WO2013051511A1 - 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法 - Google Patents

無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2013051511A1
WO2013051511A1 PCT/JP2012/075396 JP2012075396W WO2013051511A1 WO 2013051511 A1 WO2013051511 A1 WO 2013051511A1 JP 2012075396 W JP2012075396 W JP 2012075396W WO 2013051511 A1 WO2013051511 A1 WO 2013051511A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
cell
user terminal
radio
signal
Prior art date
Application number
PCT/JP2012/075396
Other languages
English (en)
French (fr)
Inventor
聡 永田
哲士 阿部
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to CN201280048763.2A priority Critical patent/CN103875300B/zh
Priority to JP2013537499A priority patent/JP5828002B2/ja
Priority to US14/346,825 priority patent/US20140247809A1/en
Priority to EP12838301.5A priority patent/EP2765820A4/en
Publication of WO2013051511A1 publication Critical patent/WO2013051511A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0066Transmission or use of information for re-establishing the radio link of control information between different types of networks in order to establish a new radio link in the target network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present invention relates to a radio communication system, a radio base station apparatus, a user terminal, and a radio communication method in a next generation mobile communication system.
  • Non-patent Document 1 In the UMTS (Universal Mobile Telecommunications System) network, WSDPA (High Speed Downlink Packet Access) and HSUPA (High Speed Uplink Packet Access) are adopted for the purpose of improving frequency utilization efficiency and data rate.
  • the system features based on CDMA (Wideband-Code Division Multiple Access) are being extracted to the maximum.
  • LTE Long Term Evolution
  • Non-patent Document 1 LTE (Long Term Evolution) has been studied for the purpose of further high data rate and low delay.
  • the third generation system can achieve a maximum transmission rate of about 2 Mbps on the downlink using generally a fixed bandwidth of 5 MHz.
  • a maximum transmission rate of about 300 Mbps on the downlink and about 75 Mbps on the uplink can be realized using a variable band of 1.4 MHz to 20 MHz.
  • LTE-A LTE Advanced
  • HetNet heterogeneous network
  • This heterogeneous network refers to transmissions such as pico base stations (pico cell radio base station devices), femto base stations, RRH (Remote Radio Head) base stations in addition to conventional macro base stations (macro cell radio base station devices).
  • This heterogeneous network is expected as a method for realizing further increase in system capacity in view of the importance of a local area network.
  • the present invention has been made in view of such a point, and in a heterogeneous network, a radio communication system, a radio base station apparatus, and a user that can reduce interference with an uplink signal of a user terminal connected to a low transmission power base station
  • An object is to provide a terminal and a wireless communication method.
  • the wireless communication system of the present invention employs a network configuration in which a first cell having a predetermined cell radius and a second cell having a cell radius smaller than the cell radius of the first cell are overlaid, Radio resource information obtained by orthogonalizing the uplink signal of the user terminal connected to the radio base station apparatus and the uplink signal of the user terminal connected to the low transmission power base station apparatus of the second cell to the user terminal
  • a radio base station apparatus including a notification unit for notifying, and a user terminal including an arrangement unit for arranging an uplink signal in a radio resource based on the radio resource information.
  • a radio base station apparatus is a radio in a radio communication system employing a network configuration in which a first cell having a predetermined cell radius and a second cell having a cell radius smaller than the cell radius of the first cell are overlaid.
  • An uplink signal of a user terminal connected to the radio base station apparatus of the first cell and an uplink signal of a user terminal connected to the low transmission power base station apparatus of the second cell are each a base station apparatus.
  • a notification unit that notifies the user terminal of information on the orthogonalized radio resources is provided.
  • a user terminal is a user terminal in a radio communication system employing a network configuration in which a first cell having a predetermined cell radius and a second cell having a cell radius smaller than the cell radius of the first cell are overlaid.
  • An arrangement unit that arranges an uplink signal in a radio resource based on the radio resource information notified from the base station of the first cell or the low transmission power base station of the second cell, and the arranged uplink
  • a transmitter that transmits a signal to the base station and the low transmission power base station apparatus of the second cell.
  • the wireless communication method of the present invention is a wireless communication in a wireless communication system employing a network configuration in which a first cell having a predetermined cell radius and a second cell having a cell radius smaller than the cell radius of the first cell are overlaid.
  • a method in which an uplink signal of a user terminal connected to a base station of the first cell and an uplink signal of a user terminal connected to a low transmission power base station of the second cell are orthogonalized to each other A step of notifying resource information to a user terminal, a step of arranging an uplink signal in a radio resource based on radio resource information notified from the base station or a low transmission power base station in the user terminal, and the arrangement And transmitting the uplink signal to the base station and the low transmission power base station.
  • the present invention in a heterogeneous network, it is possible to reduce interference with an uplink signal of a user terminal connected to a low transmission power base station.
  • FIG. 1 is a diagram for explaining a network environment.
  • a homogeneous network environment which is a conventional cellular environment as shown in FIG. 1A
  • a heterogeneous network which is an overlay network using various types of transmission / reception nodes having different transmission powers as shown in FIG. 1B.
  • FIG. 1A a configuration in which radio base station devices (eNBs) are connected to each other via an X2 interface, or a remote radio device (RRE) that is projected from the radio base station device (eNB) with an optical fiber : Remote Radio Equipment).
  • eNBs radio base station devices
  • RRE remote radio device
  • the cell sizes are almost the same.
  • FIG. 1B there are a cell having a predetermined cell radius (macro cell) and a cell having a cell radius smaller than the cell radius of the macro cell (LPN (Low Power Node) cell). Overlaid.
  • the LPN cell refers to a cell of a node that transmits / receives power that is tens of dB different from power transmitted / received to / from a radio base station apparatus (macro base station) of the macro cell, specifically, a cell of a femto base station , Pico base station cell, relay device cell, RRE cell, and the like.
  • Heterogeneous network is expected as a method to realize further increase in system capacity in view of the importance of local area network.
  • a user terminal (macro UE) connected to a macro base station can transmit an uplink signal such as a control channel and a reference signal with relatively large transmission power.
  • User terminals (LPN-UE, CoMP-UE) that transmit (SRS) and connect to a low transmission power base station or a base station when cooperative multipoint transmission is applied are relatively small (several dozens of macro UEs).
  • An uplink signal for example, a control channel and a reference signal (SRS) is transmitted with a transmission power (low in dB). For this reason, the uplink signal transmitted by the macro UE may interfere with the uplink signal of the LPN-UE.
  • the present inventor makes the uplink signal transmitted by the macro UE orthogonal by mutually orthogonalizing the uplink signal of the macro UE and the uplink signal of the LPN-UE in a heterogeneous network environment. It has been found that interference with the uplink signal of the LPN-UE can be prevented and the present invention has been achieved.
  • the uplink signals of user terminals connected to the low transmission power base station are orthogonalized with each other.
  • the uplink signal includes an uplink control channel signal or a sounding reference signal.
  • FIG. 3 shows a state where the uplink control channel signal for the user terminal connected to the low transmission power base station (LPN) and the uplink control channel signal for the user terminal connected to the macro base station are orthogonalized.
  • LPN low transmission power base station
  • the uplink control channel signal for the user terminal connected to the macro base station Channel signals are arranged in different frequency regions.
  • the uplink control channel signal for the user terminal connected to the LPN and the uplink control for the user terminal connected to the macro base station Channel signals are arranged in different time regions (for example, different subframes).
  • the uplink control channel signal for the user terminal connected to the LPN and the user terminal connected to the macro base station are arranged in different frequency domains and different time domains.
  • CoMP coordinated multiple point transmission
  • a plurality of cells cooperate with one or a plurality of UEs to perform transmission signal processing.
  • simultaneous transmission of multiple cells to which precoding is applied, coordinated scheduling / beamforming, and the like are being studied.
  • application of the above-described CoMP transmission, which is an inter-cell orthogonalization technique, to a heterogeneous network is under consideration. Even in this case, the uplink signal transmitted by the macro UE is expected to interfere with the uplink signal of the LPN-UE.
  • the base station notifies the user terminal of CoMP application by higher layer signaling.
  • FIG. 4 shows a state in which an uplink control channel signal for a user terminal when CoMP is applied and an uplink control channel signal for a user terminal connected to a macro base station are orthogonalized.
  • Channel signals are arranged in different frequency regions.
  • Channel signals are arranged in different time regions (for example, different subframes).
  • uplink control channel signals for user terminals when CoMP is applied, and for user terminals connected to a macro base station are arranged in different frequency domains and different time domains.
  • FIG. 5 shows a state where the SRS for user terminals connected to the LPN and the SRS for user terminals connected to the macro base station are orthogonalized.
  • the SRS for the user terminal connected to the LPN and the SRS for the user terminal connected to the macro base station are arranged in different frequency domains in the radio resource for arranging the SRS. To do.
  • the method of orthogonalizing in the time domain shown in FIG. 5 shows a state where the SRS for user terminals connected to the LPN and the SRS for user terminals connected to the macro base station are orthogonalized.
  • the SRS for the user terminal connected to the LPN is different from the SRS for the user terminal connected to the macro base station (for example, In different subframes).
  • the SRS for the user terminal connected to the LPN and the SRS for the user terminal connected to the macro base station are different in frequency. Place in regions and different time regions.
  • FIG. 6 shows a state where the SRS for the user terminal when CoMP is applied and the SRS for the user terminal connected to the macro base station are orthogonalized.
  • the SRS for the user terminal at the time of applying CoMP and the SRS for the user terminal connected to the macro base station are arranged in different frequency domains in the radio resource in which the SRS is arranged. To do.
  • the SRS for the user terminal at the time of applying CoMP and the SRS for the user terminal connected to the macro base station are different from each other in the time domain (for example, In different subframes).
  • the SRS for the user terminal at the time of applying CoMP and the SRS for the user terminal connected to the macro base station are different frequencies. Place in regions and different time regions.
  • radio resource information is transmitted from a radio base station apparatus (macro base station, LPN) to a user terminal in order to transmit an uplink signal from the user terminal in the arrangement as shown in FIGS. Notice.
  • This radio resource information is a radio in which an uplink signal of a user terminal connected to the base station of the first cell and an uplink signal of the user terminal connected to the low transmission power base station of the second cell are orthogonalized.
  • Resource information. Therefore, the radio resource information may be radio resource information on where to place the uplink signal (information on which radio resource the terminal can use) and is connected to another base station. It may be information on radio resources (information on which radio resources cannot be used by the own terminal) where an uplink signal of a user terminal is located. Moreover, you may notify combining the information of these radio
  • the arrangement for orthogonalizing the uplink signal or SRS of the macro UE and the uplink signal or SRS of the LPN-UE or CoMP-UE may be fixed without notifying the radio resource information.
  • the user equipment (LPN-UE) connected to the LPN or the user terminal (CoMP-UE) when CoMP is applied transmits an uplink control channel signal by the own terminal.
  • Information on radio resources that can be allocated is notified from a base station (CoMP base station) to which LPN or CoMP is applied, and an uplink control channel signal can be allocated by a macro UE to a user terminal (macro UE) connected to the macro base station Radio resource information is notified from the macro base station.
  • radio resource information (macro UE is used by a user terminal (LPN-UE) connected to the LPN or a user terminal (CoMP-UE) when CoMP is applied, in which an uplink control channel signal cannot be allocated by the own terminal. Radio resource information) is notified from the LPN or CoMP base station, and the radio resource information (LPN-UE cannot be allocated to the uplink control channel signal by the macro UE is transmitted to the user terminal (macro UE) connected to the macro base station. Information on radio resources to be used) is notified from the macro base station.
  • radio resource information (information on radio resources used by the macro UE) that cannot be allocated to the uplink control channel signal by the own terminal is transmitted to the LPN or CoMP base station in the LPN-UE or CoMP-UE.
  • the macro UE may not be notified of the radio resource information.
  • LPN-UE or CoMP-UE is notified from the LPN or CoMP base station of information of radio resources that can arrange SRS in its own terminal, and is sent to the macro UE. Is notified from the macro base station of information on radio resources in which the SRS can be arranged in the macro UE.
  • the LPN-UE or CoMP-UE is notified from the LPN or CoMP base station of information about radio resources (information about radio resources used by the macro UE) that cannot be placed in the SRS by the own terminal. Is notified from the macro base station of information on radio resources (information on radio resources used by the LPN-UE) in which SRS cannot be arranged in the macro UE.
  • the LPN or CoMP base station notifies the LPN-UE or CoMP-UE of the radio resource information (radio resource information used by the macro UE) that the SRS cannot be allocated by the own terminal from the LPN or CoMP base station.
  • the macro UE may not be notified of the radio resource information.
  • Radio resource information from the macro base station to the macro UE Notification of radio resource information from the macro base station to the macro UE, notification of radio resource information from the CoMP base station to the CoMP-UE, and notification of radio resource information from the LPN to the LPN-UE are performed by higher layer signaling. If necessary, the above-described radio resource information may be transmitted and received between the macro base station and the LPN or CoMP base station via an optical fiber, a radio backhaul link, or an X2 interface.
  • the macro base station and the low transmission power base station (LPN) or the CoMP base station may be connected by an optical fiber, a wireless link, or an X2 interface. It may be connected by a wired link such as.
  • the relationship between the macro base station and the LPN or CoMP base station may be a master-slave relationship or an independent relationship.
  • the case where the macro base station and the LPN or CoMP base station are in a master-slave relationship is, for example, a case where a cell formed by the LPN or CoMP base station is a phantom cell.
  • radio resource information for orthogonalizing an uplink signal of a macro UE and an uplink signal of an LPN-UE or CoMP-UE is transmitted from the macro base station, the LPN, or the CoMP base station to the user terminal.
  • the user terminal allocates the uplink signal to the radio resource based on the radio resource information, and transmits the allocated uplink signal to the macro base station, the LPN, or the CoMP base station.
  • FIG. 7 is an explanatory diagram of a system configuration of the wireless communication system according to the present embodiment.
  • the wireless communication system shown in FIG. 7 is a system including, for example, an LTE system or SUPER 3G.
  • carrier aggregation in which a plurality of fundamental frequency blocks with the system band of the LTE system as a unit is integrated is used.
  • this wireless communication system may be called IMT-Advanced or 4G.
  • the radio communication system 1 includes radio base station apparatuses 20A and 20B and a plurality of first and second user terminals 10A and 10B communicating with the radio base station apparatuses 20A and 20B. It is configured.
  • the radio base station devices 20 ⁇ / b> A and 20 ⁇ / b> B are connected to the higher station device 30, and the higher station device 30 is connected to the core network 40.
  • the radio base station apparatuses 20A and 20B are connected to each other by wired connection or wireless connection.
  • the first and second user terminals 10A and 10B can communicate with the radio base station apparatuses 20A and 20B in the cells C1 and C2.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each of the cells C1 and C2 has a heterogeneous network configuration like the macro cell shown in FIG. 1B, and an LPN cell is overlaid on the macro cell.
  • control of CoMP transmission is performed by a plurality of base stations as necessary.
  • the first and second user terminals 10A and 10B include an LTE terminal and an LTE-A terminal. In the following, the description will proceed as the first and second user terminals unless otherwise specified. Further, for convenience of explanation, it is assumed that the first and second user terminals 10A and 10B communicate wirelessly with the radio base station apparatuses 20A and 20B, but more generally both user terminals and fixed terminal apparatuses are used.
  • the user equipment (UE) may be included.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the wireless access method is not limited to this.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission method that reduces interference between terminals by dividing a system band into bands each consisting of one or continuous resource blocks for each terminal, and a plurality of terminals using different bands. .
  • the downlink communication channel includes PDSCH (Physical Downlink Shared Channel) as a downlink data channel shared by the first and second user terminals 10A and 10B, and a downlink L1 / L2 control channel (PDCCH, PCFICH, PHICH) Have Transmission data and higher control information are transmitted by the PDSCH.
  • PDSCH and PUSCH scheduling information and the like are transmitted by PDCCH (Physical Downlink Control Channel).
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH (Physical Control Format Indicator Channel).
  • the HARQ ACK / NACK for PUSCH is transmitted by PHICH (Physical Hybrid-ARQ Indicator Channel).
  • the uplink communication channel has PUSCH (Physical Uplink Shared Channel) as an uplink data channel shared by each user terminal and PUCCH (Physical Uplink Control Channel) as an uplink control channel. Transmission data and higher control information are transmitted by this PUSCH. Also, downlink reception quality information (CQI), ACK / NACK, and the like are transmitted by PUCCH.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the radio base station apparatus 20 includes a transmission / reception antenna 201, an amplifier unit 202, a transmission / reception unit (notification unit) 203, a baseband signal processing unit 204, a call processing unit 205, and a transmission path interface 206. Transmission data transmitted from the radio base station apparatus 20 to the user terminal via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 204 via the transmission path interface 206.
  • the downlink data channel signal is transmitted from the RCP layer, such as PDCP layer processing, transmission data division / combination, RLC (Radio Link Control) retransmission control transmission processing, and MAC (Medium Access).
  • RCP layer such as PDCP layer processing, transmission data division / combination, RLC (Radio Link Control) retransmission control transmission processing, and MAC (Medium Access).
  • Control Retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, and precoding processing are performed.
  • transmission processing such as channel coding and inverse fast Fourier transform is performed on the signal of the physical downlink control channel that is the downlink control channel.
  • the baseband signal processing unit 204 notifies the control information for each user terminal 10 to wirelessly communicate with the radio base station apparatus 20 to the user terminals 10 connected to the same cell through the broadcast channel.
  • the information for communication in the cell includes, for example, system bandwidth in uplink or downlink, and root sequence identification information (Root Sequence) for generating a random access preamble signal in PRACH (Physical Random Access Channel). Index) etc. are included.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band.
  • the amplifier unit 202 amplifies the radio frequency signal subjected to frequency conversion and outputs the amplified signal to the transmission / reception antenna 201.
  • the transmission / reception part 203 comprises the receiving means which receives the information of the phase difference between several cells, and the uplink signal containing PMI, and the transmission means which carries out cooperative multipoint transmission of the transmission signal.
  • a radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202 and is frequency-converted by the transmission / reception unit 203 to be baseband.
  • the signal is converted into a signal and input to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs FFT processing, IDFT processing, error correction decoding, MAC retransmission control reception processing, RLC layer, PDCP layer reception processing on transmission data included in the baseband signal received in the uplink I do.
  • the decoded signal is transferred to the higher station apparatus 30 via the transmission path interface 206.
  • the call processing unit 205 performs call processing such as communication channel setting and release, state management of the radio base station apparatus 20, and radio resource management.
  • FIG. 9 is a block diagram showing a configuration of a baseband signal processing unit in the radio base station apparatus shown in FIG.
  • the baseband signal processing unit 204 mainly includes a layer 1 processing unit 2041, a MAC processing unit 2042, an RLC processing unit 2043, and a radio resource notification unit 2044.
  • the layer 1 processing unit 2041 mainly performs processing related to the physical layer. For example, the layer 1 processing unit 2041 performs channel decoding, discrete Fourier transform (DFT: Discrete Fourier Transform), frequency demapping, and inverse fast Fourier transform (IFFT: Inverse Fast Fourier Transform) on a signal received on the uplink. Processing such as data demodulation. Further, the layer 1 processing unit 2041 performs processing such as channel coding, data modulation, frequency mapping, and inverse fast Fourier transform (IFFT) on a signal transmitted in the downlink.
  • DFT discrete Fourier transform
  • IFFT Inverse Fast Fourier Transform
  • the MAC processing unit 2042 performs processing such as retransmission control at the MAC layer for a signal received in the uplink, scheduling for the uplink / downlink, selection of a PUSCH / PDSCH transmission format, selection of a PUSCH / PDSCH resource block, and the like. .
  • the RLC processing unit 2043 performs packet division, packet combination, retransmission control in the RLC layer, etc. on packets received on the uplink / packets transmitted on the downlink.
  • the radio resource notification unit 2044 includes an uplink signal (uplink control channel signal, SRS) of a user terminal connected to a base station (for example, a macro base station) of the first cell, and a low transmission power base station (LPN) of the second cell.
  • the user terminal connected to the uplink information (uplink control channel signal, SRS) of the user terminal connected to the CoMP base station) is notified to the user terminal.
  • the radio resource information includes radio resource information on where to place the uplink signal (information on which radio resource the terminal can use), and uplink of user terminals connected to other base stations. Information on the radio resource where the link signal is arranged (information on which radio resource the terminal itself cannot use) is included.
  • the user terminal 10 includes a transmission / reception antenna 101, an amplifier unit 102, a transmission / reception unit (reception unit) 103, a baseband signal processing unit 104, and an application unit 105.
  • a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102, frequency-converted by the transmission / reception unit 103, and converted into a baseband signal.
  • the baseband signal is subjected to FFT processing, error correction decoding, retransmission control reception processing, and the like by the baseband signal processing unit 104.
  • downlink transmission data is transferred to the application unit 105.
  • the application unit 105 performs processing related to layers higher than the physical layer and the MAC layer. Also, the broadcast information in the downlink data is also transferred to the application unit 105.
  • uplink transmission data is input from the application unit 105 to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs mapping processing, retransmission control (HARQ) transmission processing, channel coding, DFT processing, and IFFT processing.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 into a radio frequency band. Thereafter, the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits it from the transmission / reception antenna 101.
  • the transmission / reception part 103 comprises the transmission means which transmits the information of a phase difference, the information of a connected cell, the selected PMI etc. to the radio base station apparatus eNB of multiple cells, and the receiving means which receives a downlink signal.
  • FIG. 11 is a block diagram showing a configuration of a baseband signal processing unit in the user terminal shown in FIG.
  • the baseband signal processing unit 104 mainly includes a layer 1 processing unit 1041, a MAC processing unit 1042, an RLC processing unit 1043, and a signal multiplexing unit 1044.
  • the layer 1 processing unit 1041 mainly performs processing related to the physical layer. For example, the layer 1 processing unit 1041 performs processing such as channel decoding, discrete Fourier transform (DFT), frequency demapping, inverse fast Fourier transform (IFFT), and data demodulation on a signal received on the downlink. Also, the layer 1 processing unit 1041 performs processing such as channel coding, data modulation, frequency mapping, and inverse fast Fourier transform (IFFT) on a signal transmitted on the uplink.
  • DFT discrete Fourier transform
  • IFFT inverse fast Fourier transform
  • IFFT inverse fast Fourier transform
  • the MAC processing unit 1042 performs retransmission control (HARQ) at the MAC layer on a signal received on the downlink, analysis of downlink scheduling information (specification of PDSCH transmission format, identification of PDSCH resource block), and the like. Further, the MAC processing unit 1042 performs processing such as MAC retransmission control for signals transmitted on the uplink, analysis of uplink scheduling information (specification of PUSCH transmission format, specification of PUSCH resource block), and the like.
  • HARQ retransmission control
  • the RLC processing unit 1043 performs packet division, packet combination, retransmission control at the RLC layer, etc. on packets received on the downlink / packets transmitted on the uplink.
  • the signal multiplexing unit 1044 arranges an uplink signal (uplink control channel signal, SRS) in the radio resource based on the radio resource information notified from the base station.
  • the macro UE places an uplink signal (uplink control channel signal, SRS) in the radio resource based on the radio resource information notified from the macro base station, and the LPN-UE transmits the radio resource information notified from the LPN.
  • the uplink signal (uplink control channel signal, SRS) is allocated to the radio resource based on the base station, and the CoMP-UE transmits the uplink signal (uplink control channel signal based on the radio resource information notified from the base station when CoMP is applied.
  • SRS are arranged in radio resources.
  • the macro base station includes an uplink signal (uplink control channel signal, SRS) of the macro UE connected to the macro base station, and an LPN-UE or CoMP- connected to the LPN or CoMP base station.
  • the macro UE is notified of radio resource information (radio resource information indicating the arrangement position shown in FIGS. 3 to 6) obtained by orthogonalizing the uplink signals (uplink control channel signal, SRS) of the UE.
  • the LPN is a radio resource in which an uplink signal (uplink control channel signal, SRS) of a macro UE and an uplink signal (uplink control channel signal, SRS) of an LPN-UE or CoMP-UE are orthogonalized with each other.
  • the uplink signal (uplink control channel signal, SRS) of the macro UE and the uplink signal (uplink control channel signal, SRS) of the LPN-UE or CoMP-UE are mutually orthogonalized.
  • the radio resource information is notified to the CoMP-UE.
  • an uplink signal (uplink control channel signal, SRS) is arranged in the radio resource based on the radio resource information notified from the macro base station, and the arranged uplink signal is transmitted to the macro base station.
  • an uplink signal (uplink control channel signal, SRS) is arranged in the radio resource based on the radio resource information notified from the LPN, and the arranged uplink signal is transmitted to the LPN.
  • an uplink signal (uplink control channel signal, SRS) is arranged in a radio resource based on radio resource information notified from the CoMP base station, and the arranged uplink signal is sent to the CoMP base station. Send.
  • the radio resource information for orthogonalizing the uplink signal of the macro UE and the uplink signal of the LPN-UE or CoMP-UE is set to the macro base station, the LPN, or the CoMP base.
  • a user terminal connected to each of the stations, and in the user terminal, an uplink signal is arranged in a radio resource based on the radio resource information, and the arranged uplink signal is assigned to a macro base station, LPN, or CoMP base Send to the station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 ヘテロジニアスネットワークにおいて、低送信電力基地局に接続するユーザ端末の上り信号に対する干渉を低減すること。本発明の無線通信方法は、所定のセル半径を有する第1セルの無線基地局装置において、マクロ基地局に接続するユーザ端末の上りリンク信号と、マクロセルのセル半径よりも小さいセル半径を有するLPNセルの低送信電力基地局に接続するユーザ端末の上りリンク信号とが互いに直交化された無線リソースの情報をユーザ端末に通知し、ユーザ端末において、マクロ基地局又はLPNから通知された無線リソース情報に基づいて上りリンク信号を無線リソースに配置し、配置した上りリンク信号をマクロ基地局又はLPNに送信することを特徴とする。

Description

無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおける無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいては、周波数利用効率の向上、データレートの向上を目的として、HSDPA(High Speed Downlink Packet Access)やHSUPA(High Speed Uplink Packet Access)を採用することにより、W-CDMA(Wideband‐Code Division Multiple Access)をベースとしたシステムの特徴を最大限に引き出すことが行われている。このUMTSネットワークについては、更なる高速データレート、低遅延などを目的としてLTE(Long Term Evolution)が検討されている(非特許文献1)。
 第3世代のシステムは、概して5MHzの固定帯域を用いて、下り回線で最大2Mbps程度の伝送レートを実現できる。一方、LTE方式のシステムでは、1.4MHz~20MHzの可変帯域を用いて、下り回線で最大300Mbps及び上り回線で75Mbps程度の伝送レートを実現できる。また、UMTSネットワークにおいては、更なる広帯域化及び高速化を目的として、LTEの後継のシステムも検討されている(例えば、LTEアドバンスト(LTE-A)システム)。
 LTE-Aシステムにおいて、ヘテロジニアスネットワーク(HetNet)での性能改善技術が検討されている。このヘテロジニアスネットワークとは、従来のマクロ基地局(マクロセルの無線基地局装置)に加え、ピコ基地局(ピコセルの無線基地局装置)、フェムト基地局、RRH(Remote Radio Head)基地局などの送信電力の小さい様々な形態の基地局(低送信電力基地局)を用いたオーバレイ型ネットワークをいう。このヘテロジニアスネットワークは、ローカルエリアネットワークの重要性を鑑みて、システム容量のさらなる増大を実現する手法として期待されている。
3GPP, TR25.912 (V7.1.0), "Feasibility study for Evolved UTRA and UTRAN", Sept. 2006
 ヘテロジニアス環境では、マクロ基地局の送信電力と低送信電力基地局の送信電力との間に大きな差があり、マクロ基地局がカバーするセルエリアと低送信電力基地局がカバーするセルエリアとに大きな差があることから、特にマクロ基地局に接続するユーザ端末(UE)が上りリンクで送信する制御チャネル及び参照信号(Sounding Reference Signal)について、低送信電力基地局に接続するユーザ端末の上り制御チャネル及び参照信号に対して干渉となってしまう問題がある。
 本発明はかかる点に鑑みてなされたものであり、ヘテロジニアスネットワークにおいて、低送信電力基地局に接続するユーザ端末の上り信号に対する干渉を低減することができる無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法を提供することを目的とする。
 本発明の無線通信システムは、所定のセル半径を有する第1セルと、前記第1セルのセル半径よりも小さいセル半径を有する第2セルとがオーバレイしたネットワーク構成を採り、前記第1セルの無線基地局装置に接続するユーザ端末の上りリンク信号と、前記第2セルの低送信電力基地局装置に接続するユーザ端末の上りリンク信号とが互いに直交化された無線リソースの情報をユーザ端末に通知する通知部を備えた無線基地局装置と、前記無線リソース情報に基づいて上りリンク信号を無線リソースに配置する配置部を備えたユーザ端末と、を具備することを特徴とする。
 本発明の無線基地局装置は、所定のセル半径を有する第1セルと、前記第1セルのセル半径よりも小さいセル半径を有する第2セルとがオーバレイしたネットワーク構成を採る無線通信システムにおける無線基地局装置であって、前記第1セルの無線基地局装置に接続するユーザ端末の上りリンク信号と、前記第2セルの低送信電力基地局装置に接続するユーザ端末の上りリンク信号とが互いに直交化された無線リソースの情報をユーザ端末に通知する通知部を備えたことを特徴とする。
 本発明のユーザ端末は、所定のセル半径を有する第1セルと、前記第1セルのセル半径よりも小さいセル半径を有する第2セルとがオーバレイしたネットワーク構成を採る無線通信システムにおけるユーザ端末であって、前記第1セルの基地局又は前記第2セルの低送信電力基地局から通知された前記無線リソース情報に基づいて上りリンク信号を無線リソースに配置する配置部と、前記配置した上りリンク信号を前記基地局及び前記第2セルの前記低送信電力基地局装置に送信する送信部と、を備えたことを特徴とする。
 本発明の無線通信方法は、所定のセル半径を有する第1セルと、前記第1セルのセル半径よりも小さいセル半径を有する第2セルとがオーバレイしたネットワーク構成を採る無線通信システムにおける無線通信方法であって、前記第1セルの基地局に接続するユーザ端末の上りリンク信号と、前記第2セルの低送信電力基地局に接続するユーザ端末の上りリンク信号とが互いに直交化された無線リソースの情報をユーザ端末に通知する工程と、前記ユーザ端末において、前記基地局又は低送信電力基地局から通知された無線リソース情報に基づいて上りリンク信号を無線リソースに配置する工程と、前記配置した上りリンク信号を前記基地局及び前記低送信電力基地局に送信する工程と、を具備することを特徴とする。
 本発明によれば、ヘテロジニアスネットワークにおいて、低送信電力基地局に接続するユーザ端末の上り信号に対する干渉を低減することができる。
ネットワーク環境を説明するための図である。 低送信電力基地局に接続するユーザ端末の干渉を説明するための図である。 低送信電力基地局に接続するユーザ端末の上り制御チャネル信号とマクロ基地局に接続するユーザ端末の上り制御チャネル信号との間の直交化を説明するための図である。 CoMP端末の上り制御チャネル信号とマクロ基地局に接続するユーザ端末の上り制御チャネル信号との間の直交化を説明するための図である。 低送信電力基地局に接続するユーザ端末のSRSとマクロ基地局に接続するユーザ端末のSRSとの間の直交化を説明するための図である。 CoMP端末のSRSとマクロ基地局に接続するユーザ端末のSRSとの間の直交化を説明するための図である。 無線通信システムのシステム構成を説明するための図である。 無線基地局装置の全体構成を説明するための図である。 無線基地局装置のベースバンド処理部に対応した機能ブロック図である。 ユーザ端末の全体構成を説明するための図である。 ユーザ端末のベースバンド処理部に対応した機能ブロック図である。
 図1は、ネットワーク環境を説明するための図である。ネットワーク環境としては、図1Aに示すような従来型のセルラ環境であるホモジニアスネットワーク環境と、図1Bに示すような送信電力が異なる様々な形態の送受信ノードを用いたオーバレイ型ネットワークであるヘテロジニアスネットワーク環境がある。
 ホモジニアスネットワークにおいては、図1Aに示すように、無線基地局装置(eNB)同士がX2インターフェースで接続された構成、又は無線基地局装置(eNB)から光ファイバで張り出された遠隔無線装置(RRE:Remote Radio Equipment)を含む構成がある。ホモジニアスネットワークでは、セルの大きさはほぼ同じである。一方、ヘテロジニアス環境においては、図1Bに示すように、所定のセル半径を有するセル(マクロセル)と、マクロセルのセル半径よりも小さいセル半径を有するセル(LPN(Low Power Node)セル)とがオーバレイしている。ここで、LPNセルとは、マクロセルの無線基地局装置(マクロ基地局)に対して送受信する電力と数十dB異なる電力で送受信するノードのセルをいい、具体的には、フェムト基地局のセル、ピコ基地局のセル、リレー装置のセル、RREのセルなどをいう。
 ヘテロジニアスネットワークは、ローカルエリアネットワークの重要性を鑑みて、システム容量のさらなる増大を実現する手法として期待されている。しかしながら、上述したように、ヘテロジニアスネットワークでは、図2に示すように、マクロ基地局に接続するユーザ端末(マクロUE)が、相対的に大きな送信電力で上りリンク信号、例えば制御チャネル及び参照信号(SRS)を送信し、低送信電力基地局や協調マルチポイント送信適用時の基地局に接続するユーザ端末(LPN-UE、CoMP-UE)が、相対的に小さな(マクロUEに対して数十dB小さい)送信電力で上りリンク信号、例えば制御チャネル及び参照信号(SRS)を送信する。このため、マクロUEの送信する上りリンク信号が、LPN-UEの上りリンク信号に対して干渉となってしまうことがある。
 本発明者は、上記の点に鑑みて、ヘテロジニアスネットワーク環境において、マクロUEの上りリンク信号とLPN-UEの上りリンク信号とを互いに直交化することにより、マクロUEの送信する上りリンク信号がLPN-UEの上りリンク信号に対して干渉となることを防止できることを見出し本発明をするに至った。
 本発明においては、所定のセル半径を有する第1セルの基地局(マクロ基地局)に接続するユーザ端末の上りリンク信号と、第1セルのセル半径よりも小さいセル半径を有する第2セルの低送信電力基地局に接続するユーザ端末の上りリンク信号とを互いに直交化させる。例えば、上りリンク信号としては、上り制御チャネル信号又はサウンディング参照信号などが挙げられる。
 本発明において上りリンク信号を直交化する場合、周波数領域で直交化する方法、時間領域に直交化する方法、周波数領域及び時間領域で直交化する方法がある。図3は、低送信電力基地局(LPN)に接続するユーザ端末用の上り制御チャネル信号と、マクロ基地局に接続するユーザ端末用の上り制御チャネル信号とを直交化した状態を示している。図3Aに示す周波数領域で直交化する方法では、上り制御チャネル信号を配置する無線リソースにおいて、LPNに接続するユーザ端末用の上り制御チャネル信号と、マクロ基地局に接続するユーザ端末用の上り制御チャネル信号とを異なる周波数領域に配置する。図3Bに示す時間領域で直交化する方法では、上り制御チャネル信号を配置する無線リソースにおいて、LPNに接続するユーザ端末用の上り制御チャネル信号と、マクロ基地局に接続するユーザ端末用の上り制御チャネル信号とを異なる時間領域(例えば、異なるサブフレーム)に配置する。図3Cに示す周波数領域及び時間領域で直交化する方法では、上り制御チャネル信号を配置する無線リソースにおいて、LPNに接続するユーザ端末用の上り制御チャネル信号と、マクロ基地局に接続するユーザ端末用の上り制御チャネル信号とを異なる周波数領域及び異なる時間領域に配置する。
 3GPP(3rd Generation Partnership Project)では、セル間直交化を実現するための技術として、協調マルチポイント送信(CoMP:Coordinated Multiple Point Transmission)が検討されている。CoMP送信では、1つあるいは複数のUEに対して複数のセルが協調して送信の信号処理を行う。具体的には、下りリンク伝送では、プリコーディングを適用する複数セル同時送信、協調スケジューリング/ビームフォーミングなどが検討されている。3GPPでは、上述したセル間直交化技術であるCoMP送信をヘテロジニアスネットワークにおいても適用することが検討されている。この場合においても、マクロUEの送信する上りリンク信号がLPN-UEの上りリンク信号に対して干渉となることが予想される。なお、CoMP適用の際には、基地局からユーザ端末にハイヤレイヤシグナリングでCoMP適用が通知される。
 したがって、このような場合においても、本発明を適用することが考えられる。図4は、CoMP適用時のユーザ端末用の上り制御チャネル信号と、マクロ基地局に接続するユーザ端末用の上り制御チャネル信号とを直交化した状態を示している。図4Aに示す周波数領域で直交化する方法では、上り制御チャネル信号を配置する無線リソースにおいて、CoMP適用時のユーザ端末用の上り制御チャネル信号と、マクロ基地局に接続するユーザ端末用の上り制御チャネル信号とを異なる周波数領域に配置する。図4Bに示す時間領域で直交化する方法では、上り制御チャネル信号を配置する無線リソースにおいて、CoMP適用時のユーザ端末用の上り制御チャネル信号と、マクロ基地局に接続するユーザ端末用の上り制御チャネル信号とを異なる時間領域(例えば、異なるサブフレーム)に配置する。図4Cに示す周波数領域及び時間領域で直交化する方法では、上り制御チャネル信号を配置する無線リソースにおいて、CoMP適用時のユーザ端末用の上り制御チャネル信号と、マクロ基地局に接続するユーザ端末用の上り制御チャネル信号とを異なる周波数領域及び異なる時間領域に配置する。
 また、SRSについても上り制御チャネル信号と同じに本発明を適用することができる。図5は、LPNに接続するユーザ端末用のSRSと、マクロ基地局に接続するユーザ端末用のSRSとを直交化した状態を示している。図5Aに示す周波数領域で直交化する方法では、SRSを配置する無線リソースにおいて、LPNに接続するユーザ端末用のSRSと、マクロ基地局に接続するユーザ端末用のSRSとを異なる周波数領域に配置する。図5Bに示す時間領域で直交化する方法では、SRSを配置する無線リソースにおいて、LPNに接続するユーザ端末用のSRSと、マクロ基地局に接続するユーザ端末用のSRSとを異なる時間領域(例えば、異なるサブフレーム)に配置する。図5Cに示す周波数領域及び時間領域で直交化する方法では、SRSを配置する無線リソースにおいて、LPNに接続するユーザ端末用のSRSと、マクロ基地局に接続するユーザ端末用のSRSとを異なる周波数領域及び異なる時間領域に配置する。
 図6は、CoMP適用時のユーザ端末用のSRSと、マクロ基地局に接続するユーザ端末用のSRSとを直交化した状態を示している。図6Aに示す周波数領域で直交化する方法では、SRSを配置する無線リソースにおいて、CoMP適用時のユーザ端末用のSRSと、マクロ基地局に接続するユーザ端末用のSRSとを異なる周波数領域に配置する。図6Bに示す時間領域で直交化する方法では、SRSを配置する無線リソースにおいて、CoMP適用時のユーザ端末用のSRSと、マクロ基地局に接続するユーザ端末用のSRSとを異なる時間領域(例えば、異なるサブフレーム)に配置する。図6Cに示す周波数領域及び時間領域で直交化する方法では、SRSを配置する無線リソースにおいて、CoMP適用時のユーザ端末用のSRSと、マクロ基地局に接続するユーザ端末用のSRSとを異なる周波数領域及び異なる時間領域に配置する。
 本発明においては、図3~図6に示すような配置でユーザ端末から上りリンク信号を送信するようにするために、無線基地局装置(マクロ基地局、LPN)から無線リソース情報をユーザ端末に通知する。この無線リソース情報とは、第1セルの基地局に接続するユーザ端末の上りリンク信号と、第2セルの低送信電力基地局に接続するユーザ端末の上りリンク信号とが互いに直交化された無線リソースの情報をいう。したがって、無線リソース情報としては、上りリンク信号をどこに配置するかの無線リソースの情報(自端末がどこの無線リソースを使用できるかの情報)であっても良く、他の基地局に接続されているユーザ端末の上りリンク信号がどこに配置されるかの無線リソースの情報(自端末がどこの無線リソースを使用できないかの情報)であっても良い。また、これらの無線リソースの情報を組み合わせて通知しても良い。
 なお、無線リソース情報を通知せずに、マクロUEの上りリンク信号もしくはSRSと、LPN-UEもしくはCoMP-UEの上りリンク信号もしくはSRSとを互いに直交化させる配置を固定的にしても良い。
 例えば、図3及び図4に示す場合においては、(1)LPNに接続するユーザ端末(LPN-UE)もしくはCoMP適用時のユーザ端末(CoMP-UE)には、自端末で上り制御チャネル信号を配置できる無線リソースの情報がLPNもしくはCoMP適用している基地局(CoMP基地局)から通知され、マクロ基地局に接続するユーザ端末(マクロUE)には、マクロUEで上り制御チャネル信号を配置できる無線リソースの情報がマクロ基地局から通知される。あるいは、(2)LPNに接続するユーザ端末(LPN-UE)もしくはCoMP適用時のユーザ端末(CoMP-UE)には、自端末で上り制御チャネル信号を配置できない無線リソースの情報(マクロUEが使用する無線リソースの情報)がLPNもしくはCoMP基地局から通知され、マクロ基地局に接続するユーザ端末(マクロUE)には、マクロUEで上り制御チャネル信号を配置できない無線リソースの情報(LPN-UEが使用する無線リソースの情報)がマクロ基地局から通知される。なお、(2)の場合においては、LPN-UEもしくはCoMP-UEに、自端末で上り制御チャネル信号を配置できない無線リソースの情報(マクロUEが使用する無線リソースの情報)をLPNもしくはCoMP基地局から通知し、マクロUEには無線リソース情報を通知しなくても良い。
 例えば、図5及び図6に示す場合においては、(1)LPN-UEもしくはCoMP-UEには、自端末でSRSを配置できる無線リソースの情報がLPNもしくはCoMP基地局から通知され、マクロUEには、マクロUEでSRSを配置できる無線リソースの情報がマクロ基地局から通知される。あるいは、(2)LPN-UEもしくはCoMP-UEには、自端末でSRSを配置できない無線リソースの情報(マクロUEが使用する無線リソースの情報)がLPNもしくはCoMP基地局から通知され、マクロUEには、マクロUEでSRSを配置できない無線リソースの情報(LPN-UEが使用する無線リソースの情報)がマクロ基地局から通知される。なお、(2)の場合においては、LPN-UEもしくはCoMP-UEに、自端末でSRSを配置できない無線リソースの情報(マクロUEが使用する無線リソースの情報)をLPNもしくはCoMP基地局から通知し、マクロUEには無線リソース情報を通知しなくても良い。
 マクロ基地局からマクロUEへの無線リソース情報の通知、CoMP基地局からCoMP-UEへの無線リソース情報の通知、LPNからLPN-UEへの無線リソース情報の通知は、ハイヤレイヤシグナリングにより行う。また、必要に応じて、上述した無線リソースの情報をマクロ基地局-LPNもしくはCoMP基地局間で光ファイバ、無線バックホールリンク、X2インターフェースにより送受信しても良い。
 なお、本発明において、マクロ基地局と低送信電力基地局(LPN)又はCoMP基地局との間は、光ファイバで接続されてもよいし、無線リンクで接続されていてもよいし、X2インターフェースなどの有線リンクで接続されていてもよい。また、マクロ基地局とLPN又はCoMP基地局との関係は、主従の関係であってもよいし、互いに独立した関係であってもよい。マクロ基地局とLPN又はCoMP基地局とが主従の関係にある場合とは、例えば、LPN又はCoMP基地局によって形成されるセルがPhantom cellである場合などである。 
 このように、本発明においては、マクロUEの上りリンク信号とLPN-UEやCoMP-UEの上りリンク信号とを互いに直交化する無線リソース情報をマクロ基地局、LPN、又はCoMP基地局からユーザ端末に通知し、当該ユーザ端末において、この無線リソース情報に基づいて上りリンク信号を無線リソースに配置し、配置した上りリンク信号をマクロ基地局、LPN、又はCoMP基地局に送信する。これにより、ヘテロジニアスネットワークにおいて、低送信電力基地局やCoMP基地局に接続するユーザ端末の上り信号に対する干渉を低減することができる。
 以下に、本発明の実施の形態に係る無線通信システムについて詳細に説明する。図7は、本実施の形態に係る無線通信システムのシステム構成の説明図である。なお、図7に示す無線通信システムは、例えば、LTEシステム或いは、SUPER 3Gが包含されるシステムである。この無線通信システムでは、LTEシステムのシステム帯域を一単位とする複数の基本周波数ブロックを一体としたキャリアアグリゲーションが用いられている。また、この無線通信システムは、IMT-Advancedと呼ばれても良く、4Gと呼ばれても良い。
 図7に示すように、無線通信システム1は、無線基地局装置20A,20Bと、この無線基地局装置20A,20Bと通信する複数の第1、第2のユーザ端末10A,10Bとを含んで構成されている。無線基地局装置20A,20Bは、上位局装置30と接続され、この上位局装置30は、コアネットワーク40と接続される。また、無線基地局装置20A,20Bは、有線接続又は無線接続により相互に接続されている。第1、第2のユーザ端末10A,10Bは、セルC1,C2において無線基地局装置20A,20Bと通信を行うことができる。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。なお、それぞれのセルC1,C2は、それぞれ図1Bに示すマクロセルのように、ヘテロジニアスネットワーク構成を採っており、マクロセルにLPNのセルがオーバレイしている。また、マクロセル内では、必要に応じて、複数の基地局によりCoMP送信の制御が行われる。
 第1、第2のユーザ端末10A,10Bは、LTE端末及びLTE-A端末を含むが、以下においては、特段の断りがない限り第1、第2のユーザ端末として説明を進める。また、説明の便宜上、無線基地局装置20A,20Bと無線通信するのは第1、第2のユーザ端末10A,10Bであるものとして説明するが、より一般的にはユーザ端末も固定端末装置も含むユーザ装置(UE)でよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用されるが、上りリンクの無線アクセス方式はこれに限定されない。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。
 下りリンクの通信チャネルは、第1、第2のユーザ端末10A,10Bで共有される下りデータチャネルとしてのPDSCH(Physical Downlink Shared Channel)と、下りL1/L2制御チャネル(PDCCH、PCFICH、PHICH)とを有する。PDSCHにより、送信データ及び上位制御情報が伝送される。PDCCH(Physical Downlink Control Channel)により、PDSCHおよびPUSCHのスケジューリング情報等が伝送される。PCFICH(Physical Control Format Indicator Channel)により、PDCCHに用いるOFDMシンボル数が伝送される。PHICH(Physical Hybrid-ARQ Indicator Channel)により、PUSCHに対するHARQのACK/NACKが伝送される。
 上りリンクの通信チャネルは、各ユーザ端末で共有される上りデータチャネルとしてのPUSCH(Physical Uplink Shared Channel)と、上りリンクの制御チャネルであるPUCCH(Physical Uplink Control Channel)とを有する。このPUSCHにより、送信データや上位制御情報が伝送される。また、PUCCHにより、下りリンクの受信品質情報(CQI)、ACK/NACKなどが伝送される。
 図8を参照しながら、本実施の形態に係る無線基地局装置の全体構成について説明する。なお、無線基地局装置20A,20Bは、同様な構成であるため、無線基地局装置20として説明する。また、後述する第1、第2のユーザ端末10A,10Bも、同様な構成であるため、ユーザ端末10として説明する。無線基地局装置20は、送受信アンテナ201と、アンプ部202と、送受信部(通知部)203と、ベースバンド信号処理部204と、呼処理部205と、伝送路インターフェース206とを備えている。下りリンクにより無線基地局装置20からユーザ端末に送信される送信データは、上位局装置30から伝送路インターフェース206を介してベースバンド信号処理部204に入力される。
 ベースバンド信号処理部204において、下りデータチャネルの信号は、PDCPレイヤの処理、送信データの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、例えば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT)処理、プリコーディング処理が行われる。また、下りリンク制御チャネルである物理下りリンク制御チャネルの信号に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われる。
 また、ベースバンド信号処理部204は、報知チャネルにより、同一セルに接続するユーザ端末10に対して、各ユーザ端末10が無線基地局装置20との無線通信するための制御情報を通知する。当該セルにおける通信のための情報には、例えば、上りリンク又は下りリンクにおけるシステム帯域幅や、PRACH(Physical Random Access Channel)におけるランダムアクセスプリアンブルの信号を生成するためのルート系列の識別情報(Root Sequence Index)などが含まれる。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。アンプ部202は周波数変換された無線周波数信号を増幅して送受信アンテナ201へ出力する。なお、送受信部203は、複数セル間の位相差の情報及びPMIを含む上りリンク信号を受信する受信手段、及び送信信号を協調マルチポイント送信する送信手段を構成する。
 一方、上りリンクによりユーザ端末10から無線基地局装置20に送信される信号については、送受信アンテナ201で受信された無線周波数信号がアンプ部202で増幅され、送受信部203で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部204に入力される。
 ベースバンド信号処理部204は、上りリンクで受信したベースバンド信号に含まれる送信データに対して、FFT処理、IDFT処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理を行う。復号された信号は伝送路インターフェース206を介して上位局装置30に転送される。
 呼処理部205は、通信チャネルの設定や解放等の呼処理や、無線基地局装置20の状態管理や、無線リソースの管理を行う。
 図9は、図8に示す無線基地局装置におけるベースバンド信号処理部の構成を示すブロック図である。ベースバンド信号処理部204は、レイヤ1処理部2041と、MAC処理部2042と、RLC処理部2043と、無線リソース通知部2044とから主に構成されている。
 レイヤ1処理部2041は、主に物理レイヤに関する処理を行う。レイヤ1処理部2041は、例えば、上りリンクで受信した信号に対して、チャネル復号化、離散フーリエ変換(DFT:Discrete Fourier Transform)、周波数デマッピング、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)、データ復調などの処理を行う。また、レイヤ1処理部2041は、下りリンクで送信する信号に対して、チャネル符号化、データ変調、周波数マッピング、逆高速フーリエ変換(IFFT)などの処理を行う。
 MAC処理部2042は、上りリンクで受信した信号に対するMACレイヤでの再送制御、上りリンク/下りリンクに対するスケジューリング、PUSCH/PDSCHの伝送フォーマットの選択、PUSCH/PDSCHのリソースブロックの選択などの処理を行う。
 RLC処理部2043は、上りリンクで受信したパケット/下りリンクで送信するパケットに対して、パケットの分割、パケットの結合、RLCレイヤでの再送制御などを行う。
 無線リソース通知部2044は、第1セルの基地局(例えば、マクロ基地局)に接続するユーザ端末の上りリンク信号(上り制御チャネル信号、SRS)と、第2セルの低送信電力基地局(LPN、CoMP基地局)に接続するユーザ端末の上りリンク信号(上り制御チャネル信号、SRS)とが互いに直交化された無線リソースの情報をユーザ端末に通知する。無線リソースの情報としては、上りリンク信号をどこに配置するかの無線リソースの情報(自端末がどこの無線リソースを使用できるかの情報)や、他の基地局に接続されているユーザ端末の上りリンク信号がどこに配置されるかの無線リソースの情報(自端末がどこの無線リソースを使用できないかの情報)が挙げられる。
 次に、図10を参照しながら、本実施の形態に係るユーザ端末の全体構成について説明する。LTE端末もLTE-A端末もハードウエアの主要部構成は同じであるので、区別せずに説明する。ユーザ端末10は、送受信アンテナ101と、アンプ部102と、送受信部(受信部)103と、ベースバンド信号処理部104と、アプリケーション部105とを備えている。
 下りリンクのデータについては、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅され、送受信部103で周波数変換されてベースバンド信号に変換される。このベースバンド信号は、ベースバンド信号処理部104でFFT処理や、誤り訂正復号、再送制御の受信処理等がなされる。この下りリンクのデータの内、下りリンクの送信データは、アプリケーション部105に転送される。アプリケーション部105は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。また、下りリンクのデータの内、報知情報も、アプリケーション部105に転送される。
 一方、上りリンクの送信データは、アプリケーション部105からベースバンド信号処理部104に入力される。ベースバンド信号処理部104においては、マッピング処理、再送制御(HARQ)の送信処理や、チャネル符号化、DFT処理、IFFT処理を行う。送受信部103は、ベースバンド信号処理部104から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101より送信する。なお、送受信部103は、位相差の情報、接続セルの情報、選択されたPMIなどを複数セルの無線基地局装置eNBに送信する送信手段、及び下りリンク信号を受信する受信手段を構成する。
 図11は、図10に示すユーザ端末におけるベースバンド信号処理部の構成を示すブロック図である。ベースバンド信号処理部104は、レイヤ1処理部1041と、MAC処理部1042と、RLC処理部1043と、信号多重部1044とから主に構成されている。
 レイヤ1処理部1041は、主に物理レイヤに関する処理を行う。レイヤ1処理部1041は、例えば、下りリンクで受信した信号に対して、チャネル復号化、離散フーリエ変換(DFT)、周波数デマッピング、逆高速フーリエ変換(IFFT)、データ復調などの処理を行う。また、レイヤ1処理部1041は、上りリンクで送信する信号に対して、チャネル符号化、データ変調、周波数マッピング、逆高速フーリエ変換(IFFT)などの処理を行う。
 MAC処理部1042は、下りリンクで受信した信号に対するMACレイヤでの再送制御(HARQ)、下りスケジューリング情報の解析(PDSCHの伝送フォーマットの特定、PDSCHのリソースブロックの特定)などを行う。また、MAC処理部1042は、上りリンクで送信する信号に対するMAC再送制御、上りスケジューリング情報の解析(PUSCHの伝送フォーマットの特定、PUSCHのリソースブロックの特定)などの処理を行う。
 RLC処理部1043は、下りリンクで受信したパケット/上りリンクで送信するパケットに対して、パケットの分割、パケットの結合、RLCレイヤでの再送制御などを行う。
 信号多重部1044は、基地局から通知された無線リソース情報に基づいて上りリンク信号(上り制御チャネル信号、SRS)を無線リソースに配置する。例えば、マクロUEは、マクロ基地局から通知された無線リソース情報に基づいて上りリンク信号(上り制御チャネル信号、SRS)を無線リソースに配置し、LPN-UEは、LPNから通知された無線リソース情報に基づいて上りリンク信号(上り制御チャネル信号、SRS)を無線リソースに配置し、CoMP-UEは、CoMP適用時の基地局から通知された無線リソース情報に基づいて上りリンク信号(上り制御チャネル信号、SRS)を無線リソースに配置する。
 上記構成を有する無線通信システムにおいて、マクロ基地局は、マクロ基地局に接続するマクロUEの上りリンク信号(上り制御チャネル信号、SRS)と、LPN又はCoMP基地局に接続するLPN-UE又はCoMP-UEの上りリンク信号(上り制御チャネル信号、SRS)とが互いに直交化された無線リソースの情報(図3~図6に示す配置位置を示す無線リソース情報)をマクロUEに通知する。同様に、LPNは、マクロUEの上りリンク信号(上り制御チャネル信号、SRS)と、LPN-UE又はCoMP-UEの上りリンク信号(上り制御チャネル信号、SRS)とが互いに直交化された無線リソースの情報をLPN-UEに通知する。同様に、CoMP基地局は、マクロUEの上りリンク信号(上り制御チャネル信号、SRS)と、LPN-UE又はCoMP-UEの上りリンク信号(上り制御チャネル信号、SRS)とが互いに直交化された無線リソースの情報をCoMP-UEに通知する。
 マクロUEにおいては、マクロ基地局から通知された無線リソース情報に基づいて上りリンク信号(上り制御チャネル信号、SRS)を無線リソースに配置し、配置した上りリンク信号をマクロ基地局に送信する。同様に、LPN-UEにおいては、LPNから通知された無線リソース情報に基づいて上りリンク信号(上り制御チャネル信号、SRS)を無線リソースに配置し、配置した上りリンク信号をLPNに送信する。同様に、CoMP-UEにおいては、CoMP基地局から通知された無線リソース情報に基づいて上りリンク信号(上り制御チャネル信号、SRS)を無線リソースに配置し、配置した上りリンク信号をCoMP基地局に送信する。
 このように、本発明の無線通信方法においては、マクロUEの上りリンク信号とLPN-UEやCoMP-UEの上りリンク信号とを互いに直交化する無線リソース情報をマクロ基地局、LPN、又はCoMP基地局からそれぞれ接続しているユーザ端末に通知し、当該ユーザ端末において、この無線リソース情報に基づいて上りリンク信号を無線リソースに配置し、配置した上りリンク信号をマクロ基地局、LPN、又はCoMP基地局に送信する。これにより、ヘテロジニアスネットワークにおいて、低送信電力基地局やCoMP基地局に接続するユーザ端末の上り信号に対する干渉を低減することができる。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2011年10月3日出願の特願2011-219464に基づく。この内容は、全てここに含めておく。

Claims (9)

  1.  所定のセル半径を有する第1セルと、前記第1セルのセル半径よりも小さいセル半径を有する第2セルとがオーバレイしたネットワーク構成を採る無線通信システムであって、
     前記第1セルの基地局に接続するユーザ端末の上りリンク信号と、前記第2セルの低送信電力基地局に接続するユーザ端末の上りリンク信号とが互いに直交化された無線リソースの情報をユーザ端末に通知する通知部を備えた無線基地局装置と、
     前記無線リソース情報に基づいて上りリンク信号を無線リソースに配置する配置部を備えたユーザ端末と、
    を具備することを特徴とする無線通信システム。
  2.  前記上りリンク信号が時間領域及び/又は周波数領域で直交化されたことを特徴とする請求項1記載の無線通信システム。
  3.  前記無線基地局装置は、前記無線リソース情報をハイヤレイヤシグナリングでユーザ端末に通知することを特徴とする請求項1又は請求項2記載の無線通信システム。
  4.  前記上りリンク信号が上り制御チャネル信号又はサウンディング参照信号であることを特徴とする請求項1から請求項3のいずれかに記載の無線通信システム。
  5.  前記上り制御チャネル信号が協調マルチポイント送信適用時のユーザ端末の上り制御チャネル信号であることを特徴とする請求項4記載の無線通信システム。
  6.  前記無線基地局装置は、第1セルの基地局及び/又は第2セルの低送信電力基地局であることを特徴とする請求項1から請求項5のいずれかに記載の無線通信システム。
  7.  所定のセル半径を有する第1セルと、前記第1セルのセル半径よりも小さいセル半径を有する第2セルとがオーバレイしたネットワーク構成を採る無線通信システムにおける無線基地局装置であって、
     前記第1セルの基地局に接続するユーザ端末の上りリンク信号と、前記第2セルの低送信電力基地局に接続するユーザ端末の上りリンク信号とが互いに直交化された無線リソースの情報をユーザ端末に通知する通知部を備えたことを特徴とする無線基地局装置。
  8.  所定のセル半径を有する第1セルと、前記第1セルのセル半径よりも小さいセル半径を有する第2セルとがオーバレイしたネットワーク構成を採る無線通信システムにおけるユーザ端末であって、
     前記第1セルの基地局又は前記第2セルの低送信電力基地局から通知された前記無線リソース情報に基づいて上りリンク信号を無線リソースに配置する配置部と、前記配置した上りリンク信号を前記基地局又は前記第2セルの前記低送信電力基地局に送信する送信部と、を備えたことを特徴とするユーザ端末。
  9.  所定のセル半径を有する第1セルと、前記第1セルのセル半径よりも小さいセル半径を有する第2セルとがオーバレイしたネットワーク構成を採る無線通信システムにおける無線通信方法であって、
     前記第1セルの基地局に接続するユーザ端末の上りリンク信号と、前記第2セルの低送信電力基地局に接続するユーザ端末の上りリンク信号とが互いに直交化された無線リソースの情報をユーザ端末に通知する工程と、
     前記ユーザ端末において、前記基地局又は前記低送信電力基地局から通知された無線リソース情報に基づいて上りリンク信号を無線リソースに配置する工程と、前記配置した上りリンク信号を前記基地局又は前記低送信電力基地局に送信する工程と、
    を具備することを特徴とする無線通信方法。
PCT/JP2012/075396 2011-10-03 2012-10-01 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法 WO2013051511A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280048763.2A CN103875300B (zh) 2011-10-03 2012-10-01 无线通信系统、无线基站装置、用户终端以及无线通信方法
JP2013537499A JP5828002B2 (ja) 2011-10-03 2012-10-01 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
US14/346,825 US20140247809A1 (en) 2011-10-03 2012-10-01 Radio communication system, radio base station apparatus, user terminal and radio communication method
EP12838301.5A EP2765820A4 (en) 2011-10-03 2012-10-01 WIRELESS COMMUNICATION SYSTEM, WIRELESS BASE STATION DEVICE, USER TERMINAL, AND WIRELESS COMMUNICATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011219464 2011-10-03
JP2011-219464 2011-10-03

Publications (1)

Publication Number Publication Date
WO2013051511A1 true WO2013051511A1 (ja) 2013-04-11

Family

ID=48043669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075396 WO2013051511A1 (ja) 2011-10-03 2012-10-01 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法

Country Status (5)

Country Link
US (1) US20140247809A1 (ja)
EP (1) EP2765820A4 (ja)
JP (1) JP5828002B2 (ja)
CN (1) CN103875300B (ja)
WO (1) WO2013051511A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022750A1 (ja) * 2013-08-15 2015-02-19 富士通株式会社 無線通信システムにおける通信装置および通信方法
JP7034999B2 (ja) 2014-12-11 2022-03-14 クゥアルコム・インコーポレイテッド Lteおよび超低レイテンシーlte通信において衝突する複数の送信の優先順位決め

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105490788B (zh) * 2014-09-18 2018-12-28 中国移动通信集团公司 一种基于异构网络的探测参考信号复用方法、装置及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005683A2 (en) * 2008-06-16 2010-01-14 Qualcomm Incorporated Jamming graph and its application in network resource assignment
JP2010232743A (ja) * 2009-03-25 2010-10-14 Ntt Docomo Inc 無線基地局及び移動通信方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5361865B2 (ja) * 2008-04-04 2013-12-04 パナソニック株式会社 無線通信移動局装置およびプレコーディング行列使用方法
US8442069B2 (en) * 2008-04-14 2013-05-14 Qualcomm Incorporated System and method to enable uplink control for restricted association networks
JP5219708B2 (ja) * 2008-09-22 2013-06-26 株式会社エヌ・ティ・ティ・ドコモ 移動端末装置、無線基地局装置、無線通信システム及び無線通信方法
WO2010103728A1 (ja) * 2009-03-12 2010-09-16 シャープ株式会社 無線通信システム、端末装置、基地局装置、制御方法、プログラム、および記録媒体
KR101472750B1 (ko) * 2009-04-01 2014-12-15 삼성전자주식회사 계층적 셀 구조에서 간섭 완화 방법 및 그를 수행하는 통신 시스템
US8437298B2 (en) * 2009-07-29 2013-05-07 Qualcomm Incorporated Methods and apparatus for blind interference decrease/cancellation techniques
KR20110049623A (ko) * 2009-11-04 2011-05-12 엘지전자 주식회사 이동통신 시스템에서의 상향링크 코디네이션 방법 및 그 단말
US8433249B2 (en) * 2009-11-06 2013-04-30 Motorola Mobility Llc Interference reduction for terminals operating in heterogeneous wireless communication networks
US9042925B2 (en) * 2009-12-03 2015-05-26 Lg Electronics Inc. Method and apparatus for reducing inter-cell interference in a wireless communication system
US9392609B2 (en) * 2009-12-15 2016-07-12 Lg Electronics Inc. Method and apparatus for removing inter-heterogeneous cell interference
US20120270535A1 (en) * 2009-12-17 2012-10-25 Texas Instruments Incorporated Implicit CSI Feedback for DL Multiuser MIMO Transmission
US8588833B2 (en) * 2010-04-30 2013-11-19 Sharp Laboratories Of America, Inc. Assigning and coordinating uplink reference signals for cooperative communication
KR101931711B1 (ko) * 2010-06-14 2018-12-24 엘지전자 주식회사 다중 노드 시스템에서 간섭 제거 방법 및 이러한 방법을 이용하는 단말
US8837301B2 (en) * 2010-11-08 2014-09-16 Motorola Mobility Llc Interference measurements in enhanced inter-cell interference coordination capable wireless terminals
KR101833829B1 (ko) * 2010-12-23 2018-04-13 엘지전자 주식회사 다중 셀 협력 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
US8693420B2 (en) * 2011-08-10 2014-04-08 Futurewei Technologies, Inc. System and method for signaling and transmitting uplink reference signals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005683A2 (en) * 2008-06-16 2010-01-14 Qualcomm Incorporated Jamming graph and its application in network resource assignment
JP2010232743A (ja) * 2009-03-25 2010-10-14 Ntt Docomo Inc 無線基地局及び移動通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3RD GENERATION PARTNERSHIP PROJECT: "Feasibility Study for Evolved UTRA and UTRAN (3GPP, TR25.912 (V7.1.0)", September 2006 (2006-09-01)
See also references of EP2765820A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022750A1 (ja) * 2013-08-15 2015-02-19 富士通株式会社 無線通信システムにおける通信装置および通信方法
JPWO2015022750A1 (ja) * 2013-08-15 2017-03-02 富士通株式会社 無線通信システムにおける通信装置および通信方法
JP7034999B2 (ja) 2014-12-11 2022-03-14 クゥアルコム・インコーポレイテッド Lteおよび超低レイテンシーlte通信において衝突する複数の送信の優先順位決め

Also Published As

Publication number Publication date
US20140247809A1 (en) 2014-09-04
JPWO2013051511A1 (ja) 2015-03-30
CN103875300B (zh) 2018-04-06
EP2765820A1 (en) 2014-08-13
JP5828002B2 (ja) 2015-12-02
EP2765820A4 (en) 2015-06-03
CN103875300A (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
US11374693B2 (en) Terminal and radio communication method for transmitting and receiving uplink control information (UCI)
JP5437310B2 (ja) 無線基地局装置、移動端末装置、無線通信方法及び無線通信システム
JP6096119B2 (ja) 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
WO2013168561A1 (ja) 無線通信システム、無線基地局装置、ユーザ端末および通信制御方法
US10638502B2 (en) User terminal, radio base station and radio communication method
WO2013147067A1 (ja) 無線通信方法、無線基地局、ユーザ端末及び無線通信システム
WO2016021697A1 (ja) ユーザ端末、無線通信システム及び無線通信方法
WO2014115459A1 (ja) 無線通信システム、無線通信方法、無線基地局及びユーザ端末
JP6326160B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2014069164A1 (ja) 無線通信方法、無線通信システム、無線基地局及びユーザ端末
JPWO2016158537A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
WO2013069759A1 (ja) 無線通信システム、無線通信方法、無線基地局装置及びユーザ端末
WO2012153804A1 (ja) 無線基地局装置、移動端末装置、無線通信方法及び無線通信システム
US9444527B2 (en) Radio communication system, radio base station apparatus, user terminal and radio communication method
WO2012086734A1 (ja) 基地局装置、移動端末装置、及び通信制御方法
US11677521B2 (en) User terminal, radio base station and radio communication method
JP6030882B2 (ja) 無線通信システム、無線基地局装置及び再送制御方法
JP5828002B2 (ja) 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
WO2016190215A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6517978B2 (ja) ユーザ端末及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013537499

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14346825

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012838301

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE