WO2016190215A1 - ユーザ端末、無線基地局及び無線通信方法 - Google Patents

ユーザ端末、無線基地局及び無線通信方法 Download PDF

Info

Publication number
WO2016190215A1
WO2016190215A1 PCT/JP2016/064880 JP2016064880W WO2016190215A1 WO 2016190215 A1 WO2016190215 A1 WO 2016190215A1 JP 2016064880 W JP2016064880 W JP 2016064880W WO 2016190215 A1 WO2016190215 A1 WO 2016190215A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
pmis
pmi
signal
base station
Prior art date
Application number
PCT/JP2016/064880
Other languages
English (en)
French (fr)
Inventor
洋介 佐野
和晃 武田
聡 永田
アナス ベンジャブール
祥久 岸山
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US15/574,662 priority Critical patent/US20180139746A1/en
Priority to EP16799921.8A priority patent/EP3300273A1/en
Priority to JP2017520664A priority patent/JPWO2016190215A1/ja
Publication of WO2016190215A1 publication Critical patent/WO2016190215A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to a user terminal, a radio base station, and a radio communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 a LTE successor system (also referred to as LTE-A) called LTE Advanced has been studied for the purpose of further broadbanding and speeding up from LTE, and LTE Rel. It is specified as 10-12.
  • orthogonal frequency division multiple access In LTE and LTE Advanced, orthogonal frequency division multiple access (OFDMA) is used as a downlink radio access method.
  • OFDMA orthogonal frequency division multiple access
  • future wireless communication systems LTE Rel.13 and later
  • MUST Multiuser Superposition Transmission
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • NOMA non-orthogonal multiple access
  • downlink signals for a plurality of user terminals are superposed on the same radio resource (for example, time and / or frequency) and transmitted by non-orthogonal multiplexing (power multiplexing) in the power domain.
  • the gain increases as the number of non-orthogonal multiplexed user terminals (pairing terminals) increases in the same cell.
  • the reception processing load on the user terminal may increase.
  • the reception processing load is to be reduced, the number of pairing terminals is limited, and there is a possibility that the NOMA gain cannot be obtained efficiently.
  • the present invention has been made in view of such points, and when transmitting a downlink signal using a non-orthogonal multiple access (NOMA) scheme, a radio base station capable of reducing the reception processing load while obtaining the gain of NOMA,
  • NOMA non-orthogonal multiple access
  • a user terminal is a user terminal that receives a downlink signal using a non-orthogonal multiple access (NOMA) scheme, and transmits a plurality of precoding matrix identifiers (PMI) to a radio base station.
  • a downlink signal that is non-orthogonal-multiplexed with a downlink signal for another user terminal determined based on the plurality of PMIs and multiplied by the same precoding matrix as the downlink signal for the other user terminal
  • a receiving unit for receiving from the radio base station.
  • the reception processing load can be reduced while obtaining the NOMA gain.
  • NOMA non-orthogonal multiple access
  • NOMA NOMA
  • a schematic explanatory drawing of NOMA It is a figure which shows an example of a structure of the radio base station in NOMA. It is a figure which shows an example of a structure of the user terminal in NOMA. It is explanatory drawing of an example of the closed loop control in NOMA. It is explanatory drawing of the relationship between the gain of NOMA and the number of pairing terminals. It is a figure which shows an example of the feedback of PMI in non-NOMA. It is a figure which shows an example of the feedback of several PMI in NOMA. It is explanatory drawing of an example of the feedback of several PMI which concerns on a 1st aspect. It is explanatory drawing of an example of the CSI request
  • FIG. 1 is a schematic explanatory diagram of NOMA.
  • downlink signals for a plurality of user terminals are orthogonally multiplexed by at least one of a frequency domain (f), a time domain (t), and a code domain (code).
  • f frequency domain
  • t time domain
  • code code domain
  • FIG. 1B downlink signals for a plurality of user terminals are superimposed on the same radio resource (at least one of frequency, time, and code), and non-orthogonal multiplexing (power multiplexing) is performed in the power domain. Is done.
  • FIG. 1C shows a case where downlink signals for a plurality of user terminals (UE: User Equipment) # 1 and # 2 are transmitted by non-orthogonal multiplexing from a radio base station (eNB: eNodeB).
  • UE User Equipment
  • eNB eNodeB
  • user terminal # 1 is located at the center of the cell formed by the radio base station (hereinafter cell center), and user terminal # 2 is located at the end of the cell (hereinafter cell edge).
  • cell center the center
  • cell edge the end of the cell
  • the path loss of the downlink signal from the radio base station to the user terminals # 1 and # 2 increases with the distance from the radio base station. For this reason, the received SINR (Signal to Interference plus Noise Ratio) of the user terminal # 2 relatively far from the radio base station is lower than the received SINR of the user terminal # 1 relatively close to the radio base station.
  • SINR Signal to Interference plus Noise Ratio
  • the transmission power varies depending on channel gain (for example, received SINR, RSRP (Reference Signal Received Power)), path loss, propagation environment, etc., so that downlink signals of multiple user terminals for the same radio resource Are non-orthogonal multiplexed.
  • channel gain for example, received SINR, RSRP (Reference Signal Received Power)
  • path loss for example, path loss
  • propagation environment etc.
  • downlink signals for user terminals # 1 and # 2 are multiplexed on the same radio resource with different transmission powers.
  • a relatively small transmission power is assigned to the downlink signal for user terminal # 1 having a high reception SINR
  • a relatively large transmission power is assigned to a downlink signal for user terminal # 2 having a low reception SINR.
  • the interference signal is removed from the received signal by the interference canceller, so that the downlink signal for the terminal itself is extracted.
  • downlink signals for other terminals having higher transmission power than the own terminal become interference signals.
  • the downlink signal for the own terminal is extracted by removing the downlink signal for the other terminal having higher transmission power than the own terminal from the received signal by the interference canceller.
  • the downlink signal for user terminal # 2 is transmitted with a larger transmission power than the downlink signal for user terminal # 1.
  • user terminal # 1 located in the center of the cell receives, as an interference signal, a downlink signal for user terminal # 2 that is non-orthogonal-multiplexed to the same radio resource in addition to the downlink signal for the terminal itself.
  • the user terminal # 1 can extract and appropriately decode the downlink signal for the user terminal by removing the downlink signal for the user terminal # 2 by the interference canceller.
  • the downlink signal for user terminal # 1 is transmitted with smaller transmission power than the downlink signal for user terminal # 2. For this reason, in the user terminal # 2 at the cell edge, since the influence of the interference due to the downlink signal on the user terminal # 1 non-orthogonally multiplexed on the same radio resource becomes relatively small, the interference cancellation by the interference canceller is performed. Without having to extract the downlink signal for the terminal itself and appropriately decode it.
  • CWIC Code Word level Interference Canceller
  • R-ML Reduced complexity-Maximum Likelihood detector
  • CWIC is a Successive Interference Cancellation (SIC) type and is also referred to as turbo SIC.
  • user terminal # 1 When CWIC is used, user terminal # 1 performs processing up to turbo decoding on the downlink signal (interference signal) for user terminal # 2. User terminal # 1 generates an interference replica signal based on the turbo decoding result and the channel estimation result, and subtracts the generated replica signal from the received signal to extract a downlink signal for user terminal # 1. On the other hand, when R-ML is used, user terminal # 1 simultaneously detects the maximum likelihood of downlink signals for both user terminals # 1 and # 2 without turbo decoding the downlink signal (interference signal) for user terminal # 2. To do.
  • the CWIC is also applicable when multiplying the downlink signals of the user terminals # 1 and # 2 by different precoding matrices.
  • R-ML has a possibility that the characteristics may be deteriorated because the degree of spatial freedom in the terminals is insufficient.
  • FIG. 2 is a diagram illustrating an example of a configuration of a radio base station (transmitter).
  • FIG. 2 shows the configuration of 2 ⁇ 2 MIMO (Multiple-Input Multiple-Output), it is not limited to this.
  • the configuration of the radio base station (transmitter) may be, for example, a 4 ⁇ 4 MIMO configuration or a configuration other than MIMO.
  • FIG. 2 shows the configuration of a radio base station related to transmission processing, and the radio base station is assumed to have other necessary configurations.
  • the radio base station encodes (turbo-encodes) data for streams # 1 and # 2 (layers # 1 and # 2) for each of user terminals # 1 and # 2, and performs modulation. After that, the precoding matrix is multiplied. Then, the radio base station non-orthogonally multiplexes the modulated signals after power adjustment for the user terminals # 1 and # 2, and multiplexes them with a control signal, a cell specific reference signal (CRS), or the like. This multiplexed signal is transmitted as a downlink signal via a plurality of antennas # 1 and # 2.
  • FIG. 3 is a diagram illustrating an example of a configuration of a user terminal (receiver) that receives a downlink signal from the radio base station illustrated in FIG.
  • FIG. 3A shows an example of the configuration of the user terminal # 1 at the cell center that performs interference cancellation
  • FIG. 3B shows an example of the configuration of the user terminal # 2 at the cell edge that does not perform interference cancellation.
  • 3A and 3B describe the configuration of the user terminal related to the reception process, and the user terminal is assumed to have other necessary configurations.
  • 3A and 3B functionally show the configuration of user terminals at the cell center and cell edge, and one user terminal can have both configurations shown in FIGS. 3A and 3B. .
  • the present invention is not limited to this, and a configuration using R-ML as an interference canceller may be used.
  • the received signal in user terminal # 1 that performs interference cancellation includes a downlink signal for user terminal # 1 (desired user terminal) and a downlink signal for other user terminal # 2 (interfering user terminal). Are non-orthogonal multiplexed.
  • User terminal # 1 extracts the downlink signal for the user terminal by estimating and removing the downlink signal for user terminal # 2. Specifically, as shown in FIG. 3A, the channel estimation unit performs channel estimation using CRS multiplexed on the received signal. Then, in a MMSE (Minimum Mean Square Error) unit, a downlink signal for the user terminal # 2 is obtained by the least square method based on the channel estimation result (channel matrix) and the received signal. Further, the downlink signal for user terminal # 2 is demodulated and decoded (turbo decoding) to generate a replica signal (interference replica).
  • MMSE Minimum Mean Square Error
  • User terminal # 1 uses the replica signal of user terminal # 2 to obtain a downlink signal for own user terminal # 1. Specifically, the interference removal unit subtracts the replica signal of user terminal # 2 from the received signal and outputs the subtraction signal to the MMSE unit. Then, in the MMSE unit, the downlink signal of the user terminal # 1 is estimated by the least square method based on the channel estimation result (channel matrix) and the output signal from the interference removal unit. User terminal # 1 acquires data (received data) for user terminal # 1 by demodulating and decoding the estimated signal.
  • the user terminal # 2 at the cell edge obtains a downlink signal for the user terminal # 2 without performing interference cancellation.
  • the channel estimation unit performs channel estimation using CRS multiplexed on the received signal.
  • the MMSE unit estimates the downlink signal for user terminal # 2 by the least square method.
  • the user terminal # 2 acquires data (received data) of the user terminal # 2 by demodulating and decoding the estimated modulated signal.
  • the radio base station when the downlink signals for a plurality of user terminals are transmitted by non-orthogonal multiplexing, the radio base station performs precoding matrix (PM :) applied to each downlink signal based on feedback information from each user terminal. It is assumed that Precoding Matrix (MC) and Modulation Coding Scheme (MCS) are controlled. Control based on such feedback information is also called closed loop control.
  • PM precoding matrix
  • MCS Modulation Coding Scheme
  • FIG. 4 is a schematic diagram of closed loop control.
  • PMI precoding matrix identifier
  • RI rank identifier
  • CQI channel quality identifier
  • each user terminal indicates PMI indicating an optimal precoding matrix, RI indicating an optimal rank when the PMI is assumed, and channel quality when the PMI and RI are assumed. CQI is fed back.
  • Each user terminal may select a PMI indicating an optimal precoding matrix from a code book that associates the PMI and the precoding matrix. Further, the optimum PMI may be determined based on the propagation environment and the like.
  • the radio base station modulates and encodes the downlink signal for each user terminal using the MCS associated with the fed back CQI. Also, the radio base station multiplies the downlink signal for each user terminal by the precoding matrix indicated by the fed back PMI. Further, the radio base station transmits a downlink signal to each user terminal with the rank (number of layers) indicated by the fed back RI.
  • FIG. 5 is an explanatory diagram of the relationship between the number of pairing terminals and the NOMA gain.
  • FIG. 5A shows a case where there is one pair of pairing terminals (user terminals # 1 and # 2)
  • FIG. 5B shows three pairs of pairing terminals (user terminals # 1 and # 2, user terminal # 3).
  • # 4 user terminals # 5 and # 6) are present.
  • FIG. 5B since the number of pairing terminals in the same cell increases as compared with FIG. 5A, the gain of NOMA also increases.
  • the NOMA gain increases as the number of pairing terminals increases. For this reason, in order to increase the number of pairing terminals, it is considered to allow the application of different precoding matrices between the pairing terminals. As shown in FIG. 4, when an optimum PMI is fed back from each user terminal, a common PMI is not always fed back between the user terminals. Therefore, the number of pairing terminals can be increased by allowing non-orthogonal multiplexing of a plurality of user terminals having (feeding back) different PMIs.
  • the number of pairing terminals is limited if the same precoding matrix is applied between the pairing terminals.
  • user terminals # 1 and # 2 that feed back the same PMI 1 can be paired, but user terminals # 3- # 5 that feed back different PMI 2 , PMI 3 , and PMI 0 respectively I can't ring.
  • the radio base station is controlled to apply a precoding matrix different from the fed back PMI.
  • the radio base station uses a precoding matrix different from the PMI fed back from the user terminals # 3- # 5, It can be applied to # 3- # 5.
  • the radio base station cannot determine which precoding matrix should be applied to the user terminals # 3 to # 5.
  • the reception processing load increases.
  • the same precoding matrix is applied between the pairing terminals in order to reduce the reception processing load, the number of pairing terminals is limited, and the NOMA gain cannot be obtained efficiently.
  • the present inventors have conceived of increasing the number of pairing terminals while applying the same precoding matrix between the pairing terminals, thereby preventing an increase in reception processing load while obtaining a NOMA gain. did. Specifically, the present inventors apply the same precoding matrix between paired terminals by feeding back a plurality of PMIs from each user terminal and pairing a plurality of user terminals that have fed back a common PMI. However, the present inventors have found that the number of pairing terminals can be increased.
  • the user terminal receives a downlink signal using the NOMA method, but is not limited thereto.
  • the downlink signal received by the user terminal may be any signal as long as it is a downlink signal multiplexed (for example, power multiplexed) on the same radio resource as downlink signals for other user terminals.
  • the downlink signal using the NOMA scheme is a signal obtained by non-orthogonal multiplexing of the OFDMA signal in the power domain, but is not limited thereto.
  • the downlink signal non-orthogonally multiplexed by the NOMA method is not limited to the OFDMA signal, and is any signal multiplexed in at least one of the frequency domain (f), the time domain (t), and the code domain (code). Also good.
  • TM Transmission Mode
  • transmission mode 2-6 transmission mode 2- 6
  • DMRS Demodulation Reference Signal
  • CoMP Coordinated MultiPoint
  • interference measurement also referred to as channel state, propagation environment measurement, etc.
  • the interference measurement may be performed based on a channel state information reference signal (CSI-RS: Channel State Information-Reference Signal).
  • CSI-RS Channel State Information-Reference Signal
  • CSI-RS / IM Channel State Information-Reference Signal
  • R-ML as an interference canceller from the viewpoint of reducing the reception processing load.
  • the present invention is not limited to this, and an SIC interference canceller such as CWIC can also be applied.
  • the present invention is not limited to this, and three or more user terminals are grouped. Thus, non-orthogonal multiplexing may be performed on the same radio resource.
  • a user terminal transmits a plurality of PMIs to a radio base station, and is non-orthogonal multiplexed with downlink signals for other user terminals determined based on the plurality of PMIs.
  • a downlink signal multiplied by the same precoding matrix as the downlink signal for the other user terminal is received from the radio base station.
  • the plurality of PMIs may be the best PMI and the second best PMI.
  • the best and suboptimal PMI is determined, for example, by the propagation environment of the user terminal.
  • the plurality of PMIs are not limited to the best and suboptimal PMIs, and may be, for example, the best (n ⁇ 2) th PMIs. In this case, n may be indicated by higher layer signaling.
  • the plurality of PMIs may be indicated by higher layer signaling.
  • the radio base station may instruct a plurality of PMIs to the user terminal using a bitmap.
  • This bitmap may be a bitmap (also referred to as codeBookSubsetRestriction) equal to the number of PMIs defined in the codebook, and “1” may be set in a bit indicating a PMI for which transmission is instructed.
  • the user terminal transmits the PMI indicated by the bitmap to the radio base station.
  • the user terminal may transmit a plurality of CQIs respectively corresponding to the plurality of PMIs.
  • the plurality of CQIs may be CQIs corresponding to the best PMI and CQIs corresponding to the next best PMI, or CQIs corresponding to the best n (n ⁇ 2) th PMIs. There may be.
  • n may be indicated by higher layer signaling.
  • the plurality of CQIs may be CQIs corresponding to PMIs indicated by higher layer signaling.
  • the user terminal may transmit a plurality of RIs respectively corresponding to the plurality of PMIs, or may transmit a single RI common to the plurality of PMIs. .
  • the user terminal may transmit only the plurality of PMIs without transmitting the plurality of RIs, or may transmit only the plurality of PMIs and the plurality of CQIs. This is because it is assumed that RI feedback is generally instructed by higher layers to have a longer period than PMI feedback. Therefore, within this period, RI is not transmitted, This is because it can be done.
  • FIG. 7 is a conceptual diagram of the wireless communication method according to the present embodiment.
  • FIG. 7 illustrates an example in which each user terminal transmits the best and suboptimal PMI as a plurality of PMIs.
  • the plurality of PMIs are not limited to the best and suboptimal PMIs. Absent.
  • each user terminal may transmit a plurality of CQIs corresponding to a plurality of PMIs.
  • each user terminal may transmit multiple or single RI corresponding to multiple PMIs.
  • PMI 0 -PMI 3 shown in FIG. 7 are merely examples, and the number of PMIs is not limited to these.
  • the user terminal # 1 transmits the best PMI 1 and the second best PMI 2
  • the user terminal # 2 transmits the best PMI 1 and the second best PMI 3
  • user terminal # 3 transmits the best PMI 2
  • sub-optimal PMI 1
  • user terminal # 4 transmits the best PMI 3
  • sub-optimal PMI 0
  • user terminal # 5 PMI 0 and sub-optimal PMI 2 are transmitted.
  • the radio base station determines a plurality of user terminals (pairing terminals) to be non-orthogonally multiplexed on the same radio resource based on the plurality of PMIs fed back from the user terminals # 1 to # 5, respectively. Specifically, since the best PMI 1 of the user terminals # 1 and # 2 is the same, the radio base station pairs the user terminals # 1 and # 2. Furthermore, since the second best PMI 4 of user terminal # 4 and the best PMI 0 of user terminal # 5 are the same, the radio base station pairs user terminals # 4 and # 5.
  • the radio base station is not only the user terminals # 1 and # 2 having the same best PMI but also the user terminals # having different best PMIs. 4 and # 5 can also be paired. For this reason, compared with the case where each user terminal feeds back only the best PMI (FIG. 6), the number of pairing terminals can be increased.
  • the number of user terminals having a common PMI can be increased. For this reason, it is possible to increase the number of pairing terminals while applying the same precoding matrix between the pairing terminals. As a result, when a downstream signal using the NOMA system is transmitted, the reception processing load can be reduced while efficiently obtaining the NOMA gain.
  • the plurality of CSIs transmitted in the following first to third aspects may be the plurality of PMIs, the plurality of PMIs and the plurality of CQIs, the plurality of PMIs, A plurality of CQIs and a plurality of / single RIs may be used, and these are collectively referred to.
  • a user terminal transmits several CSI by the periodic CSI report (Periodic CSI Report) which reports CSI by a predetermined period. Specifically, the user terminal periodically transmits a plurality of CSIs in different subframes.
  • FIG. 8 is an explanatory diagram of an example of transmission of a plurality of PMIs according to the first mode.
  • FIG. 8 shows an example in which a user terminal transmits a plurality of PMIs as a plurality of CSIs, the present invention is not limited to this.
  • a plurality of CQIs may be transmitted, and a plurality of CQIs and a plurality / single RIs may be transmitted.
  • the first PMI (P0) indicates the best PMI
  • the second PMI (P1) indicates the second best PMI.
  • the plurality of PMIs are the best. It is not limited to the second best PMI.
  • the user terminal allocates a plurality of PMIs (P0, P1) to different uplink control channels (PUCCH: Physical Uplink Control Channel) of each subframe and transmits them in a predetermined cycle.
  • PUCCH Physical Uplink Control Channel
  • PUCCH format 2 / 2A / 2B etc. can be used for transmission of these PMI.
  • PUSCH Physical Uplink Shared Channel
  • the PMI may be transmitted using the PUSCH.
  • the transmission subframe of each PMI may be specified by the transmission period notified from the radio base station to the user terminal by higher layer signaling and the offset with respect to the head of the radio frame.
  • the transmission periods of the first and second PMIs may be the same or different.
  • the transmission period of the first PMI (best PMI) may be set shorter than the transmission period of the second PMI (suboptimal PMI).
  • the number of CSIs periodically transmitted in different subframes may be notified from the radio base station to the user terminal by higher layer signaling (for example, RRC signaling). May be notified automatically.
  • the dynamic notification may be performed by, for example, a downlink control channel (PDCCH: Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the user terminal transmits a plurality of CSIs indicated by higher layer signaling (for example, RRC signaling) from the radio base station.
  • higher layer signaling for example, RRC signaling
  • the radio base station may instruct a plurality of PMIs using a bitmap.
  • This bitmap may be a bitmap (also called codeBookSubsetRestriction) equal to the number of PMIs defined in the codebook.
  • the user terminal transmits the PMI indicated by the bitmap to the radio base station.
  • the user terminal may transmit at least one of CQI corresponding to the PMI and RI corresponding to the PMI.
  • the radio base station can also instruct the transmission of a single PMI. However, from the viewpoint of increasing the number of pairing terminals, it is desirable for the radio base station to instruct transmission of a plurality of PMIs. Also, the second aspect can be combined with the first aspect, and the user terminal may periodically transmit a plurality of CSIs instructed from the radio base station in different subframes.
  • a user terminal transmits a plurality of CSI by an aperiodic CSI report (Aperiodic CSI Report).
  • Aperiodic CSI Report the user terminal transmits downlink control information (DCI: Downlink Control Information, also called uplink scheduling grant) including a CSI request field (CSI request field, CQI request field, also simply called request field) to PDCCH.
  • DCI Downlink Control Information
  • CQI request field CQI request field, also simply called request field
  • the user terminal transmits a plurality of CSIs using PUSCH assigned by DCI.
  • the user terminal may transmit a plurality of PMIs as a plurality of CSIs, or transmit a plurality of CQIs in addition to the plurality of PMIs. Alternatively, multiple CQIs and multiple / single RIs may be transmitted.
  • the user terminal may transmit the best CSI and sub-optimal CSI as a plurality of CSI, or may transmit n (n ⁇ 2) -th CSI from the best CSI.
  • the third aspect can be combined with the second aspect.
  • the user terminal transmits a plurality of CSIs indicated by higher layer signaling. May be.
  • the number of CSIs may be notified from the radio base station to the user terminal by higher layer signaling (for example, RRC signaling), or may be dynamically notified by PDCCH.
  • higher layer signaling for example, RRC signaling
  • the CSI request field may be 1 bit.
  • the present invention is not limited to this, and the CSI request field may be 2 bits or 3 bits or more.
  • the user terminal dynamically controls CSI transmitted by the above-mentioned aperiodic CSI report. Specifically, the user terminal receives DCI including the CSI request field using the PDCCH, and receives instruction information indicating which PMI is requested according to the value of the CSI request field by higher layer signaling. To do. The user terminal transmits a PMI determined based on the value of the CSI request field and the indication information using the PUSCH indicated by the DCI.
  • FIG. 9 is a diagram showing an example of the CSI request field according to the fourth mode.
  • the value of the CSI request field is “00”, no CSI transmission is instructed, and when the value is “01”, the transmission of PMI notified by higher layer signaling is instructed.
  • the values are “10” and “11”, transmission of the first PMI combination (first set) and the second PMI combination (second set) notified by higher layer signaling, respectively. Is instructed.
  • the radio base station indicates, as the instruction information, information indicating that PMI is not transmitted by the value “00” of the CSI request field, and indicates that transmission of PMI 0 is instructed by the value “01” of the CSI request field.
  • Information indicating that transmission of PMI 0 and PMI 2 is instructed by the value “10” of the CSI request field, and indicating that transmission of PMI 1 and PMI 3 is instructed by the value “11” of the CSI request field Information is notified to the user terminal by higher layer signaling.
  • a bitmap such as codeBookSubsetRestriction may be used.
  • “1” may be set in a bit indicating a PMI for which transmission is instructed.
  • the user terminal When receiving the DCI including the CSI request field, the user terminal transmits the PMI indicated by the value of the CSI request field with reference to the instruction information signaled by higher layer signaling. For example, when receiving a DCI including a CSI request field having a value “01”, the user terminal transmits PMI 0 . Further, when receiving the DCI including the CSI request field having a value of “10”, the user terminal transmits PMI 0 and PMI 2 as the first set. Further, when receiving the DCI including the CSI request field having the value “11”, the user terminal transmits PMI 1 and PMI 3 as the second set.
  • a CQI corresponding to the PMI may be transmitted, an RI corresponding to the PMI may be transmitted, or a corresponding PMI may be transmitted.
  • CQI and RI may be transmitted.
  • the PMI transmitted from the user terminal can be dynamically controlled by changing the value of the CSI request field.
  • the instruction information information indicating which PMI transmission is instructed by the values “00”, “01”, “10”, and “11” of the CSI request field is signaled in higher layers.
  • Which PMI transmission is instructed may be fixedly determined by the values “00”, “01”, “10”, and “11” of the CSI request field.
  • the value “01” in the CSI request field indicates the best PMI
  • the value “10” indicates the best and second-best PMI
  • the value “11” indicates the best
  • the third best PMI You may be instructed.
  • Radio communication system the configuration of a wireless communication system according to an embodiment of the present invention will be described.
  • the radio communication method according to the embodiment of the present invention is applied.
  • wireless communication method may be applied individually, respectively, and may be applied in combination.
  • symbol is attached
  • FIG. 10 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system 1 may be referred to as SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), or the like.
  • a radio communication system 1 shown in FIG. 10 includes a radio base station 10 (10A, 10B) and a plurality of user terminals 20 (20A, 20B) communicating with the radio base station 10.
  • the radio base station 10 is connected to the higher station apparatus 30 and is connected to the core network 40 via the higher station apparatus 30.
  • Each user terminal 20 can communicate with the radio base station 10 in the cells C1 and C2.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • the wireless base stations 10 may be connected by wire (optical fiber, X2 interface, etc.) or wirelessly.
  • the radio base station 10 may be a macro base station, an aggregation node, an eNodeB (eNB), a transmission / reception point, or the like that forms a macro cell, or a small base station, a micro base station, or a pico base station that forms a small cell. , Femto base station, Home eNodeB (HeNB), RRH (Remote Radio Head), transmission / reception point, and the like.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • NOMA Non-Orthogonal Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • NOMA and OFDMA may be combined.
  • the uplink and downlink radio access methods are not limited to these combinations.
  • NOMA is a multi-carrier transmission scheme that divides a frequency band into a plurality of narrow frequency bands (subcarriers, subbands, etc.) and performs non-orthogonal multiplexing of the signal of the user terminal 20 with different transmission power for each subband.
  • This is a multicarrier transmission scheme in which a frequency band is divided into a plurality of subbands, and signals of the user terminal 20 are orthogonally multiplexed to each subband for communication.
  • SC-FDMA is a single carrier that reduces interference between user terminals by dividing a system bandwidth into bands each consisting of one or continuous resource blocks for each terminal, and a plurality of user terminals 20 using different bands. Transmission method. NOMA and OFDMA may be used in a wide band.
  • the downlink communication channel includes a downlink shared data channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH), a downlink L1 / L2 control channel (PDCCH, EPDCCH, PCFICH). , PHICH, etc.).
  • PDSCH downlink shared data channel
  • PBCH broadcast channel
  • PDCCH downlink L1 / L2 control channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink control information including scheduling information of PDSCH and PUSCH is transmitted by PDCCH (Physical Downlink Control Channel).
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH (Physical Control Format Indicator Channel).
  • a delivery confirmation signal (for example, ACK / NACK) of HARQ (Hybrid ARQ) for PUSCH is transmitted by PHICH (Physical Hybrid-ARQ Indicator Channel).
  • the uplink communication channel includes an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access). Channel).
  • PUSCH uplink shared channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access
  • Channel User data and higher layer control information are transmitted by PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • a delivery confirmation signal and the like are transmitted by PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • FIG. 11 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ Hybrid Automatic Repeat reQuest
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 by precoding (multiplying a precoding matrix) for each antenna, and converts the baseband signal into a radio frequency band and transmits the baseband signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the transmission / reception unit 103 receives a plurality of CSIs from the user terminal 20. Specifically, the transmission / reception unit 103 may receive a plurality of PMIs as a plurality of CSIs from the user terminal 20. Alternatively, the transmission / reception unit 103 may receive a plurality of CQIs respectively corresponding to the plurality of PMIs from the user terminal 20 in addition to the plurality of PMIs. Alternatively, the transmission / reception unit 103 may receive a plurality or a single RI corresponding to the plurality of PMIs from the user terminal 20 in addition to the plurality of PMIs. Alternatively, the transmission / reception unit 103 may receive the plurality of PMIs, the plurality of CQIs, and the plurality of or single RIs.
  • the transmission / reception unit 103 may transmit upper layer control information that is signaled by the upper layer of the user terminal 20.
  • the higher layer control information may include a plurality of PMIs to be transmitted from the user terminal 20 and instruction information for instructing the number of the plurality of PMIs.
  • the higher layer control information may include instruction information that indicates which PMI is requested according to the value of the CSI request field.
  • the transmission / reception unit 103 may transmit DCI including the CSI request field by PDCCH.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits and receives (backhaul signaling) signals to and from the adjacent radio base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). Also good.
  • CPRI Common Public Radio Interface
  • X2 interface also good.
  • FIG. 12 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present invention. Note that FIG. 12 mainly shows functional blocks of characteristic portions according to an embodiment of the present invention, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As shown in FIG. 12, the baseband signal processing unit 104 includes a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Yes.
  • the baseband signal processing unit 104 includes a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
  • the control unit 301 controls signal generation by the transmission signal generation unit 302 and signal allocation by the mapping unit 303, for example.
  • the control unit 301 also controls signal reception processing by the reception signal processing unit 304 and signal measurement by the measurement unit 305.
  • the control unit 301 controls scheduling (for example, resource allocation) of system information, a downlink data signal transmitted on the PDSCH, and a downlink control signal transmitted on the PDCCH and / or EPDCCH. It also controls scheduling of synchronization signals and downlink reference signals such as CRS, CSI-RS, and DMRS.
  • the control unit 301 also transmits an uplink data signal transmitted on the PUSCH, an uplink control signal transmitted on the PUCCH and / or PUSCH (for example, a delivery confirmation signal (HARQ-ACK)), a random access preamble transmitted on the PRACH, Controls scheduling of uplink reference signals and the like.
  • an uplink data signal transmitted on the PUSCH for example, an uplink control signal transmitted on the PUCCH and / or PUSCH (for example, a delivery confirmation signal (HARQ-ACK)), a random access preamble transmitted on the PRACH, Controls scheduling of uplink reference signals and the like.
  • HARQ-ACK delivery confirmation signal
  • the control unit 301 determines a plurality of user terminals (pairing terminals) on which downlink signals are non-orthogonal-multiplexed based on a plurality of PMIs fed back from each user terminal 20. Specifically, the control unit 301 determines to non-orthogonally multiplex a plurality of user terminals that have fed back common PMI.
  • control unit 301 controls the transmission signal generation unit 302 so as to multiply the downlink signals for the plurality of user terminals (pairing terminals) by the same precoding matrix. Specifically, the control unit 301 controls the transmission signal generation unit 302 so that the downlink signal for the pairing terminal is multiplied by a precoding matrix indicated by the PMI common to the pairing terminals. Further, the control unit 301 may detect a precoding matrix indicated by the PMI with reference to a code book (not shown).
  • control unit 301 performs power control of the downlink signal so that the downlink signals for the plurality of user terminals (pairing terminals) are appropriately non-orthogonal multiplexed (power multiplexed).
  • control unit 301 controls MCS applied to the downlink signal for each user terminal 20 based on the CQI fed back from each user terminal 20. Further, the control unit 301 controls the rank (number of layers) applied to the downlink signal for each user terminal 20 based on the RI fed back from each user terminal 20.
  • the transmission signal generation unit 302 generates a downlink signal based on an instruction from the control unit 301 and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 can realize the data buffer unit, turbo encoding unit, data modulation unit, multiplication unit, power adjustment unit, non-orthogonal multiplexing unit, and the like shown in FIG.
  • the transmission signal generation unit 302 modulates and encodes the downlink signal for each user terminal 20 with the MCS determined by the control unit 301. In addition, the transmission signal generator 302 multiplies the downlink signal for the pairing terminal by the same precoding matrix by the controller 301. Also, the transmission signal generation unit 302 performs non-orthogonal (power multiplexing) the downlink signal for the pairing terminal determined by the control unit 301, and outputs the non-orthogonal signal to the mapping unit 303.
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 303 can realize the multiplexing unit of FIG.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301.
  • the reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 may measure, for example, received power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality)), channel state, and the like of the received signal.
  • the measurement result may be output to the control unit 301.
  • FIG. 13 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission / reception unit 203 transmits a plurality of CSIs to the radio base station 10.
  • the transmission / reception unit 203 may transmit a plurality of PMIs as a plurality of CSIs to the radio base station 10.
  • the transmission / reception unit 203 may transmit a plurality of CQIs respectively corresponding to the plurality of PMIs to the radio base station 10 in addition to the plurality of PMIs.
  • the transmission / reception unit 203 may transmit a plurality or a single RI corresponding to the plurality of PMIs to the radio base station 10 in addition to the plurality of PMIs.
  • the transmission / reception unit 203 may transmit the plurality of PMIs, the plurality of CQIs, and the plurality of or single RIs.
  • the transmission / reception unit 203 is non-orthogonal multiplexed with downlink signals for other user terminals 20 determined based on the plurality of PMIs, and is multiplied by the same precoding matrix as downlink signals for other user terminals 20.
  • the downlink signal is received from the radio base station 10.
  • the transmission / reception unit 203 receives DCI using PDCCH.
  • the DCI may include a CSI request field.
  • the transmission / reception unit 203 receives the above-described higher layer control information.
  • the higher layer control information may include a plurality of PMIs to be transmitted from the user terminal 20 and instruction information for instructing the number of the plurality of PMIs.
  • the higher layer control information may include instruction information that indicates which PMI is requested according to the value of the CSI request field.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception by performing retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Is transferred to the unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • FIG. 14 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment.
  • FIG. 14 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. I have.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and signal allocation by the mapping unit 403.
  • the control unit 401 controls signal reception processing by the reception signal processing unit 404 and signal measurement by the measurement unit 405.
  • the control unit 401 obtains, from the received signal processing unit 404, a downlink control signal (a signal transmitted by PDCCH / EPDCCH) and a downlink data signal (a signal transmitted by PDSCH) transmitted from the radio base station 10.
  • the control unit 401 generates an uplink control signal (for example, an acknowledgment signal (HARQ-ACK)) or an uplink data signal based on a downlink control signal, a result of determining whether retransmission control is necessary for the downlink data signal, or the like.
  • HARQ-ACK acknowledgment signal
  • control unit 401 determines a plurality of CSIs fed back to the radio base station 20. Specifically, the control unit 401 may determine the best PMI and the next best PMI based on the propagation environment measured by the measurement unit 405. The control unit 401 may determine the best n (n ⁇ 2) PMIs. In addition, the control unit 401 may determine CQI and / or RI corresponding to these PMIs.
  • control unit 401 may determine a plurality of PMIs fed back to the radio base station 20 based on a bitmap (also referred to as codeBookSubseRestriction) included in the higher layer control information (second mode). In addition, the control unit 401 may determine CQI and / or RI corresponding to these PMIs.
  • bitmap also referred to as codeBookSubseRestriction
  • control unit 401 may determine CQI and / or RI corresponding to these PMIs.
  • control unit 401 may control the transmission signal generation unit 402 and the mapping unit 403 so as to periodically transmit the plurality of PMIs determined as described above in different subframes (first step). Embodiment, FIG. 8).
  • a plurality of CQIs corresponding to the plurality of PMIs are transmitted, or a plurality / single RIs respectively corresponding to the plurality of PMIs are transmitted.
  • the plurality of CQIs and the plurality / single RI may be controlled to be transmitted.
  • control unit 401 when the control unit 401 receives DCI including a CSI request field having a value indicating a transmission instruction using the PDCCH, the control unit 401 transmits the plurality of PMIs using the PUSCH indicated by the DCI.
  • the transmission signal generation unit 402 and the mapping unit 403 may be controlled (third mode).
  • a plurality of CQIs corresponding to the plurality of PMIs are transmitted, or a plurality / single RIs respectively corresponding to the plurality of PMIs are transmitted.
  • the plurality of CQIs and the plurality / single RI may be controlled to be transmitted.
  • control unit 401 based on the instruction information (upper layer control information) indicating which PMI is requested by the value of the CSI request field, and the value of the CSI request field included in the DCI, the radio base station 10 may be determined (fourth aspect, FIG. 9).
  • the control unit 401 may control the transmission signal generation unit 402 and the mapping unit 403 so as to transmit the determined PMI using the PUSCH indicated by the DCI.
  • a plurality of CQIs corresponding to the plurality of PMIs are transmitted, or a plurality / single RIs respectively corresponding to the plurality of PMIs are transmitted.
  • the plurality of CQIs and the plurality / single RI may be controlled to be transmitted.
  • the transmission signal generation unit 402 generates an uplink signal based on an instruction from the control unit 401, and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates an uplink control signal related to a delivery confirmation signal (HARQ-ACK) or channel state information (CSI) based on an instruction from the control unit 401, for example.
  • the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401.
  • the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the received signal processing unit 404 can realize the MMSE unit, the demodulation / decoding unit, the interference replica generation unit, the interference removal unit, etc. of FIG. FIG. 3 shows an example using an SIC type interference canceller such as CWIC, but is not limited thereto.
  • Received signal processing section 404 can also implement a configuration using R-ML as an interference canceller.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs broadcast information, system information, higher layer control information, DCI, and the like to the control unit 401.
  • the reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 measures, for example, received power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality)), channel state (propagation environment), and the like of the received signal.
  • the measurement result is output to the control unit 401.
  • the measurement unit 405 can realize the channel estimation unit of FIG. Note that the measurement unit 405 may perform the measurement using a CRS multiplexed on the received signal, or may perform the measurement using a CSI-RS multiplexed on the received signal.
  • the user terminal receives a downlink signal using the NOMA method, but is not limited thereto.
  • the downlink signal received by the user terminal may be any signal as long as it is a downlink signal multiplexed (for example, power multiplexed) on the same radio resource as downlink signals for other user terminals.
  • the user terminal 20 is a user terminal 20 that receives a downlink signal, and a transmission unit that transmits a plurality of precoding matrix identifiers (PMI) to the radio base station 10; Downlink multiplexed with a downlink signal for another user terminal 20 determined based on the plurality of PMIs (for example, power multiplexing) and multiplied by the same precoding matrix as the downlink signal for the other user terminal 20 A receiving unit that receives a signal from the radio base station 10.
  • PMI precoding matrix identifiers
  • the radio base station 10 is a radio base station 10 that transmits a downlink signal, and a downlink signal is multiplexed (for example, based on the reception unit that receives a plurality of PMIs from each user terminal 20 and the plurality of PMIs).
  • a control unit that determines a plurality of user terminals 20 to be power-multiplexed, and a transmission unit that multiplies downlink signals for the plurality of user terminals 20 by the same precoding matrix and transmits them. .
  • each functional block is realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
  • the radio base station 10 and the user terminal 20 are realized using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array). May be.
  • the radio base station 10 and the user terminal 20 are each a computer device including a processor (CPU: Central Processing Unit), a communication interface for network connection, a memory, and a computer-readable storage medium holding a program. It may be realized. That is, the radio base station, user terminal, and the like according to an embodiment of the present invention may function as a computer that performs processing of the radio communication method according to the present invention.
  • Computer-readable recording media include, for example, flexible disks, magneto-optical disks, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), CD-ROM (Compact Disc-ROM), RAM (Random Access Memory), A storage medium such as a hard disk.
  • the program may be transmitted from a network via a telecommunication line.
  • the radio base station 10 and the user terminal 20 may include an input device such as an input key and an output device such as a display.
  • the functional configurations of the radio base station 10 and the user terminal 20 may be realized by the hardware described above, may be realized by a software module executed by a processor, or may be realized by a combination of both.
  • the processor controls the entire user terminal by operating an operating system. Further, the processor reads programs, software modules and data from the storage medium into the memory, and executes various processes according to these.
  • the program may be a program that causes a computer to execute the operations described in the above embodiments.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in a memory and operated by a processor, and may be realized similarly for other functional blocks.
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • the radio resource may be indicated by an index.
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, or the like.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • notification of information is not limited to the aspect / embodiment shown in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • the RRC signaling may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the information, signals, etc. shown in this specification may be represented using any of a variety of different technologies.
  • data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
  • Each aspect / embodiment shown in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand)
  • Bluetooth registered trademark

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

非直交多元接続(NOMA)方式を用いた下り信号を送信する場合、NOMAのゲインを得ながら、受信処理負荷を軽減すること。本実施の一態様に係るユーザ端末は、複数のプリコーディング行列識別子(PMI)を、無線基地局に送信する送信部と、前記複数のPMIに基づいて決定される他のユーザ端末に対する下り信号と非直交多重されるとともに、前記他のユーザ端末に対する下り信号と同一のプリコーディング行列が乗算された下り信号を、前記無線基地局から受信する受信部と、を具備する。

Description

ユーザ端末、無線基地局及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。そして、LTEからのさらなる広帯域化及び高速化を目的として、LTEアドバンストと呼ばれるLTEの後継システム(LTE-Aとも呼ばれる)が検討され、LTE Rel.10-12として仕様化されている。
 LTEやLTEアドバンストでは、下りリンクの無線アクセス方式として、直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が用いられる。将来の無線通信システム(LTE Rel.13以降)では、OFDMAにおいて、同一の無線リソースに複数のユーザ端末を多重して通信容量を向上させること(MUST:Multiuser Superposition Transmission)が検討されている。
 上記MUSTを実現する下りリンクの無線アクセス方式としては、受信側での干渉除去(Interference Cancellation)を前提とする非直交多元接続(NOMA:Non-Orthogonal Multiple Access)が考えられる。NOMAでは、複数のユーザ端末に対する下り信号が同一の無線リソース(例えば、時間及び/又は周波数)に重畳(superpose)され、電力領域で非直交多重(電力多重)して送信される。
 このNOMAでは、同一セル内において、非直交多重される複数のユーザ端末(ペアリング端末)の数が増加するほどゲインが増加することが想定される。しかしながら、NOMAのゲインを得るために、ペアリング端末の数を増加させようとすると、ユーザ端末における受信処理負荷が増加する恐れがある。一方、受信処理負荷を軽減しようとすると、ペアリング端末の数が制限され、NOMAのゲインを効率的に得られない恐れがある。
 本発明はかかる点に鑑みてなされたものであり、非直交多元接続(NOMA)方式を用いた下り信号を送信する場合、NOMAのゲインを得ながら、受信処理負荷を軽減可能な無線基地局、ユーザ端末及び無線通信方法を提供することを目的の一つとする。
 本発明の一態様に係るユーザ端末は、非直交多重接続(NOMA)方式を用いた下り信号を受信するユーザ端末であって、複数のプリコーディング行列識別子(PMI)を、無線基地局に送信する送信部と、前記複数のPMIに基づいて決定される他のユーザ端末に対する下り信号と非直交多重されるとともに、前記他のユーザ端末に対する下り信号と同一のプリコーディング行列が乗算された下り信号を、前記無線基地局から受信する受信部と、を具備することを特徴とする。
 本発明によれば、非直交多元接続(NOMA)方式を用いた下り信号を送信する場合、NOMAのゲインを得ながら、受信処理負荷を軽減できる。
NOMAの概略説明図である。 NOMAにおける無線基地局の構成の一例を示す図である。 NOMAにおけるユーザ端末の構成の一例を示す図である。 NOMAにおける閉ループ制御の一例の説明図である。 NOMAのゲインとペアリング端末の数との関係の説明図である。 非NOMAにおけるPMIのフィードバックの一例を示す図である。 NOMAにおける複数のPMIのフィードバックの一例を示す図である。 第1の態様に係る複数のPMIのフィードバックの一例の説明図である。 第4の態様に係るCSI要求フィールドの一例の説明図である。 本実施形態に係る無線通信システムの概略構成の一例を示す図である。 本実施形態に係る無線基地局の全体構成の一例を示す図である。 本実施形態に係る無線基地局の機能構成の一例を示す図である。 本実施形態に係るユーザ端末の全体構成の一例を示す図である。 本実施形態に係るユーザ端末の機能構成の一例を示す図である。
 図1は、NOMAの概略説明図である。従来の無線アクセス方式では、図1Aに示すように、複数のユーザ端末に対する下り信号が、周波数領域(f)、時間領域(t)及び符号領域(code)の少なくとも一つにより、直交多重される。一方、NOMAでは、図1Bに示すように、複数のユーザ端末に対する下り信号が、同一の無線リソース(周波数、時間及び符号の少なくとも一つ)に重畳され、電力領域で非直交多重(電力多重)される。
 図1Cには、無線基地局(eNB:eNodeB)から複数のユーザ端末(UE:User Equipment)#1及び#2に対する下り信号が非直交多重して送信される場合が示されている。図1Cでは、無線基地局によって形成されるセルの中央部(以下、セル中央部)にユーザ端末#1が位置し、当該セルの端部(以下、セル端部)にユーザ端末#2が位置する場合が示されている。
 無線基地局からユーザ端末#1、#2への下り信号のパスロスは、無線基地局からの距離と共に増加する。このため、無線基地局から相対的に遠いユーザ端末#2の受信SINR(Signal to Interference plus Noise Ratio)は、無線基地局に相対的に近いユーザ端末#1の受信SINRよりも低くなる。
 NOMAでは、チャネルゲイン(例えば、受信SINR、RSRP(Reference Signal Received Power))、パスロス、伝搬環境などに応じて送信電力を異ならせることで、同一の無線リソースに対して複数のユーザ端末の下り信号が非直交多重される。例えば、図1Cでは、ユーザ端末#1、#2に対する下り信号が、異なる送信電力で同一の無線リソースに多重される。受信SINRが高いユーザ端末#1に対する下り信号には相対的に小さな送信電力が割り当てられ、受信SINRが低いユーザ端末#2に対する下り信号には相対的に大きな送信電力が割り当てられる。
 また、NOMAでは、干渉キャンセラにより受信信号から干渉信号を除去することで、自端末に対する下り信号が抽出される。この場合、同一の無線リソースに非直交多重された下り信号のうち、自端末より送信電力が大きな他端末に対する下り信号が干渉信号になる。このため、自端末より送信電力の大きな他端末に対する下り信号を干渉キャンセラにより受信信号から除去することで、自端末に対する下り信号を抽出する。
 例えば、ユーザ端末#2に対する下り信号は、ユーザ端末#1に対する下り信号より大きな送信電力で送信される。このため、セル中央部に位置するユーザ端末#1は、自端末に対する下り信号に加えて、同一の無線リソースに非直交多重されたユーザ端末#2に対する下り信号を干渉信号として受信する。ユーザ端末#1は、ユーザ端末#2に対する下り信号を干渉キャンセラにより除去することで、自端末に対する下り信号を抽出して適切に復号することができる。
 一方で、ユーザ端末#1に対する下り信号は、ユーザ端末#2に対する下り信号よりも小さな送信電力で送信される。このため、セル端部のユーザ端末#2においては、同一無線リソースに非直交多重されたユーザ端末#1に対する下り信号による干渉の影響が相対的に小さくなることから、干渉キャンセラによる干渉除去を行うことなく、自端末に対する下り信号を抽出して適切に復号することができる。
 ここで、セル中央部のユーザ端末#1で用いられる干渉キャンセラとしては、例えば、CWIC(Code Word level Interference Canceller)、R-ML(Reduced complexity-Maximum Likelihood detector)が考えられる。CWICは、逐次干渉キャンセラ(SIC:Successive Interference Cancellation)型であり、ターボSICなどとも呼ばれる。
 CWICを用いる場合、ユーザ端末#1は、ユーザ端末#2に対する下り信号(干渉信号)に対して、ターボ復号までの処理を行う。ユーザ端末#1は、ターボ復号結果とチャネル推定結果とに基づいて干渉のレプリカ信号を生成し、生成したレプリカ信号を受信信号から減算して、ユーザ端末#1に対する下り信号を抽出する。一方、R-MLを用いる場合、ユーザ端末#1は、ユーザ端末#2に対する下り信号(干渉信号)をターボ復号せずに、ユーザ端末#1及び#2の双方に対する下り信号を同時に最尤検出する。
 また、CWICは、ユーザ端末#1及び#2の下り信号に対してそれぞれ異なるプリコーディング行列を乗算する場合にも、適用可能である。一方、R-MLは、ユーザ端末#1及び#2の下り信号に対してそれぞれ異なるプリコーディング行列が適用される場合、端末における空間自由度が不足することから、特性が劣化する恐れがある。
 図2及び3を参照し、図1Cに示される無線基地局、ユーザ端末#1及び#2の構成の一例を説明する。図2は、無線基地局(送信機)の構成の一例を示す図である。なお、図2では、2×2のMIMO(Multiple-Input Multiple-Output)の構成を示すが、これに限られない。無線基地局(送信機)の構成は、例えば、4×4のMIMOの構成であってもよいし、MIMO以外の構成であってもよい。また、図2は、送信処理に係る無線基地局の構成を記載したものであり、無線基地局はこれ以外にも必要な構成を備えるものとする。
 図2に示すように、無線基地局は、ユーザ端末#1及び#2のそれぞれについて、ストリーム#1、#2(レイヤ#1、#2)に対するデータを符号化(ターボ符号化)し、変調したのち、プリコーディング行列を乗算する。そして、無線基地局は、ユーザ端末#1及び#2に対する電力調整後の変調信号を非直交多重し、制御信号やセル固有参照信号(CRS:Cell specific Reference Signal)等と多重する。この多重した信号を複数のアンテナ#1、アンテナ#2を介して下り信号として送信する。
 図3は、図2に示される無線基地局からの下り信号を受信するユーザ端末(受信機)の構成の一例を示す図である。図3Aは、干渉除去を行うセル中央部のユーザ端末#1の構成の一例を示し、図3Bは、干渉除去を行わないセル端部のユーザ端末#2の構成の一例を示す。
 なお、図3A及び3Bは、受信処理に係るユーザ端末の構成を記載したものであり、ユーザ端末はこれ以外にも必要な構成を備えるものとする。また、図3A及び3Bでは、セル中央部及びセル端部のユーザ端末の構成を機能的に示したものであり、1ユーザ端末は、図3A及び3Bに示す双方の構成を具備することができる。
 また、図3Aでは、CWICなどのSIC型の干渉キャンセラを用いた構成を示すが、これに限られず、干渉キャンセラとしてR-MLを用いた構成であってもよい。図3Aに示すように、干渉除去を行うユーザ端末#1における受信信号には、ユーザ端末#1(所望ユーザ端末)に対する下り信号と、他のユーザ端末#2(干渉ユーザ端末)に対する下り信号とが非直交多重されている。
 ユーザ端末#1は、ユーザ端末#2に対する下り信号を推定し、除去することで、自端末に対する下り信号を抽出する。具体的には、図3Aに示すように、チャネル推定部において、受信信号に多重されたCRSを用いてチャネル推定を行う。そして、MMSE(Minimum Mean Square Error)部において、チャネル推定の結果(チャネル行列)と受信信号とに基づいて、最小二乗法によりユーザ端末#2に対する下り信号を求める。さらに、ユーザ端末#2に対する下り信号を復調・復号(ターボ復号)し、レプリカ信号(干渉レプリカ)を生成する。
 ユーザ端末#1は、ユーザ端末#2のレプリカ信号を用いて、自ユーザ端末#1に対する下り信号を求める。具体的には、干渉除去部において、受信信号からユーザ端末#2のレプリカ信号を減算し、MMSE部に出力する。そして、MMSE部において、上述したチャネル推定の結果(チャネル行列)と干渉除去部からの出力信号とに基づいて、最小二乗法によりユーザ端末#1の下り信号を推定する。ユーザ端末#1は、推定された信号を復調・復号することで、ユーザ端末#1向けのデータ(受信データ)を取得する。
 一方、図3Bに示すように、セル端部のユーザ端末#2は、干渉除去を行わずに、ユーザ端末#2に対する下り信号を求める。具体的には、チャネル推定部において、受信信号に多重されたCRSを用いてチャネル推定を行う。そして、MMSE部で、チャネル推定の結果(チャネル行列)と受信信号とに基づいて、最小二乗法によりユーザ端末#2に対する下り信号を推定する。ユーザ端末#2は、推定された変調信号を、復調・復号することで、ユーザ端末#2のデータ(受信データ)を取得する。
 以上のように、複数のユーザ端末に対する下り信号を非直交多重して送信する場合、無線基地局は、各ユーザ端末からのフィードバック情報に基づいて、各下り信号に適用するプリコーディング行列(PM:Precoding Matrix)や変調符号化方式(MCS:Modulation Coding Scheme)を制御することが想定される。このようなフィードバック情報に基づく制御は、閉ループ制御(Closed loop)とも呼ばれる。
 図4は、閉ループ制御の模式図である。なお、図4において、ユーザ端末#1及び#2に対する下り信号は、非直交多重されるものとする。図4に示すように、ユーザ端末#1及び#2は、それぞれ、チャネル状態情報(CSI:Channel State Information)を無線基地局にフィードバックする。CSIは、プリコーディング行列を識別するプリコーディング行列識別子(PMI:Precoding Matrix Indicator)、ランク(レイヤ数)を識別するランク識別子(RI:Rank Indicator)、チャネル品質を識別するチャネル品質識別子(CQI:Channel Quality Indicator)の少なくとも一つを含む。
 具体的には、図4において、各ユーザ端末は、最適なプリコーディング行列を示すPMI、当該PMIを想定した場合に最適なランクを示すRI、当該PMI及びRIを想定した場合のチャネル品質を示すCQIをフィードバックする。なお、各ユーザ端末は、PMIとプリコーディング行列とを関連付けるコードブックから、最適なプリコーディング行列を示すPMIを選択してもよい。また、最適なPMIは、伝搬環境などに基づいて決定されてもよい。
 無線基地局は、フィードバックされたCQIに関連付けられるMCSにより、各ユーザ端末に対する下り信号の変調・符号化を行う。また、無線基地局は、フィードバックされたPMIが示すプリコーディング行列を、各ユーザ端末に対する下り信号に乗算する。また、無線基地局は、フィードバックされたRIが示すランク(レイヤ数)で、各ユーザ端末に対する下り信号を送信する。
 ところで、NOMAでは、非直交多重される複数のユーザ端末(ペアリング端末)の数が増加するほどゲインが増加することが想定される。図5は、ペアリング端末の数とNOMAのゲインとの関係の説明図である。図5Aでは、1組のペアリング端末(ユーザ端末#1及び#2)が存在する場合が示され、図5Bでは、3組のペアリング端末(ユーザ端末#1及び#2、ユーザ端末#3及び#4、ユーザ端末#5及び#6)が存在する場合が示される。図5Bでは、図5Aと比較して、同一セル内におけるペアリング端末の数が増加するため、NOMAのゲインも増加する。
 このように、ペアリング端末の数が増加するほど、NOMAのゲインが増加する。このため、ペアリング端末の数を増加させるために、ペアリング端末間での異なるプリコーディング行列の適用を許容することが検討されている。図4に示すように、各ユーザ端末から最適なPMIがフィードバックされる場合、ユーザ端末間で共通のPMIがフィードバックされるとは限らない。このため、異なるPMIを有する(フィードバックする)複数のユーザ端末を非直交多重することを許容すれば、ペアリング端末の数を増加させることができる。
 しかしながら、ペアリング端末の数を増加させるために、ペアリング端末間での異なるプリコーディング行列の適用を許容する場合、干渉キャンセラとしては、CWICを用いる必要がある。ペアリング端末間での異なるプリコーディング行列の適用を許容する場合、R-MLの特性は、ペアリング端末間で同じプリコーディング行列を適用する場合と比較して、端末の空間自由度の不足により、大幅に劣化することが想定されるためである。
 一方で、上述のように、CWICは、干渉信号についてもターボ復号まで行う必要があるため、R-MLと比較して、一般に受信処理負荷が増加することが想定される。このため、受信処理負荷を軽減する観点からは、ペアリング端末間での異なるプリコーディング行列の適用を許容することは望ましくない。受信処理負荷を軽減する観点からは、干渉キャンセラとしてR-LMを利用できるように、ペアリング端末間で同じプリコーディング行列を適用することが望まれる。
 しかしながら、図4に示すように、各ユーザ端末から最適なPMIがフィードバックされる場合、ペアリング端末間で同じプリコーディング行列を適用しようとすると、ペアリング端末の数は限定されてしまう。例えば、図6において、同じPMIをフィードバックするユーザ端末#1及び#2をペアリングすることはできるが、異なるPMI、PMI、PMIをそれぞれフィードバックするユーザ端末#3-#5をペアリングすることはできない。
 ここで、ペアリング端末間で同じプリコーディング行列を適用しながらペアリング端末の数を増加させるために、無線基地局が、フィードバックされたPMIとは異なるプリコーディング行列を適用するように制御することも考えられる。例えば、図6において、ユーザ端末#3-#5の少なくとも2つをペアリングするため、無線基地局が、ユーザ端末#3-#5からフィードバックされたPMIとは異なるプリコーディング行列を、ユーザ端末#3-#5に適用することが考えられる。しかしながら、この場合も、無線基地局は、ユーザ端末#3-#5にどのプリコーディング行列を適用すべきかを判断することができない。
 以上のように、NOMAのゲインを増加させるために、ペアリング端末間で異なるプリコーディング行列を適用してペアリング端末の数を増加させると、受信処理負荷が増大する。一方、受信処理負荷を軽減させるために、ペアリング端末間で同じプリコーディング行列を適用すると、ペアリング端末の数が制限され、NOMAのゲインを効率的に得られない。
 そこで、本発明者らは、ペアリング端末間で同じプリコーディング行列を適用しながらペアリング端末の数を増加させることで、NOMAのゲインを得ながら、受信処理負荷の増大を防止することを着想した。具体的には、本発明者らは、各ユーザ端末から複数のPMIをフィードバックし、共通するPMIをフィードバックした複数のユーザ端末をペアリングすることで、ペアリング端末間で同じプリコーディング行列を適用しながら、ペアリング端末の数を増加させることができる点を見出した。
 以下、本発明の一実施形態を詳細に説明する。本実施形態では、一例として、ユーザ端末は、NOMA方式を用いた下り信号を受信するものとするが、これに限られない。ユーザ端末が受信する下り信号は、他のユーザ端末に対する下り信号と同一の無線リソースに多重される(例えば、電力多重)下り信号であれば、どのような信号であってもよい。また、以下では、NOMA方式を用いた下り信号とは、OFDMA信号が電力領域で非直交多重された信号であるものとするが、これに限られない。NOMA方式により非直交多重される下り信号は、OFDMA信号に限られず、周波数領域(f)、時間領域(t)及び符号領域(code)の少なくとも一つで多重されるどのような信号であってもよい。
 また、以下では、CRSを用いてデータ復調を行う送信モード(TM:Transmission Mode)(例えば、送信モード2-6)を想定するが、これに限定されるものではない。本実施形態は、復調用参照信号(DMRS:DeModulation Reference Signal)を用いてデータ復調を行う送信モード(例えば、送信モード7-9)や、セル間協調(CoMP:Coordinated MultiPoint)により複数の無線基地局から下り信号を受信する送信モード(例えば、送信モード10)にも適用可能である。
 また、以下では、ユーザ端末における干渉測定(チャネル状態、伝搬環境の測定などともいう)は、CRSに基づいて行うものとするが、これに限定されるものではない。干渉測定は、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)に基づいて行われてもよい。なお、CRSを用いる場合、送信モード10のようなCSI-RSを用いる場合と比較して、測定すべきリソースを示す情報(CSI-RS/IM)を上位レイヤシグナリングにより予め通知する必要がない点でメリットがある。
 また、本実施形態では、干渉キャンセラとしてR-MLを用いることが受信処理負荷軽減の観点から好適であるが、これに限られず、CWICなどのSIC型の干渉キャンセラを適用することも可能である。また、本実施形態では、同一の無線リソースに非直交多重される複数のユーザ端末(ペアリング端末)は、2つであるものとするが、これに限られず、3以上のユーザ端末がグループ化されて、同一の無線リソースに非直交多重されてもよい。
(無線通信方法)
 本実施形態に係る無線通信方法では、ユーザ端末は、複数のPMIを無線基地局に送信し、当該複数のPMIに基づいて決定される他のユーザ端末に対する下り信号と非直交多重されるとともに、当該他のユーザ端末に対する下り信号と同一のプリコーディング行列が乗算された下り信号を、当該無線基地局から受信する。
 ここで、上記複数のPMIは、最善のPMIと次善のPMIであってもよい。なお、最善、次善のPMIは、例えば、ユーザ端末の伝搬環境によって決定される。また、上記複数のPMIは、最善、次善のPMIに限られず、例えば、最善からn(n≧2)番目までのPMIであってもよい。この場合、nは上位レイヤシグナリングにより指示されてもよい。
 また、上記複数のPMIは、上位レイヤシグナリングにより指示されてもよい。この場合、無線基地局は、ビットマップを用いて、複数のPMIをユーザ端末に指示してもよい。このビットマップは、コードブックに規定されるPMI数と等しいビットマップ(codeBookSubsetRestrictionとも呼ばれる)であってもよく、送信が指示されるPMIを示すビットに“1”が設定されてもよい。ユーザ端末は、ビットマップで指示されるPMIを無線基地局に送信する。
 また、ユーザ端末は、上記複数のPMIに加えて、上記複数のPMIにそれぞれ対応する複数のCQIを送信してもよい。もちろん、当該複数のCQIは、最善のPMIに対応するCQIと次善のPMIに対応するCQIとであってもよいし、最善のn(n≧2)番目までのPMIにそれぞれ対応するCQIであってもよい。この場合、nは上位レイヤシグナリングにより指示されてもよい。また、当該複数のCQIは、上位レイヤシグナリングにより指示されたPMIに対応するCQIであってもよい。
 また、ユーザ端末は、上記複数のPMIに加えて、上記複数のPMIにそれぞれ対応する複数のRIを送信してもよいし、上記複数のPMIに共通する単一のRIを送信してもよい。或いは、ユーザ端末は、当該複数のRIを送信せずに、上記複数のPMIだけを送信してもよいし、上記複数のPMIと上記複数のCQIとだけを送信してもよい。これは、RIのフィードバックは、一般的にPMIのフィードバックよりも長い周期となるよう上位レイヤより指示されることが想定されるため、この周期内では、RIを送信せずに、共通の値とすることができるためである。
 図7は、本実施形態に係る無線通信方法の概念図である。なお、図7では、各ユーザ端末が複数のPMIとして最善、次善のPMIを送信する例を説明するが、上述のように、複数のPMIは、最善、次善のPMIに限られるものではない。また、図7では、図示されないが、各ユーザ端末は、複数のPMIに対応する複数のCQIを送信してもよい。同様に、各ユーザ端末は、複数のPMIに対応する複数又は単一のRIを送信してもよい。また、図7に示すPMI-PMIは、例示にすぎず、PMIの数は、これらに限られるものではない。
 図7において、ユーザ端末#1は、最善のPMI、次善のPMIを送信し、ユーザ端末#2は、最善のPMI、次善のPMIを送信する。同様に、ユーザ端末#3は、最善のPMI、次善のPMIを送信し、ユーザ端末#4は、最善のPMI、次善のPMIを送信し、ユーザ端末#5は、最善のPMI、次善のPMIを送信する。
 無線基地局は、ユーザ端末#1-#5からそれぞれフィードバックされた複数のPMIに基づいて、同一の無線リソースに非直交多重される複数のユーザ端末(ペアリング端末)を決定する。具体的には、ユーザ端末#1及び#2の最善のPMIは同一であるので、無線基地局は、ユーザ端末#1及び#2をペアリングする。さらに、ユーザ端末#4の次善のPMIとユーザ端末#5の最善のPMIとは同一であるので、無線基地局は、ユーザ端末#4及び#5をペアリングする。
 図7に示すように、各ユーザ端末が複数のPMIをフィードバックする場合、無線基地局は、最善のPMIが同一であるユーザ端末#1及び#2だけでなく、最善のPMIは異なるユーザ端末#4及び#5もペアリングできる。このため、各ユーザ端末が最善のPMIだけをフィードバックする場合(図6)と比較して、ペアリング端末の数を増加させることができる。
 このように、各ユーザ端末が複数のPMIをフィードバックする場合、共通するPMIを有するユーザ端末の数を増加させることができる。このため、ペアリング端末間で同じプリコーディング行列を適用しながら、ペアリング端末の数を増加させることができる。この結果、NOMA方式を用いた下り信号を送信する場合、NOMAのゲインを効率的に得ながら、受信処理負荷を軽減できる。
(送信態様)
 次に、本実施形態に係る無線通信方法における複数のCSIの送信態様について説明する。以下の第1-第3の態様で送信される複数のCSIとは、上記複数のPMIであってもよいし、上記複数のPMI及び複数のCQIであってもよいし、上記複数のPMI、複数のCQI、及び複数/単一のRIであってもよく、これらを総称するものとする。
<第1の態様>
 第1の態様では、ユーザ端末は、所定周期でCSIを報告する周期的CSI報告(Periodic CSI Report)により、複数のCSIを送信する。具体的には、ユーザ端末は、複数のCSIをそれぞれ異なるサブフレームで周期的に送信する。
 図8は、第1の態様に係る複数のPMIの送信の一例の説明図である。図8では、ユーザ端末が、複数のCSIとして複数のPMIを送信する例を示すが、これに限られない。上述のように、複数のPMIに加えて、複数のCQIが送信されてもよいし、複数のCQI及び複数/単一のRIが送信されてもよい。また、図8では、第1のPMI(P0)が最善のPMIを示し、第2のPMI(P1)が次善のPMIを示すものとするが、上述のように、複数のPMIは、最善、次善のPMIに限られるものではない。
 図8に示すように、ユーザ端末は、複数のPMI(P0、P1)をそれぞれ異なるサブフレームの上り制御チャネル(PUCCH:Physical Uplink Control Channel)を割り当てて、所定周期で送信する。なお、これらのPMIの送信には、PUCCHフォーマット2/2A/2Bなどを用いることができる。また、各PMIの送信サブフレームにおいて上り共有チャネル(PUSCH:Physical Uplink Shared Channel)の割り当てがある場合、PMIは、PUSCHを用いて送信されてもよい。
 また、図8において、各PMI(P0、P1)の送信サブフレームは、無線基地局から上位レイヤシグナリングによりユーザ端末に通知される送信周期と無線フレームの先頭に対するオフセットによって特定されてもよい。第1及び第2のPMIの送信周期は、同じであってもよいし、異なっていてもよい。例えば、第1のPMI(最善のPMI)の送信周期は、第2のPMI(次善のPMI)の送信周期よりも短く設定されてもよい。
 なお、第1の態様において、異なるサブフレームで周期的に送信される複数のCSIの数は、無線基地局から上位レイヤシグナリング(例えば、RRCシグナリング)によりユーザ端末に通知されてもよいし、動的に通知されてもよい。動的な通知は、例えば、下り制御チャネル(PDCCH:Physical Downlink Control Channel)により行われてもよい。
<第2の態様>
 第2の態様では、ユーザ端末は、無線基地局から上位レイヤシグナリング(例えば、RRCシグナリング)により指示される複数のCSIを送信する。
 上述のように、無線基地局は、ビットマップを用いて、複数のPMIを指示してもよい。このビットマップは、コードブックに規定されるPMI数と等しいビットマップ(codeBookSubsetRestrictionとも呼ばれる)であってもよい。ユーザ端末は、ビットマップで指示されるPMIを無線基地局に送信する。また、ユーザ端末は、当該PMIに加えて、当該PMIに対応するCQI及び当該PMIに対応するRIの少なくとも一つを送信してもよい。
 なお、無線基地局は、単一のPMIの送信を指示することもできる。ただし、ペアリング端末を増加させる観点からは、無線基地局は、複数のPMIの送信を指示することが望ましい。また、第2の態様は、第1の態様と組み合わせることが可能であり、ユーザ端末は、無線基地局から指示される複数のCSIをそれぞれ異なるサブフレームで周期的に送信してもよい。
<第3の態様>
 第3の態様では、ユーザ端末は、非周期CSI報告(Aperiodic CSI Report)により、複数のCSIを送信する。非周期CSI報告では、ユーザ端末は、CSI要求フィールド(CSI request field、CQI request field、単に、要求フィールドともいう)を含む下り制御情報(DCI:Downlink Control Information、上りスケジューリンググラントともいう)を、PDCCHを介して受信する。ユーザ端末は、CSI要求フィールドの値が送信指示を示す(例えば、“1”である)場合、DCIによって割り当てられるPUSCHを用いて、複数のCSIを送信する。
 なお、上記CSI要求フィールドの値が送信指示を示す場合、ユーザ端末は、複数のCSIとして、複数のPMIを送信してもよいし、当該複数のPMIに加えて、複数のCQIを送信してもよいし、複数のCQI及び複数/単一のRIを送信してもよい。
 また、ユーザ端末は、複数のCSIとして、最善のCSI及び次善のCSIを送信してもよいし、最善のCSIからn(n≧2)番目までのCSIを送信してもよい。また、第3の態様は、第2の態様と組み合わせることが可能であり、上記CSI要求フィールドの値が送信指示を示す場合、ユーザ端末は、上位レイヤシグナリングにより指示される複数のCSIを送信してもよい。
 また、複数のCSIの数は、無線基地局から上位レイヤシグナリング(例えば、RRCシグナリング)によりユーザ端末に通知されてもよいし、PDCCHにより動的に通知されてもよい。
 なお、第3の態様では、上記CSI要求フィールドによりCSIを送信するか否かが指示されればよいので、上記CSI要求フィールドは、1ビットであってもよい。しかしながら、これに限られるものではなく、上記CSI要求フィールドは、2ビットであってもよいし、3ビット以上であってもよい。
<第4の態様>
 第4の態様では、ユーザ端末は、上述の非周期CSI報告(Aperiodic CSI Report)により送信されるCSIを動的に制御する。具体的には、ユーザ端末は、CSI要求フィールドを含むDCIを、PDCCHを用いて受信するとともに、CSI要求フィールドの値によりどのPMIが要求されるかを指示する指示情報を、上位レイヤシグナリングにより受信する。ユーザ端末は、上記DCIにより指示されるPUSCHを用いて、CSI要求フィールドの値と上記指示情報に基づいて決定されるPMIを送信する。
 図9は、第4の態様に係るCSI要求フィールドの一例を示す図である。例えば、図9では、CSI要求フィールドの値が“00”である場合、CSIの送信無しが指示され、当該値が“01”である場合、上位レイヤシグナリングで通知されるPMIの送信が指示される。また、当該値が“10”、“11”である場合、それぞれ、上位レイヤシグナリングで通知される第1のPMIの組み合わせ(第1セット)、第2のPMIの組み合わせ(第2セット)の送信が指示される。
 例えば、無線基地局は、上記指示情報として、CSI要求フィールドの値“00”によりPMIを送信しないことを示す情報、CSI要求フィールドの値“01”によりPMIの送信が指示されることを示す情報、CSI要求フィールドの値“10”によりPMI及びPMIの送信が指示されることを示す情報、CSI要求フィールドの値“11”によりPMI及びPMIの送信が指示されることを示す情報を、上位レイヤシグナリングによりユーザ端末に通知する。
 なお、上記指示情報としては、codeBookSubsetRestrictionなどのビットマップが用いられてもよい。このビットマップでは、送信が指示されるPMIを示すビットに“1”が設定されてもよい。
 ユーザ端末は、CSI要求フィールドを含むDCIを受信する場合、上位レイヤシグナリングされる上記指示情報を参照して、当該CSI要求フィールドの値により指示されるPMIを送信する。例えば、ユーザ端末は、値が“01”のCSI要求フィールドを含むDCIを受信する場合、PMIを送信する。また、ユーザ端末は、値が“10”のCSI要求フィールドを含むDCIを受信する場合、第1セットとしてPMI及びPMIを送信する。また、ユーザ端末は、値が“11”のCSI要求フィールドを含むDCIを受信する場合、第2セットとしてPMI及びPMIを送信する。
 また、上記CSI要求フィールドの値により指示されるPMIに加えて、当該PMIに対応するCQIを送信してもよいし、当該PMIに対応するRIを送信してもよいし、当該PMIに対応するCQI及びRIを送信してもよい。
 第4の態様では、CSI要求フィールドの値を変更することで、ユーザ端末から送信されるPMIを動的に制御できる。また、CSI要求フィールドの値によりどのPMIの送信が指示されるかを上位レイヤシグナリングにより予め通知しておくことで、ユーザ端末から送信されるPMIの組み合わせを制御できる。
 なお、図9では、上記指示情報として、CSI要求フィールドの値“00”、“01”、“10”、“11”によりどのPMIの送信が指示される情報が上位レイヤシグナリングされるものとしたが、これに限られない。CSI要求フィールドの値“00”、“01”、“10”、“11”によりどのPMIの送信が指示されるかが固定的に定められてもよい。例えば、図9において、CSI要求フィールドの値“01”により最善のPMIが指示され、値“10”により最善、次善のPMIが指示され、値“11”により最善、3番目に良いPMIが指示されてもよい。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記実施形態に係る無線通信方法が適用される。なお、上記の無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。なお、同一の構成要素には同一の符号を付し、重複する説明は省略する。
 図10は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)などと呼ばれても良い。
 図10に示す無線通信システム1は、無線基地局10(10A、10B)と、この無線基地局10と通信する複数のユーザ端末20(20A、20B)とを含んでいる。無線基地局10は、上位局装置30と接続され、上位局装置30を介してコアネットワーク40に接続される。各ユーザ端末20は、セルC1、C2において無線基地局10と通信を行うことができる。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、無線基地局10間が有線接続(光ファイバ、X2インタフェースなど)又は無線接続されていても良い。
 なお、無線基地局10は、マクロセルを形成するマクロ基地局、集約ノード、eNodeB(eNB)、送受信ポイントなどであってもよいし、スモールセルを形成するスモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、Home eNodeB(HeNB)、RRH(Remote Radio Head)、送受信ポイントなどであってもよい。各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクについてはNOMA(Non-Orthogonal Multiple Access)(非直交多元接続)が適用され、上りリンクについてはSC-FDMA(Single Carrier Frequency Division Multiple Access)(シングルキャリア-周波数分割多元接続)が適用される。また、下りリンクにはOFDMA(Orthogonal Frequency Division Multiple Access)(直交周波数分割多元接続)が適用されても良い。また、下りリンクでは、NOMAとOFDMAとが組み合されてもよい。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られない。
 NOMAは周波数帯域を複数の狭い周波数帯域(サブキャリア、サブバンドなど)に分割し、サブバンド毎にユーザ端末20の信号を異なる送信電力で非直交多重するマルチキャリア伝送方式であり、OFDMAは、周波数帯域を複数のサブバンドに分割し、各サブバンドにユーザ端末20の信号を直交多重して通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数のユーザ端末20が互いに異なる帯域を用いることで、ユーザ端末間の干渉を低減するシングルキャリア伝送方式である。なお、NOMA、OFDMAは、ワイドバンドで用いられてもよい。
 ここで、無線通信システム1で用いられる通信チャネルについて説明する。下りリンクの通信チャネルは、各ユーザ端末20で共有される下り共有データチャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネル(PDCCH、EPDCCH、PCFICH、PHICHなど)、などを有する。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 PDCCH(Physical Downlink Control Channel)により、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。PCFICH(Physical Control Format Indicator Channel)により、PDCCHに用いるOFDMシンボル数が伝送される。PHICH(Physical Hybrid-ARQ Indicator Channel)により、PUSCHに対するHARQ(Hybrid ARQ)の送達確認信号(例えば、ACK/NACK)が伝送される。
 また、上りリンクの通信チャネルは、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などを有する。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認信号などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
(無線基地局)
 図11は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして(プリコーディング行列を乗算して)出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 送受信部103は、ユーザ端末20から、複数のCSIを受信する。具体的には、送受信部103は、ユーザ端末20から、複数のCSIとして、複数のPMIを受信してもよい。或いは、送受信部103は、ユーザ端末20から、複数のPMIに加えて、当該複数のPMIにそれぞれ対応する複数のCQIを受信してもよい。或いは、送受信部103は、ユーザ端末20から、上記複数のPMIに加えて、上記複数のPMIに対応する複数又は単一のRIを受信してもよい。或いは、送受信部103は、上記複数のPMI、上記複数のCQI、上記複数又は単一のRIを受信してもよい。
 また、送受信部103は、ユーザ端末20の上位レイヤシグナリングされる上位レイヤ制御情報を送信してもよい。上位レイヤ制御情報には、ユーザ端末20から送信すべき複数のPMIや当該複数のPMIの個数を指示する指示情報が含まれてもよい。また、上位レイヤ制御情報には、CSI要求フィールドの値によりどのPMIが要求されるかを指示する指示情報が含まれてもよい。
 また、送受信部103は、CSI要求フィールドを含むDCIをPDCCHにより送信してもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 図12は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、図12では、本発明の一実施形態に係る特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図12に示すように、ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を備えている。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302による信号の生成や、マッピング部303による信号の割り当てを制御する。また、制御部301は、受信信号処理部304による信号の受信処理や、測定部305による信号の測定を制御する。
 制御部301は、システム情報、PDSCHで送信される下りデータ信号、PDCCH及び/又はEPDCCHで伝送される下り制御信号のスケジューリング(例えば、リソース割り当て)を制御する。また、同期信号や、CRS、CSI-RS、DMRSなどの下り参照信号のスケジューリングの制御を行う。
 また、制御部301は、PUSCHで送信される上りデータ信号、PUCCH及び/又はPUSCHで送信される上り制御信号(例えば、送達確認信号(HARQ-ACK))、PRACHで送信されるランダムアクセスプリアンブルや、上り参照信号などのスケジューリングを制御する。
 制御部301は、各ユーザ端末20からフィードバックされる複数のPMIに基づいて、下り信号が非直交多重される複数のユーザ端末(ペアリング端末)を決定する。具体的には、制御部301は、共通するPMIをフィードバックした複数のユーザ端末を非直交多重することを決定する。
 また、制御部301は、上記複数のユーザ端末(ペアリング端末)に対する下り信号に、同一のプリコーディング行列を乗算するように、送信号生成部302を制御する。具体的には、制御部301は、上記ペアリング端末に対する下り信号に、ペアリング端末間で共通するPMIが示すプリコーディング行列を乗算するように、送信信号生成部302を制御する。また、制御部301は、不図示のコードブックを参照し、PMIが示すプリコーディング行列を検知してもよい。
 また、制御部301は、上記複数のユーザ端末(ペアリング端末)に対する下り信号が適切に非直交多重(電力多重)されるように、当該下り信号の電力制御を行う。
 また、制御部301は、各ユーザ端末20からフィードバックされるCQIに基づいて、各ユーザ端末20に対する下り信号に適用されるMCSを制御する。また、制御部301は、各ユーザ端末20からフィードバックされるRIに基づいて、各ユーザ端末20に対する下り信号に適用されるランク(レイヤ数)を制御する。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。また、送信信号生成部302は、図2のデータバッファ部、ターボ符号化部、データ変調部、乗算部、電力調整部、非直交多重部などを実現することができる。
 送信信号生成部302は、制御部301によって決定されたMCSで、各ユーザ端末20に対する下り信号を変調・符号化する。また、送信信号生成部302は、制御部301によってペアリング端末に対する下り信号に対して、同一のプリコーディング行列を乗算する。また、送信信号生成部302は、制御部301によって決定されたペアリング端末に対する下り信号を非直交(電力多重)して、マッピング部303に出力する。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。マッピング部303は、図3の多重部を実現することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号)などである。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。また、受信信号処理部304は、受信信号や、受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部305は、例えば、受信した信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality))やチャネル状態などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
 図13は、本実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 送受信部203は、無線基地局10に対して複数のCSIを送信する。送受信部203は、無線基地局10に対して、複数のCSIとして、複数のPMIを送信してもよい。或いは、送受信部203は、無線基地局10に対して、複数のPMIに加えて、当該複数のPMIにそれぞれ対応する複数のCQIを送信してもよい。或いは、送受信部203は、無線基地局10に対して、上記複数のPMIに加えて、上記複数のPMIに対応する複数又は単一のRIを送信してもよい。或いは、送受信部203は、上記複数のPMI、上記複数のCQI、上記複数又は単一のRIを送信してもよい。
 また、送受信部203は、上記複数のPMIに基づいて決定される他のユーザ端末20に対する下り信号と非直交多重されるとともに、他のユーザ端末20に対する下り信号と同一のプリコーディング行列が乗算された下り信号を、無線基地局10から受信する。
 また、送受信部203は、PDCCHを用いてDCIを受信する。DCIには、CSI要求フィールドが含まれてもよい。また、送受信部203は、上述の上位レイヤ制御情報を受信する。上述のように、上位レイヤ制御情報には、ユーザ端末20から送信すべき複数のPMIや当該複数のPMIの個数を指示する指示情報が含まれてもよい。また、上位レイヤ制御情報には、CSI要求フィールドの値によりどのPMIが要求されるかを指示する指示情報が含まれてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 図14は、本実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、図14においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図14に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を備えている。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402による信号の生成や、マッピング部403による信号の割り当てを制御する。また、制御部401は、受信信号処理部404による信号の受信処理や、測定部405による信号の測定を制御する。
 制御部401は、無線基地局10から送信された下り制御信号(PDCCH/EPDCCHで送信された信号)及び下りデータ信号(PDSCHで送信された信号)を、受信信号処理部404から取得する。制御部401は、下り制御信号や、下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号(例えば、送達確認信号(HARQ-ACK)など)や上りデータ信号の生成を制御する。
 また、制御部401は、無線基地局20にフィードバックされる複数のCSIを決定する。具体的には、制御部401は、測定部405により測定された伝搬環境に基づいて、最善のPMIと次善のPMIを決定してもよい。また、制御部401は、最善のn(n≧2)番目までのPMIを決定してもよい。また、制御部401は、これらのPMIに対応するCQI及び/又はRIを決定してもよい。
 また、制御部401は、上位レイヤ制御情報に含まれるビットマップ(codeBookSubseRestrictionとも呼ばれる)に基づいて、無線基地局20にフィードバックされる複数のPMIを決定してもよい(第2の態様)。また、制御部401は、これらのPMIに対応するCQI及び/又はRIを決定してもよい。
 また、制御部401は、以上のように決定される複数のPMIをそれぞれ異なるサブフレームで周期的に送信するように、送信信号生成部402及びマッピング部403を制御してもよい(第1の態様、図8)。なお、上記複数のPMIに加えて、上記複数のPMIにそれぞれ対応する複数のCQIを送信するように、或いは、上記複数のPMIにそれぞれ対応する複数/単一のRIを送信するように、或いは、上記複数のCQI及び複数/単一のRIを送信するように、制御されてもよい。
 また、制御部401は、送信指示を示す値のCSI要求フィールドを含むDCIを、PDCCHを用いて受信した場合、当該DCIにより指示されるPUSCHを用いて、上記複数のPMIを送信するように、送信信号生成部402及びマッピング部403を制御してもよい(第3の態様)。なお、上記複数のPMIに加えて、上記複数のPMIにそれぞれ対応する複数のCQIを送信するように、或いは、上記複数のPMIにそれぞれ対応する複数/単一のRIを送信するように、或いは、上記複数のCQI及び複数/単一のRIを送信するように、制御されてもよい。
 また、制御部401は、CSI要求フィールドの値によりどのPMIが要求されるかを指示する指示情報(上位レイヤ制御情報)と、DCIに含まれるCSI要求フィールドの値とに基づいて、無線基地局10にフィードバックするPMIを決定してもよい(第4の態様、図9)。制御部401は、決定したPMIを、上記DCIにより指示されるPUSCHを用いて送信するように、送信信号生成部402及びマッピング部403を制御してもよい。なお、上記複数のPMIに加えて、上記複数のPMIにそれぞれ対応する複数のCQIを送信するように、或いは、上記複数のPMIにそれぞれ対応する複数/単一のRIを送信するように、或いは、上記複数のCQI及び複数/単一のRIを送信するように、制御されてもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認信号(HARQ-ACK)やチャネル状態情報(CSI)に関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 また、受信信号処理部404は、図3のMMSE部、復調・復号部、干渉レプリカ生成部、干渉除去部などを実現することができる。なお、図3では、CWICなどのSIC型の干渉キャンセラを用いる例が示されるが、これに限られない。受信信号処理部404は、干渉キャンセラとしてR-MLを用いた構成を実現することもできる。
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、上位レイヤ制御情報、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号や、受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部405は、例えば、受信した信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality))やチャネル状態(伝搬環境)などを測定する。測定結果は、制御部401に出力される。測定部405は、図3のチャネル推定部を実現することができる。なお、測定部405は、受信信号に多重されたCRSを用いて上記測定を行ってもよいし、受信信号に多重されたCSI-RSを用いて上記測定を行ってもよい。
 なお、上記実施形態では、一例として、ユーザ端末は、NOMA方式を用いた下り信号を受信するものとするが、これに限られない。ユーザ端末が受信する下り信号は、他のユーザ端末に対する下り信号と同一の無線リソースに多重される(例えば、電力多重)下り信号であれば、どのような信号であってもよい。すなわち、本発明の他の実施形態として、ユーザ端末20は、下り信号を受信するユーザ端末20であって、複数のプリコーディング行列識別子(PMI)を、無線基地局10に送信する送信部と、当該複数のPMIに基づいて決定される他のユーザ端末20に対する下り信号と多重(例えば、電力多重)されるとともに、当該他のユーザ端末20に対する下り信号と同一のプリコーディング行列が乗算された下り信号を、当該無線基地局10から受信する受信部と、を具備してもよい。また、無線基地局10は、下り信号を送信する無線基地局10であって、複数のPMIを各ユーザ端末20から受信する受信部と、当該複数のPMIに基づいて、下り信号が多重(例えば、電力多重)される複数のユーザ端末20を決定する制御部と、当該複数のユーザ端末20に対する下り信号に、同一のプリコーディング行列を乗算して送信する送信部と、を具備してもよい。
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線又は無線で接続し、これら複数の装置により実現されてもよい。
 例えば、無線基地局10やユーザ端末20の各機能の一部又は全ては、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを用いて実現されても良い。また、無線基地局10やユーザ端末20は、プロセッサ(CPU:Central Processing Unit)と、ネットワーク接続用の通信インターフェースと、メモリと、プログラムを保持したコンピュータ読み取り可能な記憶媒体と、を含むコンピュータ装置によって実現されてもよい。つまり、本発明の一実施形態に係る無線基地局、ユーザ端末などは、本発明に係る無線通信方法の処理を行うコンピュータとして機能してもよい。
 ここで、プロセッサやメモリなどは情報を通信するためのバスで接続される。また、コンピュータ読み取り可能な記録媒体は、例えば、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、CD-ROM(Compact Disc-ROM)、RAM(Random Access Memory)、ハードディスクなどの記憶媒体である。また、プログラムは、電気通信回線を介してネットワークから送信されても良い。また、無線基地局10やユーザ端末20は、入力キーなどの入力装置や、ディスプレイなどの出力装置を含んでいてもよい。
 無線基地局10及びユーザ端末20の機能構成は、上述のハードウェアによって実現されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実現されてもよいし、両者の組み合わせによって実現されてもよい。プロセッサは、オペレーティングシステムを動作させてユーザ端末の全体を制御する。また、プロセッサは、記憶媒体からプログラム、ソフトウェアモジュールやデータをメモリに読み出し、これらに従って各種の処理を実行する。
 ここで、当該プログラムは、上記の各実施形態で説明した各動作を、コンピュータに実行させるプログラムであれば良い。例えば、ユーザ端末20の制御部401は、メモリに格納され、プロセッサで動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 なお、本明細書中で説明した及び/又は本明細書の理解に必要な各用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。また、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。
 本明細書で示した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わないこと)によって行われてもよい。
 情報の通知は、本明細書で示した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。
 本明細書で示した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 本明細書で示した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で示した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で示した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2015年5月22日出願の特願2015-104879に基づく。この内容は、全てここに含めておく。

Claims (10)

  1.  非直交多重接続(NOMA)方式を用いた下り信号を受信するユーザ端末であって、
     複数のプリコーディング行列識別子(PMI)を、無線基地局に送信する送信部と、
     前記複数のPMIに基づいて決定される他のユーザ端末に対する下り信号と非直交多重されるとともに、前記他のユーザ端末に対する下り信号と同一のプリコーディング行列が乗算された下り信号を、前記無線基地局から受信する受信部と、
    を具備することを特徴とするユーザ端末。
  2.  前記複数のPMIは、前記ユーザ端末の伝搬環境に基づいて決定される少なくとも最善のPMIと次善のPMIとであることを特徴とする請求項1に記載のユーザ端末。
  3.  前記複数のPMIは、上位レイヤシグナリングにより指示されることを特徴とする請求項1に記載のユーザ端末。
  4.  前記送信部は、前記複数のPMIをそれぞれ異なるサブフレームで周期的に送信することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記受信部は、チャネル状態情報(CSI)の要求フィールドを含む下り制御情報(DCI)を、下り制御チャネルを用いて受信し、
     前記送信部は、前記DCIにより指示される上り共有チャネルを用いて、前記複数のPMIを送信することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  6.  前記受信部は、チャネル状態情報(CSI)の要求フィールドを含む下り制御情報(DCI)を下り制御チャネルを用いて受信するとともに、前記要求フィールドの値によりどのPMIが要求されるかを指示する指示情報を上位レイヤシグナリングにより受信し、
     前記送信部は、前記DCIにより指示される上り共有チャネルを用いて、前記要求フィールドの値と前記指示情報とに基づいて決定されるPMIを送信することを特徴とする請求項1に記載のユーザ端末。
  7.  前記送信部は、前記複数のPMIに加えて、前記複数のPMIにそれぞれ対応する複数のチャネル品質識別子(CQI)を送信する、或いは、前記複数のPMIに加えて、前記複数のPMIに対応する単一又は複数のランク識別子(RI)を送信する、或いは、前記複数のPMIに加えて、前記複数のCQI及び前記単一又は複数のRIを送信することを特徴とする請求項1から請求項6のいずれかに記載のユーザ端末。
  8.  非直交多重接続(NOMA)方式を用いた下り信号を送信する無線基地局であって、
     複数のプリコーディング行列識別子(PMI)を各ユーザ端末から受信する受信部と、
     前記複数のPMIに基づいて、下り信号が非直交多重される複数のユーザ端末を決定する制御部と、
     前記複数のユーザ端末に対する下り信号に、同一のプリコーディング行列を乗算して送信する送信部と、
    を具備することを特徴とする無線基地局。
  9.  前記制御部は、前記受信部によって共通するPMIが受信された複数のユーザ端末を非直交多重することを決定し、
     前記送信部は、前記複数のユーザ端末に対する下り信号に、前記共通するPMIが示すプリコーディング行列を乗算することを特徴とする請求項8に記載の無線基地局。
  10.  非直交多重接続(NOMA)方式を用いた下り信号を受信するユーザ端末における無線通信方法であって、
     複数のプリコーディング行列識別子(PMI)を、無線基地局に送信する工程と、
     前記複数のPMIに基づいて決定される他のユーザ端末に対する下り信号と非直交多重されるとともに、前記他のユーザ端末に対する下り信号と同一のプリコーディング行列が乗算された下り信号を、前記無線基地局から受信する工程と、
    を有することを特徴とする無線通信方法。
     
PCT/JP2016/064880 2015-05-22 2016-05-19 ユーザ端末、無線基地局及び無線通信方法 WO2016190215A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/574,662 US20180139746A1 (en) 2015-05-22 2016-05-19 User terminal, radio base station and radio communication method
EP16799921.8A EP3300273A1 (en) 2015-05-22 2016-05-19 User terminal, wireless base station, and wireless communication method
JP2017520664A JPWO2016190215A1 (ja) 2015-05-22 2016-05-19 ユーザ端末、無線基地局及び無線通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-104879 2015-05-22
JP2015104879 2015-05-22

Publications (1)

Publication Number Publication Date
WO2016190215A1 true WO2016190215A1 (ja) 2016-12-01

Family

ID=57394159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064880 WO2016190215A1 (ja) 2015-05-22 2016-05-19 ユーザ端末、無線基地局及び無線通信方法

Country Status (4)

Country Link
US (1) US20180139746A1 (ja)
EP (1) EP3300273A1 (ja)
JP (1) JPWO2016190215A1 (ja)
WO (1) WO2016190215A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023144773A1 (en) * 2022-01-28 2023-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Precoder matrix indicator (pmi)-assisted user equipment (ue) spatial relationship establishment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131202A (ja) * 2012-12-28 2014-07-10 Ntt Docomo Inc 無線基地局、ユーザ端末、無線通信方法、及び無線通信システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179775B2 (en) * 2007-08-14 2012-05-15 Texas Instruments Incorporated Precoding matrix feedback processes, circuits and systems
JP5189460B2 (ja) * 2008-10-30 2013-04-24 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける基地局装置、ユーザ装置及び方法
WO2013129504A1 (ja) * 2012-02-29 2013-09-06 京セラ株式会社 通信制御方法、ユーザ端末、及び基地局
WO2016199768A1 (ja) * 2015-06-12 2016-12-15 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131202A (ja) * 2012-12-28 2014-07-10 Ntt Docomo Inc 無線基地局、ユーザ端末、無線通信方法、及び無線通信システム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CMCC: "Views on Downlink Multiuser Superposition Transmission", 3GPP TSG-RAN WG1#81, R1- 153038, 15 May 2015 (2015-05-15), XP050971956, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_81/Docs/R1-153038.zip> *
HUAWEI ET AL.: "Link-level configurations of MUST schemes in MIMO transmission", 3GPP TSG-RAN WG1#81, RL-153202, 16 May 2015 (2015-05-16), XP050970960, Retrieved from the Internet <URL:http:// www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_81/Docs/ Rl-153202.zip> *
NTT DOCOMO: "Evaluation methodologies for downlink multiuser superposition transmissions", 3GPP TSG-RAN WG1#81, R1-153332, 16 May 2015 (2015-05-16), XP050974018, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_81/Docs/R1-153332.zip> *
PANASONIC: "Discussion on Multiple BCI and Delta CQI Reporting", 3GPP TSG-RAN WG1#63, R1- 106078, 9 November 2011 (2011-11-09), XP050466850, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_63/Docs/R1-106078.zip> *

Also Published As

Publication number Publication date
JPWO2016190215A1 (ja) 2018-05-24
US20180139746A1 (en) 2018-05-17
EP3300273A1 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP6462891B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
WO2016199768A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2016182063A1 (ja) ユーザ端末、無線基地局及び無線通信方法
US10938505B2 (en) User terminal, radio base station, and radio communication method
JP6420467B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
JP2017118594A (ja) ユーザ端末、無線基地局及び無線通信方法
US20150110032A1 (en) Radio communication system, radio base station apparatus, user terminal and communication control method
JP2015012411A (ja) 無線基地局、ユーザ端末、無線通信方法、及び無線通信システム
WO2016158537A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
US10952233B2 (en) User terminal, radio base station and radio communication method
US9312984B2 (en) Radio communication system, radio base station apparatus, user terminal and radio communication method
WO2017033780A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017038674A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2014069164A1 (ja) 無線通信方法、無線通信システム、無線基地局及びユーザ端末
US20150085770A1 (en) Radio communication system, user terminal, radio base station apparatus and radio communication method
US20190014588A1 (en) User terminal, radio base station, and radio communication method
WO2017078032A1 (ja) ユーザ端末、無線基地局及び無線通信方法
US11677521B2 (en) User terminal, radio base station and radio communication method
WO2017038672A1 (ja) ユーザ端末、無線基地局及び無線通信方法
US20140247809A1 (en) Radio communication system, radio base station apparatus, user terminal and radio communication method
WO2016190215A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2013137219A1 (ja) 無線通信システム、ユーザ端末、無線基地局装置及び無線通信方法
JP2018137801A (ja) ユーザ端末及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799921

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15574662

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017520664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016799921

Country of ref document: EP