WO2013168561A1 - 無線通信システム、無線基地局装置、ユーザ端末および通信制御方法 - Google Patents

無線通信システム、無線基地局装置、ユーザ端末および通信制御方法 Download PDF

Info

Publication number
WO2013168561A1
WO2013168561A1 PCT/JP2013/061982 JP2013061982W WO2013168561A1 WO 2013168561 A1 WO2013168561 A1 WO 2013168561A1 JP 2013061982 W JP2013061982 W JP 2013061982W WO 2013168561 A1 WO2013168561 A1 WO 2013168561A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
transmission
comp
base station
cells
Prior art date
Application number
PCT/JP2013/061982
Other languages
English (en)
French (fr)
Inventor
聡 永田
和晃 武田
祥久 岸山
リュー リュー
ユー ジャン
シアン ユン
ラン チン
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to US14/399,054 priority Critical patent/US20150110032A1/en
Priority to KR20147031828A priority patent/KR20150016237A/ko
Priority to EP13788432.6A priority patent/EP2849496A4/en
Priority to CN201380024440.4A priority patent/CN104272808A/zh
Publication of WO2013168561A1 publication Critical patent/WO2013168561A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present invention relates to a radio communication system, a radio base station apparatus, a user terminal, and a communication control method in a next generation mobile communication system.
  • HSDPA High Speed Downlink Packet Access
  • HSUPA High Speed Uplink Packet Access
  • CDMA Wideband Code Division Multiple Access
  • the third generation system can achieve a maximum transmission rate of about 2 Mbps on the downlink using generally a fixed bandwidth of 5 MHz.
  • a transmission rate of about 300 Mbps at the maximum in the downlink and about 75 Mbps at the maximum in the uplink can be realized by using a variable band of 1.4 MHz to 20 MHz.
  • LTE-A LTE advanced or LTE enhancement
  • LTE-A Long Term Evolution Advanced Enhanced Mobile Broadband
  • CC Component Carrier
  • a physical downlink shared channel (PDSCH) is specified as a traffic channel
  • a physical downlink control channel (PDCCH: Physical Downlink Control Channel) is specified as a control channel for notifying information necessary for PDSCH reception.
  • PDSCH physical downlink shared channel
  • PDCCH Physical Downlink Control Channel
  • cross-carrier scheduling that performs scheduling from the PDCCH of one primary cell to the PDSCH of a plurality of component carriers (one primary cell + up to five secondary cells) is LTE-A ( Rel.10).
  • the downlink control information transmitted by the PDCCH is defined in detail as a DCI (Downlink Control Information) format. DCI may be called downlink control information transmitted by PDCCH.
  • DCI Downlink Control Information
  • the PDCCH DCI of the secondary cell is allocated to radio resources that can transmit the PDCCH in the primary cell (the region from the first OFDM symbol to a maximum of 3 OFDM symbols, referred to as the control region). . Therefore, in order to make it possible to identify which cell is the PDCCH for PDSCH reception, DCI defines a CIF (Cell Index Field) indicating a cell index.
  • CIF Cell Index Field
  • inter-cell orthogonalization as one promising technique for further improving system performance over the LTE system.
  • LTE-A orthogonalization within a cell is realized by orthogonal multi-access for both uplink and downlink. That is, in the downlink, the user terminals UE (User Equipment) are orthogonalized in the frequency domain.
  • UE User Equipment
  • W-CDMA interference randomization is performed between cells by repeating one-cell frequency.
  • the 3GPP (3 rd Generation Partnership Project)
  • CoMP Coordinated Multi-Point transmission / reception
  • LTA-A Rel.11
  • a plurality of cells perform transmission / reception signal processing in cooperation with one or a plurality of user terminals UE.
  • CoMP transmission includes joint transmission (JT) in which a shared data channel is simultaneously transmitted from a plurality of cells to one user terminal, DPS (Dynamic Point Selection) in which data is transmitted by dynamically switching the transmission cell to the user terminal, There are a plurality of transmission forms such as CS (Coordinate Scheduling) / CB (Coordinate Beamforming) for transmitting a shared data channel only from a cell.
  • JT joint transmission
  • DPS Dynamic Point Selection
  • CS Coordinat Scheduling
  • CB Coordinat Beamforming
  • CoMP when CoMP is applied, a plurality of cells (CoMP sets) transmit data to the user terminal using the same frequency band. Similar to the cross carrier scheduling, the user terminal determines which cell's PDCCH is the received DCI. Need to be identified. Therefore, the radio base station must notify the user terminal of CoMP information for identifying which cell the PDSCH is for receiving the PDSCH, but the CoMP information corresponds to the CoMP form. Change. Moreover, it is possible to set different CoMP sets for different frequency bands, and the CoMP information to be notified to the user terminal becomes more complicated.
  • the present invention has been made in view of this point, and an object of the present invention is to provide a radio communication system, a radio base station apparatus, a user terminal, and a communication control method that realize signaling of cell index information suitable for CoMP transmission / reception technology.
  • the wireless communication system of the present invention is a wireless communication system comprising a plurality of wireless base station devices each forming a cell, and a user terminal connected to each wireless base station device via a wireless link,
  • a plurality of radio base station apparatuses serve as transmission points for CoMP transmission to the user terminal
  • a physical downlink control channel of a plurality of cells is transmitted from the radio base station apparatus of a specific cell.
  • a generating unit that generates downlink control information in which an index of a CoMP set is incorporated in a physical downlink control channel shared among a plurality of cells that perform joint transmission based on a table in which the index of the host is mapped to bit data;
  • a transmission unit that transmits a physical downlink control channel of each cell including the generated downlink control information, and the user terminal, when the transmission mode is applied, Included in the received physical downlink control channel and a receiving unit that receives physical downlink control channels of a plurality of cells from the station apparatus and receives physical downlink shared data channels from all radio base station apparatuses that perform coordinated multipoint transmission
  • the radio base station apparatus in a radio base station apparatus to which a user terminal connects via a radio link, performs CoMP transmission to the user terminal as a transmission point together with other radio base station apparatuses.
  • a physical downlink control channel of a plurality of cells from a specific cell in CoMP transmission an index indicating each coordinated cell serving as a transmission point and each combination of a plurality of cells to be jointly transmitted are indicated.
  • a generating unit that generates downlink control information in which the CoMP set index is incorporated in a physical downlink control channel shared among a plurality of cells jointly transmitted And generate Characterized in that the physical downlink control channel of each cell including a downlink control information to and a transmitting unit for transmitting from the identified cell.
  • the user terminal of the present invention is a user terminal that connects to a plurality of radio base station apparatuses each forming a cell via a radio link, and in the CoMP transmission in which the plurality of radio base station apparatuses perform coordinated multipoint transmission,
  • the physical downlink control channel of a plurality of cells is transmitted from a specific cell, all the radio base station devices that receive the physical downlink control channel of the plurality of cells from the radio base station device of the specific cell and perform coordinated multipoint transmission
  • the receiving unit for receiving the physical downlink shared data channel from the mobile station and the index of the cooperative cell or CoMP set incorporated in the downlink control information included in the physical downlink control channel of each received cell is prepared in advance.
  • the table includes an index indicating individual cooperative cells serving as transmission points in CoMP transmission, and a CoMP set index indicating each combination of a plurality of cells jointly transmitted in CoMP transmission in bit data. It is mapped.
  • the communication control method of the present invention is a communication control in a radio communication system comprising a plurality of radio base station apparatuses each forming a cell and a user terminal connected to each radio base station apparatus via a radio link.
  • a method is provided for scheduling CoMP transmission in which coordinated multipoint transmission is performed with the plurality of radio base station apparatuses serving as transmission points for the user terminal, and physical downlink control channels of a plurality of cells are specified in a specific cell in CoMP transmission.
  • an index indicating each coordinated cell serving as a transmission point and a CoMP set index indicating each combination of a plurality of cells to be jointly transmitted are jointly transmitted based on a table mapped to bit data.
  • For physical downlink control channel shared by multiple cells Generates downlink control information incorporating the indices of CoMP set, it transmits a physical downlink control channel of each cell including a downlink control information the product from the specific cell, characterized in that.
  • signaling of cell index information suitable for CoMP transmission / reception technology can be realized.
  • FIG. 1A is a conceptual diagram of joint transmission (hereinafter also referred to as CoMP transmission (JT)), which is one of CoMP transmissions.
  • JT CoMP transmission
  • the same shared data channel is simultaneously transmitted from a plurality of cells to one user terminal UE in one subframe.
  • the user terminal UE receives the PDSCH from both the cell 1 and the cell 2 in one subframe.
  • the user terminal UE receives the PDSCH jointly transmitted from the cell 1 and the cell 2 based on the PDCCH shared by the cell 1 and the cell 2.
  • a combination of cells that simultaneously transmit the same PDSCH by such joint transmission is referred to as “cell 1 + 2”.
  • FIG. 1B is a conceptual diagram of DPS which is one of CoMP transmissions.
  • the transmission cell for one user terminal UE is dynamically switched to transmit the PDSCH.
  • the user terminal UE receives the PDSCH transmitted from the cell 1 and the cell 2 based on the PDCCH transmitted from the cell 1 and the cell 2, respectively.
  • FIG. 1C is a conceptual diagram of CS / CB, which is one of CoMP transmissions.
  • CS / CB PDSCH is transmitted only from one transmission cell to one user terminal UE in one subframe.
  • one user terminal UE receives PDSCH from cell 1, and the other user terminal UE receives PDSCH from cell 2.
  • the radio base station apparatus eNB feeds back quality information of each cell from the user terminal UE.
  • the radio base station apparatus eNB obtains a difference in quality information for each cell (for example, RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), or SINR (Signal Interference plus Noise Ratio)).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal Interference plus Noise Ratio
  • the difference in quality information between cells exceeds a threshold value, that is, when the quality difference between cells is large, the cell is high in reception quality because it is close to the radio base station apparatus eNB forming any cell. It is determined that the user terminal UE exists in the vicinity of the center. In this case, high reception quality can be maintained without applying CoMP transmission.
  • the user terminal UE when applying CoMP transmission, the user terminal UE feeds back channel state information for each of a plurality of cells to the radio base station apparatus eNB (the radio base station apparatus eNB of the serving cell). On the other hand, when CoMP transmission is not applied, the user terminal UE feeds back channel state information of the serving cell to the radio base station apparatus eNB.
  • a macro cell (cell 0) having a wide coverage area and a plurality of pico cells (cells 1 to 3) having local coverage areas are arranged in the coverage area of the macro cell (cell 0). Since the pico cells (cells 1 to 3) have lower transmission power than the macro cell (cell 0), they may be called low power cells.
  • different frequency bands can be assigned to the macro cell (cell 0) and the pico cells (cells 1 to 3), it is assumed that the same frequency band 2 is assigned to the pico cells 1 to 3 as shown in FIG. 2B.
  • frequency band 1 is assigned to the macro cell (cell 0)
  • frequency band 2 different from frequency band 1 is assigned to the pico cells (cells 1 to 3).
  • CoMP transmission can be applied to four cells (cells 0 to 3) including the macro cell (cell 0). There are four transmission cells for CoMP transmission: cell 0, cell 1, cell 2, and cell 3.
  • LTE-A Long Term Evolution-A
  • scheduling is performed from one cell PDCCH for PDSCH of a plurality of component carriers in carrier aggregation using a plurality of component carriers (primary + 1 or one or more secondary cells).
  • Performed cross-carrier scheduling was introduced.
  • CIF Cell Index Field
  • DCI Cell Index Field
  • the inventors of the present invention focused on using CIF defined in DCI to notify the user terminal UE of a transmission cell or a combination of transmission cells when CoMP is applied.
  • each cell PDCCH (DCI) for PDSCH transmitted from 0 to 3 can be transmitted using the PDCCH resource of cell 0 serving as a specific cell.
  • FIG. 2E is a conceptual diagram of the DCI format included in the PDCCH, and shows a state in which bit data indicating a transmission cell at the time of CoMP transmission is described in the CIF. Three bits are assigned to CIF.
  • bit information (000) is included in the CIF included in the DCI of the received PDCCH, it is recognized as a PDCCH for receiving the PDSCH of cell 0.
  • bit information included in the CIF is (001), (010), (011)
  • each CoMP set of “cell 1 + 2”, “cell 1 + 3”, “cell 1 + 2 + 3”, and “cell 2 + 3” is signaled to the user terminal UE.
  • FIG. 2D when the CIF is composed of 3 bits, eight types of bit data can be generated. Therefore, in addition to the four types of CIF bit information in the table shown in FIG. 2E, the four types of CIF bit information are unused. The inventor paid attention to the fact that there is an unused bit data resource in the CIF configured with 3 bits, and found that the bit information of this CIF is used for bit data indicating a CoMP set when joint transmission is applied. .
  • FIG. 3 shows a CIF table in which unused CIF bit information (100), (101), (110), and (111) are allocated to each CoMP set of joint transmission.
  • the CIF table shown in the figure maps cells 0 to 3 serving as individual cooperative cells to bit information (000), (001), (010), and (011), respectively, and sets each CoMP set (cell 1 + 2). , (Cell 1 + 3), (cell 1 + 2 + 3), and (cell 2 + 3) are mapped to bit information (100), (101), (110), and (111), respectively.
  • FIG. 3 shows a CIF table in which unused CIF bit information (100), (101), (110), and (111) are allocated to each CoMP set of joint transmission.
  • the CIF table shown in the figure maps cells 0 to 3 serving as individual cooperative cells to bit information (000), (001), (010), and (011), respectively, and sets each CoMP set (cell 1 + 2). , (Cell 1 + 3), (cell 1 + 2 + 3), and (cell 2 +
  • the user terminal UE can determine that it is a PDCCH for the CoMP set (cell 1 + 2), and based on the PDCCH
  • the PDSCH jointly transmitted from the cell 1 and the cell 2 is received (demodulated).
  • the CIF having any one of the bit information (100), (101), (110), and (111) is added to the DCI 5.
  • the radio communication system according to the present embodiment will be specifically described.
  • the user terminal UE establishes a control channel (RRC Connection)
  • its own terminal capability UE Capability
  • the user terminal UE feeds back the generated channel quality information (CQI: Channel Quality Indicator) to the radio base station apparatus eNB.
  • CQI Channel Quality Indicator
  • the radio base station apparatus eNB grasps the communication capability of the connected user terminal UE based on the notified terminal capability of the user terminal UE.
  • the radio base station apparatus eNB notifies the user terminal UE of a measurement candidate cell using a control signal of an RRC (Radio Resource Control) protocol.
  • the user terminal UE measures RSRP (Reference Signal Received Power) of each measurement candidate cell, and sends a measurement report (measurement report) result to the radio base station apparatus eNB by higher layer signaling (for example, RRC signaling). Report.
  • RRC Radio Resource Control
  • the radio base station apparatus eNB determines a CoMP candidate cell from the measurement candidate cells based on the measurement report result.
  • This CoMP candidate cell includes a CoMP set indicating a combination of individual coordinate cells that are transmission points in CoMP transmission (DPS, CS / CB) and a plurality of cells that are transmission cells in joint transmission (JT) of CoMP. It is. Then, the radio base station apparatus eNB maps the index indicating each cooperative cell (including the serving cell) in the CoMP candidate cell and the index of the CoMP set to bit data, and generates a CIF table as illustrated in FIG. To do. This CIF table is signaled to the user terminal UE by RRC signaling, for example.
  • the radio base station apparatus eNB determines a CoMP transmission cell that transmits a shared data channel to the user terminal UE based on the CQI fed back from the user terminal UE. And when applying the joint transmission of CoMP, the radio base station apparatus eNB assigns the index of this CoMP set to the CIF to the physical downlink control channel (PDCCH) shared among a plurality of cells performing joint transmission (JT).
  • the described downlink control information (DCI) is generated.
  • FIG. 4 is a diagram showing PDCCH allocation when cross-carrier scheduling is applied in the system configuration shown in FIG. 2A.
  • the PDCCH (DCI) for the PDSCH transmitted from each of the cells 0 to 3 is transmitted using the PDCCH resource of the cell 0 serving as a specific cell.
  • each CoMP set (cell 1 + 2), (cell 1 + 3), (cell 1 + 2 + 3), (cell 2 + 3) is used using the PDCCH of cell 0, which is a specific cell.
  • the PDCCH (DCI) for the PDSCH transmitted from is transmitted.
  • CoMP joint transmission JT
  • a CoMP set cell 1 + 2
  • the CoMP set is represented by bit information (see FIG. 3).
  • the radio base station apparatus eNB of the specific cell generates DCI in which the bit information of the CoMP set (cell 1 + 2) is incorporated in this CIF.
  • PDCCH containing this DCI is transmitted from the radio base station apparatus eNB of the cell 0 which is a specific cell.
  • the user terminal UE When CoMP transmission is applied, the user terminal UE receives the PDCCH from the radio base station apparatus eNB of the cell 0 that is a specific cell, and also shares physical downlink from the radio base station apparatuses that are all CoMP transmission cells.
  • a data channel (PDSCH) is received.
  • the index of the CoMP transmission cell incorporated in the DCI CIF included in the PDCCH received from the specific cell is analyzed using the table shown in FIG. 3, and the CoMP transmission cell is identified from the CIF bit information.
  • the PDCCH received from the specific cell is associated with the PDSCH received from the transmission cell, and the PDSCH can be demodulated based on the DCI of the associated PDCCH.
  • 5A and 5B show a system configuration in which cells 4 to 6 are frequency-multiplexed with respect to cells 1 to 3.
  • the frequency band 2 is assigned to the cells 1 to 3
  • the frequency band 3 is assigned to the cells 4 to 6.
  • First table configuration method there is a method of configuring a CIF table except for a CoMP set composed of cells with low reception quality (for example, RSRP: Reference Signal Received Power).
  • the radio base station apparatus eNB determines a cell having a high reception quality as a CoMP set candidate by using a result of measurement by the user terminal UE.
  • the radio base station apparatus eNB notifies the user terminal UE of a measurement candidate cell using a control signal of an RRC (Radio Resource Control) protocol.
  • the user terminal UE measures RSRP and the like of each measurement candidate cell, and reports a measurement report (measurement report) result to the radio base station apparatus eNB by higher layer signaling (for example, RRC signaling).
  • the radio base station apparatus eNB determines a CoMP candidate cell from the measurement candidate cells based on the measurement report result.
  • CoMP candidate cells are determined such that, for example, a CoMP set consisting of a combination whose communication quality does not satisfy the quality condition is not included. Whether or not the quality condition is satisfied is estimated based on, for example, whether or not the RSRP of the measurement candidate cell exceeds a threshold value, or the magnitude relationship of the RSRP in the measurement candidate cell.
  • the reception quality of the cell 3 is relatively low, if the relationship RSRP Cell1> RSRP Cell2> RSRP Cell3 is satisfied, CoMP set including the cell 3, i.e., "cells 1 + 3" And, except for “cell 2 + 3”, two CoMP sets of “cell 1 + 2” and “cell 1 + 2 + 3” are determined as CoMP candidate cells.
  • Whether the cell 1 to 3 performs CoMP transmission (JT) or the cells 4 to 6 perform CoMP transmission (JT) can be freely determined by the radio base station apparatus eNB according to a communication environment or a request from a user terminal. I can decide.
  • the radio base station apparatus eNB maps an index indicating each cooperative cell selected as a CoMP candidate cell and an index of the CoMP set to bit data, and generates a CIF table as illustrated in FIG.
  • the CIF table shown in FIG. 6 maps cells 0 to 3 serving as individual cooperative cells to bit information (000), (001), (010), and (011), respectively, and sets each CoMP set (cell 1 + 2). , (Cell 1 + 2 + 3), (cell 4 + 5), and (cell 4 + 5 + 6) are mapped to bit information (100), (101), (110), and (111), respectively.
  • the CIF having either bit information (100) or (101) is added to the DCI 5.
  • the CIF having either bit information (110) or (111) is added to the DCI 6.
  • the user terminal UE when (100) is detected as the CIF bit information, the user terminal UE can determine that it is a PDCCH for the CoMP set (cell 1 + 2), and based on the PDCCH The PDSCH jointly transmitted from the cell 1 and the cell 2 is received (demodulated).
  • This CIF table is signaled to the user terminal UE by RRC signaling, for example.
  • the radio base station apparatus eNB determines a CoMP transmission cell that transmits a shared data channel to the user terminal UE based on the CQI fed back from the user terminal UE. And when applying joint transmission (JT) of CoMP, the radio base station apparatus eNB uses the index of this CoMP set as the CIF for the physical link control channel (PDCCH) shared among a plurality of cells constituting the CoMP set.
  • the described downlink control information (DCI) is generated.
  • FIG. 7 is a diagram showing PDCCH allocation when cross-carrier scheduling is applied in the system configuration shown in FIG. 5A.
  • the PDCCH (DCI) for the PDSCH transmitted from each of the cells 0 to 3 is transmitted using the PDCCH resource of the cell 0 serving as a specific cell.
  • each CoMP set (cell 1 + 2), (cell 1 + 2 + 3), (cell 4 + 5), (cell 4 + 5 + 6) is used by using the PDCCH of cell 0 as a specific cell.
  • the PDCCH (DCI) for the PDSCH transmitted from is transmitted.
  • this CoMP set is bit information according to the table shown in FIG. Since it is mapped to (100), the radio base station apparatus eNB of the specific cell generates DCI in which the bit information of the CoMP set (cell 1 + 2) is incorporated in this CIF. And as shown in FIG. 7, PDCCH containing this DCI is transmitted from the radio base station apparatus eNB of the cell 0 which is a specific cell.
  • this CoMP set is bit information (110) according to the table shown in FIG. Therefore, the radio base station apparatus eNB of the specific cell generates DCI in which the bit information of the CoMP set (cell 4 + 5) is incorporated in this CIF. And as shown in FIG. 7, PDCCH containing this DCI is transmitted from the radio base station apparatus eNB of the cell 0 which is a specific cell.
  • the user terminal UE When CoMP transmission is applied, the user terminal UE receives the PDCCH from the radio base station apparatus eNB of the cell 0 that is a specific cell, and also shares physical downlink from the radio base station apparatuses that are all CoMP transmission cells. A data channel (PDSCH) is received. Then, the index of the CoMP transmission cell incorporated in the DCI CIF included in the PDCCH received from the specific cell is analyzed using the table shown in FIG. 6 to identify the CoMP transmission cell. As a result, the PDCCH received from the specific cell is associated with the PDSCH received from the transmission cell, and the PDSCH can be demodulated based on the DCI of the associated PDCCH.
  • PDSCH data channel
  • a second method there is a method of configuring a CIF table by removing cells with low reception quality (for example, RSRP).
  • the radio base station apparatus eNB determines a cell with high reception quality as a CoMP cell candidate by using a result of measurement by the user terminal UE.
  • the radio base station apparatus eNB notifies the user terminal UE of a measurement candidate cell using a control signal of the RRC protocol.
  • the user terminal UE measures RSRP and the like of each measurement candidate cell, and reports a measurement report (measurement report) result to the radio base station apparatus eNB by higher layer signaling (for example, RRC signaling).
  • the radio base station apparatus eNB determines a CoMP candidate cell from the measurement candidate cells based on the measurement report result.
  • CoMP candidate cells are determined such that, for example, all or part of cooperative cells whose communication quality does not satisfy the quality condition are not included. Whether or not the quality condition is satisfied is estimated based on, for example, whether or not the RSRP of the measurement candidate cell exceeds a threshold value, or the magnitude relationship of the RSRP in the measurement candidate cell.
  • the reception quality is relatively low cell 3, RSRP Cell1> if RSRP Cell2> relationship RSRP Cell3 is established, the signal processing of the transmit and receive cell 3 to the user terminal UE Remove from use. This restricts that the cell 3 becomes a CoMP candidate cell and that the CoMP set including the cell 3 becomes a CoMP candidate cell.
  • the radio base station apparatus eNB maps the index indicating each cooperative cell selected as a CoMP candidate cell except for the cell 3 and the index of the CoMP set to bit data, and performs CIF as illustrated in FIG. Generate a table.
  • the CIF table shown in FIG. 8 maps cells 0 to 2 serving as individual cooperative cells to bit information (000), (001), and (010), respectively, and sets each CoMP set (cell 1 + 2), (cell 4 + 5). ), (Cell 4 + 6), (cell 5 + 6), and (cell 4 + 5 + 6) are mapped to bit information (011), (100), (101), (110), and (111), respectively.
  • the CIF having the bit information (011) is added to the DCI 5.
  • the CIF having any of the bit information (100), (101), (110), (111) is added to the DCI 6.
  • the user terminal UE can determine that it is a PDCCH for a CoMP set (cell 4 + 5), and based on the PDCCH The PDSCH jointly transmitted from the cell 4 and the cell 5 is received (demodulated).
  • This CIF table is signaled to the user terminal UE by RRC signaling, for example.
  • the radio base station apparatus eNB determines a CoMP transmission cell that transmits a shared data channel to the user terminal UE based on the CQI fed back from the user terminal UE. And when applying joint transmission (JT) of CoMP, the radio base station apparatus eNB uses the index of this CoMP set as the CIF for the physical link control channel (PDCCH) shared among a plurality of cells constituting the CoMP set.
  • the described downlink control information (DCI) is generated.
  • FIG. 9 is a diagram showing PDCCH allocation when cross-carrier scheduling is applied in the system configuration shown in FIG. 5A.
  • the PDCCH (DCI) for the PDSCH transmitted from each of the cells 0 to 2 is transmitted using the PDCCH resource of the cell 0 serving as a specific cell.
  • each CoMP set (cell 1 + 2), (cell 4 + 5), (cell 4 + 6), (cell 5 + 6) is used using the PDCCH of cell 0 serving as a specific cell.
  • the PDCCH (DCI) for the PDSCH transmitted is transmitted.
  • this CoMP set is bit information according to the table shown in FIG. Since it is mapped to (011), the radio base station apparatus eNB of the specific cell generates DCI in which the bit information of the CoMP set (cell 1 + 2) is incorporated in this CIF. And as shown in FIG. 9, PDCCH containing this DCI is transmitted from the radio base station apparatus eNB of the cell 0 which is a specific cell.
  • the user terminal UE When CoMP transmission is applied, the user terminal UE receives the PDCCH from the radio base station apparatus eNB of the cell 0 that is a specific cell, and also shares physical downlink from the radio base station apparatuses that are all CoMP transmission cells.
  • a data channel (PDSCH) is received.
  • the index of the CoMP transmission cell incorporated in the DCI CIF included in the PDCCH received from the specific cell is analyzed using the table shown in FIG. 8, and the CoMP transmission cell is specified.
  • the PDCCH received from the specific cell is associated with the PDSCH received from the transmission cell, and the PDSCH can be demodulated based on the DCI of the associated PDCCH.
  • FIG. 10 shows an example of search space allocation for each cell when the DCI sizes are different in carrier aggregation. There is a possibility that the DCI size is different due to the difference in system band and DCI format type. In the example shown in FIG. 10, the DCI sizes of cells 0 to 3 are different.
  • the search spaces SS1 to SS4 of the cell 0 to the cell 3 are arranged in different areas.
  • the user terminal UE blind-decodes the search space SS1 assigned to the cell 0 based on the DCI size of the cell 0, and decodes the DCI of the cell 0.
  • the search spaces SS2 to SS4 assigned to the cells 1 to 3 are blind-decoded based on the DCI sizes of the cells 1 to 3, respectively, and the DCIs of the cells 1 to 3 are decoded. To do.
  • the user terminal UE can determine the single cell (cells 0 to 3) to which the PDSCH is assigned by identifying the search space by DCI having different sizes. Therefore, cell indexes that can be determined by these search spaces do not need to be mapped to bit data in the CIF table.
  • the radio base station apparatus eNB excludes individual cells (cell 0 to cell 3 in FIG. 10) that can be determined by the search space from the CoMP candidate cells registered in the CIF table.
  • the radio base station apparatus eNB determines CoMP candidate cells from the measurement candidate cells based on the measurement report result from the user terminal UE, except for cells that can be determined by the search space, and performs CIF as shown in FIG. Generate a table.
  • the CIF table shown in FIG. 11 includes CoMP sets (cell 1 + 2), (cell 1 + 3), (cell 1 + 2 + 3), (cell 2 + 3), (cell 4 + 5), (cell 4 + 6), (cell 5 + 6), and (cell 4 + 5 + 6).
  • bit information (000), (001), (010), (011), (100), (101), (110), and (111), respectively.
  • the CIF having any one of the bit information (000), (001), (010), and (011) is added to the DCI 5.
  • the CIF having any of the bit information (100), (101), (110), (111) is added to the DCI 6.
  • the user terminal UE when (100) is detected as the CIF bit information, the user terminal UE can determine that it is a PDCCH for the CoMP set (cell 4 + 5), and based on the PDCCH The PDSCH jointly transmitted from the cell 4 and the cell 5 is received (demodulated).
  • This CIF table is signaled to the user terminal UE by RRC signaling, for example.
  • the radio base station apparatus eNB determines a CoMP transmission cell that transmits a shared data channel to the user terminal UE based on the CQI fed back from the user terminal UE. If this CoMP transmission cell can be identified by the search space, signaling may be performed using the search space. When the CoMP transmission cell cannot be identified by the search space, the radio base station apparatus eNB performs the joint transmission (JT) when the CoMP candidate registered in the CIF table is included in the CoMP joint transmission.
  • the downlink control information (DCI) in which the index of this CoMP set is described in the CIF is generated in the physical link control channel (PDCCH) shared among a plurality of cells to be performed.
  • PDCH physical link control channel
  • FIG. 12 is a diagram showing PDCCH allocation when cross-carrier scheduling is applied.
  • each CoMP set (cell 1 + 2), (cell 1 + 3), (cell 1 + 2 + 3), (cell 2 + 3), (cell 2 + 3), using the PDCCH of cell 0 serving as a specific cell.
  • PDCCH (DCI) for PDSCH transmitted from (cell 4 + 5), (cell 4 + 6), (cell 5 + 6), and (cell 4 + 5 + 6) is transmitted.
  • the user terminal UE When CoMP transmission is applied, the user terminal UE receives the PDCCH from the radio base station apparatus eNB of the cell 0 that is a specific cell, and also shares physical downlink from the radio base station apparatuses that are all CoMP transmission cells. A data channel (PDSCH) is received. Then, the index of the CoMP transmission cell incorporated in the DCI CIF included in the PDCCH received from the specific cell is analyzed using the table shown in FIG. 11 to identify the CoMP transmission cell. As a result, the PDCCH received from the specific cell is associated with the PDSCH received from the transmission cell, and the PDSCH can be demodulated based on the DCI of the associated PDCCH.
  • PDSCH data channel
  • the cell index registered in the CIF table may be extended so that subframe information is included. That is, not only the information of the transmission cell or CoMP set but also the subframe number within a predetermined section is mapped to the bit data.
  • a macro cell (cell 0) having a wide coverage area and a plurality of pico cells (cells 1 and 2) having local coverage areas are arranged in combination.
  • different frequency bands can be assigned to the macro cell (cell 0) and the pico cells (cells 1 and 2), it is assumed that the same frequency band 2 is assigned to the pico cells 1 and 2, as shown in FIG. 13B.
  • frequency band 1 is assigned to the macro cell (cell 0)
  • frequency band 2 different from frequency band 1 is assigned to the pico cells (cells 1 and 2).
  • FIG. 14 shows CIF bit information (000), (001), (010), (011) with CoMP candidate cells (cell 0), (cell 1), (cell 2), (cell 1 + 2) in subframe N. ) Are mapped to the unused CIF bit information (100), (101), (110), and (111), and CoMP candidate cells (cell 0), (cell 1), (cell) in subframe N + 1
  • a CIF table in cross subframe scheduling, in which cells 2) and (cell 1 + 2) are mapped, is shown. That is, it is possible to identify which PDCCH received in a certain subframe of the user terminal is the control information of which cell in which cell.
  • the radio base station apparatus eNB includes downlink control information (PDCCH) in which an index of a CoMP transmission cell is incorporated in a physical link control channel (PDCCH) shared between a plurality of cells performing cross subframe scheduling between subframe N and subframe N + 1. DCI).
  • PDCCH downlink control information
  • the PDCCH of each cell including the DCI generated in this way is a plurality of cells in the subframe N from the radio base station apparatus eNB of the cell 0 in the subframe N, or a plurality of cells in the subframe N + 1. Sent to the cell.
  • FIG. 16 is an explanatory diagram of a system configuration of the wireless communication system according to the present embodiment.
  • the radio communication system shown in FIG. 16 is a system that includes, for example, the LTE system or SUPER 3G.
  • carrier aggregation in which a plurality of fundamental frequency blocks with the system band of the LTE system as a unit is integrated is used.
  • this wireless communication system may be called IMT-Advanced or 4G.
  • the wireless communication system 1 includes base station apparatuses 20A and 20B at each transmission point, and user terminals 10 that communicate with the base station apparatuses 20A and 20B.
  • Base station apparatuses 20 ⁇ / b> A and 20 ⁇ / b> B are connected to upper station apparatus 30, and upper station apparatus 30 is connected to core network 40.
  • the base station devices 20A and 20B are connected to each other by wired connection or wireless connection.
  • the user terminal 10 can communicate with the base station apparatuses 20A and 20B that are transmission points.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • the user terminal 10 includes an existing terminal (Rel. 10 LTE) and a support terminal (for example, Rel. 11 LTE).
  • a support terminal for example, Rel. 11 LTE.
  • the user terminal 10 will be described as a user terminal unless otherwise specified. For convenience of explanation, it is assumed that the user terminal 10 performs wireless communication with the base station apparatuses 20A and 20B.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the wireless access method is not limited to this.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission scheme that reduces interference between terminals by dividing a system band into bands each consisting of one resource block or a continuous resource block for each terminal, and a plurality of terminals using different bands. .
  • the downlink communication channel includes PDSCH as a downlink data channel shared by the user terminals 10 and downlink L1 / L2 control channels (PDCCH, PCFICH, PHICH). Transmission data and upper control information are transmitted by the PDSCH. PDSCH and PUSCH scheduling information and the like are transmitted by the PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH (Physical Control Format Indicator Channel).
  • the HARQ ACK / NACK for PUSCH is transmitted by PHICH (Physical Hybrid-ARQ Indicator Channel).
  • the uplink communication channel has PUSCH (Physical Uplink Shared Channel) as an uplink data channel shared by each user terminal and PUCCH (Physical Uplink Control Channel) as an uplink control channel. Transmission data and higher control information are transmitted by this PUSCH. Also, downlink channel state information (CSI (including CQI and the like)), ACK / NACK, and the like are transmitted by PUCCH.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • Transmission data and higher control information are transmitted by this PUSCH.
  • CSI including CQI and the like
  • ACK / NACK are transmitted by PUCCH.
  • the base station apparatus 20 includes a transmission / reception antenna 201, an amplifier unit 202, a transmission / reception unit (notification unit) 203, a baseband signal processing unit 204, a call processing unit 205, and a transmission path interface 206.
  • Transmission data transmitted from the base station apparatus 20 to the user terminal via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 204 via the transmission path interface 206.
  • the downlink data channel signal is transmitted from the RCP layer, such as PDCP layer processing, transmission data division / combination, RLC (Radio Link Control) retransmission control transmission processing, and MAC (Medium Access).
  • Control retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, and precoding processing are performed. Also, transmission processing such as channel coding and inverse fast Fourier transform is performed on the signal of the physical downlink control channel, which is the downlink control channel.
  • the baseband signal processing unit 204 notifies the control information for each user terminal 10 to wirelessly communicate with the base station apparatus 20 to the user terminals 10 connected to the same transmission point through the broadcast channel.
  • the information for communication at the transmission point includes, for example, system bandwidth in the uplink or downlink, and root sequence identification information for generating a random access preamble signal in PRACH (Physical Random Access Channel) (Root Sequence Index) etc. are included.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band.
  • the amplifier unit 202 amplifies the radio frequency signal subjected to frequency conversion and outputs the amplified signal to the transmission / reception antenna 201.
  • a radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202 and frequency-converted by the transmission / reception unit 203 to be a baseband signal. And is input to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs FFT processing, IDFT processing, error correction decoding, MAC retransmission control reception processing, RLC layer, PDCP layer reception processing on transmission data included in the baseband signal received in the uplink I do.
  • the decoded signal is transferred to the higher station apparatus 30 via the transmission path interface 206.
  • the call processing unit 205 performs call processing such as communication channel setting and release, state management of the base station apparatus 20, and management of radio resources.
  • the user terminal 10 includes a transmission / reception antenna 101, an amplifier unit 102, a transmission / reception unit (reception unit) 103, a baseband signal processing unit 104, and an application unit 105.
  • a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102, frequency-converted by the transmission / reception unit 103, and converted into a baseband signal.
  • the baseband signal is subjected to FFT processing, error correction decoding, retransmission control reception processing, and the like by the baseband signal processing unit 104.
  • downlink transmission data is transferred to the application unit 105.
  • the application unit 105 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information in the downlink data is also transferred to the application unit 105.
  • uplink transmission data is input from the application unit 105 to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs mapping processing, retransmission control (HARQ) transmission processing, channel coding, DFT processing, and IFFT processing.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 into a radio frequency band. Thereafter, the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits it from the transmission / reception antenna 101.
  • HARQ retransmission control
  • each functional block in FIG. 19 mainly relates to the baseband signal processing unit shown in FIG. Further, the functional block diagram of FIG. 19 is simplified to explain the present invention, and is assumed to have a configuration normally provided in the baseband signal processing unit.
  • the base station apparatus 20 includes a backhaul communication unit 401, a higher control information generation unit 402, a downlink transmission data generation unit 403, a downlink control information generation unit 404, an RS generation unit 405, and a downlink transmission data code.
  • the base station apparatus 20 includes a downlink channel multiplexing unit 408, an IFFT unit 409, and a CP adding unit 410.
  • the base station apparatus 20 includes a reception unit 411, a terminal capability determination unit 412, a reception quality determination unit 413, a CQI determination unit 414, a CoMP candidate cell determination unit 415, and a scheduler 416.
  • the backhaul communication unit 401 enables communication with other base stations through the backhaul.
  • Upper control information generating section 402 generates higher control information transmitted to the user terminal by higher layer signaling (for example, RRC signaling), and outputs the generated higher control information to downlink transmission data encoding / modulating section 406 To do.
  • the higher control information generation unit 402 generates higher control information (information related to RS transmission parameters) including information output from the backhaul communication unit 401.
  • upper control information generation section 402 generates CIF table information including CoMP candidate cells determined by CoMP candidate cell determination section 415, which will be described later, and outputs the generated information to downlink transmission data encoding / modulation section 406. .
  • Downlink transmission data generation section 403 generates downlink transmission data and outputs the downlink transmission data to downlink transmission data encoding / modulation section 406.
  • User data as downlink transmission data is supplied from an upper layer.
  • the downlink control information generation unit 404 generates downlink control information (DCI) for controlling the PDSCH using a DCI format (for example, DCI format 1A) containing DL ground.
  • DCI downlink control information
  • cell information or cell combination information for performing CoMP transmission is included in DCI and notified to a user terminal, cell information or cell combination information is generated in downlink control information generation section 404.
  • DCI in which the index of a transmission cell at the time of CoMP transmission is described in CIF is generated.
  • DCI downlink control information
  • JT joint transmission
  • the CIF added to the DCI is the CIF instructed by the scheduler 416 based on the assignment of the CIF table generated in the CoMP candidate cell determination unit 415 described later.
  • Downlink transmission data coding / modulation section 406 performs channel coding and data modulation on the downlink transmission data and higher control information, and outputs the result to downlink channel multiplexing section 408.
  • the downlink control information coding / modulation section 407 performs channel coding and data modulation on the downlink control information and outputs the result to the downlink channel multiplexing section 408.
  • the RS generator 405 may generate an RS for desired signal measurement and an RS for interference measurement in addition to generating an existing reference signal (CRS, CSI-RS, DM-RS). These RSs are output to the downlink channel multiplexing unit 408.
  • the downlink channel multiplexing unit 408 combines the downlink control information, RS, higher control information, and downlink transmission data to generate a transmission signal.
  • the downlink channel multiplexing unit 408 outputs the generated transmission signal to the IFFT unit 409.
  • the IFFT unit 409 performs an inverse fast Fourier transform on the transmission signal, and converts the frequency domain signal into a time domain signal.
  • the transmission signal after IFFT is output to CP adding section 410.
  • CP adding section 410 adds a CP (Cyclic Prefix) to the transmission signal after IFFT, and outputs the transmission signal after CP addition to amplifier section 202 shown in FIG.
  • the receiving unit 411 receives a transmission signal from the user terminal, extracts terminal capability information (UE Capability), reception quality information, and channel quality information (CQI) from the received signal, and each receives a terminal capability determining unit 412, The data is output to reception quality determination section 413 and CQI determination section 414.
  • UE Capability terminal capability information
  • CQI channel quality information
  • the terminal capability determination unit 412 determines the communication capability of the connected user terminal based on the notified terminal capability of the user terminal.
  • the reception quality determination unit 413 determines the reception quality (for example, RSRP) of the measurement candidate cell based on the measurement report result.
  • the CQI determination unit 414 determines uplink / downlink reception quality.
  • CoMP candidate cell determination section 415 determines a CoMP candidate cell from among the measurement candidate cells based on the terminal capability of the user terminal and the reception quality of the measurement candidate cell, and assigns CIF bit information to each CoMP candidate cell. Generate a table.
  • This CoMP candidate cell includes a CoMP set indicating a combination of individual coordinated cells serving as transmission points in CoMP transmission (DPS, CS / CB) and a plurality of cells jointly transmitting in CoMP transmission (JT).
  • CoMP candidate cell determination section 415 outputs the generated information of the CIF table to backhaul communication section 401 and scheduler 416.
  • the scheduler 416 determines a CoMP transmission cell for transmitting the shared data channel to the user terminal from the CoMP candidate cells based on the CQI fed back from the user terminal.
  • the scheduler 416 instructs the downlink control information generation unit 404 to indicate the CIF indicating the index of the CoMP transmission cell.
  • FIG. 20 mainly relates to the baseband signal processing unit 104 shown in FIG. Further, the functional blocks shown in FIG. 20 are simplified for the purpose of explaining the present invention, and the configuration normally provided in the baseband signal processing unit is provided.
  • the user terminal 10 includes a CP removing unit 301, an FFT unit 302, a downlink channel separating unit 303, a downlink control information receiving unit 304, a downlink transmission data receiving unit 305, an interference signal estimating unit 306, A channel estimation unit 307 and a CQI measurement unit 308 are provided.
  • the transmission signal transmitted from the base station apparatus 20 is received by the transmission / reception antenna 101 shown in FIG.
  • CP removing section 301 removes the CP from the received signal and outputs it to FFT section 302.
  • the FFT unit 302 performs fast Fourier transform (FFT) on the signal after CP removal, and converts the signal in the time domain into a signal in the frequency domain.
  • FFT section 302 outputs the signal converted into the frequency domain signal to downlink channel separation section 303.
  • the downlink channel separation unit 303 separates the downlink channel signal into downlink control information, downlink transmission data, and RS.
  • the downlink channel separation unit 303 outputs downlink control information to the downlink control information reception unit 304, outputs downlink transmission data and higher control information to the downlink transmission data reception unit 305, and transmits the interference measurement RS to the interference signal estimation unit 306.
  • the desired signal measurement RS is output to the channel estimation unit 307.
  • the downlink control information receiving unit 304 demodulates the downlink control information (DCI), and outputs the demodulated DCI to the downlink transmission data receiving unit 305.
  • Downlink transmission data receiving section 305 demodulates downlink transmission data using the demodulated DCI. That is, the downlink control information receiving section 304 analyzes the index of the CoMP transmission cell incorporated in the DCI CIF included in the PDCCH received from the specific cell using the CIF table, and determines the CoMP transmission cell from the CIF bit information. It functions as a determination unit that identifies
  • the downlink transmission data reception unit 305 demodulates the PDSCH from the identified CoMP transmission cell. Also, downlink transmission data reception section 305 outputs higher control information included in the downlink transmission data to interference signal estimation section 306 and channel estimation section 307.
  • the interference signal estimation unit 306 estimates an interference signal using downlink reference signals such as CRS and CSI-RS.
  • the interference signal estimation unit 306 can estimate the interference signal and average the measurement results in all resource blocks.
  • the CQI measurement unit 308 is notified of the averaged interference signal estimation result.
  • the channel estimation unit 307 specifies a desired signal measurement RE (CSI-RS resource) based on information such as transmission parameters included in the higher control information (or downlink control information), and uses the desired signal measurement RE to specify the desired signal. presume. Note that the channel estimation unit 307 can also perform channel estimation using the interference measurement RE (IMR) in addition to the desired signal measurement RE (SMR) as shown in FIG. 9B.
  • IMR interference measurement RE
  • SMR desired signal measurement RE
  • the channel estimation unit 307 notifies the CQI measurement unit 308 of the channel estimation value.
  • CQI measuring section 308 calculates a channel state (CQI) based on the interference estimation result notified from interference signal estimating section 306, the channel estimation result notified from channel estimating section 307, and the feedback mode.
  • the feedback mode may be any of Wideband CQI, Subband CQI, and best-M average.
  • the CQI calculated by the CQI measurement unit 308 is notified to the base station apparatus 20 as feedback information.
  • the receiving unit 411 receives a transmission signal from the user terminal, extracts terminal capability information (UE Capability), reception quality information, and channel quality information (CQI) from the received signal, respectively.
  • the data is output to terminal capability determination section 412, reception quality determination section 413, and CQI determination section 414.
  • the terminal capability determination unit 412 determines the communication capability of the connected user terminal based on the notified terminal capability of the user terminal.
  • the reception quality determination unit 413 determines the reception quality (for example, RSRP) of the measurement candidate cell based on the measurement report result.
  • the CQI determination unit 414 determines uplink / downlink reception quality.
  • CoMP candidate cell determination section 415 determines a CoMP candidate cell from among the measurement candidate cells based on the terminal capability of the user terminal and the reception quality of the measurement candidate cell, and assigns CIF bit information to each CoMP candidate cell. Generate a table. This CIF table is signaled to the user terminal via the upper control information generation unit 402.
  • the scheduler 416 determines a CoMP transmission cell for transmitting the shared data channel to the user terminal from the CoMP candidate cells, and sends the CoMP transmission cell of the CoMP transmission cell to the downlink control information generation unit 404.
  • the CIF indicating the index is indicated.
  • the downlink control information generation unit 404 generates DCI in which the index of the transmission cell at the time of CoMP transmission instructed by the scheduler 416 is described in the CIF.
  • the downlink control information receiving unit 304 analyzes the index of the CoMP transmission cell embedded in the DCI CIF included in the PDCCH received from the specific cell using the CIF table, and uses the CIF bit information. A CoMP transmission cell is specified.
  • the downlink transmission data reception unit 305 demodulates the PDSCH from the identified CoMP transmission cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 CoMP送受信技術に適したセルインデックス情報のシグナリングを実現すること。特定セルの無線基地局装置は、CoMP送信において送信ポイントとなる個々の協調セルを示すインデックス、および、CoMP送信においてジョイント送信する複数セルの各組み合わせを示すCoMPセットのインデックスが、ビットデータにマッピングされているテーブルに基づいて、ジョイント送信する複数セル間で共用する物理下りリンク制御チャネルに、CoMPセットのインデックスを組み込んだ下りリンク制御情報を生成する。

Description

無線通信システム、無線基地局装置、ユーザ端末および通信制御方法
 本発明は、次世代移動通信システムにおける無線通信システム、無線基地局装置、ユーザ端末および通信制御方法に関する。
 UMTS(Universal Mobile Telecommunication System)ネットワークにおいては、周波数利用効率の向上、データレートの向上を目的として、HSDPA(High Speed Downlink Packet Access)やHSUPA(High Speed Uplink Packet Access)を採用することにより、W-CDMA(Wideband Code Division Multiple Access)をベースとしたシステムの特徴を最大限に引き出すことが行われている。このUMTSネットワークについては、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が検討されている(非特許文献1)。
 第3世代のシステムは、概して5MHzの固定帯域を用いて、下り回線で最大2Mbps程度の伝送レートを実現できる。一方、LTEシステムでは、1.4MHz~20MHzの可変帯域を用いて、下り回線で最大300Mbpsおよび上り回線で最大75Mbps程度の伝送レートを実現できる。また、UMTSネットワークにおいては、さらなる広帯域化および高速化を目的として、たとえば、LTEアドバンストまたはLTEエンハンスメント(以下、「LTE-A」と記す)と呼ばれるLTEシステムの後継システムも検討されている。
3GPP, TR25.912 (V7.1.0), "Feasibility study for Evolved UTRA and UTRAN", Sept. 2006
 LTE-A(Rel.10)において、周波数帯域が異なる複数の搬送波(CC:Component Carrier)を束ねて帯域拡張するための技術として、キャリアアグリゲーションの採用が合意された。LTEでは、トラヒックチャネルとして物理下りリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)が規定され、PDSCH受信に必要な情報を通知する制御チャネルとして物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)が規定されている。キャリアアグリゲーションによって複数のコンポーネントキャリアが用いられる場合、複数のコンポーネントキャリア(1つのプライマリセル+最大5つのセカンダリセル)のPDSCHに対して1プライマリセルのPDCCHからスケジューリングを行うクロスキャリアスケジューリングがLTE-A(Rel.10)において採用された。PDCCHによって送信される下りリンク制御情報はDCI(Downlink Control Information)フォーマットとして詳細が定められている。DCIは、PDCCHによって送信される下りリンク制御情報と呼んでもよい。
 クロスキャリアスケジューリングが適用される場合、プライマリセルにおいてPDCCHを送信可能な無線リソース(先頭OFDMシンボルから最大3OFDMシンボルまでの領域であり、制御領域と呼ぶ)には、セカンダリセルのPDCCHのDCIが割り当てられる。そこで、どのセルのPDSCH受信用のPDCCHであるかを識別可能にするため、DCIにはセルインデックスを示すCIF(Cell Index Field)が規定されている。
 一方、LTEシステムに対してさらにシステム性能を向上させるための有望な技術の1つとして、セル間直交化がある。たとえば、LTE-Aシステムでは、上下リンクとも直交マルチアクセスによりセル内の直交化が実現されている。すなわち、下りリンクでは、周波数領域においてユーザ端末UE(User Equipment)間が直交化されている。セル間は、W-CDMAと同様、1セル周波数繰り返しによる干渉ランダム化が図られている。
 そこで、3GPP(3rd Generation Partnership Project)では、セル間直交化を実現するための技術として、協調マルチポイント送受信(CoMP:Coordinated Multi-Point transmission/reception)技術の導入がLTA-A(Rel.11)において検討されている。このCoMP技術では、1つあるいは複数のユーザ端末UEに対して複数のセルが協調して送受信の信号処理を行う。これらのCoMP技術の適用により、特にセル端に位置するユーザ端末UEのスループット特製の改善が期待される。
 CoMP送信には、1つのユーザ端末に対して複数セルから同時に共有データチャネルを送信するジョイント送信(JT)、ユーザ端末に対する送信セルをダイナミックに切り替えてデータ送信するDPS(Dynamic Point Selection)、1つのセルからのみ共有データチャネルを送信するCS(Coordinate Scheduling)/CB(Coordinate Beamforming)といった複数の送信形態がある。
 ところが、CoMP適用時には複数のセル(CoMPセット)が、同一周波数帯を用いてユーザ端末にデータ送信するが、クロスキャリアスケジューリングと同様に、ユーザ端末は、受信したDCIがどのセルのPDCCHのものかを識別する必要がある。したがって、無線基地局は、ユーザ端末に対して、PDCCHがどのセルのPDSCH受信用の情報であるかを識別するためのCoMP情報を通知しなければならないが、CoMP情報はCoMP形態に対応して変化する。しかも、異なる周波数帯域に対して別のCoMPセットを設定することも可能であり、ユーザ端末へ通知すべきCoMP情報は益々複雑化する。
 本発明は、かかる点に鑑みてなされたものであり、CoMP送受信技術に適したセルインデックス情報のシグナリングを実現する無線通信システム、無線基地局装置、ユーザ端末および通信制御方法を提供することを目的とする。
 本発明の無線通信システムは、それぞれがセルを形成する複数の無線基地局装置と、前記各無線基地局装置に対して無線リンクを介して接続するユーザ端末とを備えた無線通信システムにおいて、前記無線通信システムは、前記ユーザ端末に対して複数の無線基地局装置が送信ポイントとなってCoMP送信し、特定セルの無線基地局装置から複数セルの物理下りリンク制御チャネルを送信すると共に、CoMP送信する全ての無線基地局装置から各セルの物理下りリンク共有データチャネルを送信する伝送モードをサポートし、前記特定セルの無線基地局装置は、CoMP送信において送信ポイントとなる個々の協調セルを示すインデックス、および、CoMP送信においてジョイント送信する複数セルの各組み合わせを示すCoMPセットのインデックスが、ビットデータにマッピングされているテーブルに基づいて、ジョイント送信する複数セル間で共用する物理下りリンク制御チャネルに、CoMPセットのインデックスを組み込んだ下りリンク制御情報を生成する生成部と、前記生成した下りリンク制御情報を含んだ各セルの物理下りリンク制御チャネルを送信する送信部と、を具備し、前記ユーザ端末は、前記伝送モードが適用された場合、前記特定セルの無線基地局装置から複数セルの物理下りリンク制御チャネルを受信すると共に、協調マルチポイント送信する全ての無線基地局装置から物理下りリンク共有データチャネルを受信する受信部と、受信した物理下りリンク制御チャネルに含まれた下りリンク制御情報に組み込まれているCoMPセットのインデックスを、前記特定セルの無線基地局装置と同一内容のテーブルを用いて分析してCoMPセットを特定する判定部と、を具備したことを特徴とする。
 本発明の無線基地局装置は、ユーザ端末が無線リンクを介して接続する無線基地局装置において、前記ユーザ端末に対して他の無線基地局装置と共に送信ポイントとなって協調マルチポイント送信するCoMP送信をスケジューリングするスケジューラと、CoMP送信において、複数セルの物理下りリンク制御チャネルを特定セルから送信する場合、送信ポイントとなる個々の協調セルを示すインデックス、および、ジョイント送信する複数セルの各組み合わせを示すCoMPセットのインデックスが、ビットデータにマッピングされているテーブルに基づいて、ジョイント送信する複数セル間で共用する物理下りリンク制御チャネルに、CoMPセットのインデックスを組み込んだ下りリンク制御情報を生成する生成部と、前記生成した下りリンク制御情報を含んだ各セルの物理下りリンク制御チャネルを前記特定セルから送信する送信部と、を具備したことを特徴とする。
 本発明のユーザ端末は、それぞれがセルを形成する複数の無線基地局装置に対して無線リンクを介して接続するユーザ端末において、前記複数の無線基地局装置が協調マルチポイント送信するCoMP送信において、複数セルの物理下りリンク制御チャネルが特定セルから送信される場合、前記特定セルの無線基地局装置から複数セルの物理下りリンク制御チャネルを受信すると共に、協調マルチポイント送信する全ての無線基地局装置から物理下りリンク共有データチャネルを受信する受信部と、受信した各セルの物理下りリンク制御チャネルに含まれた下りリンク制御情報に組み込まれている協調セルまたはCoMPセットのインデックスを、あらかじめ準備されたテーブルを用いて分析して協調セルまたはCoMPセットを特定する判定部と、を備え、前記テーブルは、CoMP送信において送信ポイントとなる個々の協調セルを示すインデックス、および、CoMP送信においてジョイント送信する複数セルの各組み合わせを示すCoMPセットのインデックスが、ビットデータにマッピングされている、ことを特徴とする。
 本発明の通信制御方法は、それぞれがセルを形成する複数の無線基地局装置と、前記各無線基地局装置に対して無線リンクを介して接続するユーザ端末とを備えた無線通信システムにおける通信制御方法であって、前記ユーザ端末に対して前記複数の無線基地局装置が送信ポイントとなって協調マルチポイント送信するCoMP送信をスケジューリングし、CoMP送信において、複数セルの物理下りリンク制御チャネルを特定セルから送信する場合、送信ポイントとなる個々の協調セルを示すインデックス、および、ジョイント送信する複数セルの各組み合わせを示すCoMPセットのインデックスが、ビットデータにマッピングされているテーブルに基づいて、ジョイント送信する複数セル間で共用する物理下りリンク制御チャネルに、CoMPセットのインデックスを組み込んだ下りリンク制御情報を生成し、前記生成した下りリンク制御情報を含んだ各セルの物理下りリンク制御チャネルを前記特定セルから送信する、ことを特徴とする。
 本発明によれば、CoMP送受信技術に適したセルインデックス情報のシグナリングを実現できる。
協調マルチポイント送信を説明するための図である。 システム構成の一例を説明するための図である。 CIFテーブルを説明するための図である。 PDCCHの割り当てを示す図である。 システム構成の一例を説明するための図である。 CIFテーブルを説明するための図である。 PDCCHの割り当てを示す図である。 CIFテーブルを説明するための図である。 PDCCHの割り当てを示す図である。 サーチスペースを説明するための図である。 CIFテーブルを説明するための図である。 PDCCHの割り当てを示す図である。 システム構成の一例を説明するための図である。 CIFテーブルを説明するための図である。 PDCCHの割り当てを示す図である。 無線通信システムのシステム構成の説明図である。 基地局装置の全体構成の説明図である。 ユーザ端末の全体構成の説明図である。 基地局装置の機能ブロック図である。 ユーザ端末の機能ブロック図である。
 以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
 まず、LTE-A(Rel.11)において導入が検討されているCoMP送受信技術について、図1を参照して説明する。
 図1AはCoMP送信の1つであるジョイント送信(以下、CoMP送信(JT)とも記す)の概念図である。図1Aに示すように、ジョイント送信では、1サブフレームにおいて、1つのユーザ端末UEに対して複数セルから同一の共有データチャネルを同時送信する。ユーザ端末UEは、1サブフレーム内で、セル1およびセル2の双方の送信セルからPDSCHを受信する。ユーザ端末UEは、セル1およびセル2で共用するPDCCHに基づいて、セル1およびセル2からジョイント送信されたPDSCHを受信する。本明細書において、このようなジョイント送信によって同一のPDSCHを同時送信するセルの組み合わせを“セル1+2”と記す。
 図1BはCoMP送信の1つであるDPSの概念図である。図1Bに示すように、DPSでは、1つのユーザ端末UEに対する送信セルをダイナミックに切り替えてPDSCHを送信する。ユーザ端末UEは、セル1およびセル2からそれぞれ送信されるPDCCHに基づいて、セル1およびセル2からそれぞれ送信されるPDSCHを受信する。
 図1CはCoMP送信の1つであるCS/CBの概念図である。図1Cに示すように、CS/CBでは、1サブフレームにおいて、1つのユーザ端末UEに対して1つの送信セルからのみPDSCHを送信する。図1Cにおいて、あるサブフレームにおいて、一方のユーザ端末UEはセル1からPDSCHを受信し、他方のユーザ端末UEはセル2からPDSCHを受信する。
 以上のCoMP技術は、セル端に存在するユーザ端末UEのスループットを改善するのに有効であることが確認されている。無線基地局装置eNBは、ユーザ端末UEから各セルの品質情報をフィードバックさせる。無線基地局装置eNBは、セルごとの品質情報(たとえば、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)または、SINR(Signal Interference plus Noise Ratio))の差を求める。セル間の品質情報の差が閾値以下である場合、すなわちセル間の品質差が小さい場合は、ユーザ端末UEがセル端に存在すると判断することができる。ユーザ端末UEがセル端に存在すると判断した場合はCoMP送信を適用する。一方、セル間の品質情報の差が閾値を超える場合、すなわちセル間の品質差が大きい場合には、いずれかのセルを形成している無線基地局装置eNBに近いので、受信品質の高いセルの中央付近にユーザ端末UEが存在すると判断する。この場合は、CoMP送信を適用しなくても高い受信品質を維持できる。
 なお、CoMP送信を適用する場合、ユーザ端末UEは、複数のセルごとのチャネル状態情報を無線基地局装置eNB(サービングセルの無線基地局装置eNB)にフィードバックする。一方、CoMP送信を適用しない場合には、ユーザ端末UEは、サービングセルのチャネル状態情報を無線基地局装置eNBにフィードバックする。
 ここでは、一例として、図2Aに示すシステム構成(HetNeT環境)においてCoMPを適用する場合を考える。図2Aには、広範囲のカバレッジエリアを有するマクロセル(セル0)と、マクロセル(セル0)のカバレッジエリア内に局所的なカバレッジエリアを有する複数のピコセル(セル1~3)が配置されている。ピコセル(セル1~3)はマクロセル(セル0)よりも送信電力が小さいので、小電力セルと呼んでもよい。マクロセル(セル0)およびピコセル(セル1~3)には異なる周波数帯域を割り当てることもできるが、図2Bに示すようにピコセル1~3には同一の周波数帯域2が割り当てられるものとする。ここでは、マクロセル(セル0)に周波数帯域1を割り当て、ピコセル(セル1~3)には周波数帯域1とは異なる周波数帯域2を割り当てる。
 図2A,Bに示すシステム構成において、同一周波数帯域2を用いる複数のピコセル(セル1~3)に対してCoMP送信(JT)を適用すると、ジョイント送信する複数セルの組み合わせは、“セル1+2”,“セル1+3”,“セル1+2+3”,“セル2+3”の4通り存在する。
 また、マクロセル(セル0)まで含んだ4つのセル(セル0~3)に対してCoMP送信(DPS,CS/CB)を適用可能である。CoMP送信する送信セルは、セル0,セル1,セル2,セル3の4通り存在する。
 したがって、図2A,Bに示すシステム構成の下でCoMP送信を適用しようとすると、8通りの送信セルまたはその組み合わせが存在する。
 上記したように、LTE-A(Rel.10)では複数のコンポーネントキャリア(プライマリ+1つまたは複数のセカンダリセル)を用いたキャリアアグリゲーションにおいて複数のコンポーネントキャリアのPDSCHに対して1セルのPDCCHからスケジューリングを行うクロスキャリアスケジューリングが導入された。クロスキャリアスケジューリングでは、どのセルのPDSCH受信用のPDCCHであるかを識別可能にするため、DCIにCIF(Cell Index Field)が規定されている。
 本発明者等は、CoMP適用時における、送信セルまたは送信セルの組み合わせをユーザ端末UEへ通知するために、DCIに規定されたCIFを用いることに着目した。
 まず、4つのセル(セル0~3)に対してCoMPのDPS、CS/CBを適用する場合を考える。
 図2Cに示すように、CoMPのDPS、CS/CBにおいても、複数セル(セル0~3)のPDSCHに対して1つのセル(セル0)からスケジューリングを行う場合(クロスキャリアスケジューリング)、各セル0~3から送信されるPDSCHに対するPDCCH(DCI)を、特定セルとなるセル0のPDCCH用リソースを用いて送信することができる。
 クロスキャリアスケジューリングにおいては、特定セルのPDCCH用リソースに集約されて送信される複数セルのPDCCH(DCI)が、どのセルのPDCCHであるかを識別する必要がある。そこで、PDCCHが対応するセルを識別するためのCIFが、各セルのPDCCHのDCIに付加されている。これにより、CIFを構成するビット情報に基づいて、PDCCHが対応するセルを識別することができる。
 すなわち、無線基地局装置eNBとユーザ端末UEとで、図2Eに示すような共通のCIFテーブルを保持しておき、無線基地局装置eNBから通知されるCIFのビット情報に基づいてPDCCHのセルを特定することができる。図2DはPDCCHに含まれるDCIフォーマットの概念図であり、CoMP送信時における送信セルを示すビットデータがCIFに記述された様子を示している。CIFには3ビットが割り当てられている。
 たとえば、図2Eに示すテーブルによれば、受信したPDCCHのDCIに含まれたCIFにビット情報(000)が含まれていれば、セル0のPDSCHを受信するためのPDCCHであると認識する。同様に、CIFに含まれたビット情報が(001),(010),(011)である場合には、それぞれPDCCHがセル1,2,3のPDSCH受信用の制御情報であることを示している。
 次に、CoMPのジョイント送信における送信セルの組み合わせ(CoMPセット)をどのようにしてユーザ端末UEへシグナリングするのが良いか検討する。図2Dに示す例では、CoMP送信における送信セルが1つの協調セルとなる場合(DPS、CS/CB)には、LTE-A(Rel.10)におけるCIFの考え方をそのまま適用してCIFのビット情報を(000),(001),(010),(011)のいずれかに設定することができた。
 CoMPのジョイント送信の場合、送信セルの組み合わせ(CoMPセット)の形でシグナリングすることがオーバーヘッドを低減する観点から望ましい。すなわち、“セル1+2“,“セル1+3“,“セル1+2+3“,“セル2+3“の各CoMPセットをユーザ端末UEへシグナリングする。たとえば、図2Dに示すように、CIFを3ビットで構成した場合、8通りのビットデータを生成可能である。したがって、図2Eに示すテーブルにおける4通りのCIFのビット情報のほか、4通りのCIFのビット情報は未使用である。本発明者は、3ビットで構成したCIFに未使用のビットデータリソースがあることに着目し、このCIFのビット情報を、ジョイント送信適用時におけるCoMPセットを示すビットデータに利用することを見出した。
 図3は、未使用であったCIFのビット情報(100),(101),(110),(111)を、ジョイント送信の各CoMPセットに割り当てたCIFテーブルを示している。同図に示すCIFテーブルは、個別の協調セルとなるセル0~セル3を、ビット情報(000),(001),(010),(011)にそれぞれマッピングし、各CoMPセット(セル1+2),(セル1+3),(セル1+2+3),(セル2+3)をビット情報(100),(101),(110),(111)にそれぞれマッピングしている。図3に示すCIFテーブルによれば、たとえば、CIFのビット情報として(100)が検出された場合は、ユーザ端末UEはCoMPセット(セル1+2)に対するPDCCHであると判断でき、当該PDCCHに基づいて、セル1とセル2からジョイント送信されたPDSCHを受信(復調)する。なお、ビット情報(100),(101),(110),(111)のいずれかを有するCIFは、DCI5に付加される。
 以下、本実施の形態の無線通信システムについて具体的に説明する。図2Aに示すシステム構成において、まず、ユーザ端末UEが制御チャネル(RRC Connection)を確立するときに、サービングセルにおける無線基地局装置eNBへ自らの端末能力(UE Capability)を通知する。
 また、ユーザ端末UEは、生成したチャネル品質情報(CQI:Channel Quality Indicator)を無線基地局装置eNBにフィードバックする。
 無線基地局装置eNBは、通知されたユーザ端末UEの端末能力に基づいて、接続するユーザ端末UEの通信能力を把握する。ユーザ端末UEがCoMP送信に対応している場合には、無線基地局装置eNBは、ユーザ端末UEにメジャメント候補セルをRRC(Radio Resource Control)プロトコルの制御信号によって通知する。ユーザ端末UEは、各メジャメント候補セルのRSRP(Reference Signal Received Power)などを測定し、無線基地局装置eNBに対して、メジャメントレポート(測定報告)結果を、ハイヤレイヤシグナリング(たとえば、RRCシグナリング)で報告する。
 無線基地局装置eNBは、メジャメントレポート結果に基づいて、メジャメント候補セルの中からCoMP候補セルを決定する。このCoMP候補セルには、CoMP送信(DPS,CS/CB)において送信ポイントとなる個々の協調セル、および、CoMPのジョイント送信(JT)において送信セルとなる複数セルの組み合わせを示すCoMPセットが含まれる。そして、無線基地局装置eNBは、CoMP候補セルにおける個々の協調セル(サービングセルを含む)を示すインデックス、および、CoMPセットのインデックスをビットデータにマッピングして、図3に示すようなCIFテーブルを生成する。このCIFテーブルは、たとえば、RRCシグナリングによって、ユーザ端末UEにシグナリングされる。
 また、無線基地局装置eNBは、ユーザ端末UEからフィードバックされたCQIに基づいて、ユーザ端末UEに共有データチャネルを送信するCoMP送信セルを決定する。そして、無線基地局装置eNBは、CoMPのジョイント送信を適用する場合は、ジョイント送信(JT)を行う複数セル間で共用する物理下りリンク制御チャネル(PDCCH)に、このCoMPセットのインデックスをCIFに記述した下りリンク制御情報(DCI)を生成する。
 図4は、図2Aに示すシステム構成において、クロスキャリアスケジューリングを適用した場合の、PDCCHの割り当てを示す図である。CoMPのDPS,CS/CBを適用する場合においては、特定セルとなるセル0のPDCCHリソースを用いて、各セル0~3から送信されるPDSCHに対するPDCCH(DCI)を送信している。
 一方、CoMPのジョイント送信(JT)を適用する場合においては、特定セルとなるセル0のPDCCHを用いて、各CoMPセット(セル1+2),(セル1+3),(セル1+2+3),(セル2+3)から送信されるPDSCHに対するPDCCH(DCI)を送信している。
 たとえば、CoMPのDPS,CS/CBが適用される場合であって、CoMP送信セルとしてセル1が選択された場合には、図3に示すテーブルより、このセル1はビット情報(001)にマッピングされているため、特定セルの無線基地局装置eNBではこのCIFにセル1のビット情報を組み込んだDCIを生成する。そして、図4に示すように、特定セルであるセル0の無線基地局装置eNBから、このDCIを含んだPDCCHを送信する。
 一方、CoMPのジョイント送信(JT)が適用される場合であって、CoMP送信セルとしてCoMPセット(セル1+2)が選択された場合には、図3に示すテーブルにより、このCoMPセットはビット情報(100)にマッピングされているため、特定セルの無線基地局装置eNBではこのCIFにCoMPセット(セル1+2)のビット情報を組み込んだDCIを生成する。そして、図4に示すように、特定セルであるセル0の無線基地局装置eNBから、このDCIを含んだPDCCHを送信する。
 ユーザ端末UEは、CoMP送信が適用された場合には、特定セルであるセル0の無線基地局装置eNBからPDCCHを受信するとともに、すべてのCoMP送信セルとなる無線基地局装置から物理下りリンク共有データチャネル(PDSCH)を受信する。そして、特定セルから受信したPDCCHに含まれるDCIのCIFに組み込まれているCoMP送信セルのインデックスを、図3に示すテーブルを用いて分析し、CIFのビット情報からCoMP送信セルを特定する。これにより、特定セルから受信したPDCCHと送信セルから受信したPDSCHとが対応付けられ、対応付けられたPDCCHのDCIに基づいてPDSCHを復調できる。
 以上のとおり、CoMP送信において送信ポイントとなる個々の協調セルを示すインデックス、および、CoMP送信においてジョイント送信する複数セルの各組み合わせを示すCoMPセットのインデックスを、CIFのビットデータにマッピングすることにより、CoMP送受信技術に適したセルインデックス情報のシグナリングを実現できる。
 ところで、CIFのビット数を3ビットに固定した場合、システム構成によってはすべてのCoMPセットをCIFのビット情報にマッピングできない可能性がある。図5A,Bは、セル1~3に対してセル4~6を周波数多重したシステム構成を示している。セル1~3には周波数帯域2を割り当て、セル4~6には周波数帯域3を割り当てている。かかるシステム構成では、CoMP対象となるセルが全体で7セル存在し、ジョイント送信するCoMPセットの対象となるセルが全体で6セル(セル1~セル6)存在する。
 図5に示す場合において、セル1~3を利用したCoMP送信(JT)を行う場合、そのCoMPセットは、“セル1+2“,“セル1+3“,“セル1+2+3“,“セル2+3“の4種類である。また、セル4~6を利用したCoMP送信(JT)を行う場合、そのCoMPセットは、“セル4+5“,“セル4+6“,“セル4+5+6“,“セル5+6“の4種類である。これらに加えて、ジョイント送信以外のCoMP送信(DPS,CS/CB)を行うセルは、セル0,セル1,セル2,セル3の4種類である。すなわち、計12種類のセル情報を8種類のCIFのビット情報を用いて示す必要があり、CIFのビット情報が不足する。
<第1のテーブル構成方法>
 第1の方法としては、受信品質(たとえば、RSRP:Reference Signal Received Power)が低いセルで構成されるCoMPセットを除いて、CIFテーブルを構成する方法が挙げられる。この場合には、無線基地局装置eNBは、ユーザ端末UEによるメジャメントの結果を利用して、受信品質が高いセルをCoMPセットの候補として決定する。
 この場合のテーブル構成方法について具体的に説明する。図5Aに示すシステム構成において、無線基地局装置eNBは、ユーザ端末UEにメジャメント候補セルをRRC(Radio Resource Control)プロトコルの制御信号によって通知する。ユーザ端末UEは、各メジャメント候補セルのRSRPなどを測定し、無線基地局装置eNBに対して、メジャメントレポート(測定報告)結果を、ハイヤレイヤシグナリング(たとえば、RRCシグナリング)で報告する。
 無線基地局装置eNBは、メジャメントレポート結果に基づいて、メジャメント候補セルの中からCoMP候補セルを決定する。CoMP候補セルは、たとえば、通信品質が品質条件を満たさない組み合わせからなるCoMPセットが含まれないように決定される。品質条件を満たすか否かは、たとえば、当該メジャメント候補セルのRSRPが閾値を上回ったか否か、あるいは、メジャメント候補セルにおけるRSRPの大小関係によって推定する。
 たとえば、図5Aに示すシステム構成において、セル3の受信品質が相対的に低く、RSRPCell1>RSRPCell2>RSRPCell3という関係が成り立つ場合には、セル3を含むCoMPセット、すなわち、“セル1+3“および“セル2+3“を除いて、“セル1+2“および“セル1+2+3“の2つのCoMPセットをCoMP候補セルと決定する。
 同様に、セル6の受信品質が低く、RSRPCell4>RSRPCell5>RSRPCell6という関係が成り立つ場合には、セル6を含むCoMPセット、すなわち、“セル4+6“および“セル5+6“を除いて、“セル4+5“および“セル4+5+6“の2つのCoMPセットをCoMP候補セルと決定する。
 なお、セル1~3においてCoMP送信(JT)を行うか、セル4~6においてCoMP送信(JT)を行うかは、無線基地局装置eNBが通信環境やユーザ端末からの要求に応じて自在に決めることができる。
 そして、無線基地局装置eNBは、CoMP候補セルに選択された個々の協調セルを示すインデックス、および、CoMPセットのインデックスをビットデータにマッピングして、図6に示すようなCIFテーブルを生成する。図6に示すCIFテーブルは、個別の協調セルとなるセル0~セル3を、ビット情報(000),(001),(010),(011)にそれぞれマッピングし、各CoMPセット(セル1+2),(セル1+2+3),(セル4+5),(セル4+5+6)をビット情報(100),(101),(110),(111)にそれぞれマッピングしている。なお、ビット情報(100),(101)のいずれかを有するCIFは、DCI5に付加される。また、ビット情報(110),(111)のいずれかを有するCIFは、DCI6に付加される。
 図6に示すCIFテーブルによれば、たとえば、CIFのビット情報として(100)が検出された場合は、ユーザ端末UEはCoMPセット(セル1+2)に対するPDCCHであると判断でき、当該PDCCHに基づいて、セル1とセル2からジョイント送信されたPDSCHを受信(復調)する。このCIFテーブルは、たとえば、RRCシグナリングによって、ユーザ端末UEにシグナリングされる。
 また、無線基地局装置eNBは、ユーザ端末UEからフィードバックされたCQIに基づいて、ユーザ端末UEに共有データチャネルを送信するCoMP送信セルを決定する。そして、無線基地局装置eNBは、CoMPのジョイント送信(JT)を適用する場合は、CoMPセットを構成する複数セル間で共用する物理リンク制御チャネル(PDCCH)に、このCoMPセットのインデックスをCIFに記述した下りリンク制御情報(DCI)を生成する。
 図7は、図5Aに示すシステム構成において、クロスキャリアスケジューリングを適用した場合の、PDCCHの割り当てを示す図である。CoMPのDPS,CS/CBを適用する場合においては、特定セルとなるセル0のPDCCHリソースを用いて、各セル0~3から送信されるPDSCHに対するPDCCH(DCI)を送信している。
 一方、CoMPのジョイント送信(JT)を適用する場合においては、特定セルとなるセル0のPDCCHを用いて、各CoMPセット(セル1+2),(セル1+2+3),(セル4+5),(セル4+5+6)から送信されるPDSCHに対するPDCCH(DCI)を送信している。
 たとえば、CoMPのDPS,CS/CBが適用される場合であって、CoMP送信セルとしてセル1が選択された場合には、図6に示すテーブルより、このセル1はビット情報(001)にマッピングされているため、特定セルの無線基地局装置eNBではこのCIFにセル1のビット情報を組み込んだDCIを生成する。そして、図7に示すように、特定セルであるセル0の無線基地局装置eNBから、このDCIを含んだPDCCHを送信する。
 一方、CoMPのジョイント送信(JT)が適用される場合であって、CoMP送信セルとしてのCoMPセット(セル1+2)が選択された場合には、図6に示すテーブルにより、このCoMPセットはビット情報(100)にマッピングされているため、特定セルの無線基地局装置eNBではこのCIFにCoMPセット(セル1+2)のビット情報を組み込んだDCIを生成する。そして、図7に示すように、特定セルであるセル0の無線基地局装置eNBから、このDCIを含んだPDCCHを送信する。
 また、CoMP送信(JT)が適用される場合であって、CoMP送信セルとしてCoMPセット(セル4+5)が選択された場合には、図6に示すテーブルにより、このCoMPセットはビット情報(110)にマッピングされているため、特定セルの無線基地局装置eNBではこのCIFにCoMPセット(セル4+5)のビット情報を組み込んだDCIを生成する。そして、図7に示すように、特定セルであるセル0の無線基地局装置eNBから、このDCIを含んだPDCCHを送信する。
 ユーザ端末UEは、CoMP送信が適用された場合には、特定セルであるセル0の無線基地局装置eNBからPDCCHを受信するとともに、すべてのCoMP送信セルとなる無線基地局装置から物理下りリンク共有データチャネル(PDSCH)を受信する。そして、特定セルから受信したPDCCHに含まれるDCIのCIFに組み込まれているCoMP送信セルのインデックスを、図6に示すテーブルを用いて分析し、CoMP送信セルを特定する。これにより、特定セルから受信したPDCCHと送信セルから受信したPDSCHとが対応付けられ、対応付けられたPDCCHのDCIに基づいてPDSCHを復調できる。
 これにより、CIFのビット情報が不足する場合であっても、CoMP候補セルをマッピングしたCIFテーブルを生成し、クロスキャリアスケジューリングを行うことが可能となる。
<第2のテーブル構成方法>
 第2の方法としては、受信品質(たとえば、RSRP)が低いセルを取り除いて、CIFテーブルを構成する方法が挙げられる。この場合には、無線基地局装置eNBは、ユーザ端末UEによるメジャメントの結果を利用して、受信品質が高いセルをCoMPセル候補として決定する。
 この場合のテーブル構成方法について具体的に説明する。図5Aに示すシステム構成において、無線基地局装置eNBは、ユーザ端末UEにメジャメント候補セルをRRCプロトコルの制御信号によって通知する。ユーザ端末UEは、各メジャメント候補セルのRSRPなどを測定し、無線基地局装置eNBに対して、メジャメントレポート(測定報告)結果を、ハイヤレイヤシグナリング(たとえば、RRCシグナリング)で報告する。
 無線基地局装置eNBは、メジャメントレポート結果に基づいて、メジャメント候補セルの中からCoMP候補セルを決定する。CoMP候補セルは、たとえば、通信品質が品質条件を満たさない協調セルの全部または一部が含まれないように決定される。品質条件を満たすか否かは、たとえば、当該メジャメント候補セルのRSRPが閾値を上回ったか否か、あるいは、メジャメント候補セルにおけるRSRPの大小関係によって推定する。
 たとえば、図5Aに示すシステム構成において、セル3の受信品質が相対的に低く、RSRPCell1>RSRPCell2>RSRPCell3という関係が成り立つ場合には、セル3をユーザ端末UEに対する送受信の信号処理には使用しないよう取り除く。これにより、セル3がCoMP候補セルとなること、および、セル3を含むCoMPセットがCoMP候補セルとなることが制限される。
 そして、無線基地局装置eNBは、セル3を除いてCoMP候補セルに選択された個々の協調セルを示すインデックス、および、CoMPセットのインデックスをビットデータにマッピングして、図8に示すようなCIFテーブルを生成する。図8に示すCIFテーブルは、個別の協調セルとなるセル0~セル2を、ビット情報(000),(001),(010)にそれぞれマッピングし、各CoMPセット(セル1+2),(セル4+5),(セル4+6),(セル5+6),(セル4+5+6)をビット情報(011),(100),(101),(110),(111)にそれぞれマッピングしている。なお、ビット情報(011)を有するCIFは、DCI5に付加される。また、ビット情報(100),(101),(110),(111)のいずれかを有するCIFは、DCI6に付加される。
 図8に示すCIFテーブルによれば、たとえば、CIFのビット情報として(100)が検出された場合は、ユーザ端末UEはCoMPセット(セル4+5)に対するPDCCHであると判断でき、当該PDCCHに基づいて、セル4とセル5からジョイント送信されたPDSCHを受信(復調)する。このCIFテーブルは、たとえば、RRCシグナリングによって、ユーザ端末UEにシグナリングされる。
 また、無線基地局装置eNBは、ユーザ端末UEからフィードバックされたCQIに基づいて、ユーザ端末UEに共有データチャネルを送信するCoMP送信セルを決定する。そして、無線基地局装置eNBは、CoMPのジョイント送信(JT)を適用する場合は、CoMPセットを構成する複数セル間で共用する物理リンク制御チャネル(PDCCH)に、このCoMPセットのインデックスをCIFに記述した下りリンク制御情報(DCI)を生成する。
 図9は、図5Aに示すシステム構成において、クロスキャリアスケジューリングを適用した場合の、PDCCHの割り当てを示す図である。CoMPのDPS,CS/CBを適用する場合においては、特定セルとなるセル0のPDCCHリソースを用いて、各セル0~2から送信されるPDSCHに対するPDCCH(DCI)を送信している。
 一方、CoMPのジョイント送信(JT)を適用する場合においては、特定セルとなるセル0のPDCCHを用いて、各CoMPセット(セル1+2),(セル4+5),(セル4+6),(セル5+6),(セル4+5+6)から送信されるPDSCHに対するPDCCH(DCI)を送信している。
 たとえば、CoMPのDPS,CS/CBが適用される場合であって、CoMP送信セルとしてセル1が選択された場合には、図8に示すテーブルより、このセル1はビット情報(001)にマッピングされているため、特定セルの無線基地局装置eNBではこのCIFにセル1のビット情報を組み込んだDCIを生成する。そして、図9に示すように、特定セルであるセル0の無線基地局装置eNBから、このDCIを含んだPDCCHを送信する。
 一方、CoMPのジョイント送信(JT)が適用される場合であって、CoMP送信セルとしてのCoMPセット(セル1+2)が選択された場合には、図8に示すテーブルにより、このCoMPセットはビット情報(011)にマッピングされているため、特定セルの無線基地局装置eNBではこのCIFにCoMPセット(セル1+2)のビット情報を組み込んだDCIを生成する。そして、図9に示すように、特定セルであるセル0の無線基地局装置eNBから、このDCIを含んだPDCCHを送信する。
 また、CoMP送信(JT)が適用される場合であって、CoMP送信セルとしてCoMPセット(セル4+5)が選択された場合には、図8に示すテーブルにより、このCoMPセットはビット情報(100)にマッピングされているため、特定セルの無線基地局装置eNBではこのCIFにCoMPセット(セル4+5)のビット情報を組み込んだDCIを生成する。そして、図9に示すように、特定セルであるセル0の無線基地局装置eNBから、このDCIを含んだPDCCHを送信する。
 ユーザ端末UEは、CoMP送信が適用された場合には、特定セルであるセル0の無線基地局装置eNBからPDCCHを受信するとともに、すべてのCoMP送信セルとなる無線基地局装置から物理下りリンク共有データチャネル(PDSCH)を受信する。そして、特定セルから受信したPDCCHに含まれるDCIのCIFに組み込まれているCoMP送信セルのインデックスを、図8に示すテーブルを用いて分析し、CoMP送信セルを特定する。これにより、特定セルから受信したPDCCHと送信セルから受信したPDSCHとが対応付けられ、対応付けられたPDCCHのDCIに基づいてPDSCHを復調できる。
 これにより、CIFのビット情報が不足する場合であっても、CoMP候補セルをマッピングしたCIFテーブルを生成し、クロスキャリアスケジューリングを行うことが可能となる。
<第3のテーブル構成方法>
 図10にキャリアアグリゲーションにおいてDCIサイズが異なる場合の各セルのサーチスペース割り当て例を示している。システム帯域、DCIフォーマットの種別が異なることに起因してDCIサイズが異なる可能性がある。図10に示す例では、セル0~セル3のDCIサイズが異なっている。
 この場合、図10に示すように、セル0~セル3のサーチスペースSS1~SS4が、互いに異なる領域に配置される。たとえば、ユーザ端末UEは、セル0に割り当てられたサーチスペースSS1をセル0のDCIサイズに基づいてブラインドデコーディングし、セル0のDCIを復号する。他のセル1~セル3についても同様に、セル1~3にそれぞれ割り当てられたサーチスペースSS2~SS4をセル1~3のDCIサイズに基づいてブラインドデコーディングし、セル1~3のDCIを復号する。
 したがって、ユーザ端末UEでは、サイズの異なるDCIによってサーチスペースを識別することにより、PDSCHが割り当てられるシングルセル(セル0~3)を判定することができる。したがって、これらのサーチスペースによって判定できるセルのインデックスは、CIFテーブルにおいてビットデータにマッピングする必要がない。
 そこで、無線基地局装置eNBは、CIFテーブルに登録するCoMP候補セルからサーチスペースによって判定できる個別のセル(図10のセル0~セル3)を除外する。無線基地局装置eNBは、サーチスペースによって判定できるセルを除いて、ユーザ端末UEからのメジャメントレポート結果に基づいて、メジャメント候補セルの中からCoMP候補セルを決定して、図11に示すようなCIFテーブルを生成する。図11に示すCIFテーブルは、各CoMPセット(セル1+2),(セル1+3),(セル1+2+3),(セル2+3),(セル4+5),(セル4+6),(セル5+6),(セル4+5+6)をビット情報(000),(001),(010),(011),(100),(101),(110),(111)にそれぞれマッピングしている。なお、ビット情報(000),(001),(010),(011)のいずれかを有するCIFは、DCI5に付加される。また、ビット情報(100),(101),(110),(111)のいずれかを有するCIFは、DCI6に付加される。
 図11に示すCIFテーブルによれば、たとえば、CIFのビット情報として(100)が検出された場合は、ユーザ端末UEはCoMPセット(セル4+5)に対するPDCCHであると判断でき、当該PDCCHに基づいて、セル4とセル5からジョイント送信されたPDSCHを受信(復調)する。このCIFテーブルは、たとえば、RRCシグナリングによって、ユーザ端末UEにシグナリングされる。
 また、無線基地局装置eNBは、ユーザ端末UEからフィードバックされたCQIに基づいて、ユーザ端末UEに共有データチャネルを送信するCoMP送信セルを決定する。このCoMP送信セルが、サーチスペースによって識別できる場合には、サーチスペースを活用してシグナリングすればよい。CoMP送信セルが、サーチスペースによって識別できない場合には、無線基地局装置eNBは、CIFテーブルに登録されたCoMP候補がCoMPのジョイント送信に含まれている場合には、当該ジョイント送信(JT)を行う複数セル間で共用する物理リンク制御チャネル(PDCCH)に、このCoMPセットのインデックスをCIFに記述した下りリンク制御情報(DCI)を生成する。
 図12は、クロスキャリアスケジューリングを適用した場合の、PDCCHの割り当てを示す図である。CoMPのジョイント送信(JT)を適用する場合においては、特定セルとなるセル0のPDCCHを用いて、各CoMPセット(セル1+2),(セル1+3),(セル1+2+3),(セル2+3),(セル4+5),(セル4+6),(セル5+6),(セル4+5+6)から送信されるPDSCHに対するPDCCH(DCI)を送信している。
 CoMPのジョイント送信(JT)が適用される場合であって、CoMP送信セルとしてのCoMPセット(セル1+2)が選択された場合には、図11に示すテーブルにより、このCoMPセットはビット情報(000)にマッピングされているため、特定セルの無線基地局装置eNBではこのCIFにCoMPセット(セル1+2)のビット情報を組み込んだDCIを生成する。そして、図12に示すように、特定セルであるセル0の無線基地局装置eNBから、このDCIを含んだPDCCHを送信する。
 また、CoMP送信(JT)が適用される場合であって、CoMP送信セルとしてCoMPセット(セル4+5)が選択された場合には、図11に示すテーブルにより、このCoMPセットはビット情報(100)にマッピングされているため、特定セルの無線基地局装置eNBではこのCIFにCoMPセット(セル4+5)のビット情報を組み込んだDCIを生成する。そして、図12に示すように、特定セルであるセル0の無線基地局装置eNBから、このDCIを含んだPDCCHを送信する。
 ユーザ端末UEは、CoMP送信が適用された場合には、特定セルであるセル0の無線基地局装置eNBからPDCCHを受信するとともに、すべてのCoMP送信セルとなる無線基地局装置から物理下りリンク共有データチャネル(PDSCH)を受信する。そして、特定セルから受信したPDCCHに含まれるDCIのCIFに組み込まれているCoMP送信セルのインデックスを、図11に示すテーブルを用いて分析し、CoMP送信セルを特定する。これにより、特定セルから受信したPDCCHと送信セルから受信したPDSCHとが対応付けられ、対応付けられたPDCCHのDCIに基づいてPDSCHを復調できる。
 これにより、CIFのビット情報で示すべきCoMP候補セルの数を減らすことが可能となる。
<第4のテーブル構成方法>
 CIFテーブルに登録されるセルインデックスにサブフレーム情報が含まれるように拡張してもよい。すなわち、送信セルまたはCoMPセットの情報だけでなく、所定区間内のサブフレーム番号まで含めてビットデータにマッピングする。
 たとえば、CIFのビット数を3ビットに固定した場合、システム構成によってはCIFテーブル上に未使用のCIFのビット情報が存在する可能性がある。図13Aには、広範囲のカバレッジエリアを有するマクロセル(セル0)と局所的なカバレッジエリアを有する複数のピコセル(セル1,2)とが組み合わせて配置されている。マクロセル(セル0)およびピコセル(セル1,2)には異なる周波数帯域を割り当てることもできるが、図13Bに示すようにピコセル1,2には同一の周波数帯域2が割り当てられるものとする。ここでは、マクロセル(セル0)に周波数帯域1を割り当て、ピコセル(セル1,2)には周波数帯域1とは異なる周波数帯域2を割り当てる。
 図13A,Bに示すシステム構成において、同一周波数帯域2を用いる複数のピコセル(セル1,2)に対してCoMP送信(JT)を適用する場合、ジョイント送信する複数セルの組み合わせは、“セル1+2”のみである。また、マクロセル(セル0)まで含んだ3つのセル(セル0~2)に対してCoMP送信(DPS,CS/CB)を適用可能である。この場合のCoMP送信する送信セルは、セル0,セル1,セル2の3通り存在する。
 したがって、図13A,Bに示すシステム構成の下でCoMP送信を適用しようとすると、4通りの送信セルまたはその組み合わせが存在する。CIFを3ビットで構成した場合、8通りのビットデータを生成可能であるため、この場合には未使用のビットデータリソースが生じている。たとえば、CIFのビット情報(000),(001),(010),(011)を図13A,Bに示すシステム構成におけるCoMP候補セルのマッピングに使用した場合には、CIFのビット情報(100),(101),(110),(111)が未使用となる。
 この場合、未使用のビットデータリソースは、クロスサブフレームスケジューリングに利用することができる。図14は、CIFのビット情報(000),(001),(010),(011)に、サブフレームNにおけるCoMP候補セル(セル0),(セル1),(セル2),(セル1+2)をそれぞれマッピングし、未使用であったCIFのビット情報(100),(101),(110),(111)に、サブフレームN+1におけるCoMP候補セル(セル0),(セル1),(セル2),(セル1+2)をそれぞれマッピングした、クロスサブフレームスケジューリングにおけるCIFテーブルを示している。すなわち、ユーザ端末があるサブフレームで受信したPDCCHが、いずれのセルの何番目のサブフレームの制御情報であるかを識別できる。
 無線基地局装置eNBは、サブフレームNおよびサブフレームN+1間のクロスサブフレームスケジューリングを行う複数セル間で共用する物理リンク制御チャネル(PDCCH)に、CoMP送信セルのインデックスを組み込んだ下りリンク制御情報(DCI)を生成する。このように生成されたDCIを含んだ各セルのPDCCHは、図15に示すように、サブフレームNにおけるセル0の無線基地局装置eNBからサブフレームNにおける複数セル、または、サブフレームN+1における複数セルへ送信される。
 これにより、複数サブフレーム間でCoMP送信セルのインデックスを指定することが可能となる。
(無線通信システム)
 ここで、本実施の形態に係る無線通信システムについて詳細に説明する。図16は、本実の形態に係る無線通信システムのシステム構成の説明図である。なお、図16に示す無線通信システムは、たとえば、LTEシステムあるいは、SUPER 3Gが包含されるシステムである。この無線通信システムでは、LTEシステムのシステム帯域を一単位とする複数の基本周波数ブロックを一体としたキャリアアグリゲーションが用いられている。また、この無線通信システムは、IMT-Advancedと呼ばれてもよいし、4Gと呼ばれてもよい。
 図16に示すように、無線通信システム1は、各送信ポイントの基地局装置20A,20Bと、この基地局装置20A,20Bと通信するユーザ端末10とを含んで構成されている。基地局装置20A,20Bは、上位局装置30と接続され、この上位局装置30は、コアネットワーク40と接続される。また、基地局装置20A,20Bは、有線接続または無線接続により相互に接続されている。ユーザ端末10は、送信ポイントである基地局装置20A,20Bと通信を行うことができる。なお、上位局装置30には、たとえば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。
 ユーザ端末10は、既存端末(Rel.10LTE)およびサポート端末(たとえば、Rel.11LTE)を含むが、以下においては、特段の断りがない限りユーザ端末として説明を進める。また、説明の便宜上、基地局装置20A,20Bと無線通信するのはユーザ端末10であるものとして説明する。
 無線通信システム1においては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用されるが、上りリンクの無線アクセス方式はこれに限定されない。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域を端末ごとに1つまたは連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。
 ここで、通信チャネルについて説明する。下りリンクの通信チャネルは、ユーザ端末10で共有される下りデータチャネルとしてのPDSCHと、下りL1/L2制御チャネル(PDCCH、PCFICH、PHICH)とを有する。PDSCHにより、送信データおよび上位制御情報が伝送される。PDCCHにより、PDSCHおよびPUSCHのスケジューリング情報などが伝送される。PCFICH(Physical Control Format Indicator Channel)により、PDCCHに用いるOFDMシンボル数が伝送される。PHICH(Physical Hybrid-ARQ Indicator Channel)により、PUSCHに対するHARQのACK/NACKが伝送される。
 上りリンクの通信チャネルは、各ユーザ端末で共有される上りデータチャネルとしてのPUSCH(Physical Uplink Shared Channel)と、上りリンクの制御チャネルであるPUCCH(Physical Uplink Control Channel)とを有する。このPUSCHにより、送信データや上位制御情報が伝送される。また、PUCCHにより、下りリンクのチャネル状態情報(CSI(CQIなどを含む))、ACK/NACKなどが伝送される。
 図17を参照しながら、本実施の形態に係る基地局装置の全体構成について説明する。なお、基地局装置20A,20Bは、同様な構成であるため、基地局装置20として説明する。基地局装置20は、送受信アンテナ201と、アンプ部202と、送受信部(通知部)203と、ベースバンド信号処理部204と、呼処理部205と、伝送路インターフェース206とを備えている。下りリンクにより基地局装置20からユーザ端末に送信される送信データは、上位局装置30から伝送路インターフェース206を介してベースバンド信号処理部204に入力される。
 ベースバンド信号処理部204において、下りデータチャネルの信号は、PDCPレイヤの処理、送信データの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、たとえば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理が行われる。また、下りリンク制御チャネルである物理下りリンク制御チャネルの信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われる。
 また、ベースバンド信号処理部204は、報知チャネルにより、同一送信ポイントに接続するユーザ端末10に対して、各ユーザ端末10が基地局装置20との無線通信するための制御情報を通知する。当該送信ポイントにおける通信のための情報には、たとえば、上りリンクまたは下りリンクにおけるシステム帯域幅や、PRACH(Physical Random Access Channel)におけるランダムアクセスプリアンブルの信号を生成するためのルート系列の識別情報(Root Sequence Index)などが含まれる。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。アンプ部202は周波数変換された無線周波数信号を増幅して送受信アンテナ201へ出力する。
 一方、上りリンクによりユーザ端末10から基地局装置20に送信される信号については、送受信アンテナ201で受信された無線周波数信号がアンプ部202で増幅され、送受信部203で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部204に入力される。
 ベースバンド信号処理部204は、上りリンクで受信したベースバンド信号に含まれる送信データに対して、FFT処理、IDFT処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理を行う。復号された信号は伝送路インターフェース206を介して上位局装置30に転送される。
 呼処理部205は、通信チャネルの設定や解放などの呼処理や、基地局装置20の状態管理や、無線リソースの管理を行う。
 次に、図18を参照しながら、本実施の形態に係るユーザ端末の全体構成について説明する。ユーザ端末10は、送受信アンテナ101と、アンプ部102と、送受信部(受信部)103と、ベースバンド信号処理部104と、アプリケーション部105とを備えている。
 下りリンクのデータについては、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅され、送受信部103で周波数変換されてベースバンド信号に変換される。このベースバンド信号は、ベースバンド信号処理部104でFFT処理や、誤り訂正復号、再送制御の受信処理などがなされる。この下りリンクのデータの内、下りリンクの送信データは、アプリケーション部105に転送される。アプリケーション部105は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報も、アプリケーション部105に転送される。
 一方、上りリンクの送信データは、アプリケーション部105からベースバンド信号処理部104に入力される。ベースバンド信号処理部104においては、マッピング処理、再送制御(HARQ)の送信処理や、チャネル符号化、DFT処理、IFFT処理を行う。送受信部103は、ベースバンド信号処理部104から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101より送信する。
 図19を参照して、CoMP送信に対応した基地局装置の機能ブロックについて説明する。なお、図19の各機能ブロックは、主に図17に示すベースバンド信号処理部に関するものである。また、図19の機能ブロック図は、本発明を説明するために簡略化したものであり、ベースバンド信号処理部において通常備える構成を備えるものとする。
 基地局装置20は、送信側において、バックホール通信部401、上位制御情報生成部402と、下り送信データ生成部403と、下り制御情報生成部404と、RS生成部405と、下り送信データ符号化・変調部406と、下り制御情報符号化・変調部407とを備えている。また、基地局装置20は、下りチャネル多重部408と、IFFT部409と、CP付加部410とを備えている。さらに、基地局装置20は、受信部411と、端末能力判定部412と、受信品質判定部413と、CQI判定部414と、CoMP候補セル決定部415と、スケジューラ416とを備えている。
 バックホール通信部401は、バックホールによって他の基地局との通信を可能にする。
 上位制御情報生成部402は、ユーザ端末に対して上位レイヤシグナリング(たとえば、RRCシグナリング)により送信される上位制御情報を生成し、生成した上位制御情報を下り送信データ符号化・変調部406に出力する。たとえば、上位制御情報生成部402は、バックホール通信部401から出力された情報を含む上位制御情報(RSの送信パラメータに関する情報)を生成する。
 また、上位制御情報生成部402は、後述するCoMP候補セル決定部415において決定されたCoMP候補セルを含むCIFテーブル情報を生成し、生成した情報を下り送信データ符号化・変調部406に出力する。
 下り送信データ生成部403は、下りリンクの送信データを生成し、その下り送信データを下り送信データ符号化・変調部406に出力する。下りリンクの送信データとしてのユーザデータは上位レイヤから供給される。
 下り制御情報生成部404は、DLグランドを内容とするDCIフォーマット(たとえば、DCIフォーマット1Aなど)を用いて、PDSCHを制御するための下りリンク制御情報(DCI)を生成する。
 CoMP送信を行うセル情報またはセルの組み合わせ情報を、DCIに含めてユーザ端末に通知する場合には、下り制御情報生成部404においてセル情報またはセルの組み合わせ情報が生成される。CoMPのDPS、CS/CBを適用する場合は、CoMP送信時における送信セルのインデックスをCIFに記述したDCIを生成する。また、CoMPのジョイント送信を適用する場合は、ジョイント送信(JT)を行うCoMPセットのインデックスをCIFに記述した下りリンク制御情報(DCI)を生成する。このとき、DCIに付加されるCIFは、後述するCoMP候補セル決定部415において生成されたCIFテーブルの割り当てに基づいて、スケジューラ416によって指示されたCIFである。
 下り送信データ符号化・変調部406は、下り送信データおよび上位制御情報に対してチャネル符号化およびデータ変調を行い、下りチャネル多重部408に出力する。下り制御情報符号化・変調部407は、下り制御情報に対してチャネル符号化およびデータ変調を行い、下りチャネル多重部408に出力する。
 RS生成部405は、既存の参照信号(CRS,CSI-RS、DM-RS)を生成する他、希望信号測定用RS、干渉測定用RSを生成してもよい。これらのRSを下りチャネル多重部408に出力する。
 下りチャネル多重部408は、下りリンク制御情報、RS、上位制御情報および下り送信データを合成して送信信号を生成する。下りチャネル多重部408は、生成した送信信号をIFFT部409に出力する。IFFT部409は、送信信号を逆高速フーリエ変換(Inverse Fast Fourier Transform)し、周波数領域の信号から時間領域の信号に変換する。IFFT後の送信信号をCP付加部410に出力する。CP付加部410は、IFFT後の送信信号にCP(Cyclic Prefix)を付加して、CP付加後の送信信号を図17に示すアンプ部202に出力する。
 受信部411は、ユーザ端末からの送信信号を受信して、この受信信号から、端末能力情報(UE Capability)、受信品質情報、チャネル品質情報(CQI)を取り出して、それぞれ端末能力判定部412、受信品質判定部413、CQI判定部414に出力する。
 端末能力判定部412は、通知されたユーザ端末の端末能力に基づいて、接続するユーザ端末の通信能力を判定する。
 受信品質判定部413は、メジャメントレポート結果に基づいて、メジャメント候補セルの受信品質(たとえば、RSRP)を判定する。
 CQI判定部414は、上り/下りリンクの受信品質を判定する。
 CoMP候補セル決定部415は、ユーザ端末の端末能力およびメジャメント候補セルの受信品質に基づいて、メジャメント候補セルの中からCoMP候補セルを決定し、CIFのビット情報を各CoMP候補セルに割り当てたCIFテーブルを生成する。このCoMP候補セルには、CoMP送信(DPS,CS/CB)において送信ポイントとなる個々の協調セル、および、CoMP送信(JT)においてジョイント送信する複数セルの組み合わせを示すCoMPセットが含まれる。CoMP候補セル決定部415は、生成したCIFテーブルの情報を、バックホール通信部401およびスケジューラ416に出力する。
 スケジューラ416は、ユーザ端末からフィードバックされたCQIに基づいて、CoMP候補セルの中から、ユーザ端末に共有データチャネルを送信するCoMP送信セルを決定する。スケジューラ416は、クロスキャリアスケジューリングを行う場合、下り制御情報生成部404に、CoMP送信セルのインデックスを示すCIFを指示する。
 図20を参照して、本実施の形態に係るユーザ端末の機能ブロックについて説明する。なお、図20の各機能ブロックは、主に図18に示すベースバンド信号処理部104に関するものである。また、図20に示す機能ブロックは、本発明を説明するために簡略化したものであり、ベースバンド信号処理部において通常備える構成は備えるものとする。
 ユーザ端末10は、受信側において、CP除去部301と、FFT部302と、下りチャネル分離部303と、下り制御情報受信部304と、下り送信データ受信部305と、干渉信号推定部306と、チャネル推定部307と、CQI測定部308とを備えている。
 基地局装置20から送出された送信信号は、図18に示す送受信アンテナ101により受信され、CP除去部301に出力される。CP除去部301は、受信信号からCPを除去し、FFT部302に出力する。FFT部302は、CP除去後の信号を高速フーリエ変換(FFT:Fast Fourier Transform)し、時間領域の信号から周波数領域の信号に変換する。FFT部302は、周波数領域の信号に変換された信号を下りチャネル分離部303に出力する。
 下りチャネル分離部303は、下りチャネル信号を、下り制御情報、下り送信データ、RSに分離する。下りチャネル分離部303は、下り制御情報を下り制御情報受信部304に出力し、下り送信データおよび上位制御情報を下り送信データ受信部305に出力し、干渉測定用RSを干渉信号推定部306に出力し、希望信号測定用RSをチャネル推定部307に出力する。
 下り制御情報受信部304は、下りリンク制御情報(DCI)を復調し、復調されたDCIを下り送信データ受信部305に出力する。下り送信データ受信部305は、復調されたDCIを用いて下り送信データを復調する。すなわち、下り制御情報受信部304は、特定セルから受信したPDCCHに含まれるDCIのCIFに組み込まれているCoMP送信セルのインデックスを、CIFテーブルを用いて分析し、CIFのビット情報からCoMP送信セルを特定する判定部として機能する。下り送信データ受信部305は、特定されたCoMP送信セルからのPDSCHを復調する。また、下り送信データ受信部305は、下り送信データに含まれる上位制御情報を干渉信号推定部306、チャネル推定部307に出力する。
 干渉信号推定部306は、CRS,CSI-RSなどの下り参照信号を用いて、干渉信号を推定する。干渉信号推定部306は、干渉信号の推定を行い、全てのリソースブロックで測定結果を平均化することができる。平均化された干渉信号の推定結果は、CQI測定部308に通知される。
 チャネル推定部307は、上位制御情報(または下り制御情報)に含まれる送信パラメータ等の情報に基づいて希望信号測定用RE(CSI-RSリソース)を特定し、希望信号測定用REで希望信号を推定する。なお、チャネル推定部307は、上記図9Bで示したように、希望信号測定用RE(SMR)に加えて、干渉測定用RE(IMR)を用いてチャネル推定を行うことも可能である。
 チャネル推定部307は、チャネル推定値をCQI測定部308に通知する。CQI測定部308は、干渉信号推定部306から通知される干渉推定結果、およびチャネル推定部307から通知されるチャネル推定結果、フィードバックモードに基づいてチャネル状態(CQI)を算出する。なお、フィードバックモードは、Wideband CQI、Subband CQI、best-M averageのいずれが設定されてもよい。CQI測定部308で算出されたCQIは、フィードバック情報として基地局装置20に通知される。
 上記構成のシステムを適用した無線通信システムについて説明する。
 基地局装置20において、受信部411は、ユーザ端末からの送信信号を受信して、この受信信号から、端末能力情報(UE Capability)、受信品質情報、チャネル品質情報(CQI)を取り出して、それぞれ端末能力判定部412、受信品質判定部413、CQI判定部414に出力する。端末能力判定部412は、通知されたユーザ端末の端末能力に基づいて、接続するユーザ端末の通信能力を判定する。受信品質判定部413は、メジャメントレポート結果に基づいて、メジャメント候補セルの受信品質(たとえば、RSRP)を判定する。CQI判定部414は、上り/下りリンクの受信品質を判定する。
 CoMP候補セル決定部415は、ユーザ端末の端末能力およびメジャメント候補セルの受信品質に基づいて、メジャメント候補セルの中からCoMP候補セルを決定し、CIFのビット情報を各CoMP候補セルに割り当てたCIFテーブルを生成する。このCIFテーブルは、上位制御情報生成部402を介して、ユーザ端末にシグナリングされる。
 スケジューラ416は、ユーザ端末からフィードバックされたCQIに基づいて、CoMP候補セルの中から、ユーザ端末に共有データチャネルを送信するCoMP送信セルを決定し、下り制御情報生成部404に、CoMP送信セルのインデックスを示すCIFを指示する。
 下り制御情報生成部404は、スケジューラ416から指示されたCoMP送信時における送信セルのインデックスをCIFに記述したDCIを生成する。
 ユーザ端末10において、下り制御情報受信部304は、特定セルから受信したPDCCHに含まれるDCIのCIFに組み込まれているCoMP送信セルのインデックスを、CIFテーブルを用いて分析し、CIFのビット情報からCoMP送信セルを特定する。下り送信データ受信部305は、特定されたCoMP送信セルからのPDSCHを復調する。
 なお、本発明は上記実施の形態に限定されず、さまざまに変更して実施可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更が可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施可能である。
 本出願は、2012年5月10日出願の特願2012-108844に基づく。この内容は、すべてここに含めておく。

Claims (10)

  1.  それぞれがセルを形成する複数の無線基地局装置と、前記各無線基地局装置に対して無線リンクを介して接続するユーザ端末とを備えた無線通信システムにおいて、
     前記無線通信システムは、
      前記ユーザ端末に対して複数の無線基地局装置が送信ポイントとなってCoMP送信し、特定セルの無線基地局装置から複数セルの物理下りリンク制御チャネルを送信すると共に、CoMP送信する全ての無線基地局装置から各セルの物理下りリンク共有データチャネルを送信する伝送モードをサポートし、
     前記特定セルの無線基地局装置は、
      CoMP送信において送信ポイントとなる個々の協調セルを示すインデックス、および、CoMP送信においてジョイント送信する複数セルの各組み合わせを示すCoMPセットのインデックスが、ビットデータにマッピングされているテーブルに基づいて、ジョイント送信する複数セル間で共用する物理下りリンク制御チャネルに、CoMPセットのインデックスを組み込んだ下りリンク制御情報を生成する生成部と、
      前記生成した下りリンク制御情報を含んだ各セルの物理下りリンク制御チャネルを送信する送信部と、を具備し、
     前記ユーザ端末は、
      前記伝送モードが適用された場合、前記特定セルの無線基地局装置から複数セルの物理下りリンク制御チャネルを受信すると共に、協調マルチポイント送信する全ての無線基地局装置から物理下りリンク共有データチャネルを受信する受信部と、
      受信した物理下りリンク制御チャネルに含まれた下りリンク制御情報に組み込まれているCoMPセットのインデックスを、前記特定セルの無線基地局装置と同一内容のテーブルを用いて分析してCoMPセットを特定する判定部と、を具備したことを特徴とする無線通信システム。
  2.  前記無線通信システムは、
      前記物理下りリンク制御チャネルの下りリンク制御情報に物理下りリンク制御チャネルのセル識別情報が記述されるキャリアインジケータフィールドが定められ、
     前記特定セルの無線基地局装置は、
      前記キャリアインジケータフィールドに、協調セルまたはCoMPセットのインデックスを示すビットデータを記述することを特徴とする請求項1記載の無線通信システム。
  3.  前記テーブルは、通信品質が品質条件を満たさないセルの組み合わせからなるCoMPセットが含まれないように、ビットデータにマッピングされるCoMPセットが制限されることを特徴とする請求項1記載の無線通信システム。
  4.  前記テーブルは、通信品質が品質条件を満たさない協調セルの全部または一部が含まれないように、ビットデータにマッピングされる協調セルまたは当該協調セルを含むCoMPセットが制限されることを特徴とする請求項1記載の無線通信システム。
  5.  前記テーブルは、1サブフレームにスケジューリングされる複数セルの物理下りリンク制御チャネルの下りリンク制御情報のビットサイズが互いに異なる場合、協調セルの全部または一部が含まれないように、ビットデータにマッピングされる協調セルが制限されることを特徴とする請求項1記載の無線通信システム。
  6.  前記テーブルは、CoMP送信において送信ポイントとなる個々の協調セルと、物理下りリンク共有データチャネルの送信区間となるサブフレーム番号とが組み合わされたインデックス、および、CoMPセットと物理下りリンク共有データチャネルの送信区間となるサブフレーム番号とが組み合わされたインデックスが、ビットデータにマッピングされていることを特徴とする請求項1記載の無線通信システム。
  7.  ユーザ端末が無線リンクを介して接続する無線基地局装置において、
     前記ユーザ端末に対して他の無線基地局装置と共に送信ポイントとなって協調マルチポイント送信するCoMP送信をスケジューリングするスケジューラと、
     CoMP送信において、複数セルの物理下りリンク制御チャネルを特定セルから送信する場合、送信ポイントとなる個々の協調セルを示すインデックス、および、ジョイント送信する複数セルの各組み合わせを示すCoMPセットのインデックスが、ビットデータにマッピングされているテーブルに基づいて、ジョイント送信する複数セル間で共用する物理下りリンク制御チャネルに、CoMPセットのインデックスを組み込んだ下りリンク制御情報を生成する生成部と、
     前記生成した下りリンク制御情報を含んだ各セルの物理下りリンク制御チャネルを前記特定セルから送信する送信部と、を具備したことを特徴とする無線基地局装置。
  8.  それぞれがセルを形成する複数の無線基地局装置に対して無線リンクを介して接続するユーザ端末において、
     前記複数の無線基地局装置が協調マルチポイント送信するCoMP送信において、複数セルの物理下りリンク制御チャネルが特定セルから送信される場合、前記特定セルの無線基地局装置から複数セルの物理下りリンク制御チャネルを受信すると共に、協調マルチポイント送信する全ての無線基地局装置から物理下りリンク共有データチャネルを受信する受信部と、
     受信した各セルの物理下りリンク制御チャネルに含まれた下りリンク制御情報に組み込まれている協調セルまたはCoMPセットのインデックスを、あらかじめ準備されたテーブルを用いて分析して協調セルまたはCoMPセットを特定する判定部と、を備え、
     前記テーブルは、CoMP送信において送信ポイントとなる個々の協調セルを示すインデックス、および、CoMP送信においてジョイント送信する複数セルの各組み合わせを示すCoMPセットのインデックスが、ビットデータにマッピングされている、
    ことを特徴とするユーザ端末。
  9.  それぞれがセルを形成する複数の無線基地局装置と、前記各無線基地局装置に対して無線リンクを介して接続するユーザ端末とを備えた無線通信システムにおける通信制御方法であって、
     前記ユーザ端末に対して前記複数の無線基地局装置が送信ポイントとなって協調マルチポイント送信するCoMP送信をスケジューリングし、
     CoMP送信において、複数セルの物理下りリンク制御チャネルを特定セルから送信する場合、送信ポイントとなる個々の協調セルを示すインデックス、および、ジョイント送信する複数セルの各組み合わせを示すCoMPセットのインデックスが、ビットデータにマッピングされているテーブルに基づいて、ジョイント送信する複数セル間で共用する物理下りリンク制御チャネルに、CoMPセットのインデックスを組み込んだ下りリンク制御情報を生成し、
     前記生成した下りリンク制御情報を含んだ各セルの物理下りリンク制御チャネルを前記特定セルから送信する、ことを特徴とする通信制御方法。
  10.  それぞれがセルを形成する複数の無線基地局装置と、前記各無線基地局装置に対して無線リンクを介して接続するユーザ端末とを備えた無線通信システムにおける通信制御方法であって、
     前記複数の無線基地局装置が協調マルチポイント送信するCoMP送信において、複数セルの物理下りリンク制御チャネルが特定セルから送信される場合、前記特定セルの無線基地局装置から複数セルの物理下りリンク制御チャネルを受信すると共に、協調マルチポイント送信する全ての無線基地局装置から物理下りリンク共有データチャネルを受信し、
     受信した各セルの物理下りリンク制御チャネルに含まれた下りリンク制御情報に組み込まれている協調セルまたはCoMPセットのインデックスを、あらかじめ準備されたテーブルを用いて分析して協調セルまたはCoMPセットを特定し、
     前記テーブルは、CoMP送信において送信ポイントとなる個々の協調セルを示すインデックス、および、CoMP送信においてジョイント送信する複数セルの各組み合わせを示すCoMPセットのインデックスが、ビットデータにマッピングされている、
    ことを特徴とする通信制御方法。
     
PCT/JP2013/061982 2012-05-10 2013-04-24 無線通信システム、無線基地局装置、ユーザ端末および通信制御方法 WO2013168561A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/399,054 US20150110032A1 (en) 2012-05-10 2013-04-24 Radio communication system, radio base station apparatus, user terminal and communication control method
KR20147031828A KR20150016237A (ko) 2012-05-10 2013-04-24 무선통신시스템, 무선기지국장치, 유저단말 및 통신제어방법
EP13788432.6A EP2849496A4 (en) 2012-05-10 2013-04-24 WIRELESS COMMUNICATION SYSTEM, WIRELESS BASE STATION, USER DEVICE AND COMMUNICATION CONTROL METHOD
CN201380024440.4A CN104272808A (zh) 2012-05-10 2013-04-24 无线通信系统、无线基站装置、用户终端以及通信控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012108844A JP2013236340A (ja) 2012-05-10 2012-05-10 無線通信システム、無線基地局装置、ユーザ端末および通信制御方法
JP2012-108844 2012-05-10

Publications (1)

Publication Number Publication Date
WO2013168561A1 true WO2013168561A1 (ja) 2013-11-14

Family

ID=49550612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061982 WO2013168561A1 (ja) 2012-05-10 2013-04-24 無線通信システム、無線基地局装置、ユーザ端末および通信制御方法

Country Status (6)

Country Link
US (1) US20150110032A1 (ja)
EP (2) EP2849496A4 (ja)
JP (1) JP2013236340A (ja)
KR (1) KR20150016237A (ja)
CN (1) CN104272808A (ja)
WO (1) WO2013168561A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023514276A (ja) * 2020-02-12 2023-04-05 北京紫光展鋭通信技術有限公司 ダウンリンク制御情報を認識する方法及び装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2488967C2 (ru) 2008-07-31 2013-07-27 Самсунг Электроникс Ко., Лтд. Способ и устройство для выделения ресурсов множественных несущих в системе ofdma
JP5918507B2 (ja) * 2011-11-08 2016-05-18 株式会社Nttドコモ 無線通信システム、干渉測定方法、無線基地局装置、及びユーザ端末
CN104135355A (zh) * 2013-05-03 2014-11-05 索尼公司 通信装置、通信系统和通信方法
US9531512B2 (en) * 2013-11-25 2016-12-27 Qualcomm Incorporated Techniques for downlink coordinated multi-point (CoMP) communications using unlicensed radio frequency spectrum band
US11357022B2 (en) * 2014-05-19 2022-06-07 Qualcomm Incorporated Apparatus and method for interference mitigation utilizing thin control
US10278178B2 (en) 2014-05-19 2019-04-30 Qualcomm Incorporated Apparatus and method for inter-band pairing of carriers for time division duplex transmit- and receive-switching
WO2016114562A1 (ko) 2015-01-12 2016-07-21 엘지전자 주식회사 무선 통신 시스템에서 단말의 하향링크 제어 정보 수신 방법 및 장치
JP6291088B2 (ja) * 2015-01-29 2018-03-14 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN105578608B (zh) * 2015-12-23 2019-03-08 工业和信息化部电信研究院 一种下行控制信息的发送、接收方法和设备
CN107623931B (zh) * 2016-07-14 2021-11-02 中兴通讯股份有限公司 多点协作的分组管理方法、装置及系统
CN111165016B (zh) * 2017-05-14 2022-07-08 5G Ip控股有限责任公司 用于进行切换程序的方法和用户设备
US20190313385A1 (en) * 2018-04-05 2019-10-10 Qualcomm Incorporated Compact dci for urllc
US11533123B2 (en) * 2018-07-20 2022-12-20 Qualcomm Incorporated Cross-carrier sounding with aperiodic channel state information reference signals (CSI-RS)
US12010748B2 (en) * 2019-01-24 2024-06-11 Sony Group Corporation Communication device, communication control device, communication method, and communication control method
EP3930275A4 (en) * 2019-02-22 2022-09-14 Ntt Docomo, Inc. USER TERMINAL AND WIRELESS COMMUNICATION METHOD
US12047659B2 (en) * 2019-07-19 2024-07-23 Mo-Dv, Inc. Special network device
EP4106463A4 (en) * 2020-02-10 2023-11-08 Beijing Xiaomi Mobile Software Co., Ltd. TRANSMISSION PROGRAMMING METHOD AND APPARATUS, COMMUNICATION DEVICE AND STORAGE MEDIUM
CN113395766B (zh) * 2020-03-11 2022-11-11 北京紫光展锐通信技术有限公司 一种跨载波调度方法及通信装置
US11785611B2 (en) * 2020-07-09 2023-10-10 Mediatek Inc. Method for performing 2-stage downlink control information based cross-carrier scheduling in carrier aggregation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011014834A2 (en) * 2009-07-30 2011-02-03 Qualcomm Incorporated ROBUST DECODING OF CoMP TRANSMISSIONS

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101632211B1 (ko) * 2009-01-06 2016-07-01 엘지전자 주식회사 다중 셀 환경에서 CoMP 수행 셀 결정방법 및 장치
US8442566B2 (en) * 2009-01-07 2013-05-14 Samsung Electronics Co., Ltd. Coordinated multipoint (CoMP) joint transmission using channel information feedback and higher rank dedicated beam-forming
CN101777941B (zh) * 2009-01-12 2014-10-08 华为技术有限公司 协作多点传输系统中的下行传输方法、网络设备和无线系统
US8717976B2 (en) * 2009-01-26 2014-05-06 Lg Electronics Inc. Method and apparatus for transmitting control information in wireless communications system that supports coordinated multi-point (CoMP) including multiple transmission points
US8208434B2 (en) * 2009-04-28 2012-06-26 Motorola Mobility, Inc. Method of signaling particular types of resource elements in a wireless communication system
US9031008B2 (en) * 2009-10-30 2015-05-12 Samsung Electronics Co., Ltd. Methods and apparatus for multi-user MIMO transmissions in wireless communication systems
KR101594631B1 (ko) * 2010-03-12 2016-02-17 삼성전자주식회사 일원화된 다중 기지국 시스템에서의 제어 시그널링 방법 및 장치
US20140036849A1 (en) * 2011-04-14 2014-02-06 Nokia Siemens Network Oy Joint Transmission CoMP with Single Carrier Cell Aggregation
CN102149124B (zh) * 2011-04-22 2014-08-06 电信科学技术研究院 一种多点协作传输下的干扰测量方法及设备
EP2742716A1 (en) * 2011-08-12 2014-06-18 Interdigital Patent Holdings, Inc. Interference measurement in wireless networks
CN102291224B (zh) * 2011-08-18 2015-11-18 电信科学技术研究院 一种非周期csi的反馈方法和设备
WO2013055147A2 (ko) * 2011-10-14 2013-04-18 엘지전자 주식회사 무선 통신 시스템에서 채널상태정보 전송 방법 및 장치
CN104025629B (zh) * 2011-11-04 2018-02-02 英特尔公司 协调式多点系统中的传输点指示
JP6242857B2 (ja) * 2012-04-19 2017-12-06 サムスン エレクトロニクス カンパニー リミテッド 協力マルチーポイント通信システムに対する基準シンボルポートの準共存識別のための方法及び装置
WO2013157894A1 (en) * 2012-04-20 2013-10-24 Lg Electronics Inc. Method and apparatus for receiving downlink data in a wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011014834A2 (en) * 2009-07-30 2011-02-03 Qualcomm Incorporated ROBUST DECODING OF CoMP TRANSMISSIONS

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP: "Feasibility Study for Evolved UTRA and UTRAN", 3GPP, TR25.912 (V7.1.0), September 2006 (2006-09-01)
NTT DOCOMO, INC.: "Cell Index to CIF mapping", 3GPP TSG-RAN2#71BIS R2-105824, 3GPP, 11 October 2010 (2010-10-11), pages 1 - 3, XP050452749 *
See also references of EP2849496A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023514276A (ja) * 2020-02-12 2023-04-05 北京紫光展鋭通信技術有限公司 ダウンリンク制御情報を認識する方法及び装置
JP7443545B2 (ja) 2020-02-12 2024-03-05 北京紫光展鋭通信技術有限公司 ダウンリンク制御情報を認識する方法及び装置

Also Published As

Publication number Publication date
CN104272808A (zh) 2015-01-07
EP3270638A1 (en) 2018-01-17
US20150110032A1 (en) 2015-04-23
EP2849496A1 (en) 2015-03-18
JP2013236340A (ja) 2013-11-21
KR20150016237A (ko) 2015-02-11
EP2849496A4 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2013168561A1 (ja) 無線通信システム、無線基地局装置、ユーザ端末および通信制御方法
EP2916585B1 (en) Transmission and reception of reference signals in a wireless communication system comprising a plurality of base stations
US9426819B2 (en) Radio communication system, radio base station apparatus, user terminal and communication control method
US9716540B2 (en) User terminal, radio communication system, radio communication method and radio base station
US9634808B2 (en) Radio communication system, radio communication method, user terminal and radio base station
US9742534B2 (en) Radio communication method, radio communication system, radio base station and user terminal
JP5526165B2 (ja) 無線通信システム、基地局装置、ユーザ端末、及びチャネル状態情報測定方法
JP6096119B2 (ja) 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
JP6022775B2 (ja) 無線通信システム、基地局装置、端末装置及び無線通信制御方法
JP5612770B2 (ja) 無線通信システム、無線通信方法、無線基地局装置及びユーザ端末
US9312984B2 (en) Radio communication system, radio base station apparatus, user terminal and radio communication method
WO2013069760A1 (ja) 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
JP5970595B2 (ja) 無線基地局装置、ユーザ端末及び無線通信方法
JP6096253B2 (ja) ユーザ端末、無線基地局装置、無線通信システムおよび通信制御方法
US20140247809A1 (en) Radio communication system, radio base station apparatus, user terminal and radio communication method
JP2017028739A (ja) 無線通信システム、基地局装置、移動端末装置及び通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788432

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14399054

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147031828

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013788432

Country of ref document: EP