mirror 360 and the output mirror 370 is increased, the light condensing performance can be improved, but the power of the laser light output from the semiconductor laser device 70 is reduced.
  • the power reduction is suppressed, Condensation was improved.
  • the laser light output from the semiconductor laser device 70 according to the tenth embodiment may be used after being guided to an optical fiber, or may be directly condensed and used for laser processing. Due to the high symmetry of the profile of the laser beam from the semiconductor laser device 70, the former has the effect of improving the light guiding efficiency to the optical fiber, and the latter has the effect of suppressing the anisotropy of laser processing. It is done.
  • the beam profile in the slow axis direction of the laser beam output from the semiconductor laser element 100 has a substantially symmetric shape with respect to the laser beam axis.
  • the laser beam profile is not perfectly symmetric, and is a distorted laser beam profile due to a minute assembly error in mounting the semiconductor laser device 100.
  • FIG. 21 is a schematic top view showing the configuration of the semiconductor laser apparatus 80 according to the eleventh embodiment of the present invention.
  • FIG. 22 is a schematic side view showing the configuration of the semiconductor laser apparatus 80 according to the eleventh embodiment.
  • FIG. 23 is a schematic perspective view illustrating the configuration of the output mirror 380 according to the eleventh embodiment.
  • the peripheral in the profile in the slow axis direction of the laser beam is reflected more than the laser beam in the center portion.
  • the reflectance of the laser light in the incident surface of the output mirror has not changed spatially.
  • the semiconductor laser device 80 according to the eleventh embodiment due to the reflectance distribution on the incident surface of the output mirror 380 as the output coupling element, the semiconductor laser device 100 has more in the periphery of the profile in the slow axis direction than in the center. It is set as the structure which reflects a laser beam toward.
  • a high reflection portion 382 and a low reflection portion 386 are formed on the incident surface 381 of the output mirror 380 in the eleventh embodiment.
  • the exit surface 383 is provided with an AR coating for suppressing reflectivity.
  • FIG. 24 is a schematic diagram illustrating a configuration of the output mirror 380 according to the eleventh embodiment.
  • the high reflection portion 382 is disposed on both sides of the low reflection portion 386 in the slow axis direction (x direction) of the laser light.
  • the peripheral amplified light 402 of the laser light is reflected toward the light emitting point of the semiconductor laser element 100 by the high reflection portion 382 of the output mirror 380.
  • the semiconductor laser device 80 According to the ninth and tenth embodiments, according to the semiconductor laser device 80 according to the eleventh embodiment, the laser light outputted by reflecting the peripheral amplified light 402 of the laser light to constitute the semiconductor laser resonator.
  • the ratio of the main oscillation light 401 can be increased. Thereby, the effect of improving the condensing property of the laser beam output from the semiconductor laser device 80 in the slow axis direction can be obtained.
  • the output mirror 380 according to the eleventh embodiment a large amount of the peripheral amplified light 402 is reflected by a single output mirror whose reflectance distribution in the slow axis direction is changed by coating. Scattering and absorption of the laser light generated at the boundary between the low reflection portion 386 and the high reflection portion 382 of the output mirror 380 are in a region corresponding to the boundary of the output mirrors 352, 360, and 370 according to the ninth and tenth embodiments. Compared to the scattering and absorption of laser light generated at a certain mechanical edge portion, it can be remarkably reduced. Therefore, when the laser beam has a high output, the output mirror 380 according to the eleventh embodiment can suppress adverse effects such as breakage or abnormal oscillation of the output mirror due to scattering and absorption of the laser beam. It is.
  • the output coupling element is constituted by the two output mirrors 360 and 370 in the tenth embodiment, but is constituted by the output mirror 380 which is a single mirror in the eleventh embodiment.
  • the eleventh embodiment not only the adjustment of the output coupling element is further facilitated, but also the reflectance distribution of the incident surface 381 of the output mirror 380 is designed so that the semiconductor laser element will be described below.
  • the semiconductor laser device 80 can obtain a stable output characteristic of the laser beam in a wide operating region of 100.
  • the reflectance distribution in the slow axis direction of the incident surface 381 of the output mirror 380 is shown.
  • the reflectance of the high reflection portion 382 is close to 100%, and the reflectance of the low reflection portion 386 is almost 0%.
  • the effect of output mirror 380 is close to the effect of the output coupling element configured by output mirror 360 and output mirror 370 having high reflectivity in the tenth embodiment. It will be a thing.
  • FIG. 25 is another schematic diagram showing the configuration of the output mirror 380 according to the eleventh embodiment.
  • the reflectance distribution in the slow axis direction of the incident surface 381 of the output mirror 380 shown in FIG. 25 is different from the example of FIG.
  • the reflectance of the high reflection portion 382 is about 80%
  • the reflectance of the low reflection portion 386 is about 5%.
  • the beam divergence angle in the slow axis direction of the laser light emitted from the semiconductor laser element 100 is small when the applied current to the semiconductor laser element 100 is small, and increases when the applied current is increased. For this reason, as the applied current increases, the ratio of the peripheral amplified light 402 in the laser light emitted from the semiconductor laser element 100 increases.
  • the reflectance distribution of the output mirror 380 is designed so as to have an optimum reflectance distribution when the value of the applied current is in a high current region, the semiconductor is used when the applied current is small and the ratio of the peripheral amplified light 402 is small.
  • the ratio of reflected light to the laser element 100 may be too low.
  • the external resonator constituted by the rear end face 102 of the semiconductor laser element 100 and the output mirror 380 may not operate.
  • the reflectance of the high reflection portion 382 is reduced in order to maintain the ratio of the energy of the laser light reflected by the entire incident surface 381 of the output mirror 380, but the low reflection portion 386 is used. It is also possible to adjust by the area ratio between the high reflection portion 382 and the high reflection portion 382.
  • FIG. FIG. 26 is a schematic top view showing the configuration of the semiconductor laser apparatus 90 according to the twelfth embodiment of the present invention.
  • the semiconductor laser device 90 has a configuration in which the output mirror 340 in the semiconductor laser device 50 according to the seventh embodiment is replaced with the output mirror 380 according to the eleventh embodiment.
  • the laser beam from the first semiconductor laser element 121 and the second semiconductor laser element 122 which are a plurality of semiconductor laser elements, using the rotating optical element 11, the diffraction grating 8, and the output mirror 380. are coupled by chromatic dispersion.
  • the output mirror 380 is arranged so that the direction of the center line 350 in FIGS. 24 and 25 is the x ′ direction in FIG. That is, the semiconductor laser device 90 uses, as an output coupling element, an output mirror 380 that reflects a large amount of peripheral amplified light in the slow axis direction (y ′ direction in FIG. 26) at the light emitting point of the semiconductor laser element.
  • the slow axis direction is the x direction
  • the fast axis direction is the y direction
  • the slow axis direction in the second semiconductor laser element 122 is a direction different from the x direction
  • the fast axis direction is the y direction.
  • the slow axis directions of the laser beams from the first semiconductor laser element 121 and the second semiconductor laser element 122 are both the y direction or the y 'direction. That is, at the position of the output mirror 380, the slow axis direction is the y 'direction.
  • the first horizontal cylindrical lens 5, the second horizontal cylindrical lens 7, the first axis correction lens 2, the first vertical cylindrical lens 6, and the second vertical cylinder By placing the directional cylindrical lens 9 and the output mirror 380 apart by an appropriate distance, in the horizontal direction (x direction, the above direction different from the x direction, x ′ direction) and in the vertical direction (y direction, y ′ direction)
  • An optical system that forms an image of the front end face 101 of the first semiconductor laser element 121 and the second semiconductor laser element 122 on the incident surface 381 of the output mirror 380 can be configured. That is, in both directions, the front end face 101 of the first semiconductor laser element 121 and the second semiconductor laser element 122 and the incident face 381 of the output mirror 380 have an optically conjugate relationship in the slow axis direction.
  • the semiconductor laser device 90 according to the twelfth embodiment similar to the semiconductor laser device 50 according to the seventh embodiment, the light output from the light emitting points of the plurality of semiconductor laser elements can be collected by one output mirror. In addition to improving the output, the following effects can be obtained.
  • the laser light reflected by the high reflection portion 382 of the output mirror 380 is emitted from the first semiconductor laser element 121 and the second semiconductor laser element 122 even if the direction of the output mirror 380 is shifted in the slow axis direction. To reach. Therefore, no trouble occurs in the operation of the external resonators of the first semiconductor laser element 121 and the second semiconductor laser element 122. This is because the light emitting point located on the front end face 101 of the first semiconductor laser element 121 and the second semiconductor laser element 122 and the output mirror 380 have an optically conjugate relationship in the slow axis direction. is there. In the case of an optically conjugate positional relationship, light generated from one specific point reaches a specific point on the other regardless of the emission angle.
  • the angular deviation in the first axis direction (x ′ direction in FIG. 26) of the output mirror 380 is an angular deviation in the direction in which the wavelength dispersion due to the diffraction grating 8 exists. Even when the angle of the output mirror 380 in the fast axis direction is deviated, the oscillation wavelength of the external resonator is changed to compensate automatically.
  • the semiconductor laser device 90 As described above, according to the semiconductor laser device 90 according to the twelfth embodiment, it is possible to operate robustly against the angular deviation of the output mirror 380.
  • the beam divergence angle in the slow axis direction of the laser beam emitted from the semiconductor laser varies depending on the current applied to the semiconductor laser element and the operating temperature of the semiconductor laser element. That is, as the applied current increases and the operating temperature increases, the beam divergence angle in the slow axis direction increases. Further, when there are a plurality of semiconductor laser elements and light emission points as in the semiconductor laser device 90 according to the twelfth embodiment, the beam divergence angle varies for each light emission point of the semiconductor laser elements.
  • the output mirror 380 reflects a large amount of the peripheral amplified light in the slow axis direction and improves the beam condensing property of the output laser light
  • the effect of improving the beam condensing property is high, but at the light emitting point of the semiconductor laser element
  • the feedback amount of the external resonator of the semiconductor laser may vary.
  • the target external resonator operation cannot be performed and the operation of the semiconductor laser device 90 becomes unstable.
  • the front end face 101 of the first semiconductor laser element 121 and the second semiconductor laser element 122 and the incident face 381 of the output mirror 380 are optically conjugate.
  • the front end face 101 of the first semiconductor laser element 121 and the second semiconductor laser element 122 and the incident surface 381 of the output mirror 380 are in an optically conjugate relationship, so that the incident surface 381 of the output mirror 380
  • the width of the profile of the laser beam in the slow axis direction at the position becomes a constant size regardless of the fluctuation of the beam divergence angle caused by the change in the applied current or the variation of the elements.
  • the transfer magnification from the front end face 101 of the first semiconductor laser element 121 and the second semiconductor laser element 122 to the output mirror 380 is M.
  • the width of the light emitting point in the slow axis direction of the first semiconductor laser element 121 and the second semiconductor laser element 122 is defined as W.
  • the width of the profile in the slow axis direction of the laser light in the output mirror 380 becomes WM, and is constant regardless of the beam divergence angle as described above. Since the profile width of the laser beam is constant, the ratio of the energy of the laser beam irradiated to the high reflection portion 382 of the output mirror 380 to the entire laser beam does not depend on the beam divergence angle in the slow axis direction of the semiconductor laser element. Constant.
  • the semiconductor laser device 90 As a result, according to the semiconductor laser device 90 according to the twelfth embodiment, after realizing a robust operation that is not affected by variations in the beam divergence angle in the slow axis direction due to changes in applied current or variations in semiconductor laser elements. Thus, it is possible to easily reflect the peripheral region of the laser beam profile in the slow axis direction and improve the light condensing property in the slow axis direction.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • First axis correction lens 5 First horizontal cylindrical lens, 6 First vertical cylindrical lens, 7 Second horizontal cylindrical lens, 8 Diffraction grating, 9 Second vertical cylindrical lens, 10, 20, 30, 40, 50, 60, 70, 80, 90 semiconductor laser device, 11 rotating optical element, 100, 110 semiconductor laser element, 101 front side end face, 102 rear side end face, 103 active layer, 104 semiconductor laser medium, 121 first Semiconductor laser element, 122, second semiconductor laser element, 1041, 1051, 1061, first semiconductor laser medium, 1042, 1052, 1062, second semiconductor laser medium, 1043, 1053, 1063, third semiconductor laser medium, 300 , 310, 320, 330, 340, 352, 360, 370, 380 Force mirror, 301, 351, 361, 371, 381 entrance surface, 302, 382 high reflection portion, 303, 353, 363, 373 exit surface, 304 first high reflection portion, 305 second high reflection portion, 350 center Line, 386 low reflection part, 401 main oscillation light, 402 peripheral amplification light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A semiconductor laser device (10) is provided with: a semiconductor laser element (100) which outputs a laser beam; a fast-axis correction lens (2) which is disposed on the light path of the laser beam to correct the divergence angle in the fast-axis direction of the laser beam; and an output mirror (300) that reflects a portion of the laser beam from the fast-axis correction lens (2) by changing the reflectance with respect to the laser beam in a manner depending on the slow-axis direction position of the laser beam and that returns the reflected laser beam to the semiconductor laser element (100) while allowing the remainder of the laser beam to pass therethrough as an output beam.

Description

半導体レーザ装置Semiconductor laser device
 本発明は、半導体レーザ素子および外部共振器を備えた半導体レーザ装置に関するものである。 The present invention relates to a semiconductor laser device including a semiconductor laser element and an external resonator.
 従来の半導体レーザは、発光点に直接もしくは近接して、発光点のスロー軸方向の幅より狭い高反射体を設置して高次モードの発生を抑制することにより、スロー軸方向の集光性を改善していた(例えば、特許文献1参照)。特許文献1の半導体レーザでは、スロー軸方向における高次モードの発生を抑制するため、発光点のスロー軸方向の中央部に、コーティング技術によって高反射領域を形成している。 Conventional semiconductor lasers have a condensing property in the slow axis direction by installing a high reflector narrower than the width of the light emitting point in the slow axis direction directly or close to the light emitting point to suppress the generation of higher-order modes. (For example, refer to Patent Document 1). In the semiconductor laser disclosed in Patent Document 1, a high reflection region is formed by a coating technique at the center of the light emitting point in the slow axis direction in order to suppress the generation of higher order modes in the slow axis direction.
特開平2-100391号公報Japanese Patent Laid-Open No. 2-100391
 しかしながら、通常、半導体レーザ素子の厚みは100μm程度であり、スロー軸方向の発光点の幅は数10μmから数100μm程度である。このように微小なスロー軸方向の幅を有する発光点の領域中の精確な位置に、特許文献1のような高反射率のコーティングを施して残りの領域を低反射率にすることは、コーティングの均一性および密着性といった観点から技術的な難易度が高い。さらに、コーティングに関る工程も増えることから、製造コストが増加してしまうという問題があった。 However, the thickness of the semiconductor laser element is usually about 100 μm, and the width of the light emitting point in the slow axis direction is about several tens μm to several hundreds μm. In this way, applying a high-reflectance coating as in Patent Document 1 to a precise position in the region of the light emitting point having a small width in the slow axis direction to make the remaining region have a low reflectance is a coating. Technical difficulty is high from the viewpoint of uniformity and adhesion. Furthermore, since the number of steps related to coating increases, there is a problem that the manufacturing cost increases.
 本発明は、上記に鑑みてなされたものであって、スロー軸方向の集光性を容易に改善することができる半導体レーザ装置を得ることを目的としている。 The present invention has been made in view of the above, and an object thereof is to obtain a semiconductor laser device capable of easily improving the light condensing property in the slow axis direction.
 上述した課題を解決し、目的を達成するために、本発明は、レーザ光を出射する半導体レーザ素子と、レーザ光の光路上に配置されて、レーザ光のファースト軸方向の発散角を補正するファースト軸補正レンズと、を備える。本発明は、さらに、レーザ光に対する反射率をレーザ光のスロー軸方向の位置に依存して変化させることにより、ファースト軸補正レンズからのレーザ光の一部を反射し、反射されたレーザ光を半導体レーザ素子へと戻し、残りを出力光として通過させる出力結合素子を備える。 In order to solve the above-described problems and achieve the object, the present invention corrects the divergence angle of the laser beam in the first axis direction, which is disposed on the optical path of the laser beam and the semiconductor laser element that emits the laser beam. A first axis correction lens. The present invention further reflects a part of the laser beam from the first axis correction lens by changing the reflectance of the laser beam depending on the position of the laser beam in the slow axis direction, and reflects the reflected laser beam. An output coupling element that returns to the semiconductor laser element and passes the remainder as output light is provided.
 本発明によれば、スロー軸方向の集光性を容易に改善することができるという効果を奏する。 According to the present invention, there is an effect that the light condensing property in the slow axis direction can be easily improved.
本発明の実施の形態1にかかる半導体レーザ装置の構成を示す上面模式図1 is a schematic top view showing a configuration of a semiconductor laser device according to a first embodiment of the present invention. 実施の形態1にかかる半導体レーザ装置の構成を示す側面模式図Side surface schematic diagram which shows the structure of the semiconductor laser apparatus concerning Embodiment 1. FIG. 実施の形態1にかかる出力ミラーの構成を示す模式図Schematic diagram showing the configuration of the output mirror according to the first embodiment. 本発明の実施の形態2にかかる出力ミラーの構成を示す模式図Schematic diagram showing the configuration of the output mirror according to the second embodiment of the present invention. 本発明の実施の形態3にかかる出力ミラーの構成を示す模式図Schematic diagram showing the configuration of the output mirror according to the third embodiment of the present invention. 本発明の実施の形態4にかかる半導体レーザ装置の構成を示す上面模式図Schematic top view showing the configuration of the semiconductor laser device according to the fourth embodiment of the present invention. 実施の形態4にかかる半導体レーザ装置の構成を示す側面模式図Side surface schematic diagram which shows the structure of the semiconductor laser apparatus concerning Embodiment 4. FIG. 実施の形態4にかかる出力ミラーの構成を示す模式図Schematic diagram showing the configuration of the output mirror according to the fourth embodiment. 本発明の実施の形態5にかかる半導体レーザ装置の構成を示す上面模式図Schematic top view showing the configuration of the semiconductor laser device according to the fifth embodiment of the present invention. 実施の形態5にかかる半導体レーザ装置の構成を示す側面模式図Side surface schematic diagram showing the configuration of the semiconductor laser device according to the fifth embodiment. 本発明の実施の形態6にかかる半導体レーザ装置の構成を示す上面模式図Schematic top view showing the configuration of the semiconductor laser device according to the sixth embodiment of the present invention. 実施の形態6にかかる半導体レーザ装置の構成を示す側面模式図Side surface schematic diagram which shows the structure of the semiconductor laser apparatus concerning Embodiment 6. FIG. 実施の形態6にかかる出力ミラーの構成を示す模式図Schematic diagram showing the configuration of the output mirror according to the sixth embodiment. 実施の形態6にかかる回転光学素子の構成の一例を示す斜視図A perspective view showing an example of composition of a rotation optical element concerning Embodiment 6. 本発明の実施の形態7にかかる半導体レーザ装置の構成を示す上面模式図Schematic top view showing a configuration of a semiconductor laser device according to a seventh embodiment of the present invention. 本発明の実施の形態8にかかる半導体レーザ素子の内部に形成されたスロー軸方向の屈折率分布を示す図The figure which shows the refractive index distribution of the slow axis direction formed in the inside of the semiconductor laser element concerning Embodiment 8 of this invention. 本発明の実施の形態9にかかる半導体レーザ装置の構成を示す上面模式図Schematic top view showing the configuration of the semiconductor laser apparatus according to the ninth embodiment of the present invention. 実施の形態9にかかる半導体レーザ装置の構成を示す側面模式図Side surface schematic diagram showing the configuration of the semiconductor laser device according to the ninth embodiment. 本発明の実施の形態10にかかる半導体レーザ装置の構成を示す上面模式図Schematic top view showing the configuration of the semiconductor laser apparatus according to the tenth embodiment of the present invention. 実施の形態10にかかる半導体レーザ装置の構成を示す側面模式図Side surface schematic diagram showing the configuration of the semiconductor laser device according to the tenth embodiment. 本発明の実施の形態11にかかる半導体レーザ装置の構成を示す上面模式図Schematic top view showing the configuration of the semiconductor laser apparatus according to the eleventh embodiment of the present invention. 実施の形態11にかかる半導体レーザ装置の構成を示す側面模式図Side surface schematic diagram showing the configuration of the semiconductor laser apparatus according to the eleventh embodiment. 実施の形態11にかかる出力ミラーの構成を示す斜視模式図A perspective schematic view showing a configuration of an output mirror according to an eleventh embodiment. 実施の形態11にかかる出力ミラーの構成を示す模式図Schematic diagram showing the configuration of the output mirror according to the eleventh embodiment. 実施の形態11にかかる出力ミラーの構成を示す別の模式図Another schematic diagram showing the configuration of the output mirror according to the eleventh embodiment 本発明の実施の形態12にかかる半導体レーザ装置の構成を示す上面模式図Schematic top view showing the configuration of the semiconductor laser apparatus according to the twelfth embodiment of the present invention.
 以下に、本発明の実施の形態にかかる半導体レーザ装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、以下の図面においては、同一または同一に相当する構成要素については、同一符号を付し、x方向、y方向およびz方向を示す座標系の向きを明示してある。 Hereinafter, a semiconductor laser device according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. Moreover, in the following drawings, the same or equivalent components are denoted by the same reference numerals, and the direction of the coordinate system indicating the x direction, the y direction, and the z direction is clearly shown.
実施の形態1.
 図1は、本発明の実施の形態1にかかる半導体レーザ装置10の構成を示す上面模式図である。図2は、実施の形態1にかかる半導体レーザ装置10の構成を示す側面模式図である。実施の形態1にかかる半導体レーザ装置10は、半導体レーザ素子100と、ファースト軸補正レンズ2と、出力結合素子である出力ミラー300とを備える。そして、半導体レーザ素子100、ファースト軸補正レンズ2および出力ミラー300がレーザ光に対する外部共振器を構成し、この外部共振器が半導体レーザ素子100からレーザ光を出力させる。半導体レーザ装置10は、中心波長975nmで発振する端面発光型の半導体レーザ素子100を使用している。
Embodiment 1 FIG.
FIG. 1 is a schematic top view showing the configuration of the semiconductor laser device 10 according to the first embodiment of the present invention. FIG. 2 is a schematic side view illustrating the configuration of the semiconductor laser device 10 according to the first embodiment. The semiconductor laser device 10 according to the first embodiment includes a semiconductor laser element 100, a first axis correction lens 2, and an output mirror 300 that is an output coupling element. The semiconductor laser element 100, the first axis correction lens 2, and the output mirror 300 constitute an external resonator for laser light, and this external resonator outputs laser light from the semiconductor laser element 100. The semiconductor laser device 10 uses an edge-emitting semiconductor laser element 100 that oscillates at a center wavelength of 975 nm.
 図1の上面模式図は、半導体レーザ素子100の活性層103の接合面と垂直な方向であるy方向から観た模式図である。図2の側面模式図は、半導体レーザ素子100の活性層103の接合面と平行な方向であるx方向から観た模式図である。活性層103の接合面とは、活性層103が他の層とpn接合、ヘテロ接合といった接合によって接合している接合面のことである。ここで、半導体レーザ素子100の活性層103の接合面に垂直な方向は、レーザ光のファースト軸方向と呼称されており、図1および図2のy方向に相当する。また、半導体レーザ素子100の活性層103の接合面に平行な方向は、ファースト軸方向に垂直であって、レーザ光のスロー軸方向と呼称されており、図1および図2のx方向に相当する。ここで、レーザ光の光軸はz方向に沿っており、ファースト軸方向およびスロー軸方向は共にレーザ光の光軸に垂直な方向、すなわちz方向に垂直な方向である。 1 is a schematic diagram viewed from the y direction, which is a direction perpendicular to the bonding surface of the active layer 103 of the semiconductor laser element 100. FIG. The schematic side view of FIG. 2 is a schematic diagram viewed from the x direction, which is a direction parallel to the bonding surface of the active layer 103 of the semiconductor laser device 100. The bonding surface of the active layer 103 is a bonding surface where the active layer 103 is bonded to another layer by a junction such as a pn junction or a hetero junction. Here, the direction perpendicular to the bonding surface of the active layer 103 of the semiconductor laser element 100 is called the first axis direction of the laser light, and corresponds to the y direction in FIGS. 1 and 2. Further, the direction parallel to the bonding surface of the active layer 103 of the semiconductor laser element 100 is perpendicular to the fast axis direction and is called the slow axis direction of the laser beam, and corresponds to the x direction in FIGS. To do. Here, the optical axis of the laser light is along the z direction, and both the fast axis direction and the slow axis direction are directions perpendicular to the optical axis of the laser light, that is, directions perpendicular to the z direction.
 半導体レーザ素子100は、活性層103を構成する半導体レーザ媒質104を備えている。図1では明示されていないが、半導体レーザ素子100に適宜電極等を設けて、活性層103の接合面に直交する方向であるy方向へ電流を注入することによって、中心波長975nm近傍の光に対して増幅作用が働いて、半導体レーザ素子100はレーザ光を出射する。以下の説明では、半導体レーザ媒質104は、半導体レーザ素子100の層構造のみによって決定される領域ではなく、電流が印加されレーザ増幅作用を有する領域とする。なお、半導体レーザ媒質104のスロー軸方向すなわちx方向の幅は、レーザ光が出射される前側端面101上における発光点幅に略等しい。本実施の形態においては、発光点幅200μmの半導体レーザ素子100が使用されている。また、レーザ光が出射される前側端面101には、波長975nmに対する反射防止コーティングが施され、半導体レーザ素子100の後側端面102には、波長975nmに対する全反射膜が施されている。ここで、半導体レーザ素子100の前側端面101に施された反射防止コーティングの反射率は、半導体レーザ素子100単体での自励発振を抑制するため、1%以下であることが望ましい。 The semiconductor laser element 100 includes a semiconductor laser medium 104 that constitutes an active layer 103. Although not clearly shown in FIG. 1, an appropriate electrode or the like is provided on the semiconductor laser element 100 and current is injected in the y direction, which is a direction orthogonal to the bonding surface of the active layer 103, so that light near the center wavelength of 975 nm is obtained. On the other hand, the amplifying action works, and the semiconductor laser element 100 emits laser light. In the following description, the semiconductor laser medium 104 is not an area determined only by the layer structure of the semiconductor laser element 100 but an area to which a current is applied and has a laser amplification function. The width of the semiconductor laser medium 104 in the slow axis direction, that is, in the x direction is substantially equal to the emission point width on the front end face 101 from which the laser light is emitted. In the present embodiment, a semiconductor laser element 100 having a light emitting point width of 200 μm is used. Further, an antireflection coating for a wavelength of 975 nm is applied to the front end face 101 from which laser light is emitted, and a total reflection film for a wavelength of 975 nm is applied to the rear end face 102 of the semiconductor laser element 100. Here, the reflectance of the antireflection coating applied to the front end face 101 of the semiconductor laser element 100 is desirably 1% or less in order to suppress self-oscillation in the semiconductor laser element 100 alone.
 半導体レーザ装置10においては、半導体レーザ素子100の前側端面101に対向するようにファースト軸補正レンズ2が配置されている。すなわち、ファースト軸補正レンズ2は、半導体レーザ素子100と出力ミラー300との間のレーザ光の光路上に配置されている。ファースト軸補正レンズ2は、レーザ光のファースト軸方向の発散角を補正する機能を有している。具体的には、ファースト軸補正レンズ2は、レーザ光のファースト軸方向のビームの発散角を低減する。ここで、ファースト軸補正レンズ2は、円筒凸レンズによって構成される。当該円筒凸レンズの母線の方向がスロー軸方向(x方向)と一致し、且つ円筒凸レンズの焦点が前側端面101に略一致する位置となるようにファースト軸補正レンズ2は配設されている。これにより、前側端面101から出射されるレーザ光のファースト軸方向(y方向)に対するビーム発散角を効果的に低減することができる。 In the semiconductor laser device 10, the first axis correction lens 2 is arranged so as to face the front end face 101 of the semiconductor laser element 100. That is, the first axis correction lens 2 is disposed on the optical path of the laser light between the semiconductor laser element 100 and the output mirror 300. The first axis correction lens 2 has a function of correcting the divergence angle of the laser beam in the first axis direction. Specifically, the first axis correction lens 2 reduces the divergence angle of the laser beam in the first axis direction. Here, the first axis correction lens 2 is constituted by a cylindrical convex lens. The first axis correction lens 2 is disposed so that the direction of the generatrix of the cylindrical convex lens coincides with the slow axis direction (x direction) and the focal point of the cylindrical convex lens substantially coincides with the front end face 101. Thereby, the beam divergence angle with respect to the first axis direction (y direction) of the laser light emitted from the front end face 101 can be effectively reduced.
 ファースト軸補正レンズ2を透過したレーザ光は、出力ミラー300へ入射する。ここで出力ミラー300は円筒平凹ミラーにより構成される。当該円筒平凹ミラーの凹面が出力ミラー300の入射面301である。そして、凹面である入射面301が半導体レーザ素子100へ対向する向きとなり、且つ円筒平凹ミラーの母線の方向がファースト軸方向(y方向)と一致するように出力ミラー300は配設されている。また、出力ミラー300の主点と半導体レーザ素子100の前側端面101との間の光学距離は、出力ミラー300を構成する円筒平凹ミラーの凹面の曲率半径の略1/2に設定されている。したがって、実施の形態1にかかる半導体レーザ装置10における外部共振器は、スロー軸方向(x方向)を含むxz平面内でsemi-confocal共振器を構成する。 The laser beam that has passed through the first axis correction lens 2 enters the output mirror 300. Here, the output mirror 300 is constituted by a cylindrical plano-concave mirror. The concave surface of the cylindrical plano-concave mirror is the incident surface 301 of the output mirror 300. The output mirror 300 is disposed so that the concave incident surface 301 faces the semiconductor laser element 100 and the direction of the generatrix of the cylindrical plano-concave mirror coincides with the first axis direction (y direction). . The optical distance between the principal point of the output mirror 300 and the front end face 101 of the semiconductor laser element 100 is set to approximately ½ of the radius of curvature of the concave surface of the cylindrical plano-concave mirror constituting the output mirror 300. . Therefore, the external resonator in the semiconductor laser device 10 according to the first embodiment constitutes a semi-conical resonator in the xz plane including the slow axis direction (x direction).
 図3は、実施の形態1にかかる出力ミラー300の構成を示す模式図である。出力ミラー300は、上述したように円筒平凹ミラーによって構成されており、半導体レーザ素子100からのレーザ光が入射する入射面301と、レーザ光を出射する出射面303とを有している。凹面からなる入射面301には、レーザ光のスロー軸方向(x方向)の中央に設けられた高反射部302を除いて、波長975nmのレーザ光に対する反射率が0%またはほぼ0%の反射防止コーティングが施されている。なお、高反射部302は、入射面301の中央において、x方向に対して幅w1を有する領域のみに設けられていて、それ以外の領域が反射防止コーティングが施された低反射部になっている。すなわち、高反射部302は、レーザ光のスロー軸方向(x方向)の中央においてファースト軸方向(y方向)に伸びた中心線350を含んだ幅w1の領域に設けられているので、入射面301のレーザ光に対する反射率はレーザ光のスロー軸方向の位置に依存して、高反射部302と低反射部との境界で変化している。したがって、入射面301のレーザ光に対する反射率は、スロー軸方向の中央である中心線350からスロー軸方向に沿って離れるに従って、中心線350における反射率から減少することはあっても増加しない。また、平面からなる出射面303にも、全面に亘り波長975nmのレーザ光に対する反射防止コーティングが施されている。以上の構成により、出力ミラー300は、半導体レーザ素子100からのレーザ光の一部を入射面301で反射し、残りを通過させて出射面303から出力する。入射面301で反射されたレーザ光は、半導体レーザ素子100へと戻る。 FIG. 3 is a schematic diagram illustrating a configuration of the output mirror 300 according to the first embodiment. The output mirror 300 is constituted by the cylindrical plano-concave mirror as described above, and has the incident surface 301 on which the laser beam from the semiconductor laser element 100 is incident and the emission surface 303 that emits the laser beam. The concave incident surface 301 is a reflection having a reflectance of 0% or almost 0% with respect to a laser beam having a wavelength of 975 nm, except for the high reflection portion 302 provided in the center in the slow axis direction (x direction) of the laser beam. A protective coating is applied. Note that the high reflection portion 302 is provided only in a region having a width w1 with respect to the x direction in the center of the incident surface 301, and the other region is a low reflection portion to which an antireflection coating is applied. Yes. That is, the high reflection portion 302 is provided in a region having a width w1 including the center line 350 extending in the fast axis direction (y direction) at the center in the slow axis direction (x direction) of the laser light. The reflectance of the laser beam 301 is changed at the boundary between the high reflection portion 302 and the low reflection portion depending on the position of the laser beam in the slow axis direction. Therefore, the reflectance of the incident surface 301 with respect to the laser light does not increase even if it decreases from the reflectance at the center line 350 as it moves away from the center line 350 that is the center in the slow axis direction along the slow axis direction. Further, an antireflection coating for laser light having a wavelength of 975 nm is also applied to the emission surface 303 formed of a flat surface over the entire surface. With the above configuration, the output mirror 300 reflects a part of the laser light from the semiconductor laser element 100 at the incident surface 301, passes the rest, and outputs it from the output surface 303. The laser light reflected by the incident surface 301 returns to the semiconductor laser element 100.
 実施の形態1にかかる出力ミラー300の入射面301には、スロー軸方向であるx方向に対して幅w1を有する領域のみに高反射部302が設けられている。したがって、図1に示すように、スロー軸方向(x方向)に対しては、高反射部302による光帰還によって、高反射部302の幅w1に相当する主発振光401が形成される。また、主発振光401の周囲には、半導体レーザ媒質104内において、主発振光401の回折光を種に増幅された周辺増幅光402が発生する。 High incidence part 302 is provided in the entrance plane 301 of output mirror 300 concerning Embodiment 1 only in the field which has width w1 to the x direction which is the slow axis direction. Therefore, as shown in FIG. 1, in the slow axis direction (x direction), the main oscillation light 401 corresponding to the width w1 of the high reflection portion 302 is formed by light feedback by the high reflection portion 302. In addition, around the main oscillation light 401, peripheral amplification light 402 is generated in the semiconductor laser medium 104, which is amplified using the diffracted light of the main oscillation light 401 as a seed.
 ここで、出力ミラー300として入射面301が一様な反射率を有する一般的な出力ミラーを使用した場合に、外部共振器の構成によって受動的に選択される固有モードにより決定される入射面301上におけるスロー軸方向(x方向)のビーム径をw2とする。なお、上記固有モードは、スロー軸方向(x方向)の横モードの固有モードである。実施の形態1にかかる出力ミラー300の入射面301に設けられた高反射部302の幅w1は、入射面301上におけるスロー軸方向(x方向)のビーム径w2に比べて小さな値に設定されているため、高反射部302は、外部共振器のスロー軸方向(x方向)において横モードの次数を低次に制限する開口として作用する。この結果、高反射部302の幅w1に対応して形成される主発振光401のスロー軸方向の横モードの次数は、一様な反射率を有する一般的な出力ミラーを使用した外部共振器の場合に比べて低い値となり、集光性を向上させることができる。また、周辺増幅光402は、主発振光401の回折光を種として、誘導放出現象によって増幅されるため、主発振光401との可干渉性が維持され、周辺増幅光402についても主発振光401と同等の集光性を得ることができる。 Here, when a general output mirror having a uniform reflectance is used as the output mirror 300, the incident surface 301 determined by the eigenmode passively selected according to the configuration of the external resonator. The beam diameter in the slow axis direction (x direction) above is set to w2. The eigenmode is an eigenmode of the transverse mode in the slow axis direction (x direction). The width w1 of the high reflection portion 302 provided on the incident surface 301 of the output mirror 300 according to the first embodiment is set to a smaller value than the beam diameter w2 in the slow axis direction (x direction) on the incident surface 301. Therefore, the high reflection portion 302 functions as an opening that restricts the order of the transverse mode to the low order in the slow axis direction (x direction) of the external resonator. As a result, the order of the transverse mode in the slow axis direction of the main oscillation light 401 formed corresponding to the width w1 of the high reflection portion 302 is an external resonator using a general output mirror having a uniform reflectance. As compared with the case of, the value becomes lower and the light condensing property can be improved. Further, since the peripheral amplified light 402 is amplified by the stimulated emission phenomenon using the diffracted light of the main oscillation light 401 as a seed, the coherency with the main oscillation light 401 is maintained, and the peripheral oscillation light 402 is also the main oscillation light. The light condensing property equivalent to 401 can be obtained.
 また、ファースト軸方向(y方向)に関しては、半導体レーザ素子100の高い閉じ込め作用により、回折限界に近い集光性が容易に得られるものの、前側端面101上の発光点から出射されるレーザ光の発散全角は原理的に30°~60°程度と非常に大きくなる。本実施の形態1においては、図2に示す通り、半導体レーザ素子100の前側端面101に対向するようにファースト軸補正レンズ2を配設しているので、前側端面101から出射されるレーザ光のファースト軸方向(y方向)に対する発散角を効果的に低減することができる。この結果、外部共振器を構成する出力ミラー300を半導体レーザ素子100へ近接して配置する必要がなくなり、目標とするビーム特性に応じた外部共振器を適宜設計することができる。したがって、出力ミラー300を半導体レーザ素子100から有意な距離だけ隔離して設置することが可能になる。ここで有意な距離とは、例えば10mm以上の距離である。 In addition, with respect to the first axis direction (y direction), although the light condensing performance close to the diffraction limit can be easily obtained due to the high confinement action of the semiconductor laser device 100, the laser light emitted from the light emitting point on the front end face 101 is easily In principle, the divergence full angle is very large, about 30 ° to 60 °. In the first embodiment, as shown in FIG. 2, since the first axis correction lens 2 is disposed so as to face the front end face 101 of the semiconductor laser element 100, the laser light emitted from the front end face 101 is The divergence angle with respect to the first axis direction (y direction) can be effectively reduced. As a result, it is not necessary to dispose the output mirror 300 constituting the external resonator close to the semiconductor laser element 100, and the external resonator according to the target beam characteristics can be appropriately designed. Therefore, the output mirror 300 can be installed by being separated from the semiconductor laser element 100 by a significant distance. Here, the significant distance is, for example, a distance of 10 mm or more.
 出力ミラー300を半導体レーザ素子100から有意な距離だけ隔離して設置することができると、出力ミラー300の入射面301上におけるスロー軸方向(x方向)のビーム径を、半導体レーザ素子100の前側端面101上の発光点の幅に比して、十分拡大することが可能になる。例えば、出力ミラー300と半導体レーザ素子100の前側端面101との距離を10mmとすると、前側端面101上のスロー軸方向の発光点の幅が200μmで、スロー軸方向のビーム発散角が全角で5°である場合には、入射面301上のスロー軸方向のビーム径は約1.1mmとなり、約5倍の拡大が可能となる。そして、出力ミラー300と半導体レーザ素子100との距離を更に離せば、ビーム径を更に拡大することができる。これにより、入射面301のスロー軸方向(x方向)の中央部分に高反射部302を設ける実施の形態1においては出力ミラー300の設計および製造を容易にすることができるという効果がある。なお、ファースト軸方向(y方向)に対しては、出力ミラー300の入射面301の反射率は一定であるため、実施の形態1にかかる半導体レーザ装置10の外部共振器は、通常の外部共振器と同様に機能する。 When the output mirror 300 can be installed at a significant distance from the semiconductor laser element 100, the beam diameter in the slow axis direction (x direction) on the incident surface 301 of the output mirror 300 is set to the front side of the semiconductor laser element 100. Compared to the width of the light emitting point on the end face 101, it is possible to sufficiently expand. For example, if the distance between the output mirror 300 and the front end face 101 of the semiconductor laser element 100 is 10 mm, the width of the light emitting point in the slow axis direction on the front end face 101 is 200 μm, and the beam divergence angle in the slow axis direction is 5 in all angles. In the case of °, the beam diameter in the slow axis direction on the incident surface 301 is about 1.1 mm, which allows an enlargement of about 5 times. If the distance between the output mirror 300 and the semiconductor laser element 100 is further increased, the beam diameter can be further expanded. Thereby, in the first embodiment in which the high reflection portion 302 is provided in the center portion of the incident surface 301 in the slow axis direction (x direction), there is an effect that the design and manufacture of the output mirror 300 can be facilitated. Since the reflectance of the incident surface 301 of the output mirror 300 is constant with respect to the first axis direction (y direction), the external resonator of the semiconductor laser device 10 according to the first embodiment has a normal external resonance. Functions like a vessel.
 ここで、出力ミラー300の入射面301に設けられる高反射部302の設計は、以下に説明するように行えばよい。実施の形態1にかかる図3に示すスロー軸方向の反射率を変化させた出力ミラー300の等価反射率Reqは、以下に示す数式(1)に従って算出することができる。数式(1)において、Rは高反射部302の反射率、Rは入射面301の高反射部302を除いた領域の反射率である。ここで、R>Rが成り立っている。なお、スロー軸方向の中央である中心線350からx方向または-x方向にみた反射率の分布は中心線350に対して対称な分布になっている。 Here, the design of the high reflection portion 302 provided on the incident surface 301 of the output mirror 300 may be performed as described below. The equivalent reflectivity R eq of the output mirror 300 in which the reflectivity in the slow axis direction shown in FIG. 3 according to the first embodiment is changed can be calculated according to the following formula (1). In Equation (1), R h is the reflectance of the high reflection portion 302, and R l is the reflectance of the region of the incident surface 301 excluding the high reflection portion 302. Here, R h > R 1 holds. It should be noted that the reflectance distribution viewed from the center line 350, which is the center in the slow axis direction, in the x direction or the -x direction is symmetric with respect to the center line 350.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 反射率が入射面のスロー軸方向に沿って一定値である通常の出力ミラーを用いた場合には、半導体レーザ媒質104の利得に応じて半導体レーザ装置10の出力が最大となる最適値である最適反射率が存在する。実施の形態1にかかる出力ミラー300においては、上述したように外部共振器のスロー軸方向(x方向)の固有モードからw2を算出するとともに、スロー軸方向の横モードの目標とする次数に基づいて高反射部302の幅w1が決定される。そして、数式(1)により算出される等価反射率Reqの値が上記最適反射率に概ね一致するようにRおよびRの値を設定すれば、実施の形態1にかかる高反射部302を設けた出力ミラー300を使用した場合であっても、半導体レーザ媒質104から効率的にレーザ光を取り出すことができる。すなわち、集光性を高めるために高反射部302を設けてスロー軸方向の反射率を変化させた実施の形態1にかかる出力ミラー300を使用した場合であっても、半導体レーザ媒質104からレーザ光を効率的に出力させることができる。 When a normal output mirror having a constant reflectance along the slow axis direction of the incident surface is used, the output is the optimum value that maximizes the output of the semiconductor laser device 10 according to the gain of the semiconductor laser medium 104. There is an optimal reflectivity. In the output mirror 300 according to the first embodiment, as described above, w2 is calculated from the eigenmode in the slow axis direction (x direction) of the external resonator, and based on the target order of the transverse mode in the slow axis direction. Thus, the width w1 of the high reflection portion 302 is determined. Then, if the values of R h and R l are set so that the value of the equivalent reflectance R eq calculated by Equation (1) substantially matches the optimum reflectance, the high reflection portion 302 according to the first embodiment. Even when the output mirror 300 provided with is used, the laser light can be efficiently extracted from the semiconductor laser medium 104. That is, even when the output mirror 300 according to the first embodiment in which the reflectivity in the slow axis direction is changed by providing the high reflection portion 302 in order to improve the light collecting property, the laser from the semiconductor laser medium 104 is used. Light can be output efficiently.
 なお、上記説明において、出力ミラー300の入射面301に、高反射部302を除いて反射防止コーティングを施した構成を示したが、出力ミラー300の構成はこれに限定されない。高反射部302以外の領域に一定の値の反射率を有するコーティングを施しても、適切な出力ミラーの入射面上の位置に目標とするスロー軸方向の横モードの次数に応じた適切な幅w1の高反射部を設けて、数式(1)に示した等価反射率Reqの値が最適反射率に概ね一致するようにRおよびRの値を設定すれば、スロー軸方向の集光性を容易に改善することができるとともに、半導体レーザ媒質104から効率的にレーザ光を取り出すことができる。 In the above description, the configuration in which the antireflection coating is applied to the incident surface 301 of the output mirror 300 except for the high reflection portion 302 is shown, but the configuration of the output mirror 300 is not limited to this. Even if a coating having a certain value of reflectance is applied to a region other than the high reflection portion 302, an appropriate width corresponding to the order of the transverse mode in the target slow axis direction at a position on the incident surface of the appropriate output mirror If the value of R h and R l is set so that the high reflection part of w1 is provided and the value of the equivalent reflectance R eq shown in the equation (1) substantially matches the optimum reflectance, The optical property can be easily improved, and the laser beam can be efficiently extracted from the semiconductor laser medium 104.
 また、上記説明においては、外部共振器の出力ミラー300に円筒平凹レンズを使用した構成を示したが、出力ミラー300の構成はこれに限るものではなく、目標とするビームモードに応じて外部共振器を適宜設計して、出力ミラー300の入射面および出射面の形状を定めればよい。 In the above description, a configuration using a cylindrical plano-concave lens is shown for the output mirror 300 of the external resonator. However, the configuration of the output mirror 300 is not limited to this, and the external resonance depends on the target beam mode. The shape of the entrance surface and the exit surface of the output mirror 300 may be determined by designing the device appropriately.
 また、上記説明においては、出力ミラー300の入射面301のスロー軸方向の中央部の幅w1の領域に高反射部302を設け、入射面301の高反射部302を除いた領域に反射防止コーティングを施した構成を示した。しかし、実施の形態1にかかる出力ミラー300の入射面301および出射面303と同一の曲率半径の入射面および出射面を備え、入射面の反射率が高反射部302の反射率と同一で幅w1のミラーを出力ミラー300の代りに使用しても同様な効果を得ることができることは言うまでもない。 In the above description, the high reflection portion 302 is provided in the region of the width w1 at the center of the incident surface 301 of the output mirror 300 in the slow axis direction, and the antireflection coating is provided in the region other than the high reflection portion 302 of the incident surface 301. The structure which gave is shown. However, the incident surface and the exit surface having the same radius of curvature as the entrance surface 301 and the exit surface 303 of the output mirror 300 according to the first embodiment are provided, and the reflectivity of the entrance surface is the same as the reflectivity of the high reflection portion 302 and the width. It goes without saying that the same effect can be obtained even if the mirror of w1 is used instead of the output mirror 300.
 以上説明したように、実施の形態1にかかる半導体レーザ装置10によれば、半導体レーザ素子100と出力ミラー300との間のレーザ光の光路上であって半導体レーザ素子100に対向する位置にファースト軸補正レンズ2を設置することにより、レーザ光のファースト軸方向のビーム発散角を低減している。これにより、外部共振器を構成する出力ミラー300を半導体レーザ素子100へ近接させずに設置することが可能になり、外部共振器の構成の調整が容易になるとともに、レーザ光を安定的に発生させることができる。そして、出力ミラー300を半導体レーザ素子100へ近接させて設置する必要がないので、出力ミラー300上におけるスロー軸方向のビーム径を、半導体レーザ素子100のスロー軸方向の発光点の幅よりも拡大することが可能になり、出力ミラー300のスロー軸方向に設ける反射率の変化の位置精度を緩和することができる。その結果、出力ミラー300の製造コストが低減するとともに、出力ミラー300の調整裕度を増加させることができるという効果が得られる。そして、出力ミラー300へ入射されるレーザ光に対する出力ミラー300の反射率をスロー軸方向に変化させているため、スロー軸方向において目標とする横モードを選択的に増幅して、スロー軸方向の集光性を効率的且つ容易に改善することができる。 As described above, according to the semiconductor laser device 10 according to the first embodiment, the first laser beam is positioned at the position on the optical path of the laser beam between the semiconductor laser element 100 and the output mirror 300 and facing the semiconductor laser element 100. By installing the axis correction lens 2, the beam divergence angle of the laser beam in the first axis direction is reduced. As a result, the output mirror 300 constituting the external resonator can be installed without being close to the semiconductor laser element 100, the adjustment of the configuration of the external resonator is facilitated, and laser light is stably generated. Can be made. Since the output mirror 300 does not need to be installed close to the semiconductor laser element 100, the beam diameter in the slow axis direction on the output mirror 300 is larger than the width of the light emitting point in the slow axis direction of the semiconductor laser element 100. Therefore, the positional accuracy of the change in reflectance provided in the slow axis direction of the output mirror 300 can be relaxed. As a result, the manufacturing cost of the output mirror 300 can be reduced and the adjustment margin of the output mirror 300 can be increased. Since the reflectance of the output mirror 300 with respect to the laser light incident on the output mirror 300 is changed in the slow axis direction, the target transverse mode is selectively amplified in the slow axis direction, and The light collecting property can be improved efficiently and easily.
実施の形態2.
 図4は、本発明の実施の形態2にかかる出力ミラー310の構成を示す模式図である。実施の形態2にかかる半導体レーザ装置の構成は、図1および図2における出力結合素子である出力ミラー300を出力ミラー310に置き換えたものと同様であり、実施の形態2におけるレーザ光に対する外部共振器の構成も実施の形態1と同様になる。
Embodiment 2. FIG.
FIG. 4 is a schematic diagram illustrating a configuration of the output mirror 310 according to the second embodiment of the present invention. The configuration of the semiconductor laser device according to the second embodiment is the same as that in which the output mirror 300 that is the output coupling element in FIGS. 1 and 2 is replaced with the output mirror 310, and external resonance with respect to the laser light in the second embodiment. The configuration of the vessel is the same as that of the first embodiment.
 図4の出力ミラー310においては、入射面301のスロー軸方向(x方向)の中央部に、幅w3の第1の高反射部304が設けられている。出力ミラー310においては、スロー軸方向(x方向)の幅w4(>w3)の領域内であって第1の高反射部304の両側に第2の高反射部305がさらに設けられている。なお、第1の高反射部304の幅w3は、入射面301上におけるスロー軸方向(x方向)のビーム径w2に比べて小さな値に設定されている。 In the output mirror 310 of FIG. 4, a first high reflection portion 304 having a width w <b> 3 is provided at the center of the incident surface 301 in the slow axis direction (x direction). In the output mirror 310, a second high reflection portion 305 is further provided on both sides of the first high reflection portion 304 in the region of the width w4 (> w3) in the slow axis direction (x direction). The width w3 of the first high reflection portion 304 is set to a smaller value than the beam diameter w2 in the slow axis direction (x direction) on the incident surface 301.
 なお、図4の出力ミラー310の出射面303には、実施の形態1と同様に波長975nmのレーザ光に対する反射防止コーティングが施されている。そして、第1の高反射部304の反射率をRh1とし、第2の高反射部305の反射率をRh2とし、第1の高反射部304および第2の高反射部305を除いた入射面301の反射率をRとすれば、Rh1、Rh2およびRは、以下の数式(2)に示す関係を満たしている。 Note that the output surface 303 of the output mirror 310 in FIG. 4 is provided with an antireflection coating for laser light having a wavelength of 975 nm, as in the first embodiment. Then, the reflectance of the first high reflecting portion 304 and R h1, the reflectance of the second high reflective portion 305 and R h2, except for the first high-reflective portion 304 and the second high reflecting portion 305 Assuming that the reflectance of the incident surface 301 is R l , R h1 , R h2, and R l satisfy the relationship expressed by the following formula (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図4に示すように、出力ミラー310の入射面301に、第1の高反射部304に加えて、反射率が異なる第2の高反射部305をスロー軸方向(x方向)に沿って配列させて設けることにより、出力ミラー310の入射面301は、1つの高反射部302のみを備えた実施の形態1の出力ミラー300の入射面301に比べて、反射率をスロー軸方向においてより段階的に変化させることができる。出力ミラー310においても、入射面301のレーザ光に対する反射率は、スロー軸方向の中央である中心線350からスロー軸方向に沿って離れるに従って減少することはあっても増加しない。そして、スロー軸方向の中央である中心線350からx方向または-x方向にみた反射率の分布は中心線350に対して対称な分布になっている。これによって、出力ミラー310は、スロー軸方向に対する横モードの目標とする次数に応じて、共振器損失のスロー軸方向に対する空間分布をより精細に設定することが可能になるため、スロー軸方向に対する横モードの目標とする次数を有したレーザ光の発生をさらに容易に実現することができるという効果が得られる。 As shown in FIG. 4, in addition to the first high reflection portion 304, the second high reflection portion 305 having different reflectivity is arranged along the slow axis direction (x direction) on the incident surface 301 of the output mirror 310. Thus, the incident surface 301 of the output mirror 310 has a higher level of reflectance in the slow axis direction than the incident surface 301 of the output mirror 300 of the first embodiment provided with only one high reflection portion 302. Can be changed. Even in the output mirror 310, the reflectance of the incident surface 301 with respect to the laser light does not increase even though it decreases as the distance from the center line 350, which is the center in the slow axis direction, increases along the slow axis direction. The reflectance distribution viewed from the center line 350, which is the center in the slow axis direction, in the x direction or the -x direction is a symmetric distribution with respect to the center line 350. Accordingly, the output mirror 310 can set the spatial distribution of the resonator loss with respect to the slow axis direction more precisely according to the target order of the transverse mode with respect to the slow axis direction. An effect is obtained that generation of laser light having the target order of the transverse mode can be realized more easily.
 なお、実施の形態2にかかる出力ミラー310の等価反射率Reqは、以下に示す数式(3)に従って算出することができる。 The equivalent reflectivity R eq of the output mirror 310 according to the second embodiment can be calculated according to the following mathematical formula (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 まず、スロー軸方向の横モードの目標とする次数に応じて、第1の高反射部304の幅w3および反射率Rh1と、第2の高反射部305の幅w4および反射率Rh2とを選定する。先に述べたように、反射率が入射面のスロー軸方向に沿って一定値である通常の出力ミラーを用いた場合には、当該反射率に最適反射率が存在する。したがって、数式(3)により算出される等価反射率Reqの値が上記最適反射率に概ね一致するよう入射面301の反射率Rを設定すれば、実施の形態2にかかる出力ミラー310を使用した場合であっても、半導体レーザ媒質104から効率的にレーザ光を取り出すことができる。すなわち、集光性を高めるために第1の高反射部304および第2の高反射部305を設けてスロー軸方向の反射率を変化させた実施の形態2にかかる出力ミラー310を使用した場合であっても、スロー軸方向の横モードについて目標とする次数を有したレーザ光を効率的に発生させることができる。 First, according to the target order of the transverse mode in the slow axis direction, the width w3 and the reflectance R h1 of the first high reflection portion 304, the width w4 and the reflectance R h2 of the second high reflection portion 305, Is selected. As described above, when a normal output mirror having a constant reflectance along the slow axis direction of the incident surface is used, an optimum reflectance exists for the reflectance. Therefore, if the reflectance R l of the incident surface 301 is set so that the value of the equivalent reflectance R eq calculated by the equation (3) substantially matches the optimum reflectance, the output mirror 310 according to the second embodiment can be obtained. Even when it is used, laser light can be efficiently extracted from the semiconductor laser medium 104. That is, when the output mirror 310 according to the second embodiment in which the first high reflection portion 304 and the second high reflection portion 305 are provided to change the reflectivity in the slow axis direction in order to improve the light collecting property is used. Even so, it is possible to efficiently generate laser light having a target order for the transverse mode in the slow axis direction.
 実施の形態2にかかる出力ミラー310においては、反射率が異なる第1の高反射部304および第2の高反射部305をスロー軸方向(x方向)に配列させて入射面301に設けた構成を示したが、出力ミラーの入射面に高反射部を設けた構成はこれに限るものではない。例えば、第1の高反射部304および第2の高反射部305と反射率が各々異なりさらに互いに反射率が異なる第3および第4の高反射部を出力ミラーの入射面上にスロー軸方向に配列させて設ければ、共振器損失のスロー軸方向に対する空間分布をさらに精細に設定することが可能になり、スロー軸方向の横モードに対する目標とする次数を有したレーザ光を、さらに容易に発生させることができる。 In the output mirror 310 according to the second embodiment, the first high reflection portion 304 and the second high reflection portion 305 having different reflectivities are arranged in the slow axis direction (x direction) and provided on the incident surface 301. However, the configuration in which the high reflection portion is provided on the incident surface of the output mirror is not limited to this. For example, the third and fourth high-reflecting parts, which have different reflectivities from the first high-reflecting part 304 and the second high-reflecting part 305 and have different reflectivities, are arranged on the incident surface of the output mirror in the slow axis direction If arranged in an array, the spatial distribution of the resonator loss in the slow axis direction can be set more finely, and laser light having the target order for the transverse mode in the slow axis direction can be more easily obtained. Can be generated.
実施の形態3.
 図5は、本発明の実施の形態3にかかる出力ミラー320の構成を示す模式図である。実施の形態3にかかる半導体レーザ装置の構成は、図1および図2における出力結合素子である出力ミラー300を出力ミラー320に置き換えたものと同様であり、実施の形態3におけるレーザ光に対する外部共振器の構成も実施の形態1と同様になる。また、出力ミラー320の形状も出力ミラー300と同様である。
Embodiment 3 FIG.
FIG. 5 is a schematic diagram showing the configuration of the output mirror 320 according to the third embodiment of the present invention. The configuration of the semiconductor laser device according to the third embodiment is the same as that in which the output mirror 300 which is the output coupling element in FIGS. 1 and 2 is replaced by the output mirror 320, and external resonance with respect to the laser light in the third embodiment. The configuration of the vessel is the same as that of the first embodiment. The shape of the output mirror 320 is the same as that of the output mirror 300.
 実施の形態3にかかる出力ミラー320の入射面301には、ファースト軸方向(y方向)に沿って反射率が一定値であり、且つスロー軸方向(x方向)に対しては中央で反射率が最大となるガウス分布型の反射率を呈するコーティングが施されている。すなわち、出力ミラー320においても、入射面301のレーザ光に対する反射率は、スロー軸方向の中央である中心線350からスロー軸方向に沿って離れるに従って減少することはあっても増加しない。そして、スロー軸方向の中央である中心線350からx方向または-x方向にみた反射率の分布は中心線350に対して対称な分布になっている。図5の下には、スロー軸方向(x方向)に沿った位置に対する反射率がグラフで示してある。なお、図示してはいないが、出力ミラー320の平面からなる出射面にも、全面に亘り波長975nmに対する反射防止コーティングが施されている。 The incident surface 301 of the output mirror 320 according to the third embodiment has a constant reflectance along the fast axis direction (y direction), and the reflectance at the center in the slow axis direction (x direction). A coating exhibiting a Gaussian-distributed reflectivity with a maximum is applied. That is, also in the output mirror 320, the reflectance of the incident surface 301 with respect to the laser light does not increase even though it decreases as the distance from the center line 350, which is the center in the slow axis direction, increases along the slow axis direction. The reflectance distribution viewed from the center line 350, which is the center in the slow axis direction, in the x direction or the -x direction is a symmetric distribution with respect to the center line 350. At the bottom of FIG. 5, the reflectance with respect to the position along the slow axis direction (x direction) is shown in a graph. Although not shown in the figure, an antireflection coating for a wavelength of 975 nm is also applied to the output surface consisting of a plane of the output mirror 320 over the entire surface.
 図5に示すようなスロー軸方向に対して反射率が連続的に変化する入射面301を備えた出力ミラー320を使用した場合は、実施の形態1にかかる出力ミラー300および実施の形態2にかかる出力ミラー310と同様な効果が得られるばかりでなく、スロー軸方向に対する共振器損失分布の設計自由度がさらに向上する。これにより、スロー軸方向の横モードの目標とする次数に応じた最適な反射率分布を設定することができるので、スロー軸方向に対する横モードの目標とする次数を有したレーザ光を効率的、且つさらに容易に発生させることが可能になる。 When the output mirror 320 having the incident surface 301 whose reflectivity continuously changes in the slow axis direction as shown in FIG. 5 is used, the output mirror 300 according to the first embodiment and the second embodiment are used. In addition to the same effects as the output mirror 310, the degree of freedom in designing the resonator loss distribution in the slow axis direction is further improved. Thereby, since it is possible to set an optimal reflectance distribution according to the target order of the transverse mode in the slow axis direction, the laser beam having the target order of the transverse mode in the slow axis direction can be efficiently used. In addition, it can be generated more easily.
 実施の形態3においては、スロー軸方向に対してガウス分布型の反射率分布を備えた出力ミラー320を使用した構成を示したが、反射率分布の形状はこれに限るものではなく、スロー軸方向の横モードの目標とする次数に応じて適宜設計すればよいことは言うまでもない。 In the third embodiment, the configuration using the output mirror 320 having a Gaussian distribution type reflectance distribution with respect to the slow axis direction is shown, but the shape of the reflectance distribution is not limited to this, and the slow axis is not limited to this. Needless to say, it may be designed as appropriate according to the target order of the transverse mode of direction.
 なお、実施の形態1から実施の形態3においては、何れも出力ミラーの入射面301の反射率が、スロー軸方向に対し変化するとともに、出力ミラーの出射面303には、レーザ光の波長に対する反射防止コーティングを施す構成を示したが、出力ミラーの構成はこれらに限るものではない。具体的には、入射面301にレーザ光の波長に対する反射防止コーティングを施すとともに、出射面303の反射率をスロー軸方向に対し変化させた構成にした場合であっても、実施の形態1から実施の形態3と同様な効果を得ることができる。 In each of the first to third embodiments, the reflectance of the incident surface 301 of the output mirror changes with respect to the slow axis direction, and the output surface 303 of the output mirror has a wavelength corresponding to the wavelength of the laser beam. Although the configuration in which the antireflection coating is applied is shown, the configuration of the output mirror is not limited to these. Specifically, even if the antireflection coating for the wavelength of the laser beam is applied to the incident surface 301 and the reflectance of the emission surface 303 is changed with respect to the slow axis direction, the first embodiment can be applied. The same effect as in the third embodiment can be obtained.
実施の形態4.
 図6は、本発明の実施の形態4にかかる半導体レーザ装置20の構成を示す上面模式図である。図7は、実施の形態4にかかる半導体レーザ装置20の構成を示す側面模式図である。図8は、実施の形態4にかかる出力ミラー330の構成を示す模式図である。実施の形態4にかかる半導体レーザ素子100の構成は、実施の形態1にかかる半導体レーザ素子100の構成と同一である。
Embodiment 4 FIG.
FIG. 6 is a schematic top view showing the configuration of the semiconductor laser apparatus 20 according to the fourth embodiment of the present invention. FIG. 7 is a schematic side view showing the configuration of the semiconductor laser apparatus 20 according to the fourth embodiment. FIG. 8 is a schematic diagram illustrating a configuration of the output mirror 330 according to the fourth embodiment. The configuration of the semiconductor laser element 100 according to the fourth embodiment is the same as the configuration of the semiconductor laser element 100 according to the first embodiment.
 実施の形態4にかかる半導体レーザ装置20は、半導体レーザ素子100と、ファースト軸補正レンズ2と、第1の水平方向円筒レンズ5と、第1の垂直方向円筒レンズ6と、第2の水平方向円筒レンズ7と、出力結合素子である出力ミラー330とを備える。ファースト軸補正レンズ2は、水平方向である半導体レーザ素子100のスロー軸方向(x方向)に母線が配された焦点距離f1の円筒レンズである。第1の水平方向円筒レンズ5は、垂直方向(y方向)に母線が配された焦点距離f3の円筒レンズである。第1の垂直方向円筒レンズ6は、水平方向(x方向)に母線が配された焦点距離f2の円筒レンズである。第2の水平方向円筒レンズ7は、垂直方向(y方向)に母線が配された焦点距離f4の円筒レンズである。そして、半導体レーザ素子100、ファースト軸補正レンズ2、第1の水平方向円筒レンズ5、第1の垂直方向円筒レンズ6、第2の水平方向円筒レンズ7および出力ミラー330がレーザ光に対する外部共振器を構成し、この外部共振器が半導体レーザ素子100に波長975nmのレーザ光を出力させる。 The semiconductor laser device 20 according to the fourth embodiment includes a semiconductor laser element 100, a first axis correction lens 2, a first horizontal cylindrical lens 5, a first vertical cylindrical lens 6, and a second horizontal direction. A cylindrical lens 7 and an output mirror 330 that is an output coupling element are provided. The first axis correction lens 2 is a cylindrical lens having a focal length f1 in which a bus is arranged in the slow axis direction (x direction) of the semiconductor laser element 100 which is the horizontal direction. The first horizontal cylindrical lens 5 is a cylindrical lens having a focal length f3 in which a bus is arranged in the vertical direction (y direction). The first vertical cylindrical lens 6 is a cylindrical lens having a focal length f2 in which a bus is arranged in the horizontal direction (x direction). The second horizontal cylindrical lens 7 is a cylindrical lens having a focal length f4 in which a bus is arranged in the vertical direction (y direction). The semiconductor laser element 100, the first axis correction lens 2, the first horizontal cylindrical lens 5, the first vertical cylindrical lens 6, the second horizontal cylindrical lens 7, and the output mirror 330 are external resonators for laser light. The external resonator causes the semiconductor laser element 100 to output laser light having a wavelength of 975 nm.
 実施の形態4にかかる出力ミラー330は平面ミラーにより構成される。出力ミラー330の入射面301においては、入射面301へ入射するレーザ光のスロー軸方向であるx方向の中央部に、入射面301へ入射するレーザ光のビーム径w2より狭い範囲の幅w1に高反射部302が設けられている。高反射部302の幅w1は、スロー軸方向の横モードの目標とする次数に基づいて決定される。そして、入射面301の高反射部302を除いた領域には、波長975nmに対する反射防止コーティングが施されている。出力ミラー330においても、入射面301のレーザ光に対する反射率は、スロー軸方向の中央である中心線350からスロー軸方向に沿って離れるに従って減少することはあっても増加しない。そして、スロー軸方向の中央である中心線350からx方向または-x方向にみた反射率の分布は中心線350に対して対称な分布になっている。また、図示していないが、出力ミラー330の入射面301の反対面である出射面303には、全面に亘り波長975nmに対する反射防止コーティングが施されている。 The output mirror 330 according to the fourth embodiment is configured by a plane mirror. On the incident surface 301 of the output mirror 330, the width w1 is narrower than the beam diameter w2 of the laser light incident on the incident surface 301 at the center in the x direction, which is the slow axis direction of the laser light incident on the incident surface 301. A highly reflective portion 302 is provided. The width w1 of the high reflection portion 302 is determined based on the target order of the transverse mode in the slow axis direction. An antireflection coating for a wavelength of 975 nm is applied to the region of the incident surface 301 excluding the high reflection portion 302. Even in the output mirror 330, the reflectance of the incident surface 301 with respect to the laser light does not increase even though it decreases as the distance from the center line 350, which is the center in the slow axis direction, increases along the slow axis direction. The reflectance distribution viewed from the center line 350, which is the center in the slow axis direction, in the x direction or the -x direction is a symmetric distribution with respect to the center line 350. Although not shown, the output surface 303 opposite to the incident surface 301 of the output mirror 330 is provided with an antireflection coating for the wavelength of 975 nm over the entire surface.
 実施の形態4にかかる半導体レーザ装置20においては、スロー軸方向(x方向)に母線が配された焦点距離f1のファースト軸補正レンズ2を、半導体レーザ素子100の前側端面101より距離f1の位置に配設すると共に、スロー軸方向(x方向)に母線が配された焦点距離f2の第1の垂直方向円筒レンズ6を、ファースト軸補正レンズ2より距離f1+f2の位置に配設し、出力ミラー330を、第1の垂直方向円筒レンズ6から距離f2の位置に配設している。ここで、f1およびf2で示した距離は、各光学素子の主点間の光学距離であるとする。これにより、半導体レーザ素子100の前側端面101と出力ミラー330の入射面301との間で、ファースト軸方向(y方向)に対するアフォーカルな結像光学系が構成される。従って、ファースト軸方向(y方向)に対し、半導体レーザ素子100の前側端面101と出力ミラー330の入射面301とは、光学的に共役となる。 In the semiconductor laser device 20 according to the fourth embodiment, the first axis correction lens 2 having a focal length f1 with a bus line arranged in the slow axis direction (x direction) is positioned at a distance f1 from the front end face 101 of the semiconductor laser element 100. And a first vertical cylindrical lens 6 with a focal length f2 having a bus line arranged in the slow axis direction (x direction) is arranged at a distance f1 + f2 from the first axis correction lens 2, and an output mirror 330 is disposed at a distance f2 from the first vertical cylindrical lens 6. Here, it is assumed that the distances indicated by f1 and f2 are optical distances between principal points of the respective optical elements. Thus, an afocal imaging optical system with respect to the first axis direction (y direction) is configured between the front end face 101 of the semiconductor laser element 100 and the incident surface 301 of the output mirror 330. Therefore, the front end surface 101 of the semiconductor laser element 100 and the incident surface 301 of the output mirror 330 are optically conjugate with respect to the fast axis direction (y direction).
 また、実施の形態4にかかる半導体レーザ装置20においては、垂直方向(y方向)に母線が配された焦点距離f3の第1の水平方向円筒レンズ5を、半導体レーザ素子100の前側端面101より距離f3の位置に配設すると共に、垂直方向(y方向)に母線が配された焦点距離f4の第2の水平方向円筒レンズ7を、第1の水平方向円筒レンズ5より距離f3+f4の位置に配設し、出力ミラー330を、第2の水平方向円筒レンズ7から距離f4の位置に配設している。ここで、f3およびf4で示した距離は、各光学素子の主点間の光学距離であるとする。これにより、スロー軸方向(x方向)についても、半導体レーザ素子100の前側端面101と出力ミラー330の入射面301との間でアフォーカルな結像光学系が構成される。従って、スロー軸方向(x方向)についても、半導体レーザ素子100の前側端面101と出力ミラー330の入射面301とは、光学的に共役となる。 Further, in the semiconductor laser device 20 according to the fourth embodiment, the first horizontal cylindrical lens 5 having the focal length f3 in which the bus is arranged in the vertical direction (y direction) is arranged from the front end face 101 of the semiconductor laser element 100. The second horizontal cylindrical lens 7 having a focal length f4, which is disposed at the position of the distance f3 and has a bus line arranged in the vertical direction (y direction), is positioned at a distance f3 + f4 from the first horizontal cylindrical lens 5. The output mirror 330 is disposed at a distance f4 from the second horizontal cylindrical lens 7. Here, it is assumed that the distances indicated by f3 and f4 are optical distances between principal points of the optical elements. Accordingly, an afocal imaging optical system is configured between the front end face 101 of the semiconductor laser element 100 and the incident surface 301 of the output mirror 330 in the slow axis direction (x direction). Therefore, also in the slow axis direction (x direction), the front end face 101 of the semiconductor laser element 100 and the incident face 301 of the output mirror 330 are optically conjugate.
 以上により、実施の形態4にかかる半導体レーザ装置20において、半導体レーザ素子100の前側端面101は、出力ミラー330に結像される。その転写倍率をMとすると、出力ミラー330上のスロー軸方向のビーム幅w2は、半導体レーザ素子100のスロー軸方向の発光点幅にMを乗じた値に等しくなる。 As described above, in the semiconductor laser device 20 according to the fourth embodiment, the front end face 101 of the semiconductor laser element 100 is imaged on the output mirror 330. When the transfer magnification is M, the beam width w2 in the slow axis direction on the output mirror 330 is equal to a value obtained by multiplying the light emitting point width of the semiconductor laser element 100 in the slow axis direction by M.
 実施の形態4にかかる半導体レーザ装置20によれば、少なくともスロー軸方向(x方向)に対して、半導体レーザ素子100の前側端面101と出力ミラー330の入射面301とは光学的に共役であるため、半導体レーザ素子100の前側端面101上の発光点中央部に、発光点のスロー軸方向(x方向)の幅に比してw1/w2の幅の領域に高反射部が設けられた構成と光学的に等価となる。すなわち、実施の形態4にかかる半導体レーザ装置20は、半導体レーザ素子100の前側端面101に部分反射コーティングが設けられた一般的なファブリペロー型の光共振器と光学的に同等な構成となる。これにより、スロー軸方向(x方向)に対する横モードの次数の選択性が実施の形態1から実施の形態3にかかる半導体レーザ装置10よりも格段に向上するので、スロー軸方向の横モードについて目標とする次数を有したレーザ光をさらに効率的に発生させることができる。 According to the semiconductor laser device 20 according to the fourth embodiment, the front end face 101 of the semiconductor laser element 100 and the incident surface 301 of the output mirror 330 are optically conjugate with respect to at least the slow axis direction (x direction). Therefore, a configuration in which a high reflection portion is provided in a region having a width of w1 / w2 as compared with the width of the light emitting point in the slow axis direction (x direction) at the center of the light emitting point on the front end face 101 of the semiconductor laser element 100. Is optically equivalent. That is, the semiconductor laser device 20 according to the fourth embodiment has a configuration that is optically equivalent to a general Fabry-Perot type optical resonator in which a partial reflection coating is provided on the front end face 101 of the semiconductor laser element 100. Thereby, the selectivity of the order of the transverse mode with respect to the slow axis direction (x direction) is remarkably improved as compared with the semiconductor laser device 10 according to the first to third embodiments. It is possible to more efficiently generate laser light having the following order.
 上記したように、実施の形態4にかかる半導体レーザ装置20は、半導体レーザ素子100の発光点のスロー軸方向の限られた領域に高反射部を設けた構成と光学的に等価となる。しかし、半導体レーザ素子100の前側端面101上の微小な領域に精度よく高反射部を形成することは、技術的な難易度が高いことに加えて、コーティングプロセスの工程が複雑になるため、製造コストも増加してしまうという問題があった。これに対して、実施の形態4にかかる半導体レーザ装置20においては、少なくともスロー軸方向について、半導体レーザ素子100の前側端面101が出力ミラー330上へ結像される外部共振器が構成されているので、出力ミラー330上へ半導体レーザ素子100の発光点を拡大結像することができる。これにより、半導体レーザ装置20においては、半導体レーザ素子100の前側端面101に高反射部を直接形成する場合の高反射部の幅に比べ、出力ミラー330の入射面301上に形成する高反射部302の幅w1を広げることが可能になる。その結果、技術的にも容易に、且つ安価なコストで、出力ミラー330を製造することが可能になる。 As described above, the semiconductor laser device 20 according to the fourth embodiment is optically equivalent to a configuration in which a high reflection portion is provided in a limited region of the light emitting point of the semiconductor laser element 100 in the slow axis direction. However, it is difficult to accurately form a high reflection portion in a minute region on the front end face 101 of the semiconductor laser element 100 because the technical difficulty is high and the coating process is complicated. There was a problem that the cost also increased. On the other hand, in the semiconductor laser device 20 according to the fourth embodiment, an external resonator is formed in which the front end face 101 of the semiconductor laser element 100 is imaged on the output mirror 330 at least in the slow axis direction. Therefore, the light emission point of the semiconductor laser element 100 can be enlarged and imaged on the output mirror 330. Thereby, in the semiconductor laser device 20, the high reflection portion formed on the incident surface 301 of the output mirror 330 is larger than the width of the high reflection portion when the high reflection portion is directly formed on the front end face 101 of the semiconductor laser element 100. The width w1 of 302 can be increased. As a result, the output mirror 330 can be manufactured easily technically and at a low cost.
 なお、実施の形態4にかかる半導体レーザ装置20は、図8に示した入射面301に単一の高反射部302を備えた出力ミラー330を使用して外部共振器を構成するとして説明したが、出力ミラーの構成はこれに限定されない。実施の形態2にかかる出力ミラー310のように反射率が異なる複数の高反射部がスロー軸方向に配列して設けられた出力ミラーを使用してもよいし、実施の形態3にかかる出力ミラー320のように入射面の反射率をスロー軸方向に沿って連続的に変化させた出力ミラーを使用してもよく、これらの構成の出力ミラーを採用することにより、スロー軸方向の横モードの次数の選択性をさらに向上させてもよい。 Although the semiconductor laser device 20 according to the fourth embodiment has been described as configuring an external resonator using the output mirror 330 having the single high reflection portion 302 on the incident surface 301 shown in FIG. The configuration of the output mirror is not limited to this. As in the output mirror 310 according to the second embodiment, an output mirror in which a plurality of high reflection portions having different reflectivities are arranged in the slow axis direction may be used, or the output mirror according to the third embodiment. An output mirror in which the reflectance of the incident surface is continuously changed along the slow axis direction as in 320 may be used. By adopting the output mirror having these configurations, the transverse mode in the slow axis direction can be used. The order selectivity may be further improved.
実施の形態5.
 図9は、本発明の実施の形態5にかかる半導体レーザ装置30の構成を示す上面模式図である。図10は、実施の形態5にかかる半導体レーザ装置30の構成を示す側面模式図である。なお、実施の形態5にかかる半導体レーザ装置30は、図8にて示した出力ミラー330を使用している。また、実施の形態5にかかる半導体レーザ装置30の外部共振器は、図9に示すように回折格子8を備えており、回折効果によって外部共振器の光軸は折り曲げられる。ただし、回折格子8はレンズ作用を呈しないことから、図10に示す側面模式図においては、半導体レーザ装置30の技術的な特徴を明確にするため、半導体レーザ素子110から出力ミラー330に至る外部共振器の構成は、模式的に光軸が直線になっているように示されている。また、回折格子8によって光軸が曲げられた後の方向を明確にするために、図9には、x’方向、y’方向およびz’方向を示す座標系の向きを明示してある。
Embodiment 5. FIG.
FIG. 9 is a schematic top view showing the configuration of the semiconductor laser device 30 according to the fifth embodiment of the present invention. FIG. 10 is a schematic side view illustrating the configuration of the semiconductor laser device 30 according to the fifth embodiment. The semiconductor laser device 30 according to the fifth embodiment uses the output mirror 330 shown in FIG. Further, the external resonator of the semiconductor laser device 30 according to the fifth embodiment includes the diffraction grating 8 as shown in FIG. 9, and the optical axis of the external resonator is bent by the diffraction effect. However, since the diffraction grating 8 does not exhibit a lens action, in the schematic side view shown in FIG. 10, in order to clarify the technical characteristics of the semiconductor laser device 30, an external part extending from the semiconductor laser element 110 to the output mirror 330 is used. The configuration of the resonator is schematically shown so that the optical axis is a straight line. Further, in order to clarify the direction after the optical axis is bent by the diffraction grating 8, FIG. 9 clearly shows the orientation of the coordinate system indicating the x ′ direction, the y ′ direction, and the z ′ direction.
 実施の形態5にかかる半導体レーザ装置30は、半導体レーザ素子110と、ファースト軸補正レンズ2と、第1の水平方向円筒レンズ5と、第1の垂直方向円筒レンズ6と、回折格子8と、第2の水平方向円筒レンズ7と、出力ミラー330とを備える。 The semiconductor laser device 30 according to the fifth embodiment includes a semiconductor laser element 110, a first axis correction lens 2, a first horizontal cylindrical lens 5, a first vertical cylindrical lens 6, a diffraction grating 8, A second horizontal cylindrical lens 7 and an output mirror 330 are provided.
 半導体レーザ装置30が備える単一の半導体レーザ素子110は、複数の半導体レーザ媒質からなる半導体レーザアレイにより構成されている。半導体レーザ素子110は、第1の半導体レーザ媒質1041、第2の半導体レーザ媒質1042および第3の半導体レーザ媒質1043の3つの半導体レーザ媒質からなる半導体レーザアレイである。また、実施の形態5にかかる半導体レーザ素子110の前側端面101には、波長975nmを中心とする広帯域のレーザ光に対する反射防止コーティングが施され、後側端面102には、波長975nmを中心とする広帯域のレーザ光に対する全反射コーティングが施されている。なお、図9では、実施の形態5にかかる半導体レーザ装置30は、3つの半導体レーザ媒質を備えた半導体レーザアレイからなる半導体レーザ素子110を使用した構成で示されているが、半導体レーザ素子110の構成はこれに限るものではない。すなわち、半導体レーザ媒質の数が3以外の複数の数であってもかまわない。 The single semiconductor laser element 110 included in the semiconductor laser device 30 is configured by a semiconductor laser array including a plurality of semiconductor laser media. The semiconductor laser element 110 is a semiconductor laser array composed of three semiconductor laser media: a first semiconductor laser medium 1041, a second semiconductor laser medium 1042, and a third semiconductor laser medium 1043. Further, the front end face 101 of the semiconductor laser device 110 according to the fifth embodiment is provided with an antireflection coating for a broadband laser beam centered on a wavelength of 975 nm, and the rear end face 102 is centered on a wavelength of 975 nm. A total reflection coating for broadband laser light is applied. In FIG. 9, the semiconductor laser device 30 according to the fifth embodiment is illustrated as having a configuration using a semiconductor laser element 110 including a semiconductor laser array including three semiconductor laser media. The configuration of is not limited to this. That is, the number of semiconductor laser media may be a plurality of numbers other than three.
 ファースト軸補正レンズ2は、水平方向である半導体レーザ素子110のスロー軸方向(x方向)に母線が配された円筒レンズである。第1の水平方向円筒レンズ5は、ファースト軸方向である垂直方向(y方向)に母線が配された円筒レンズである。第1の垂直方向円筒レンズ6は、水平方向(x方向)に母線が配された円筒レンズである。回折格子8には、垂直方向(y方向)に沿った溝が平行に形成されている。第2の水平方向円筒レンズ7は、垂直方向(y’方向)に母線が配された円筒レンズである。 The first axis correction lens 2 is a cylindrical lens in which a bus is arranged in the slow axis direction (x direction) of the semiconductor laser element 110 which is the horizontal direction. The first horizontal cylindrical lens 5 is a cylindrical lens in which a bus is arranged in the vertical direction (y direction) that is the first axis direction. The first vertical cylindrical lens 6 is a cylindrical lens in which a bus is arranged in the horizontal direction (x direction). In the diffraction grating 8, grooves along the vertical direction (y direction) are formed in parallel. The second horizontal cylindrical lens 7 is a cylindrical lens in which a bus is arranged in the vertical direction (y ′ direction).
 なお、図9において、y’方向はファースト軸方向(y方向)と同一方向である。また、出力ミラー330を構成する平面ミラーの平面に垂直な方向がz’方向であり、y’方向およびz’方向に垂直な方向がx’方向となる。したがって、回折格子8による回折後のレーザ光のスロー軸方向はx’方向で、ファースト軸方向はy’方向である。 In FIG. 9, the y ′ direction is the same as the first axis direction (y direction). Further, the direction perpendicular to the plane of the plane mirror constituting the output mirror 330 is the z ′ direction, and the direction perpendicular to the y ′ direction and the z ′ direction is the x ′ direction. Therefore, the slow axis direction of the laser light diffracted by the diffraction grating 8 is the x ′ direction, and the first axis direction is the y ′ direction.
 そして、半導体レーザ素子110、ファースト軸補正レンズ2、第1の水平方向円筒レンズ5、第1の垂直方向円筒レンズ6、回折格子8、第2の水平方向円筒レンズ7および出力ミラー330がレーザ光に対する外部共振器を構成し、この外部共振器が半導体レーザ素子110にレーザ光を出力させる。 The semiconductor laser element 110, the first axis correction lens 2, the first horizontal cylindrical lens 5, the first vertical cylindrical lens 6, the diffraction grating 8, the second horizontal cylindrical lens 7 and the output mirror 330 are laser beams. And an external resonator for outputting the laser beam to the semiconductor laser device 110.
 実施の形態5にかかる半導体レーザ装置30において、垂直方向(y方向)に母線が配された第1の水平方向円筒レンズ5は、半導体レーザ素子110から第1の水平方向円筒レンズ5の焦点距離と略等しい距離に配設されている。また、回折格子8も第1の水平方向円筒レンズ5から第1の水平方向円筒レンズ5の焦点距離と略等しい距離に配設されている。従って、第1~第3の半導体レーザ媒質1041,1042,1043から各々出射されたレーザ光は、第1の水平方向円筒レンズ5によってスロー軸方向(x方向)の発散角が平行化されて、回折格子8上における第1の水平方向円筒レンズ5の焦点位置において、主光線がほぼ一点に重なるよう集光される。また、外部共振器を構成する出力ミラー330は、第1~第3の半導体レーザ媒質1041,1042,1043に対して共通であり、平面ミラーからなる出力ミラー330に対しては、z’方向に垂直入射するレーザ光の共振器損失が最小となる。したがって、回折格子8による回折角が、回折後のレーザ光を出力ミラー330へ垂直入射させる角度に一致するように、第1~第3の半導体レーザ媒質1041,1042,1043各々のレーザ発振波長が受動的に選択される。この結果、第1~第3の半導体レーザ媒質1041,1042,1043各々から出射された複数のレーザ光は、回折格子8と出力ミラー330との間の光路において、同軸状に重畳される。したがって、上記発振波長の選択により、回折格子8は、結果的に上記複数のレーザ光の光軸が重畳する位置に配置されていることになり、上記複数のレーザ光を1つのビームに波長結合して出力ミラー330へ向けて出射する。 In the semiconductor laser device 30 according to the fifth embodiment, the first horizontal cylindrical lens 5 in which the bus is arranged in the vertical direction (y direction) is the focal length of the first horizontal cylindrical lens 5 from the semiconductor laser element 110. Are disposed at approximately the same distance. The diffraction grating 8 is also disposed at a distance substantially equal to the focal length of the first horizontal cylindrical lens 5 from the first horizontal cylindrical lens 5. Accordingly, the laser light emitted from each of the first to third semiconductor laser media 1041, 1042, and 1043 has a divergence angle in the slow axis direction (x direction) made parallel by the first horizontal cylindrical lens 5, At the focal position of the first horizontal cylindrical lens 5 on the diffraction grating 8, the principal ray is condensed so as to substantially overlap one point. The output mirror 330 constituting the external resonator is common to the first to third semiconductor laser media 1041, 1042, and 1043, and in the z ′ direction with respect to the output mirror 330 formed of a plane mirror. The cavity loss of vertically incident laser light is minimized. Accordingly, the laser oscillation wavelengths of the first to third semiconductor laser media 1041, 1042, and 1043 are set so that the diffraction angle by the diffraction grating 8 coincides with the angle at which the diffracted laser light is perpendicularly incident on the output mirror 330. Passively selected. As a result, the plurality of laser beams emitted from the first to third semiconductor laser media 1041, 1042, and 1043 are superimposed on the same axis in the optical path between the diffraction grating 8 and the output mirror 330. Therefore, by selecting the oscillation wavelength, the diffraction grating 8 is consequently arranged at a position where the optical axes of the plurality of laser beams are superimposed, and wavelength coupling of the plurality of laser beams into one beam. Then, the light is emitted toward the output mirror 330.
 なお、実施の形態5にかかる半導体レーザ装置30においても、実施の形態4にかかる半導体レーザ装置20と同様に、水平方向であるスロー軸方向(x方向、x’方向)については、第1の水平方向円筒レンズ5、第2の水平方向円筒レンズ7および出力ミラー330を適切な距離だけ離して設置することにより、半導体レーザ素子110の前側端面101を、出力ミラー330の入射面301上へ結像する光学系を構成している。また、垂直方向であるファースト軸方向(y方向、y’方向)については、ファースト軸補正レンズ2、第1の垂直方向円筒レンズ6および出力ミラー330を適切な距離だけ離して設置することにより、半導体レーザ素子110の前側端面101を、出力ミラー330の入射面301上へ結像する光学系を構成している。従って、両方向において半導体レーザ素子110の前側端面101と出力ミラー330の入射面301とは、光学的に共役となる。 In the semiconductor laser device 30 according to the fifth embodiment, as in the semiconductor laser device 20 according to the fourth embodiment, the horizontal direction of the slow axis (x direction, x ′ direction) is the first. By placing the horizontal cylindrical lens 5, the second horizontal cylindrical lens 7 and the output mirror 330 apart from each other by an appropriate distance, the front end surface 101 of the semiconductor laser element 110 is connected to the incident surface 301 of the output mirror 330. An optical system for imaging is configured. For the fast axis direction (y direction, y ′ direction) that is the vertical direction, the fast axis correction lens 2, the first vertical cylindrical lens 6, and the output mirror 330 are installed at an appropriate distance, An optical system that forms an image of the front end surface 101 of the semiconductor laser element 110 on the incident surface 301 of the output mirror 330 is configured. Accordingly, the front end face 101 of the semiconductor laser element 110 and the incident face 301 of the output mirror 330 are optically conjugate in both directions.
 実施の形態5にかかる半導体レーザ装置30においては、第1~第3の半導体レーザ媒質1041,1042,1043といった複数の半導体レーザ媒質を備えた半導体レーザアレイである半導体レーザ素子110が用いられて、第1~第3の半導体レーザ媒質1041,1042,1043のそれぞれに対応した外部共振器が、単一の出力ミラー330を共有する。さらに、半導体レーザ装置30においては、回折格子8の波長分散効果を利用した波長結合により、第1~第3の半導体レーザ媒質1041,1042,1043からなる複数の半導体レーザ媒質から出射された複数のレーザ光を同軸状に重畳している。これにより、実施の形態5にかかる半導体レーザ装置30は、単一の半導体レーザ媒質104を備えた半導体レーザ素子100を使用した場合に比べて、集光性を低下させることなく、高出力化することが容易に可能となる。 In the semiconductor laser device 30 according to the fifth embodiment, a semiconductor laser element 110 that is a semiconductor laser array including a plurality of semiconductor laser media such as first to third semiconductor laser media 1041, 1042, and 1043 is used. External resonators corresponding to the first to third semiconductor laser media 1041, 1042, and 1043 share a single output mirror 330, respectively. Furthermore, in the semiconductor laser device 30, a plurality of laser beams emitted from a plurality of semiconductor laser media including the first to third semiconductor laser media 1041, 1042, and 1043 are obtained by wavelength coupling using the wavelength dispersion effect of the diffraction grating 8. Laser light is superimposed coaxially. As a result, the semiconductor laser device 30 according to the fifth embodiment increases the output without reducing the light condensing performance as compared with the case where the semiconductor laser device 100 including the single semiconductor laser medium 104 is used. Is easily possible.
 さらに、実施の形態5にかかる出力ミラー330の入射面301には、スロー軸方向の横モードの目標とする次数に対応して設定された範囲のみに、高反射部302が設けられているので、複数の半導体レーザ媒質を備えた半導体レーザ素子110を使用した場合であっても、複数の半導体レーザ媒質それぞれに対応するスロー軸方向の集光性を、全て同時に改善することが可能になる。また、実施の形態5にかかる半導体レーザ装置30においても、半導体レーザ素子110の前側端面101と出力ミラー330の入射面301とは光学的に共役であるため、実施の形態4にかかる半導体レーザ装置20と同じく、スロー軸方向(x方向)に対する横モードの次数の選択性を実施の形態1から実施の形態3にかかる半導体レーザ装置10よりも格段に向上させることができる。 Further, the incident surface 301 of the output mirror 330 according to the fifth embodiment is provided with the high reflection portion 302 only in the range set corresponding to the target order of the transverse mode in the slow axis direction. Even when the semiconductor laser element 110 including a plurality of semiconductor laser media is used, it is possible to simultaneously improve the light condensing properties in the slow axis direction corresponding to each of the plurality of semiconductor laser media. Also in the semiconductor laser device 30 according to the fifth embodiment, since the front end face 101 of the semiconductor laser element 110 and the incident surface 301 of the output mirror 330 are optically conjugate, the semiconductor laser device according to the fourth embodiment. As in the case of 20, the selectivity of the order of the transverse mode with respect to the slow axis direction (x direction) can be significantly improved as compared with the semiconductor laser device 10 according to the first to third embodiments.
実施の形態6.
 図11は、本発明の実施の形態6にかかる半導体レーザ装置40の構成を示す上面模式図である。図12は、実施の形態6にかかる半導体レーザ装置40の構成を示す側面模式図である。図13は、実施の形態6にかかる出力ミラー340の構成を示す模式図である。実施の形態6にかかる半導体レーザ素子110の構成は、実施の形態5にかかる半導体レーザ素子110の構成と同一であるが、実施の形態5と同様にこの構成に限定されるわけではない。さらに、実施の形態6にかかる半導体レーザ装置40の外部共振器も、実施の形態5にかかる半導体レーザ装置30と同じく回折格子8により光軸が折り曲げられているが、図12に示す側面模式図においては、半導体レーザ装置40の技術的な特徴を明確にするため、模式的に光軸が直線になっているように示されている。また、回折格子8によって光軸が曲げられた後の方向を明確にするために、図11には、x’方向、y’方向およびz’方向を示す座標系の向きを明示してある。そして、実施の形態6にかかる半導体レーザ装置40は、半導体レーザ装置30の構成に加えて、ファースト軸補正レンズ2と第1の垂直方向円筒レンズ6との間に回転光学素子11が設置され、回折格子8と第2の水平方向円筒レンズ7との間には第2の垂直方向円筒レンズ9が設置されている。そして、半導体レーザ装置40においては、半導体レーザ素子110、ファースト軸補正レンズ2、回転光学素子11、第1の垂直方向円筒レンズ6、第1の水平方向円筒レンズ5、回折格子8、第2の垂直方向円筒レンズ9、第2の水平方向円筒レンズ7および出力結合素子である出力ミラー340がレーザ光に対する外部共振器を構成し、この外部共振器が半導体レーザ素子110にレーザ光を出力させる。なお、実施の形態6では、1つの半導体レーザ素子110から互いに異なる光軸を有する複数のレーザ光が出射され、回折格子8は複数のレーザ光を1つのビームに波長結合して出射している。
Embodiment 6 FIG.
FIG. 11 is a schematic top view showing the configuration of the semiconductor laser apparatus 40 according to the sixth embodiment of the present invention. FIG. 12 is a schematic side view illustrating the configuration of the semiconductor laser device 40 according to the sixth embodiment. FIG. 13 is a schematic diagram illustrating a configuration of an output mirror 340 according to the sixth embodiment. The configuration of the semiconductor laser device 110 according to the sixth embodiment is the same as the configuration of the semiconductor laser device 110 according to the fifth embodiment, but is not limited to this configuration as in the fifth embodiment. Further, in the external resonator of the semiconductor laser device 40 according to the sixth embodiment, the optical axis is bent by the diffraction grating 8 as in the semiconductor laser device 30 according to the fifth embodiment. In FIG. 2, in order to clarify the technical characteristics of the semiconductor laser device 40, the optical axis is schematically shown as being linear. Further, in order to clarify the direction after the optical axis is bent by the diffraction grating 8, FIG. 11 clearly shows the direction of the coordinate system indicating the x ′ direction, the y ′ direction, and the z ′ direction. In the semiconductor laser device 40 according to the sixth embodiment, in addition to the configuration of the semiconductor laser device 30, the rotating optical element 11 is installed between the first axis correction lens 2 and the first vertical cylindrical lens 6. A second vertical cylindrical lens 9 is installed between the diffraction grating 8 and the second horizontal cylindrical lens 7. In the semiconductor laser device 40, the semiconductor laser element 110, the first axis correction lens 2, the rotating optical element 11, the first vertical cylindrical lens 6, the first horizontal cylindrical lens 5, the diffraction grating 8, the second The vertical cylindrical lens 9, the second horizontal cylindrical lens 7 and the output mirror 340 as an output coupling element constitute an external resonator for the laser light, and this external resonator causes the semiconductor laser element 110 to output the laser light. In the sixth embodiment, a plurality of laser beams having different optical axes are emitted from one semiconductor laser element 110, and the diffraction grating 8 emits the plurality of laser beams by wavelength coupling to one beam. .
 図14は、実施の形態6にかかる回転光学素子11の構成の一例を示す斜視図である。回転光学素子11は、90°像回転光学系アレイであり、対向した一対の円筒凸レンズが、基準軸の方向であるy方向に対し45°傾けられて、半導体レーザ素子110の複数の発光点の間隔と同一のピッチで配列されたものである。そして、回転光学素子11においては、円筒凸レンズの焦点距離をfとすれば、対向する円筒凸レンズ間の間隔Lは2fに設定されている。回転光学素子11に対し、偏平光の長軸または短軸を基準軸の方向であるy方向に平行な角度で入射させた場合、出射光においては長軸と短軸とが入れ替わる。すなわち、回転光学素子11は、入射されたそれぞれのレーザ光をそれぞれの光軸を回転軸にして90°回転させた光をそれぞれ出射する。したがって、回転光学素子11からの出射光による像は、回転光学素子11への入射光の像を90°回転したものとなる。回転光学素子11は、例えば、ドイツのLIMO Lissotschenko Mikrooptik GmbH社が製品化しており、Beam Transformation Systemという製品名で容易に入手することが可能である。 FIG. 14 is a perspective view showing an example of the configuration of the rotating optical element 11 according to the sixth embodiment. The rotating optical element 11 is a 90 ° image rotating optical system array, and a pair of opposed cylindrical convex lenses are inclined by 45 ° with respect to the y direction that is the direction of the reference axis, and a plurality of light emitting points of the semiconductor laser element 110 are arranged. They are arranged at the same pitch as the interval. In the rotating optical element 11, if the focal length of the cylindrical convex lens is f, the interval L between the opposing cylindrical convex lenses is set to 2f. When the major axis or minor axis of the flat light is incident on the rotating optical element 11 at an angle parallel to the y direction which is the direction of the reference axis, the major axis and the minor axis are switched in the emitted light. That is, the rotating optical element 11 emits light obtained by rotating each incident laser beam by 90 ° with each optical axis as a rotation axis. Accordingly, the image of the light emitted from the rotating optical element 11 is obtained by rotating the image of the incident light on the rotating optical element 11 by 90 °. The rotating optical element 11 has been commercialized by, for example, LIMO Lissotschenko Mikropik GmbH of Germany, and can be easily obtained under the product name Beam Transformation System.
 実施の形態6にかかる半導体レーザ装置40において、半導体レーザ素子110の第1~第3の半導体レーザ媒質1041,1042,1043から各々出射されたレーザ光は、ファースト軸補正レンズ2によってファースト軸方向(y方向)の発散角が略平行化される。次に、回転光学素子11を透過することによって、各レーザ光は光軸周りに90°回転する。従って、半導体レーザ素子110から出射された時の各レーザ光のスロー軸方向(x方向)の成分はそれぞれ垂直方向(y方向)の成分に変換され、半導体レーザ素子110から出射された時の各レーザ光のファースト軸方向(y方向)の成分はそれぞれ水平方向(x方向)の成分に変換される。回転光学素子11を透過したレーザ光は、水平方向(x方向)に母線が配された第1の垂直方向円筒レンズ6によって、スロー軸方向(y方向)の発散角が略平行化され、垂直方向(y方向)に母線が配された第1の水平方向円筒レンズ5へ入射する。第1の水平方向円筒レンズ5によって、各レーザ光は回折格子8上において、主光線がほぼ一点に重なるようファースト軸方向(x方向)に対して集光される。回折格子8には、垂直方向(y方向)に沿った溝が平行に形成されている。 In the semiconductor laser device 40 according to the sixth embodiment, the laser beams emitted from the first to third semiconductor laser media 1041, 1042, and 1043 of the semiconductor laser element 110 are transmitted in the first axis direction ( The divergence angle in the y direction is made substantially parallel. Next, each laser beam is rotated by 90 ° around the optical axis by passing through the rotating optical element 11. Therefore, the component in the slow axis direction (x direction) of each laser beam when emitted from the semiconductor laser element 110 is converted into the component in the vertical direction (y direction), and each component when emitted from the semiconductor laser element 110 is converted. The components in the first axis direction (y direction) of the laser light are converted into components in the horizontal direction (x direction), respectively. The laser light that has passed through the rotating optical element 11 has a divergence angle in the slow axis direction (y direction) substantially parallelized by the first vertical cylindrical lens 6 having a bus line arranged in the horizontal direction (x direction), and is vertical. The light enters the first horizontal cylindrical lens 5 in which the bus is arranged in the direction (y direction). The first horizontal cylindrical lens 5 condenses each laser beam on the diffraction grating 8 with respect to the fast axis direction (x direction) so that the chief ray overlaps almost one point. In the diffraction grating 8, grooves along the vertical direction (y direction) are formed in parallel.
 上述したように、回転光学素子11を透過することによって、各レーザ光のファースト軸方向とスロー軸方向とは入れ替わるので、図11において、回折格子8による回折後のレーザ光のスロー軸方向はy’方向で、ファースト軸方向はx’方向である。なお、y’方向はy方向と同一方向であり、x’方向およびy’方向に垂直なz’方向が、出力ミラー340を構成する平面ミラーの平面に垂直な方向になっている。 As described above, since the first axis direction and the slow axis direction of each laser beam are interchanged by passing through the rotating optical element 11, in FIG. 11, the slow axis direction of the laser beam after diffraction by the diffraction grating 8 is y. In the 'direction, the fast axis direction is the x' direction. The y ′ direction is the same direction as the y direction, and the x ′ direction and the z ′ direction perpendicular to the y ′ direction are perpendicular to the plane of the plane mirror constituting the output mirror 340.
 実施の形態6にかかる半導体レーザ装置40においても、実施の形態5にかかる半導体レーザ装置30と同じく、第1~第3の半導体レーザ媒質1041,1042,1043が、単一の出力ミラー340を共有しており、回折格子8による回折角が、回折後のレーザ光を出力ミラー340へ垂直入射させる角度に一致するように、第1~第3の半導体レーザ媒質1041,1042,1043各々のレーザ発振波長が受動的に選択される。この結果、実施の形態5と同様に、第1~第3の半導体レーザ媒質1041,1042,1043各々から出射されたレーザ光は、回折格子8と出力ミラー340との間の光路において、同軸状に重畳される。 Also in the semiconductor laser device 40 according to the sixth embodiment, the first to third semiconductor laser media 1041, 1042, and 1043 share a single output mirror 340, similarly to the semiconductor laser device 30 according to the fifth embodiment. Each of the first to third semiconductor laser media 1041, 1042, and 1043 is oscillated so that the diffraction angle by the diffraction grating 8 coincides with the angle at which the diffracted laser light is perpendicularly incident on the output mirror 340. The wavelength is selected passively. As a result, as in the fifth embodiment, the laser beams emitted from the first to third semiconductor laser media 1041, 1042, and 1043 are coaxial in the optical path between the diffraction grating 8 and the output mirror 340. Is superimposed on.
 回折格子8によって同軸状に重畳されたレーザ光は、水平方向(x’方向)に母線が配された第2の垂直方向円筒レンズ9によって、スロー軸方向(y’方向)に対し集光され、垂直方向(y’方向)に母線が配された第2の水平方向円筒レンズ7へ入射する。第2の水平方向円筒レンズ7へ入射したレーザ光は、ファースト軸方向(x’方向)の発散角が略平行化されて、出力ミラー340へ入射する。 The laser beam superimposed coaxially by the diffraction grating 8 is condensed with respect to the slow axis direction (y ′ direction) by the second vertical cylindrical lens 9 having a bus line arranged in the horizontal direction (x ′ direction). Then, the light enters the second horizontal cylindrical lens 7 in which the bus is arranged in the vertical direction (y ′ direction). The laser light incident on the second horizontal cylindrical lens 7 is incident on the output mirror 340 with the divergence angle in the fast axis direction (x ′ direction) being substantially parallelized.
 なお、実施の形態6にかかる半導体レーザ装置40においても、水平方向(x方向、x’方向)については、第1の水平方向円筒レンズ5、第2の水平方向円筒レンズ7および出力ミラー340を適切な距離だけ離して設置することにより、半導体レーザ素子110の前側端面101を、出力ミラー340の入射面301上へ結像する光学系を構成している。また、垂直方向(y方向、y’方向)については、ファースト軸補正レンズ2、第1の垂直方向円筒レンズ6、第2の垂直方向円筒レンズ9および出力ミラー340を適切な距離だけ離して設置することにより、半導体レーザ素子110の前側端面101を、出力ミラー340の入射面301上へ結像する光学系を構成している。従って、両方向において半導体レーザ素子110の前側端面101と出力ミラー340の入射面301とは、光学的に共役となる。 Also in the semiconductor laser device 40 according to the sixth embodiment, the first horizontal cylindrical lens 5, the second horizontal cylindrical lens 7 and the output mirror 340 are arranged in the horizontal direction (x direction, x ′ direction). An optical system that forms an image of the front end surface 101 of the semiconductor laser element 110 on the incident surface 301 of the output mirror 340 is configured by being separated by an appropriate distance. Further, in the vertical direction (y direction, y ′ direction), the first axis correction lens 2, the first vertical cylindrical lens 6, the second vertical cylindrical lens 9, and the output mirror 340 are separated by an appropriate distance. By doing so, an optical system is formed which images the front end face 101 of the semiconductor laser element 110 onto the incident surface 301 of the output mirror 340. Accordingly, the front end face 101 of the semiconductor laser element 110 and the incident face 301 of the output mirror 340 are optically conjugate in both directions.
 実施の形態6にかかる半導体レーザ装置40においても、複数の半導体レーザ媒質を備えた半導体レーザアレイである半導体レーザ素子110が用いられて、第1~第3の半導体レーザ媒質1041,1042,1043のそれぞれに対応した外部共振器が、単一の出力ミラー340を共有する。さらに、半導体レーザ装置40においては、回折格子8の波長分散効果を利用した波長結合により、第1~第3の半導体レーザ媒質1041,1042,1043からなる複数の半導体レーザ媒質が出射したレーザ光を同軸状に重畳している。したがって、実施の形態5と同様に、実施の形態6にかかる半導体レーザ装置40は、単一の半導体レーザ媒質104を備えた半導体レーザ素子100を使用した場合に比べて、集光性を低下させることなく、高出力化することが容易に可能となる。 Also in the semiconductor laser device 40 according to the sixth embodiment, the semiconductor laser element 110 which is a semiconductor laser array including a plurality of semiconductor laser media is used, and the first to third semiconductor laser media 1041, 1042, and 1043 are used. Each corresponding external resonator shares a single output mirror 340. Further, in the semiconductor laser device 40, laser light emitted from a plurality of semiconductor laser media including the first to third semiconductor laser media 1041, 1042, and 1043 is obtained by wavelength coupling using the wavelength dispersion effect of the diffraction grating 8. Coaxially superimposed. Therefore, as in the fifth embodiment, the semiconductor laser device 40 according to the sixth embodiment reduces the light condensing performance as compared with the case where the semiconductor laser element 100 including the single semiconductor laser medium 104 is used. Therefore, it is possible to easily increase the output.
 複数の半導体レーザ媒質を備えた半導体レーザ素子110においては、製造プロセスに起因したスマイルと呼ばれる変形が発生して、第1~第3の半導体レーザ媒質1041,1042,1043それぞれのy方向の設置高さに差異が生じる場合がある。これに対して、実施の形態6にかかる半導体レーザ装置40は、回転光学素子11をさらに使用することにより、第1~第3の半導体レーザ媒質1041,1042,1043のそれぞれから出射されたレーザ光を光軸周りに90°回転させている。これにより、設置高さの差異によってビーム重畳時に発生する光軸ずれの方向をy方向からx方向に変換することができる。すなわち、ビーム重畳時に発生する光軸ずれの方向をファースト軸方向に比べて相対的に集光性が低く、光軸ずれ量に対する集光性の低下割合が相対的に小さなスロー軸方向とすることができるので、実施の形態5にかかる半導体レーザ装置30に比べて集光性の低下割合を抑制しながら安定的に高出力化することができるという効果が得られる。 In the semiconductor laser element 110 having a plurality of semiconductor laser media, a deformation called “smile” due to the manufacturing process occurs, and the installation heights in the y direction of the first to third semiconductor laser media 1041, 1042, and 1043 respectively. There may be differences. On the other hand, the semiconductor laser device 40 according to the sixth embodiment further uses the rotating optical element 11 so that the laser light emitted from each of the first to third semiconductor laser media 1041, 1042, and 1043. Is rotated 90 ° around the optical axis. As a result, the direction of optical axis deviation that occurs during beam superimposition due to the difference in installation height can be converted from the y direction to the x direction. In other words, the direction of the optical axis deviation that occurs when the beam is superimposed is relatively low in the light condensing property compared to the first axis direction, and the rate of decrease in the light condensing property with respect to the amount of optical axis deviation is set to the slow axis direction. Therefore, it is possible to obtain an effect that the output can be stably increased while suppressing the reduction ratio of the light condensing property as compared with the semiconductor laser device 30 according to the fifth embodiment.
 また、図13に示すように、実施の形態6にかかる出力ミラー340の入射面301には、スロー軸方向の横モードの目標とする次数に基づいて決定されたy’方向の幅w1の領域のみに高反射部302が設けられている。出力ミラー340においても、入射面301のレーザ光に対する反射率は、回折後のレーザ光のスロー軸方向(y’方向)の中央である中心線350からスロー軸方向に沿って離れるに従って減少することはあっても増加しない。そして、スロー軸方向の中央である中心線350からy’方向または-y’方向にみた反射率の分布は中心線350に対して対称な分布になっている。したがって、出力ミラー340を用いることにより第1~第3の半導体レーザ媒質1041,1042,1043を備えた半導体レーザ素子110を使用した場合であっても、実施の形態5にかかる半導体レーザ装置30と同じく、複数の半導体レーザ媒質それぞれに対応するスロー軸方向の集光性を、全て同時に改善することが可能になる。さらに、実施の形態6にかかる半導体レーザ装置40においても、半導体レーザ素子110の前側端面101と出力ミラー340の入射面301とは光学的に共役であるため、実施の形態4にかかる半導体レーザ装置20および実施の形態5にかかる半導体レーザ装置30と同じく、スロー軸方向(x方向)に対する横モードの次数の選択性を実施の形態1から実施の形態3にかかる半導体レーザ装置10よりも格段に向上させることができる。 Further, as shown in FIG. 13, the incident surface 301 of the output mirror 340 according to the sixth embodiment has an area of the width w1 in the y ′ direction determined based on the target order of the transverse mode in the slow axis direction. Only the high reflection portion 302 is provided. Also in the output mirror 340, the reflectance of the incident surface 301 with respect to the laser light decreases as the distance from the center line 350, which is the center of the diffracted laser light in the slow axis direction (y ′ direction), increases along the slow axis direction. Will not increase. The reflectance distribution viewed from the center line 350, which is the center in the slow axis direction, in the y ′ direction or the −y ′ direction is symmetric with respect to the center line 350. Therefore, even when the semiconductor laser device 110 including the first to third semiconductor laser media 1041, 1042, and 1043 is used by using the output mirror 340, the semiconductor laser device 30 according to the fifth embodiment and Similarly, it is possible to simultaneously improve the light condensing property in the slow axis direction corresponding to each of the plurality of semiconductor laser media. Further, also in the semiconductor laser device 40 according to the sixth embodiment, the front end face 101 of the semiconductor laser element 110 and the incident surface 301 of the output mirror 340 are optically conjugate, and therefore the semiconductor laser device according to the fourth embodiment. 20 and the semiconductor laser device 30 according to the fifth embodiment, the selectivity of the order of the transverse mode with respect to the slow axis direction (x direction) is markedly higher than that of the semiconductor laser device 10 according to the first to third embodiments. Can be improved.
実施の形態7.
 図15は、本発明の実施の形態7にかかる半導体レーザ装置50の構成を示す上面模式図である。半導体レーザ装置50においては、2つの半導体レーザ素子である第1の半導体レーザ素子121および第2の半導体レーザ素子122を使用し、共通の出力ミラー340のもとで、回折格子8を用いてレーザ光を重畳することにより、集光性を維持しながら高出力化する構成になっている。なお、第1の半導体レーザ素子121および第2の半導体レーザ素子122は、いずれも実施の形態5および6にかかる半導体レーザ素子110と同一な構成であり、それぞれ複数の半導体レーザ媒質を備える。すなわち、第1の半導体レーザ素子121は、第1~第3の半導体レーザ媒質1051,1052,1053を備え、第2の半導体レーザ素子122は、第1~第3の半導体レーザ媒質1061,1062,1063を備える。また、実施の形態7にかかる出力ミラー340の構成は、実施の形態6にかかる出力ミラー340と同一である。したがって、第1の半導体レーザ素子121および第2の半導体レーザ素子122それぞれに対する外部共振器の構成は実施の形態6と同様になっている。
Embodiment 7 FIG.
FIG. 15 is a schematic top view showing the configuration of the semiconductor laser apparatus 50 according to the seventh embodiment of the present invention. In the semiconductor laser device 50, the first semiconductor laser element 121 and the second semiconductor laser element 122, which are two semiconductor laser elements, are used, and the laser is generated using the diffraction grating 8 under the common output mirror 340. By superimposing the light, the output is increased while maintaining the light condensing property. Each of the first semiconductor laser element 121 and the second semiconductor laser element 122 has the same configuration as the semiconductor laser element 110 according to the fifth and sixth embodiments, and each includes a plurality of semiconductor laser media. That is, the first semiconductor laser element 121 includes first to third semiconductor laser media 1051, 1052, and 1053, and the second semiconductor laser element 122 includes first to third semiconductor laser media 1061, 1062, and so on. 1063. The configuration of the output mirror 340 according to the seventh embodiment is the same as that of the output mirror 340 according to the sixth embodiment. Therefore, the configuration of the external resonator for each of the first semiconductor laser element 121 and the second semiconductor laser element 122 is the same as that of the sixth embodiment.
 図15の半導体レーザ装置50に示すように、複数の半導体レーザ素子である第1の半導体レーザ素子121および第2の半導体レーザ素子122を使用し、回折格子8によってレーザ光を重畳するとともに、共通の出力ミラー340を用いて外部共振器を構成すれば、実施の形態6にかかる半導体レーザ装置40と同様な効果が得られるばかりでなく、集光性を維持しながら容易に高出力化することがさらに可能になる。 As shown in the semiconductor laser device 50 of FIG. 15, a plurality of semiconductor laser elements, ie, a first semiconductor laser element 121 and a second semiconductor laser element 122 are used, and laser light is superimposed by a diffraction grating 8 and is shared. If the external resonator is configured using the output mirror 340, the same effect as the semiconductor laser device 40 according to the sixth embodiment can be obtained, and the output can be easily increased while maintaining the light condensing property. Is even more possible.
 なお、図15に示した実施の形態7にかかる半導体レーザ装置50においては、2つの半導体レーザ素子を使用して回折格子8を用いて波長結合する構成を示したが、波長結合する半導体レーザ素子の数は複数であればこれに限るものではない。また、複数の半導体レーザ素子がそれぞれ全て複数の半導体レーザ媒質を備えた半導体レーザアレイで構成されていなくてもよい。すなわち、複数の半導体レーザ素子の一部が半導体レーザ素子100のように単一の半導体レーザ媒質しか有さない半導体レーザ素子であってもかまわない。 In the semiconductor laser device 50 according to the seventh embodiment shown in FIG. 15, the configuration in which wavelength coupling is performed using the diffraction grating 8 using two semiconductor laser elements is shown. The number of is not limited to this as long as it is plural. In addition, the plurality of semiconductor laser elements may not be formed of a semiconductor laser array that includes a plurality of semiconductor laser media. That is, a part of the plurality of semiconductor laser elements may be a semiconductor laser element having only a single semiconductor laser medium, such as the semiconductor laser element 100.
 なお、実施の形態5から実施の形態7においては、回折格子8の波長分散効果を利用し、半導体レーザ素子の外部共振器内において、複数の半導体レーザ媒質から出射されるレーザ光を同軸状に重畳する構成を示したが、レーザ光を重畳する手段はこれに限るものではない。例えば、異なる発振波長帯に利得を有する複数の半導体レーザ媒質を使用して、単一の出力ミラーを共有する外部共振器内で、ダイクロイックミラー等におけるコーティング反射率の波長依存性を利用して、複数の半導体レーザ媒質から出射されたレーザ光を同軸状に重畳しても、実施の形態5から実施の形態7と同様な効果を得ることができる。 In the fifth to seventh embodiments, the laser light emitted from a plurality of semiconductor laser media is coaxially formed in the external resonator of the semiconductor laser element by using the wavelength dispersion effect of the diffraction grating 8. Although the superimposing structure is shown, the means for superimposing the laser beam is not limited to this. For example, using a plurality of semiconductor laser media having gains in different oscillation wavelength bands, utilizing the wavelength dependence of the coating reflectivity in a dichroic mirror or the like in an external resonator sharing a single output mirror, Even when laser beams emitted from a plurality of semiconductor laser media are coaxially superimposed, the same effects as those of the fifth to seventh embodiments can be obtained.
 また、実施の形態5から実施の形態7においては、入射面301に単一の高反射部302を備えた出力ミラー330,340を使用して外部共振器を構成するとして説明したが、出力ミラーの構成はこれに限定されない。実施の形態2にかかる出力ミラー310のように反射率が異なる複数の高反射部がスロー軸方向に配列して設けられた出力ミラーを使用してもよいし、実施の形態3にかかる出力ミラー320のように入射面の反射率をスロー軸方向に沿って連続的に変化させた出力ミラーを使用してもよく、これらの構成の出力ミラーを採用することにより、スロー軸方向の横モードの次数の選択性をさらに向上させてもよい。 Further, in the fifth to seventh embodiments, it has been described that the external resonator is configured using the output mirrors 330 and 340 provided with the single high reflection portion 302 on the incident surface 301. The configuration is not limited to this. As in the output mirror 310 according to the second embodiment, an output mirror in which a plurality of high reflection portions having different reflectivities are arranged in the slow axis direction may be used, or the output mirror according to the third embodiment. An output mirror in which the reflectance of the incident surface is continuously changed along the slow axis direction as in 320 may be used. By adopting the output mirror having these configurations, the transverse mode in the slow axis direction can be used. The order selectivity may be further improved.
 また、実施の形態5から実施の形態7においては、半導体レーザ素子の前側端面101を出力ミラー330,340の入射面301上へ結像する外部共振器を示したが、外部共振器の構成はこれに限るものではなく、目標とするビーム特性に応じて適宜設計すればよい。 In the fifth to seventh embodiments, the external resonator that images the front end surface 101 of the semiconductor laser element onto the incident surface 301 of the output mirrors 330 and 340 is shown. However, the configuration of the external resonator is as follows. However, the present invention is not limited to this, and it may be appropriately designed according to the target beam characteristics.
実施の形態8.
 実施の形態1から実施の形態7にかかる半導体レーザ装置における端面発光型の半導体レーザ素子のスロー軸方向の光閉じ込めは、光増幅作用のある領域に光が集中するゲインガイド作用のほかに、温度分布やキャリア濃度分布に基づく屈折率分布によるレンズ作用が働いていると考えられる。これらの光閉じ込めの効果は、レーザ出力が高いと強くなる。その結果、実施の形態1から実施の形態7のように外部共振器をスロー軸方向のビーム集光性を向上させる構成としても、レーザ出力が高い領域では、集光性が向上しない可能性がある。
Embodiment 8 FIG.
The light confinement in the slow axis direction of the edge-emitting semiconductor laser element in the semiconductor laser device according to the first to seventh embodiments is not limited to the gain guide function in which light is concentrated in a region having an optical amplification function, It is thought that the lens action by the refractive index distribution based on the distribution and the carrier concentration distribution works. These light confinement effects become stronger when the laser output is high. As a result, even if the external resonator is configured to improve the beam condensing property in the slow axis direction as in the first to seventh embodiments, the condensing property may not be improved in a region where the laser output is high. is there.
 本発明の実施の形態8においては、実施の形態1から実施の形態7にかかる半導体レーザ装置が備える、半導体レーザ素子100,110,121,122の発光点及び発光点近傍、すなわち各半導体レーザ媒質に、スロー軸方向の光閉じ込め作用を減ずる屈折率分布が形成されている。すなわち、半導体レーザ素子100,110,121,122の半導体レーザ媒質のスロー軸方向の屈折率分布がレーザ光のスロー軸方向への閉じ込め効果を抑制するような分布になっていることにより、スロー軸方向の光閉じ込めの効果を抑制することができる。これにより、高出力の領域でも高い集光性を得ることが可能となる。 In the eighth embodiment of the present invention, the light emitting points of the semiconductor laser elements 100, 110, 121, and 122 and the vicinity of the light emitting points, that is, each semiconductor laser medium, included in the semiconductor laser device according to the first to seventh embodiments. In addition, a refractive index distribution is formed to reduce the light confinement effect in the slow axis direction. That is, since the refractive index distribution in the slow axis direction of the semiconductor laser medium of the semiconductor laser elements 100, 110, 121, and 122 is a distribution that suppresses the confinement effect of the laser light in the slow axis direction, The effect of light confinement in the direction can be suppressed. This makes it possible to obtain a high light collecting property even in a high output region.
 図16は、本発明の実施の形態8にかかる半導体レーザ素子の内部に形成されたスロー軸方向の屈折率分布を示す図である。図16は、レーザ光のスロー軸方向への閉じ込め効果を抑制するような半導体レーザ媒質のスロー軸方向の屈折率分布の一例である。図16に示すように、非通電状態の半導体レーザ素子のレーザ光に対する屈折率のスロー軸方向の分布において、発光領域である半導体レーザ媒質の屈折率は、発光領域の周囲の非発光領域の屈折率よりも低くなっている。このような屈折率分布を形成しておくことで、レーザ光の閉じ込め効果は低くなる。実施の形態8にかかる半導体レーザ素子を用いれば、半導体レーザ素子内部および外部共振器の双方において、高次モードの閉じ込めを抑制する作用が働くので、特にレーザ出力を高くした場合にビーム集光性をさらに向上することが出来るという効果が得られる。 FIG. 16 is a diagram showing a refractive index distribution in the slow axis direction formed inside the semiconductor laser device according to the eighth embodiment of the present invention. FIG. 16 is an example of a refractive index distribution in the slow axis direction of the semiconductor laser medium that suppresses the confinement effect of the laser light in the slow axis direction. As shown in FIG. 16, in the distribution in the slow axis direction of the refractive index with respect to the laser light of the semiconductor laser element in the non-energized state, the refractive index of the semiconductor laser medium that is the light emitting region is the refraction of the non-light emitting region around the light emitting region. It is lower than the rate. By forming such a refractive index distribution, the confinement effect of the laser light is lowered. If the semiconductor laser device according to the eighth embodiment is used, the action of suppressing higher-order mode confinement works both in the semiconductor laser device and in the external resonator. Can be further improved.
実施の形態9.
 図17は、本発明の実施の形態9にかかる半導体レーザ装置60の構成を示す上面模式図である。図18は、実施の形態9にかかる半導体レーザ装置60の構成を示す側面模式図である。実施の形態9における半導体レーザ素子100の発光点への出力ミラー352によるレーザ光の反射の割合のスロー軸方向に沿った分布は、実施の形態1から8とは異なる分布となる。
Embodiment 9 FIG.
FIG. 17 is a schematic top view showing the configuration of the semiconductor laser apparatus 60 according to the ninth embodiment of the present invention. FIG. 18 is a schematic side view illustrating the configuration of the semiconductor laser device 60 according to the ninth embodiment. The distribution along the slow axis direction of the ratio of the reflection of the laser beam by the output mirror 352 to the light emitting point of the semiconductor laser element 100 in the ninth embodiment is different from that in the first to eighth embodiments.
 実施の形態1から8の出力結合素子においては、スロー軸方向の中心領域のレーザ光を周辺領域より多く半導体レーザ素子の発光点に向けて反射していた。実施の形態9の出力結合素子である出力ミラー352は、スロー軸方向の中心領域のレーザ光と比較して、周辺領域のレーザ光を積極的に反射する。 In the output coupling elements of the first to eighth embodiments, the laser beam in the central area in the slow axis direction is reflected more toward the light emitting point of the semiconductor laser element than in the peripheral area. The output mirror 352 that is the output coupling element of the ninth embodiment actively reflects the laser beam in the peripheral region as compared with the laser beam in the central region in the slow axis direction.
 実施の形態9の出力ミラー352は、図17において、主発振光401および周辺増幅光402のうちのスロー軸方向(x方向)の周辺領域を通過するレーザ光である片方の周辺増幅光402の部分のみ反射するように挿入されている。出力ミラー352の入射面351は、レーザ光に対して高い反射率のコーティングが施されている。出力ミラー352の出射面353は、反射率の低いコーティングであるAR(Anti Reflection)コーティングが施されていてもよいし、コーティングされずに砂摺り面などの荒面化加工が施されていてもよい。出射面353をこのように加工することで、出射面353での残存反射率による不要発振を抑制することが可能であり、半導体レーザ装置60の動作を効果的に安定させることができる。 In FIG. 17, the output mirror 352 according to the ninth embodiment includes one of the peripheral amplified light 402 that is laser light that passes through the peripheral region in the slow axis direction (x direction) of the main oscillation light 401 and the peripheral amplified light 402. It is inserted so that only a part is reflected. The incident surface 351 of the output mirror 352 is coated with a high reflectance with respect to the laser light. The output surface 353 of the output mirror 352 may be coated with AR (Anti Reflection), which is a coating with low reflectance, or may be roughened such as a sanded surface without being coated. Good. By processing the emission surface 353 in this way, unnecessary oscillation due to the residual reflectance at the emission surface 353 can be suppressed, and the operation of the semiconductor laser device 60 can be effectively stabilized.
 実施の形態9にかかる半導体レーザ装置60においては、出力ミラー352が周辺増幅光402を反射するので、半導体レーザ素子100の後側端面102と、出力ミラー352とで半導体レーザ共振器を構成し、主発振光401を全て出力とする。これにより、半導体レーザ装置60から出力されるレーザ光のうち集光性の高い主発振光401が占める割合を出力ミラー352を設けない場合に比べて増加させることができる。すなわち、半導体レーザ装置60から出力されるレーザ光のスロー軸方向の集光性を向上させることが可能である。 In the semiconductor laser device 60 according to the ninth embodiment, since the output mirror 352 reflects the peripheral amplified light 402, the rear end face 102 of the semiconductor laser element 100 and the output mirror 352 constitute a semiconductor laser resonator, All the main oscillation light 401 is output. This makes it possible to increase the ratio of the laser light output from the semiconductor laser device 60 to the main condensing light 401 having high condensing property as compared with the case where the output mirror 352 is not provided. That is, it is possible to improve the light condensing property of the laser beam output from the semiconductor laser device 60 in the slow axis direction.
 ここで、出力ミラー352が挿入されるレーザ光中の領域は、スロー軸に沿ったレーザ光のエネルギーの空間分布であるプロファイルにおいて、レーザ光のエネルギーが2%~40%含まれる片側の領域とする。レーザ光のスロー軸方向のプロファイルは、レーザ光軸に対してほぼ対称である。実施の形態9では、出力ミラー352は、対称形状のビームプロファイルの片側にのみ挿入される。対称形状のビームプロファイルのいずれか一方の片側に出力ミラーを配置することにより、スロー軸方向の中央部の反射率は、中央部のスロー軸方向の両側に存在する周辺部の反射率の少なくともいずれか一方よりも低い値となる。そして、出力ミラー352のスロー軸方向の位置を調整することにより、出力ミラー352によるレーザ光の反射の割合を調整することが可能である。出力ミラー352をレーザ光軸の中心に向けて移動することで、より多くレーザ光エネルギーが反射されるようにすることができる。出力ミラー352が反射するレーザ光のエネルギーを増やすと、集光性を向上させることが出来るが、半導体レーザ装置60から出力されるレーザ光のパワーは低下する。本発明の発明者の実験によると、出力ミラー352によって反射されるレーザ光のエネルギーの割合が全体の5%~10%の時にパワーの低下を抑えて、スロー軸方向の集光性を改善することができた。 Here, the region in the laser beam into which the output mirror 352 is inserted is a region on one side where the energy of the laser beam is included in the profile that is the spatial distribution of the energy of the laser beam along the slow axis. To do. The profile of the laser beam in the slow axis direction is substantially symmetric with respect to the laser beam axis. In the ninth embodiment, the output mirror 352 is inserted only on one side of the symmetrical beam profile. By arranging the output mirror on one side of one of the symmetrical beam profiles, the reflectivity of the central part in the slow axis direction is at least one of the reflectivities of the peripheral parts existing on both sides in the slow axis direction of the central part. It becomes a value lower than either. Then, by adjusting the position of the output mirror 352 in the slow axis direction, the ratio of the reflection of the laser light by the output mirror 352 can be adjusted. By moving the output mirror 352 toward the center of the laser optical axis, more laser light energy can be reflected. Increasing the energy of the laser light reflected by the output mirror 352 can improve the light condensing performance, but the power of the laser light output from the semiconductor laser device 60 is reduced. According to the experiment by the inventors of the present invention, when the ratio of the energy of the laser beam reflected by the output mirror 352 is 5% to 10% of the whole, the power reduction is suppressed and the light condensing property in the slow axis direction is improved. I was able to.
実施の形態10.
 図19は、本発明の実施の形態10にかかる半導体レーザ装置70の構成を示す上面模式図である。図20は、実施の形態10にかかる半導体レーザ装置70の構成を示す側面模式図である。実施の形態10においては、実施の形態9においてレーザ光のスロー軸に沿ったプロファイルの片側に挿入した出力ミラーを両側に挿入する。
Embodiment 10 FIG.
FIG. 19 is a schematic top view showing the configuration of the semiconductor laser apparatus 70 according to the tenth embodiment of the present invention. FIG. 20 is a schematic side view illustrating the configuration of the semiconductor laser device 70 according to the tenth embodiment. In the tenth embodiment, the output mirrors inserted in one side of the profile along the slow axis of the laser beam in the ninth embodiment are inserted in both sides.
 図19に示すように、実施の形態10の出力結合素子を構成する出力ミラー360および出力ミラー370は、スロー軸方向(x方向)においてレーザ光軸に対して対称に設置されている。これにより、スロー軸方向の中央部の反射率は、中央部のスロー軸方向の両側に存在する周辺部の反射率よりも低い値になる。さらに、スロー軸方向の中央に対して、反射率は対称な分布になっている。反射率の分布が対称であることにより、半導体レーザ装置70より出力されるビームの空間的な対称性を向上させることができ、レーザ加工の異方性を抑制することが出来る。 As shown in FIG. 19, the output mirror 360 and the output mirror 370 constituting the output coupling element of the tenth embodiment are arranged symmetrically with respect to the laser optical axis in the slow axis direction (x direction). Thereby, the reflectance of the central part in the slow axis direction becomes a value lower than the reflectance of the peripheral part existing on both sides of the central part in the slow axis direction. Further, the reflectance has a symmetrical distribution with respect to the center in the slow axis direction. Since the reflectance distribution is symmetric, the spatial symmetry of the beam output from the semiconductor laser device 70 can be improved, and the anisotropy of laser processing can be suppressed.
 出力ミラー360の入射面361および出力ミラー370の入射面371は、実施の形態9の出力ミラー352の入射面351と同様にレーザ光に対して高い反射率のコーティングが施されている。出力ミラー360の出射面363および出力ミラー370の出射面373は、実施の形態9の出力ミラー352の出射面353と同様の構成である。 The incident surface 361 of the output mirror 360 and the incident surface 371 of the output mirror 370 are coated with a high reflectivity with respect to the laser beam, similarly to the incident surface 351 of the output mirror 352 of the ninth embodiment. The output surface 363 of the output mirror 360 and the output surface 373 of the output mirror 370 have the same configuration as the output surface 353 of the output mirror 352 of the ninth embodiment.
 実施の形態10にかかる半導体レーザ装置70によれば、出力ミラー360および出力ミラー370を、スロー軸方向に沿ってレーザ光軸を中心軸として対称な位置に挿入することにより、半導体レーザ素子100から出力されるレーザ光のスロー軸方向に沿ったビームプロファイルを、レーザ光軸を中心として対称な形状とすることが可能である。 According to the semiconductor laser device 70 according to the tenth embodiment, the output mirror 360 and the output mirror 370 are inserted in symmetrical positions with the laser optical axis as the central axis along the slow axis direction. It is possible to make the beam profile along the slow axis direction of the output laser light symmetrical with the laser optical axis as the center.
 実施の形態10においても、実施の形態9と同様に、出力ミラー360および出力ミラー370のレーザ光のスロー軸方向の位置を調整することにより、半導体レーザ素子100への出力ミラー360および出力ミラー370によるレーザ光の反射の割合を調整することが出来る。 Also in the tenth embodiment, as in the ninth embodiment, the output mirror 360 and the output mirror 370 to the semiconductor laser element 100 are adjusted by adjusting the positions of the output mirror 360 and the output mirror 370 in the slow axis direction of the laser light. It is possible to adjust the ratio of the reflection of the laser beam by.
 実施の形態10においては、出力ミラー360および出力ミラー370による反射の割合の合計が、レーザ光のエネルギーの2%~40%とする。実施の形態10においても、出力ミラー360および出力ミラー370が反射するレーザ光のエネルギーを増やすと、集光性を向上させることが出来るが、半導体レーザ装置70から出力されるレーザ光のパワーは低下する。本発明の発明者の実験によると、出力ミラー360および出力ミラー370によって反射されるレーザ光のエネルギーの割合の合計が全体の5%~10%の時にパワーの低下を抑えて、スロー軸方向の集光性を改善することができた。 In the tenth embodiment, the total ratio of reflection by the output mirror 360 and the output mirror 370 is 2% to 40% of the energy of the laser beam. Also in the tenth embodiment, when the energy of the laser light reflected by the output mirror 360 and the output mirror 370 is increased, the light condensing performance can be improved, but the power of the laser light output from the semiconductor laser device 70 is reduced. To do. According to the experiment by the inventors of the present invention, when the sum of the ratios of the energy of the laser beams reflected by the output mirror 360 and the output mirror 370 is 5% to 10% of the whole, the power reduction is suppressed, Condensation was improved.
 実施の形態10にかかる半導体レーザ装置70から出力されたレーザ光は、光ファイバーへ導光されて使用されることも、直接集光してレーザ加工に使用されることもある。半導体レーザ装置70からのレーザビームのプロファイルの対称性が高いことにより、前者においては光ファイバーへの導光効率の向上の効果が得られ、後者においてはレーザ加工の異方性の抑制の効果が得られる。 The laser light output from the semiconductor laser device 70 according to the tenth embodiment may be used after being guided to an optical fiber, or may be directly condensed and used for laser processing. Due to the high symmetry of the profile of the laser beam from the semiconductor laser device 70, the former has the effect of improving the light guiding efficiency to the optical fiber, and the latter has the effect of suppressing the anisotropy of laser processing. It is done.
 半導体レーザ素子100から出力されるレーザ光のスロー軸方向のビームプロファイルは、レーザ光軸に対してほぼ対称な形状を有する。しかし、完全な対称形状とはならず、半導体レーザ素子100の実装における微細な組み立て誤差により、歪んだレーザビームプロファイルとなる。実施の形態10にかかる半導体レーザ装置70のように、向きの調整または配置の位置制御を空間的に大きく実行することが容易な出力ミラー360,370によってレーザ光のプロファイルの対称性を向上させる構成とすることで、上記組み立て誤差によらず、レーザ光のプロファイルの対称性を改善することが可能となる。 The beam profile in the slow axis direction of the laser beam output from the semiconductor laser element 100 has a substantially symmetric shape with respect to the laser beam axis. However, the laser beam profile is not perfectly symmetric, and is a distorted laser beam profile due to a minute assembly error in mounting the semiconductor laser device 100. As in the semiconductor laser device 70 according to the tenth embodiment, a configuration in which the symmetry of the profile of the laser beam is improved by the output mirrors 360 and 370 that can easily perform the orientation adjustment or the position control of the arrangement spatially greatly. By doing so, the symmetry of the profile of the laser beam can be improved regardless of the assembly error.
実施の形態11.
 図21は、本発明の実施の形態11にかかる半導体レーザ装置80の構成を示す上面模式図である。図22は、実施の形態11にかかる半導体レーザ装置80の構成を示す側面模式図である。図23は、実施の形態11にかかる出力ミラー380の構成を示す斜視模式図である。
Embodiment 11 FIG.
FIG. 21 is a schematic top view showing the configuration of the semiconductor laser apparatus 80 according to the eleventh embodiment of the present invention. FIG. 22 is a schematic side view showing the configuration of the semiconductor laser apparatus 80 according to the eleventh embodiment. FIG. 23 is a schematic perspective view illustrating the configuration of the output mirror 380 according to the eleventh embodiment.
 実施の形態9および実施の形態10においては、高反射率の出力ミラーをレーザ光のスロー軸方向の周辺部からレーザ光の進路に挿入することによって、レーザ光のスロー軸方向のプロファイルにおいて、周辺部のレーザ光を中心部のレーザ光よりも多く反射させる構成であった。そして、実施の形態9および実施の形態10においては、出力ミラーの入射面内でのレーザ光の反射率は空間的に変化していなかった。しかし、実施の形態11にかかる半導体レーザ装置80では、出力結合素子である出力ミラー380の入射面における反射率の分布によって、スロー軸方向のプロファイルの周辺部において中心部より多く半導体レーザ素子100に向けてレーザ光を反射する構成とする。 In the ninth embodiment and the tenth embodiment, by inserting a high-reflectance output mirror from the peripheral portion in the slow axis direction of the laser beam into the path of the laser beam, the peripheral in the profile in the slow axis direction of the laser beam In this configuration, the laser beam in the portion is reflected more than the laser beam in the center portion. In the ninth and tenth embodiments, the reflectance of the laser light in the incident surface of the output mirror has not changed spatially. However, in the semiconductor laser device 80 according to the eleventh embodiment, due to the reflectance distribution on the incident surface of the output mirror 380 as the output coupling element, the semiconductor laser device 100 has more in the periphery of the profile in the slow axis direction than in the center. It is set as the structure which reflects a laser beam toward.
 実施の形態11における出力ミラー380の入射面381には、高反射部382および低反射部386が形成されている。出射面383は、反射率を抑制するためのARコーティングが施されている。 A high reflection portion 382 and a low reflection portion 386 are formed on the incident surface 381 of the output mirror 380 in the eleventh embodiment. The exit surface 383 is provided with an AR coating for suppressing reflectivity.
 図24は、実施の形態11にかかる出力ミラー380の構成を示す模式図である。高反射部382は、図23および図24に示すように、レーザ光のスロー軸方向(x方向)において、低反射部386の両側に配置されている。図21に示すように、レーザ光の周辺増幅光402が、出力ミラー380の高反射部382により半導体レーザ素子100の発光点に向けて反射される。 FIG. 24 is a schematic diagram illustrating a configuration of the output mirror 380 according to the eleventh embodiment. As shown in FIGS. 23 and 24, the high reflection portion 382 is disposed on both sides of the low reflection portion 386 in the slow axis direction (x direction) of the laser light. As shown in FIG. 21, the peripheral amplified light 402 of the laser light is reflected toward the light emitting point of the semiconductor laser element 100 by the high reflection portion 382 of the output mirror 380.
 実施の形態9および10と同様に、実施の形態11にかかる半導体レーザ装置80によれば、レーザ光の周辺増幅光402を反射させて半導体レーザ共振器を構成することにより、出力されるレーザ光において主発振光401の割合を高めることができる。これにより、半導体レーザ装置80から出力されるレーザ光のスロー軸方向の集光性を改善する効果が得られる。 Similarly to the ninth and tenth embodiments, according to the semiconductor laser device 80 according to the eleventh embodiment, the laser light outputted by reflecting the peripheral amplified light 402 of the laser light to constitute the semiconductor laser resonator. The ratio of the main oscillation light 401 can be increased. Thereby, the effect of improving the condensing property of the laser beam output from the semiconductor laser device 80 in the slow axis direction can be obtained.
 実施の形態11にかかる出力ミラー380によれば、スロー軸方向の反射率分布をコーティングにより変化させた一枚の出力ミラーによって周辺増幅光402を多く反射させる。出力ミラー380の低反射部386と高反射部382との境界で発生するレーザ光の散乱および吸収は、実施の形態9および10にかかる出力ミラー352,360,370の上記境界に対応する領域である機械的なエッジ部で発生するレーザ光の散乱および吸収に比べて著しく小さくすることができる。したがって、レーザ光が高出力である場合には、実施の形態11にかかる出力ミラー380によれば、レーザ光の散乱および吸収に起因する出力ミラーの破損または異常発振といった悪影響を抑制することが可能である。 According to the output mirror 380 according to the eleventh embodiment, a large amount of the peripheral amplified light 402 is reflected by a single output mirror whose reflectance distribution in the slow axis direction is changed by coating. Scattering and absorption of the laser light generated at the boundary between the low reflection portion 386 and the high reflection portion 382 of the output mirror 380 are in a region corresponding to the boundary of the output mirrors 352, 360, and 370 according to the ninth and tenth embodiments. Compared to the scattering and absorption of laser light generated at a certain mechanical edge portion, it can be remarkably reduced. Therefore, when the laser beam has a high output, the output mirror 380 according to the eleventh embodiment can suppress adverse effects such as breakage or abnormal oscillation of the output mirror due to scattering and absorption of the laser beam. It is.
 また、出力結合素子は、実施の形態10においては出力ミラー360,370の2枚の出力ミラーにより構成されていたが、実施の形態11においては一枚のミラーである出力ミラー380により構成される。実施の形態11によれば、出力結合素子の調整がさらに容易になるだけではなく、出力ミラー380の入射面381の反射率の分布を設計することで、以下で説明するように、半導体レーザ素子100の広い動作領域で半導体レーザ装置80が安定したレーザ光の出力特性を得ることが可能になる。 Further, the output coupling element is constituted by the two output mirrors 360 and 370 in the tenth embodiment, but is constituted by the output mirror 380 which is a single mirror in the eleventh embodiment. . According to the eleventh embodiment, not only the adjustment of the output coupling element is further facilitated, but also the reflectance distribution of the incident surface 381 of the output mirror 380 is designed so that the semiconductor laser element will be described below. The semiconductor laser device 80 can obtain a stable output characteristic of the laser beam in a wide operating region of 100.
 図24の下に、出力ミラー380の入射面381のスロー軸方向の反射率分布が示してある。図24の例においては、高反射部382の反射率は100%に近く、低反射部386における反射率はほぼ0%である。出力ミラー380がこのような反射率分布を有する場合、出力ミラー380による作用効果は、実施の形態10における高反射率の出力ミラー360および出力ミラー370によって構成された出力結合素子による作用効果に近いものとなる。 24, the reflectance distribution in the slow axis direction of the incident surface 381 of the output mirror 380 is shown. In the example of FIG. 24, the reflectance of the high reflection portion 382 is close to 100%, and the reflectance of the low reflection portion 386 is almost 0%. When output mirror 380 has such a reflectance distribution, the effect of output mirror 380 is close to the effect of the output coupling element configured by output mirror 360 and output mirror 370 having high reflectivity in the tenth embodiment. It will be a thing.
 図25は、実施の形態11にかかる出力ミラー380の構成を示す別の模式図である。図25に示した出力ミラー380の入射面381のスロー軸方向の反射率分布は、図24の例とは異なる。図25の例においては、高反射部382の反射率は約80%で、低反射部386の反射率は約5%になっている。半導体レーザ素子100から出射されるレーザ光のスロー軸方向のビーム発散角は、半導体レーザ素子100への印加電流が少ないときには小さく、印加電流を増加させると増大する。このため、印加電流の増加にともない、半導体レーザ素子100から出射されるレーザ光における周辺増幅光402の割合が増加する。したがって、出力ミラー380の反射率分布を印加電流の値が高電流域であるときに最適な反射率分布になるように設計すると、印加電流が少なくて周辺増幅光402の割合が少ないときには、半導体レーザ素子100への反射光の割合が低くなりすぎる場合がある。その結果、半導体レーザ素子100の後側端面102と出力ミラー380とで構成される外部共振器が動作しないことがある。このように印加電流が少ない場合、図25の例のように、低反射部386の反射率をゼロに近い値にしないで数パーセントの値とすることで、低電流印加時においても安定な発振が可能となる。図25の例においては、出力ミラー380の入射面381の全体により反射されるレーザ光のエネルギーの割合を保つために、高反射部382の反射率を低減するようにしたが、低反射部386と高反射部382との面積比によって調整することも可能である。 FIG. 25 is another schematic diagram showing the configuration of the output mirror 380 according to the eleventh embodiment. The reflectance distribution in the slow axis direction of the incident surface 381 of the output mirror 380 shown in FIG. 25 is different from the example of FIG. In the example of FIG. 25, the reflectance of the high reflection portion 382 is about 80%, and the reflectance of the low reflection portion 386 is about 5%. The beam divergence angle in the slow axis direction of the laser light emitted from the semiconductor laser element 100 is small when the applied current to the semiconductor laser element 100 is small, and increases when the applied current is increased. For this reason, as the applied current increases, the ratio of the peripheral amplified light 402 in the laser light emitted from the semiconductor laser element 100 increases. Therefore, if the reflectance distribution of the output mirror 380 is designed so as to have an optimum reflectance distribution when the value of the applied current is in a high current region, the semiconductor is used when the applied current is small and the ratio of the peripheral amplified light 402 is small. The ratio of reflected light to the laser element 100 may be too low. As a result, the external resonator constituted by the rear end face 102 of the semiconductor laser element 100 and the output mirror 380 may not operate. When the applied current is small in this way, as shown in the example of FIG. 25, by setting the reflectance of the low reflective portion 386 to a value of several percent without making the value close to zero, stable oscillation even when a low current is applied. Is possible. In the example of FIG. 25, the reflectance of the high reflection portion 382 is reduced in order to maintain the ratio of the energy of the laser light reflected by the entire incident surface 381 of the output mirror 380, but the low reflection portion 386 is used. It is also possible to adjust by the area ratio between the high reflection portion 382 and the high reflection portion 382.
実施の形態12.
 図26は、本発明の実施の形態12にかかる半導体レーザ装置90の構成を示す上面模式図である。半導体レーザ装置90は、実施の形態7の半導体レーザ装置50における出力ミラー340を実施の形態11にかかる出力ミラー380に置き換えた構成である。実施の形態12においては、回転光学素子11、回折格子8および出力ミラー380、を用いて、複数の半導体レーザ素子である第1の半導体レーザ素子121および第2の半導体レーザ素子122からのレーザビームを波長分散結合する。
Embodiment 12 FIG.
FIG. 26 is a schematic top view showing the configuration of the semiconductor laser apparatus 90 according to the twelfth embodiment of the present invention. The semiconductor laser device 90 has a configuration in which the output mirror 340 in the semiconductor laser device 50 according to the seventh embodiment is replaced with the output mirror 380 according to the eleventh embodiment. In the twelfth embodiment, the laser beam from the first semiconductor laser element 121 and the second semiconductor laser element 122, which are a plurality of semiconductor laser elements, using the rotating optical element 11, the diffraction grating 8, and the output mirror 380. Are coupled by chromatic dispersion.
 実施の形態12にかかる半導体レーザ装置90においては、図24および図25の中心線350の向きが図26におけるx’方向となるように出力ミラー380が配置される。すなわち、半導体レーザ装置90は、出力結合素子として、スロー軸方向(図26におけるy’方向)の周辺増幅光を半導体レーザ素子の発光点により多く反射する出力ミラー380を用いる。 In the semiconductor laser device 90 according to the twelfth embodiment, the output mirror 380 is arranged so that the direction of the center line 350 in FIGS. 24 and 25 is the x ′ direction in FIG. That is, the semiconductor laser device 90 uses, as an output coupling element, an output mirror 380 that reflects a large amount of peripheral amplified light in the slow axis direction (y ′ direction in FIG. 26) at the light emitting point of the semiconductor laser element.
 第1の半導体レーザ素子121におけるスロー軸方向はx方向であり、ファースト軸方向はy方向である。第2の半導体レーザ素子122におけるスロー軸方向はx方向とは異なる方向であり、ファースト軸方向はy方向である。しかし、回転光学素子11より下流の光路においては、第1の半導体レーザ素子121および第2の半導体レーザ素子122からのレーザビームのスロー軸方向は、共にy方向またはy’方向である。すなわち、出力ミラー380の位置においては、スロー軸方向はy’方向になっている。 In the first semiconductor laser element 121, the slow axis direction is the x direction, and the fast axis direction is the y direction. The slow axis direction in the second semiconductor laser element 122 is a direction different from the x direction, and the fast axis direction is the y direction. However, in the optical path downstream from the rotating optical element 11, the slow axis directions of the laser beams from the first semiconductor laser element 121 and the second semiconductor laser element 122 are both the y direction or the y 'direction. That is, at the position of the output mirror 380, the slow axis direction is the y 'direction.
 実施の形態12にかかる半導体レーザ装置90においても、第1の水平方向円筒レンズ5、第2の水平方向円筒レンズ7、ファースト軸補正レンズ2、第1の垂直方向円筒レンズ6、第2の垂直方向円筒レンズ9および出力ミラー380を適切な距離だけ離して設置することにより、水平方向(x方向、x方向とは異なる上記方向、x’方向)および垂直方向(y方向、y’方向)において、第1の半導体レーザ素子121および第2の半導体レーザ素子122の前側端面101を、出力ミラー380の入射面381上へ結像する光学系を構成することができる。すなわち、両方向において第1の半導体レーザ素子121および第2の半導体レーザ素子122の前側端面101と出力ミラー380の入射面381とは、スロー軸方向において光学的に共役な関係になっている。 Also in the semiconductor laser apparatus 90 according to the twelfth embodiment, the first horizontal cylindrical lens 5, the second horizontal cylindrical lens 7, the first axis correction lens 2, the first vertical cylindrical lens 6, and the second vertical cylinder. By placing the directional cylindrical lens 9 and the output mirror 380 apart by an appropriate distance, in the horizontal direction (x direction, the above direction different from the x direction, x ′ direction) and in the vertical direction (y direction, y ′ direction) An optical system that forms an image of the front end face 101 of the first semiconductor laser element 121 and the second semiconductor laser element 122 on the incident surface 381 of the output mirror 380 can be configured. That is, in both directions, the front end face 101 of the first semiconductor laser element 121 and the second semiconductor laser element 122 and the incident face 381 of the output mirror 380 have an optically conjugate relationship in the slow axis direction.
 実施の形態12にかかる半導体レーザ装置90によれば、実施の形態7にかかる半導体レーザ装置50と同様に、一つの出力ミラーで複数の半導体レーザ素子の発光点からのレーザ光の集光性を向上させて出力を高めることが可能になるのみならず、以下のような効果を奏する。 According to the semiconductor laser device 90 according to the twelfth embodiment, similar to the semiconductor laser device 50 according to the seventh embodiment, the light output from the light emitting points of the plurality of semiconductor laser elements can be collected by one output mirror. In addition to improving the output, the following effects can be obtained.
 出力ミラー380の高反射部382により反射されるレーザ光は、出力ミラー380の向きがスロー軸方向に角度がずれても、第1の半導体レーザ素子121および第2の半導体レーザ素子122の発光点まで到達する。したがって、第1の半導体レーザ素子121および第2の半導体レーザ素子122の外部共振器の動作に支障は発生しない。なぜならば、第1の半導体レーザ素子121および第2の半導体レーザ素子122の前側端面101に位置する発光点と出力ミラー380とは、スロー軸方向において光学的に共役な関係になっているからである。光学的に共役な位置関係とした場合、一方の特定の点から発生した光は、その出射角度に依らず他方における特定の点に到達する。 The laser light reflected by the high reflection portion 382 of the output mirror 380 is emitted from the first semiconductor laser element 121 and the second semiconductor laser element 122 even if the direction of the output mirror 380 is shifted in the slow axis direction. To reach. Therefore, no trouble occurs in the operation of the external resonators of the first semiconductor laser element 121 and the second semiconductor laser element 122. This is because the light emitting point located on the front end face 101 of the first semiconductor laser element 121 and the second semiconductor laser element 122 and the output mirror 380 have an optically conjugate relationship in the slow axis direction. is there. In the case of an optically conjugate positional relationship, light generated from one specific point reaches a specific point on the other regardless of the emission angle.
 出力ミラー380のファースト軸方向(図26におけるx’方向)の角度ずれは、回折格子8による波長分散が存在する方向の角度ずれである。出力ミラー380のファースト軸方向の角度がずれた場合でも、外部共振器の発振波長が変化することで、自動的に補償される。 The angular deviation in the first axis direction (x ′ direction in FIG. 26) of the output mirror 380 is an angular deviation in the direction in which the wavelength dispersion due to the diffraction grating 8 exists. Even when the angle of the output mirror 380 in the fast axis direction is deviated, the oscillation wavelength of the external resonator is changed to compensate automatically.
 以上説明したように、実施の形態12にかかる半導体レーザ装置90によれば、出力ミラー380の角度ずれに対してロバストな動作が可能になる。 As described above, according to the semiconductor laser device 90 according to the twelfth embodiment, it is possible to operate robustly against the angular deviation of the output mirror 380.
 また、半導体レーザから出射されるレーザビームのスロー軸方向のビーム発散角は、半導体レーザ素子への印加電流および半導体レーザ素子の動作温度によって変化する。すなわち、印加電流の増加および動作温度の上昇に伴い、スロー軸方向のビーム発散角は大きくなる。さらに、実施の形態12にかかる半導体レーザ装置90のように複数の半導体レーザ素子および発光点が存在する場合には、半導体レーザ素子の発光点ごとにビーム発散角にはばらつきが発生する。 Also, the beam divergence angle in the slow axis direction of the laser beam emitted from the semiconductor laser varies depending on the current applied to the semiconductor laser element and the operating temperature of the semiconductor laser element. That is, as the applied current increases and the operating temperature increases, the beam divergence angle in the slow axis direction increases. Further, when there are a plurality of semiconductor laser elements and light emission points as in the semiconductor laser device 90 according to the twelfth embodiment, the beam divergence angle varies for each light emission point of the semiconductor laser elements.
 出力ミラー380によりスロー軸方向の周辺増幅光を多く反射させて、出力されるレーザ光のビーム集光性を向上させる構成は、ビーム集光性向上効果は高いものの、半導体レーザ素子の発光点におけるスロー軸方向のビーム発散角のばらつきおよび変動に伴い、半導体レーザの外部共振器のフィードバック量が変動するおそれがある。その結果、目標とする外部共振器動作が行えず、半導体レーザ装置90の動作が不安定になるという問題が生じる。しかし、実施の形態12にかかる半導体レーザ装置90においては、第1の半導体レーザ素子121および第2の半導体レーザ素子122の前側端面101と出力ミラー380の入射面381とを光学的に共役な関係とすることにより上記問題を回避することができる。 Although the configuration in which the output mirror 380 reflects a large amount of the peripheral amplified light in the slow axis direction and improves the beam condensing property of the output laser light, the effect of improving the beam condensing property is high, but at the light emitting point of the semiconductor laser element As the beam divergence angle in the slow axis direction varies and varies, the feedback amount of the external resonator of the semiconductor laser may vary. As a result, there is a problem that the target external resonator operation cannot be performed and the operation of the semiconductor laser device 90 becomes unstable. However, in the semiconductor laser device 90 according to the twelfth embodiment, the front end face 101 of the first semiconductor laser element 121 and the second semiconductor laser element 122 and the incident face 381 of the output mirror 380 are optically conjugate. By doing so, the above problem can be avoided.
 すなわち、第1の半導体レーザ素子121および第2の半導体レーザ素子122の前側端面101と出力ミラー380の入射面381とを光学的に共役な関係とすることにより、出力ミラー380の入射面381の位置でのレーザ光のスロー軸方向のプロファイルの幅は、印加電流変化または素子のばらつきによって発生するビーム発散角の変動に依らず、一定の大きさとなる。ここで、第1の半導体レーザ素子121および第2の半導体レーザ素子122の前側端面101から出力ミラー380までの転写倍率をMとする。また、第1の半導体レーザ素子121および第2の半導体レーザ素子122のスロー軸方向の発光点の幅をWとする。すると、出力ミラー380におけるレーザ光のスロー軸方向のプロファイルの幅はWMになり、上述のようにビーム発散角に依らずに一定となる。レーザ光のプロファイルの幅が一定であるから、出力ミラー380の高反射部382に照射されるレーザ光のエネルギーのレーザ光全体に対する割合は、半導体レーザ素子のスロー軸方向のビーム発散角に依らずに一定となる。 That is, the front end face 101 of the first semiconductor laser element 121 and the second semiconductor laser element 122 and the incident surface 381 of the output mirror 380 are in an optically conjugate relationship, so that the incident surface 381 of the output mirror 380 The width of the profile of the laser beam in the slow axis direction at the position becomes a constant size regardless of the fluctuation of the beam divergence angle caused by the change in the applied current or the variation of the elements. Here, the transfer magnification from the front end face 101 of the first semiconductor laser element 121 and the second semiconductor laser element 122 to the output mirror 380 is M. Further, the width of the light emitting point in the slow axis direction of the first semiconductor laser element 121 and the second semiconductor laser element 122 is defined as W. Then, the width of the profile in the slow axis direction of the laser light in the output mirror 380 becomes WM, and is constant regardless of the beam divergence angle as described above. Since the profile width of the laser beam is constant, the ratio of the energy of the laser beam irradiated to the high reflection portion 382 of the output mirror 380 to the entire laser beam does not depend on the beam divergence angle in the slow axis direction of the semiconductor laser element. Constant.
 その結果、実施の形態12にかかる半導体レーザ装置90によると、印加電流変化または半導体レーザ素子のばらつきに起因するスロー軸方向のビーム発散角の変動の影響を受けないロバストな動作を実現した上で、スロー軸方向のレーザ光のプロファイルの周辺領域を選択的に反射してスロー軸方向の集光性を改善することが容易に可能となる。 As a result, according to the semiconductor laser device 90 according to the twelfth embodiment, after realizing a robust operation that is not affected by variations in the beam divergence angle in the slow axis direction due to changes in applied current or variations in semiconductor laser elements. Thus, it is possible to easily reflect the peripheral region of the laser beam profile in the slow axis direction and improve the light condensing property in the slow axis direction.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 2 ファースト軸補正レンズ、5 第1の水平方向円筒レンズ、6 第1の垂直方向円筒レンズ、7 第2の水平方向円筒レンズ、8 回折格子、9 第2の垂直方向円筒レンズ、10,20,30,40,50,60,70,80,90 半導体レーザ装置、11 回転光学素子、100,110 半導体レーザ素子、101 前側端面、102 後側端面、103 活性層、104 半導体レーザ媒質、121 第1の半導体レーザ素子、122 第2の半導体レーザ素子、1041,1051,1061 第1の半導体レーザ媒質、1042,1052,1062 第2の半導体レーザ媒質、1043,1053,1063 第3の半導体レーザ媒質、300,310,320,330,340,352,360,370,380 出力ミラー、301,351,361,371,381 入射面、302,382 高反射部、303,353,363,373 出射面、304 第1の高反射部、305 第2の高反射部、350 中心線、386 低反射部、401 主発振光、402 周辺増幅光。 2 First axis correction lens, 5 First horizontal cylindrical lens, 6 First vertical cylindrical lens, 7 Second horizontal cylindrical lens, 8 Diffraction grating, 9 Second vertical cylindrical lens, 10, 20, 30, 40, 50, 60, 70, 80, 90 semiconductor laser device, 11 rotating optical element, 100, 110 semiconductor laser element, 101 front side end face, 102 rear side end face, 103 active layer, 104 semiconductor laser medium, 121 first Semiconductor laser element, 122, second semiconductor laser element, 1041, 1051, 1061, first semiconductor laser medium, 1042, 1052, 1062, second semiconductor laser medium, 1043, 1053, 1063, third semiconductor laser medium, 300 , 310, 320, 330, 340, 352, 360, 370, 380 Force mirror, 301, 351, 361, 371, 381 entrance surface, 302, 382 high reflection portion, 303, 353, 363, 373 exit surface, 304 first high reflection portion, 305 second high reflection portion, 350 center Line, 386 low reflection part, 401 main oscillation light, 402 peripheral amplification light.

Claims (11)

  1.  レーザ光を出射する半導体レーザ素子と、
     前記レーザ光の光路上に配置されて、前記レーザ光のファースト軸方向の発散角を補正するファースト軸補正レンズと、
     前記レーザ光に対する反射率を前記レーザ光のスロー軸方向の位置に依存して変化させることにより、前記ファースト軸補正レンズからの前記レーザ光の一部を反射し、反射された前記レーザ光を前記半導体レーザ素子へと戻し、残りを出力光として通過させる出力結合素子と、
     を備えることを特徴とする半導体レーザ装置。
    A semiconductor laser element that emits laser light;
    A first axis correction lens disposed on the optical path of the laser beam to correct a divergence angle in the first axis direction of the laser beam;
    By changing the reflectance of the laser beam depending on the position of the laser beam in the slow axis direction, a part of the laser beam from the first axis correction lens is reflected, and the reflected laser beam is An output coupling element that returns to the semiconductor laser element and passes the remainder as output light;
    A semiconductor laser device comprising:
  2.  前記半導体レーザ素子の前記レーザ光が出射される前側端面と前記出力結合素子とは、前記スロー軸方向について光学的に共役な関係である
     ことを特徴とする請求項1に記載の半導体レーザ装置。
    2. The semiconductor laser device according to claim 1, wherein the front end face of the semiconductor laser element from which the laser beam is emitted and the output coupling element have an optically conjugate relationship with respect to the slow axis direction.
  3.  1つ又は複数の前記半導体レーザ素子から互いに異なる光軸を有する複数の前記レーザ光が出射され、前記ファースト軸補正レンズと前記出力結合素子との間の前記光路上に配置されて、複数の前記レーザ光を1つのビームに波長結合して出射する回折格子をさらに備える
     ことを特徴とする請求項1または2に記載の半導体レーザ装置。
    A plurality of the laser beams having different optical axes are emitted from one or a plurality of the semiconductor laser elements, arranged on the optical path between the first axis correction lens and the output coupling element, and a plurality of the plurality of the laser beams The semiconductor laser device according to claim 1, further comprising a diffraction grating that wavelength-couples laser light into one beam and emits the laser light.
  4.  前記半導体レーザ素子は、複数の半導体レーザ媒質を有する半導体レーザアレイである
     ことを特徴とする請求項3に記載の半導体レーザ装置。
    The semiconductor laser device according to claim 3, wherein the semiconductor laser element is a semiconductor laser array having a plurality of semiconductor laser media.
  5.  前記半導体レーザ素子と前記回折格子との間の前記光路上に設置されて、入射する複数の前記レーザ光をそれぞれの前記レーザ光の光軸を回転軸として90°回転させる回転光学素子をさらに備える
     ことを特徴とする請求項4に記載の半導体レーザ装置。
    A rotating optical element is provided on the optical path between the semiconductor laser element and the diffraction grating, and rotates a plurality of incident laser beams by 90 ° about the optical axis of each laser beam as a rotation axis. The semiconductor laser device according to claim 4.
  6.  前記出力結合素子は前記レーザ光が入射する入射面を有する出力ミラーであり、前記入射面の前記反射率が、前記入射面の前記スロー軸方向の中央から離れるに従って減少するかまたは一定であるかのいずれかである
     ことを特徴とする請求項1から5のいずれか1項に記載の半導体レーザ装置。
    The output coupling element is an output mirror having an incident surface on which the laser light is incident, and the reflectivity of the incident surface decreases or becomes constant as the distance from the center of the incident surface in the slow axis direction increases. The semiconductor laser device according to claim 1, wherein the semiconductor laser device is any one of the following.
  7.  前記出力結合素子は前記レーザ光が入射する入射面を有する出力ミラーであり、前記入射面の前記スロー軸方向の中央を含む一部に前記スロー軸方向の幅が前記レーザ光のビーム径より小さい高反射部が設けられ、前記入射面の前記高反射部を除いた領域の前記反射率は前記高反射部の前記反射率より低い
     ことを特徴とする請求項1から6のいずれか1項に記載の半導体レーザ装置。
    The output coupling element is an output mirror having an incident surface on which the laser beam is incident, and a width in the slow axis direction is smaller than a beam diameter of the laser beam in a part including the center in the slow axis direction of the incident surface. The high reflectance part is provided, The said reflectance of the area | region except the said highly reflective part of the said incident surface is lower than the said reflectance of the said high reflective part. The any one of Claim 1 to 6 characterized by the above-mentioned. The semiconductor laser device described.
  8.  前記スロー軸方向の中央部の前記反射率は、前記中央部の前記スロー軸方向の両側に存在する周辺部の前記反射率の少なくともいずれか一方よりも低い
     ことを特徴とする請求項1から5のいずれか1項に記載の半導体レーザ装置。
    The said reflectance of the center part of the said slow axis direction is lower than at least any one of the said reflectance of the peripheral part which exists in the both sides of the said slow axis direction of the said center part. The semiconductor laser device according to any one of the above.
  9.  前記反射率は、前記スロー軸方向の中央に対して対称な分布になっている
     ことを特徴とする請求項1から8のいずれか1項に記載の半導体レーザ装置。
    The semiconductor laser device according to claim 1, wherein the reflectance has a distribution that is symmetrical with respect to a center in the slow axis direction.
  10.  前記出力結合素子は、一枚のミラーにより構成されている
     ことを特徴とする請求項1から9のいずれか1項に記載の半導体レーザ装置。
    The semiconductor laser device according to any one of claims 1 to 9, wherein the output coupling element is configured by a single mirror.
  11.  非通電状態の前記半導体レーザ素子の前記レーザ光に対する屈折率の前記スロー軸方向の分布において、発光領域である半導体レーザ媒質の前記屈折率は、前記発光領域の周囲の非発光領域の前記屈折率より低い
     ことを特徴とする請求項1から10のいずれか1項に記載の半導体レーザ装置。
    In the distribution of the refractive index of the semiconductor laser element in the non-energized state with respect to the laser beam in the slow axis direction, the refractive index of the semiconductor laser medium that is a light emitting region is the refractive index of the non-emitting region around the light emitting region. The semiconductor laser device according to claim 1, wherein the semiconductor laser device is lower.
PCT/JP2018/032700 2018-02-07 2018-09-04 Semiconductor laser device WO2019155668A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019505080A JPWO2019155668A1 (en) 2018-02-07 2018-09-04 Semiconductor laser device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-019841 2018-02-07
JP2018019841 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019155668A1 true WO2019155668A1 (en) 2019-08-15

Family

ID=67549531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032700 WO2019155668A1 (en) 2018-02-07 2018-09-04 Semiconductor laser device

Country Status (2)

Country Link
JP (1) JPWO2019155668A1 (en)
WO (1) WO2019155668A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177001A1 (en) * 2020-03-05 2021-09-10 パナソニック株式会社 Semiconductor laser device
WO2022030223A1 (en) * 2020-08-05 2022-02-10 パナソニック株式会社 Semiconductor laser device
WO2022153707A1 (en) * 2021-01-12 2022-07-21 パナソニックホールディングス株式会社 Semiconductor laser device and method for controlling semiconductor laser device
WO2023074182A1 (en) * 2021-10-27 2023-05-04 パナソニックホールディングス株式会社 Light-emitting device, laser processing system, light-emitting device manufacturing method, and laser processing system manufacturing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6192062B1 (en) * 1998-09-08 2001-02-20 Massachusetts Institute Of Technology Beam combining of diode laser array elements for high brightness and power
JP2005529498A (en) * 2002-06-06 2005-09-29 アルファ・イーエックスエックス・エイビイ Resonator
JP2007207886A (en) * 2006-01-31 2007-08-16 Hamamatsu Photonics Kk Semiconductor laser device
US20070291812A1 (en) * 2004-06-16 2007-12-20 Petersen Paul M Segmented Diode Laser System
JP2013502716A (en) * 2009-08-20 2013-01-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Vertical cavity surface emitting laser device with angle selective feedback
JP2013080826A (en) * 2011-10-04 2013-05-02 Fujitsu Ltd Optical semiconductor element, optical transmission module, optical transmission system and method for manufacturing optical semiconductor element
WO2015107792A1 (en) * 2014-01-14 2015-07-23 三菱電機株式会社 Semiconductor laser device
JP2015173194A (en) * 2014-03-12 2015-10-01 浜松ホトニクス株式会社 semiconductor laser device
JP2016054295A (en) * 2014-09-01 2016-04-14 三菱電機株式会社 Wavelength coupling external resonator type laser

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109886A (en) * 2005-10-13 2007-04-26 Toshiba Corp Semiconductor laser device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6192062B1 (en) * 1998-09-08 2001-02-20 Massachusetts Institute Of Technology Beam combining of diode laser array elements for high brightness and power
JP2005529498A (en) * 2002-06-06 2005-09-29 アルファ・イーエックスエックス・エイビイ Resonator
US20070291812A1 (en) * 2004-06-16 2007-12-20 Petersen Paul M Segmented Diode Laser System
JP2007207886A (en) * 2006-01-31 2007-08-16 Hamamatsu Photonics Kk Semiconductor laser device
JP2013502716A (en) * 2009-08-20 2013-01-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Vertical cavity surface emitting laser device with angle selective feedback
JP2013080826A (en) * 2011-10-04 2013-05-02 Fujitsu Ltd Optical semiconductor element, optical transmission module, optical transmission system and method for manufacturing optical semiconductor element
WO2015107792A1 (en) * 2014-01-14 2015-07-23 三菱電機株式会社 Semiconductor laser device
JP2015173194A (en) * 2014-03-12 2015-10-01 浜松ホトニクス株式会社 semiconductor laser device
JP2016054295A (en) * 2014-09-01 2016-04-14 三菱電機株式会社 Wavelength coupling external resonator type laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177001A1 (en) * 2020-03-05 2021-09-10 パナソニック株式会社 Semiconductor laser device
WO2022030223A1 (en) * 2020-08-05 2022-02-10 パナソニック株式会社 Semiconductor laser device
WO2022153707A1 (en) * 2021-01-12 2022-07-21 パナソニックホールディングス株式会社 Semiconductor laser device and method for controlling semiconductor laser device
WO2023074182A1 (en) * 2021-10-27 2023-05-04 パナソニックホールディングス株式会社 Light-emitting device, laser processing system, light-emitting device manufacturing method, and laser processing system manufacturing method

Also Published As

Publication number Publication date
JPWO2019155668A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2019155668A1 (en) Semiconductor laser device
JP5892918B2 (en) Semiconductor laser device and laser beam generation method
US8553327B2 (en) Selective repositioning and rotation wavelength beam combining system and method
US20150303656A1 (en) Semiconductor laser apparatus
US6529542B1 (en) Incoherent beam combined optical system utilizing a lens array
US20180198257A1 (en) Wavelength beam combining laser systems utilizing etalons
US9350141B2 (en) Stabilization of wavelength beam combining laser systems in the non-wavelength beam combining direction
JP7053993B2 (en) Light source device
JP4961588B2 (en) Laser beam guide folding device
US9285596B2 (en) Free-space combining of laser beam radiation
US9496685B2 (en) Laser emitting apparatus and master oscillator power amplifier system
US8340151B2 (en) V-shaped resonators for addition of broad-area laser diode arrays
KR102158044B1 (en) Spectrally beam combined laser system, Method for controlling the same, and Computer readable storage medium having the method
WO2018163598A1 (en) Wavelength-combined laser device
US20170207605A1 (en) Semiconductor laser device
US20150293301A1 (en) Integrated wavelength beam combining laser systems
JP7153862B2 (en) Laser system with stepped slow-axis collimator
JP6910555B2 (en) Semiconductor laser device
US6563983B2 (en) Laser diode module
US20230299558A1 (en) Freeform collimator lens for angled facet laser devices
US20230108080A1 (en) Semiconductor laser device
JP6949289B1 (en) Laser device
US20240061265A1 (en) Dual-grating spectral beam combiner
JP2006269990A (en) External resonance semiconductor laser

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019505080

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905854

Country of ref document: EP

Kind code of ref document: A1