WO2013051305A1 - リチウムイオン二次電池からの有価物の回収方法 - Google Patents

リチウムイオン二次電池からの有価物の回収方法 Download PDF

Info

Publication number
WO2013051305A1
WO2013051305A1 PCT/JP2012/062991 JP2012062991W WO2013051305A1 WO 2013051305 A1 WO2013051305 A1 WO 2013051305A1 JP 2012062991 W JP2012062991 W JP 2012062991W WO 2013051305 A1 WO2013051305 A1 WO 2013051305A1
Authority
WO
WIPO (PCT)
Prior art keywords
sieve
positive electrode
negative electrode
ion secondary
lithium ion
Prior art date
Application number
PCT/JP2012/062991
Other languages
English (en)
French (fr)
Inventor
俊介 葛原
藤田 浩示
亮栄 渡邊
寿 佐々木
友哉 後藤
Original Assignee
Dowaエコシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエコシステム株式会社 filed Critical Dowaエコシステム株式会社
Priority to SG11201401216RA priority Critical patent/SG11201401216RA/en
Publication of WO2013051305A1 publication Critical patent/WO2013051305A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention provides a lithium ion secondary battery that can easily recover valuable materials from defective lithium ion secondary batteries generated during the manufacturing process, and lithium ion secondary batteries that are discarded with the use of equipment and the life of the battery.
  • the present invention relates to a method for recovering valuable materials from batteries.
  • Lithium ion secondary batteries are secondary batteries that are lighter, higher capacity, and higher electromotive force than conventional lead-acid batteries and nickel-cadmium secondary batteries, and are widely used in mobile devices such as mobile phones and laptop computers. It is also being used in automobiles.
  • Such lithium ion secondary batteries contain valuable materials such as aluminum, copper, cobalt, and nickel.
  • valuable materials such as aluminum, copper, cobalt, and nickel.
  • the use of lithium ion secondary batteries has increased, and from the viewpoint of reducing waste and improving the recycling rate of valuable materials, valuable materials such as aluminum and copper other than rare valuable materials from lithium ion secondary batteries. It is also desired to recover the waste.
  • the cost required for reusing valuable materials significantly exceeds the cost of non-recycled valuable materials, the benefits of recycling will be reduced. It is hoped to do.
  • the used lithium ion secondary battery is roasted, crushed, magnetically separated and separated into a magnetic material and a non-magnetic material, and a magnetic field from a magnet is applied to the non-magnetic material that has generated eddy currents.
  • a valuable material recovery method in which the non-magnetic material is repelled from the magnet to separate into crushed powder mainly made of aluminum and crushed powder mainly made of copper (see Patent Document 2).
  • this proposed technique uses a magnetic separator that sorts magnetic and non-magnetic substances and an eddy current device that sorts aluminum and copper. There's a problem.
  • an object of the present invention is to provide a method for recovering valuable materials from a lithium ion secondary battery that can easily and efficiently recover valuable materials such as aluminum and copper from the lithium ion secondary battery. To do.
  • the present inventors have classified the positive electrode and the negative electrode after specific heat treatment, followed by crushing and then classifying the valuable material such as aluminum and copper. Has been found to be easily and efficiently recovered, and the present invention has been completed.
  • a method for recovering valuable materials from a lithium ion secondary battery comprising: sieving the crushed negative electrode to recover the copper.
  • the heating temperature in the heating step is 300 ° C. to 500 ° C.
  • the sieve mesh in the first sieve sorting step is 1.18 mm or more
  • the sieve mesh in the second sieve sorting step is 0.6 mm or more
  • the conventional problems can be solved, and valuable materials such as aluminum and copper can be easily and efficiently recovered from lithium ion secondary batteries.
  • a method for recovering a product can be provided.
  • FIG. 1 is a graph showing the relationship between the particle size and the concentration of aluminum in the recovered material of Example 1 (heating temperature 400 ° C.), and the relationship between the particle size and the accumulated mass of aluminum in the recovered material.
  • FIG. 2 is a graph showing the relationship between the particle size and the copper concentration in the recovered product of Example 1 (heating temperature 400 ° C.), and the relationship between the particle size and the cumulative mass of copper in the recovered product.
  • FIG. 3 is a graph showing the relationship between the particle size and the aluminum concentration in the recovered product of Example 2 (heating temperature 300 ° C.), and the relationship between the particle size and the accumulated mass of aluminum in the recovered product.
  • FIG. 1 is a graph showing the relationship between the particle size and the concentration of aluminum in the recovered material of Example 1 (heating temperature 400 ° C.), and the relationship between the particle size and the accumulated mass of aluminum in the recovered material.
  • FIG. 2 is a graph showing the relationship between the particle size and the copper concentration in the recovered product of Example 1 (heating temperature
  • FIG. 4 is a graph showing the relationship between the particle size and the copper concentration in the recovered product of Example 2 (heating temperature 300 ° C.), and the relationship between the particle size and the cumulative mass of copper in the recovered product.
  • FIG. 5 is a graph showing the relationship between the particle size and the aluminum concentration in the recovered product of Example 3 (heating temperature 500 ° C.), and the relationship between the particle size and the accumulated mass of aluminum in the recovered product.
  • FIG. 6 is a graph showing the relationship between the particle size and the copper concentration in the recovered product of Example 3 (heating temperature 500 ° C.), and the relationship between the particle size and the cumulative mass of copper in the recovered product.
  • the method for recovering valuable materials from the lithium ion secondary battery according to the present invention includes at least a heating step, a sorting step, a crushing step, a first sieve sorting step, and a second sieve sorting step, and is further necessary. Depending on, other steps are included.
  • the heating step is not particularly limited as long as it is a step of heating a lithium ion secondary battery at 250 ° C. to 550 ° C. to obtain a heated product, and can be appropriately selected according to the purpose.
  • the lithium ion secondary battery is not particularly limited as long as it is a lithium ion secondary battery having a positive electrode having aluminum as a positive electrode current collector and a negative electrode having copper as a negative electrode current collector.
  • a defective lithium-ion secondary battery generated in the process of manufacturing a lithium-ion secondary battery a defective lithium-ion secondary battery that is discarded due to defective equipment, the life of the equipment used, etc. Examples include used lithium ion secondary batteries that are discarded due to their lifetime.
  • a positive electrode, a negative electrode, a separator, an electrolyte, the said positive electrode, the said negative electrode, the said separator and examples include a battery case made of metal that houses the electrolyte, and a container such as an aluminum laminate film.
  • the said lithium ion secondary battery there is no restriction
  • Positive electrode- The positive electrode is not particularly limited as long as it is a positive electrode having aluminum as a positive electrode current collector, and can be appropriately selected according to the purpose.
  • Positive electrode current collector The material of the positive electrode current collector is aluminum.
  • the positive electrode material is not particularly limited and may be appropriately selected depending on the purpose.
  • the positive electrode material includes at least a positive electrode active material containing a rare valuable material, and optionally includes a conductive agent and a binder resin. Materials. There is no restriction
  • the positive electrode active material include lithium manganate (LiMn 2 O 4 ), lithium cobaltate (LiCoO 2 ), lithium cobalt nickelate (LiCo 1/2 Ni 1/2 O 2 ), and LiNi x Co y Mn z. O 2 etc. are mentioned.
  • the electrically conductive agent there is no restriction
  • the binder resin is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a homopolymer or copolymer such as vinylidene fluoride, tetrafluoroethylene, acrylonitrile, ethylene oxide, styrene-butadiene, etc. For example, rubber.
  • Negative electrode-- The negative electrode is not particularly limited as long as it is a negative electrode having copper as a negative electrode current collector, and can be appropriately selected according to the purpose.
  • Negative electrode current collector The material of the negative electrode current collector is copper.
  • Negative electrode material there is no restriction
  • the heating temperature is 250 ° C. to 550 ° C., preferably 300 ° C. to 500 ° C., and more preferably 350 ° C. to 450 ° C.
  • the organic solvent used for the electrolyte in the lithium ion secondary battery is removed by the heating. Further, the heating facilitates separation of the positive electrode current collector and the positive electrode active material (peeling of the positive electrode active material from the positive electrode current collector) in a process described later. Separation of the negative electrode current collector from the negative electrode material (peeling of the negative electrode material from the negative electrode current collector) is facilitated.
  • the heating temperature is less than 250 ° C.
  • the organic solvent is not sufficiently removed, and due to the adhesiveness of the organic solvent, the positive electrode current collector and the positive electrode active material are separated (the positive electrode) in the process described below.
  • the separation of the positive electrode active material from the current collector becomes difficult.
  • separation of the negative electrode current collector from the negative electrode material peeleling of the negative electrode material from the negative electrode current collector
  • the heating temperature exceeds 550 ° C., at least a part of aluminum and copper is oxidized into brittle aluminum oxide and copper oxide.
  • the heating temperature refers to the temperature of the gas around the lithium ion secondary battery during heating, for example, the temperature of the gas near the lithium ion secondary battery placed in the heating furnace during heating.
  • the heating time is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 0.5 to 6 hours, more preferably 0.5 to 2 hours.
  • a safety valve provided in the lithium ion secondary battery is normally opened (operated). By doing so, even if the internal pressure of the lithium ion secondary battery increases, it can be heated and the organic solvent can be removed without bursting. The organic solvent need not be removed 100%.
  • the heating is preferably performed using a furnace.
  • a furnace There is no restriction
  • a commonly used furnace such as a rotary kiln furnace can be used, and the selection range of the furnace is widened.
  • the sorting step is not particularly limited as long as it is a step of sorting the positive electrode and the negative electrode in the heated product obtained in the heating step, and can be appropriately selected according to the purpose.
  • a manual sorting method may be used.
  • the positive electrode and the negative electrode in the heated product can be easily distinguished visually.
  • a part of the positive electrode has exposed aluminum, and the part has a metallic color of aluminum.
  • copper is exposed in a part of the negative electrode, and the part has a metallic color of copper. Therefore, the positive electrode and the negative electrode can be easily distinguished visually.
  • aluminum and copper are not shattered and maintain their shape (for example, flat plate shape), so that the positive electrode and the negative electrode can be easily selected by hand.
  • Laminated lithium ion secondary batteries usually have positive electrodes, separators, and negative electrodes stacked alternately, and the positive and negative electrodes are connected to metal terminals called tabs and placed in a container made of an aluminum laminate film. The structure is sealed after the electrolyte is injected.
  • the positive electrode, separator, and negative electrode that are the contents can be taken out easily and quickly.
  • a sorting process can be performed efficiently.
  • the sorting step can be performed more efficiently.
  • the positive electrode and the negative electrode are not crushed in the heating step, a large-scale device such as an eddy current device is not required, and the positive electrode and the negative electrode can be easily sorted.
  • the crushing step is not particularly limited as long as it is a step of crushing the positive electrode and the negative electrode sorted in the sorting step to obtain a crushed positive electrode and a crushed negative electrode, respectively. Examples thereof include a method using a crusher.
  • crushing by impact etc. are mentioned.
  • a hammer crusher can be used.
  • the method of hitting the said positive electrode or the said negative electrode with balls, such as a ceramic is mentioned, It can carry out with a ball mill etc.
  • the positive electrode active material When the positive electrode is pulverized, the positive electrode active material is finely crushed, while aluminum as the positive electrode current collector is hardly crushed. Therefore, the aluminum in the crushed positive electrode obtained by crushing and the positive electrode active material are highly sorted by the first sieve sorting step described later.
  • the negative electrode When the negative electrode is pulverized, the negative electrode material such as a carbon material is finely crushed, while the copper as the negative electrode current collector is hardly crushed. Therefore, the copper and the negative electrode material in the negative electrode crushed material obtained by crushing are highly sorted by the second sieve sorting step described later.
  • the first sieving selection step is not particularly limited as long as it is a step of sieving the positive electrode crushed material and recovering the aluminum, and can be appropriately selected according to the purpose.
  • the sieving there is no restriction
  • the aluminum and other substances for example, the positive electrode active material
  • the sieve mesh is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1.18 mm or more from the viewpoint of excellent aluminum recovery rate and aluminum content in the recovered product.
  • the aluminum is usually recovered on the sieve.
  • the positive electrode active material can be recovered under the sieve.
  • the sieving may be dry or wet.
  • the second sieving selection step is not particularly limited as long as it is a step of sieving the negative electrode crushed material and collecting the copper, and can be appropriately selected according to the purpose.
  • the sieving there is no restriction
  • the copper and other substances for example, the negative electrode material such as the carbon material
  • the mesh of the sieve is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.6 mm or more from the viewpoint of excellent copper recovery rate and copper content in the recovered product. Moreover, from the point which purity is more excellent, 1.18 mm or more is more preferable.
  • the copper is usually recovered on the sieve.
  • the negative electrode material such as the carbon material is recovered, the negative electrode material such as the carbon material can be recovered under the sieve.
  • the sieving may be dry or wet.
  • Example 1 ⁇ Recovery of valuable materials> A used laminate type lithium ion secondary battery was used.
  • the positive electrode in this lithium ion secondary battery is a positive electrode in which an aluminum foil is used as a foil-shaped positive electrode current collector and a positive electrode active material (LiNi x Co y Mn z O 2 ) is applied to the positive electrode current collector.
  • the negative electrode is a negative electrode in which a copper foil is used as a foil-shaped negative electrode current collector and a carbon material is applied to the negative electrode current collector.
  • the container is an aluminum laminate film.
  • a lithium ion secondary battery was placed in a box furnace (manufactured by Koyo Thermo System Co., Ltd.), and the temperature was increased to 400 ° C. (in-furnace temperature) at a temperature increase rate of 10 ° C./min. After reaching the heating temperature of 400 ° C. (furnace temperature), heating was performed for 1 hour. The atmosphere in the furnace was an air atmosphere.
  • Each of the positive electrode and the negative electrode selected by the selection process was crushed.
  • a hammer crusher (HC-20, manufactured by Hadano Sangyo Co., Ltd.) was used and crushed for 1 second at 50 Hz (about 2500 rpm, peripheral speed 46 m / s) to obtain a crushed positive electrode and a crushed negative electrode, respectively. It was.
  • the crushed positive electrode crushed product is a multi-stage sieve (6 stages) in which sieves of 0.075 mm, 0.15 mm, 0.3 mm, 0.6 mm, 1.18 mm, and 2.0 mm are stacked in this order. And screened.
  • the crushed negative electrode crushed material is a multistage sieve (six stages) in which sieves of 0.075 mm, 0.15 mm, 0.3 mm, 0.6 mm, 1.18 mm, and 2.0 mm are stacked in this order. And screened.
  • the particle size was calculated based on the sieve mesh. That is, for the recovered material that passed through a sieve having a sieve mesh of 0.075 mm, the particle diameter was set to “0.075 mm or less” (in the drawings and tables, it is expressed as “ ⁇ 0.075”). For the recovered material that passed through a sieve with a sieve mesh of 1.18 mm and remained on a sieve with a sieve mesh of 0.6 mm, the particle size was “over 0.6 mm and 1.18 mm or less” (in the figures and tables) Is expressed as “1.18 / 0.6”).
  • the recovered material on the sieve having a sieve mesh of 1.18 mm had a high aluminum recovery rate (recovery rate 78.42% by mass) and an excellent aluminum content (purity).
  • the aluminum recovery rate represents the recovered aluminum amount relative to the positive electrode aluminum amount in the lithium ion secondary battery.
  • under sieve undersize fraction sieve sieve is 1.18 mm
  • the positive electrode active under sieve It was confirmed that the substance was recovered.
  • the recovered material on the sieve having a sieve mesh of 0.6 mm had a high copper recovery rate (recovery rate 97.87% by mass) and an excellent copper content (purity).
  • the copper recovery rate represents the recovered copper amount relative to the copper amount of the negative electrode in the lithium ion secondary battery.
  • Example 2 In Example 1, aluminum and copper were collected in the same manner as in Example 1 except that the heating temperature was changed to 300 ° C.
  • the recovered material on the sieve having a sieve mesh of 1.18 mm had a high aluminum recovery rate (recovery rate 81.51% by mass).
  • the aluminum recovery rate represents the recovered aluminum amount relative to the positive electrode aluminum amount in the lithium ion secondary battery.
  • the purity of aluminum in the recovered material on the sieve having a sieve mesh of 1.18 mm was not as high as when heated at 400 ° C.
  • under sieve undersize fraction sieve sieve is 1.18 mm
  • the positive electrode active under sieve It was confirmed that the substance was recovered.
  • copper could be recovered easily and efficiently by sieving the crushed negative electrode.
  • the recovered material on the sieve having a sieve mesh of 0.6 mm had a high copper recovery rate (recovery rate 96.24% by mass).
  • the copper recovery rate represents the recovered copper amount relative to the copper amount of the negative electrode in the lithium ion secondary battery.
  • the purity of copper in the recovered material on the sieve having a sieve mesh of 0.6 mm was not as high as when heated at 400 ° C.
  • Example 3 In Example 1, aluminum and copper were collected in the same manner as in Example 1 except that the heating temperature was changed to 500 ° C.
  • the recovered material on the sieve having a sieve mesh of 1.18 mm had a high aluminum recovery rate (recovery rate of 86.54% by mass).
  • the aluminum recovery rate represents the recovered aluminum amount relative to the positive electrode aluminum amount in the lithium ion secondary battery.
  • the purity of aluminum in the recovered material on the sieve having a sieve mesh of 1.18 mm was not as high as when heated at 400 ° C.
  • under sieve undersize fraction sieve sieve is 1.18 mm
  • the positive electrode active under sieve It was confirmed that the substance was recovered.
  • copper could be recovered easily and efficiently by sieving the crushed negative electrode. Although the recovered matter on the sieve having a sieve mesh of 0.6 mm was high in the copper recovery rate (81.98% by mass), it was not as much as when heated at 400 ° C.
  • the copper recovery rate represents the recovered copper amount relative to the copper amount of the negative electrode in the lithium ion secondary battery.
  • Example 1 In Example 1, the heating process was performed by changing the heating temperature to 200 ° C. When the four sides of the aluminum laminate film were cut out of the heated product obtained in the heating step, the positive electrode and the negative electrode could not be separated well due to the adhesiveness of the electrolyte, and the selection step could not be performed. Further, separation between the positive electrode current collector and the positive electrode active material and separation between the negative electrode current collector and the negative electrode material were difficult.
  • Example 2 In Example 1, the heating process was performed by changing the heating temperature to 600 ° C. In the heated product obtained in the heating step, an aluminum laminate film as a container, an aluminum foil as a positive electrode current collector, and a copper foil as a negative electrode current collector were embrittled by oxidation and were shattered. Therefore, the positive electrode and the negative electrode could not be selected, and the screen could not be selected with a sieve.
  • the method for recovering valuable materials from a lithium ion secondary battery according to the present invention can easily and efficiently recover valuable materials such as aluminum and copper from a lithium ion secondary battery. It can be suitably applied to a method for recovering valuable materials from secondary batteries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

 正極集電体としてのアルミニウムを有する正極と負極集電体としての銅を有する負極とを有するリチウムイオン二次電池を250℃~550℃の温度で加熱して加熱物を得る加熱工程と、前記加熱物中の前記正極と前記負極とを選別する選別工程と、前記選別工程により選別された前記正極及び前記負極をそれぞれ破砕し、正極破砕物及び負極破砕物をそれぞれ得る破砕工程と、前記正極破砕物を篩分けして、前記アルミニウムを回収する第1の篩選別工程と、前記負極破砕物を篩分けして、前記銅を回収する第2の篩選別工程とを含むリチウムイオン二次電池からの有価物の回収方法である。

Description

リチウムイオン二次電池からの有価物の回収方法
 本発明は、製造過程で発生した不良品のリチウムイオン二次電池、並びに使用機器及び電池の寿命などに伴い廃棄されるリチウムイオン二次電池などから有価物を簡単に回収可能なリチウムイオン二次電池からの有価物の回収方法に関する。
 リチウムイオン二次電池は、従来の鉛蓄電池、ニッカド二次電池などに比較して軽量、高容量、及び高起電力な二次電池であり、携帯電話、ノートパソコン等のモバイル機器に広く使用されており、自動車にも使用が拡大している。
 このようなリチウムイオン二次電池には、アルミニウム、銅、コバルト、ニッケルなどの有価物が含まれている。
 これまで、リサイクル利用の観点から、リチウムイオン二次電池からコバルト、ニッケルなどの希少有価物を回収することが積極的に行われている。
 近年、リチウムイオン二次電池の利用が益々増加する中で、廃棄物低減の観点及び有価物のリサイクル率向上の観点から、リチウムイオン二次電池から希少有価物以外のアルミニウム、銅などの有価物も回収することが望まれている。また、有価物の再利用に必要なコストが非リサイクル品の有価物のコストを大幅に超えると、リサイクルを行う利点が低減してしまうため、リサイクルにおいては、簡単かつ効率的に有価物を回収することが望まれている。
 リチウムイオン二次電池からの有価物の回収に関して、例えば、使用済みリチウムイオン二次電池を焙焼し、破砕した後に篩分けして、コバルトと鉄とを分けて回収することが提案されている(特許文献1参照)。
 しかし、この提案の技術は、アルミニウム、銅などを効率よく回収できるものではない。
 また、使用済みリチウムイオン二次電池を焙焼し、破砕し、磁選して磁性物と非磁性物に分別し、更に渦電流を発生させた非磁性物に磁石からの磁界を印加して、前記非磁性物を前記磁石から反撥させることにより、主としてアルミニウムからなる破砕粉と、主として銅からなる破砕粉とに分別する有価物回収方法が提案されている(特許文献2参照)。
 しかし、この提案の技術は、磁性物と非磁性物とを選別する磁選装置、及びアルミニウムと銅とを選別する渦電流装置を用いるために、有価物の回収に必要な装置が大掛かりになるという問題がある。
 したがって、リチウムイオン二次電池から、アルミニウム、銅などの有価物を簡単かつ効率的に回収することができるリチウムイオン二次電池からの有価物の回収方法の提供が求められているのが現状である。
特開平06-346160号公報 特開平11-242967号公報
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、リチウムイオン二次電池から、アルミニウム、銅などの有価物を簡単かつ効率的に回収することができるリチウムイオン二次電池からの有価物の回収方法を提供することを目的とする。
 本発明者らは、前記目的を達成すべく、鋭意検討を行った結果、特定の加熱処理後に正極と負極とを選別してから破砕した後に分級を行うことにより、アルミニウム、銅などの有価物を簡単かつ効率的に回収することができることを見出し、本発明の完成に至った。
 本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 正極集電体としてのアルミニウムを有する正極と負極集電体としての銅を有する負極とを有するリチウムイオン二次電池を250℃~550℃の温度で加熱して加熱物を得る加熱工程と、
 前記加熱物中の前記正極と前記負極とを選別する選別工程と、
 前記選別工程により選別された前記正極及び前記負極をそれぞれ破砕し、正極破砕物及び負極破砕物をそれぞれ得る破砕工程と、
 前記正極破砕物を篩分けして、前記アルミニウムを回収する第1の篩選別工程と、
 前記負極破砕物を篩分けして、前記銅を回収する第2の篩選別工程とを含むことを特徴とするリチウムイオン二次電池からの有価物の回収方法である。
 <2> 加熱工程における加熱温度が、300℃~500℃である前記<1>に記載のリチウムイオン二次電池からの有価物の回収方法である。
 <3> 第1の篩選別工程における篩の篩目が、1.18mm以上であり、第2の篩選別工程における篩の篩目が、0.6mm以上である前記<1>から<2>のいずれかに記載のリチウムイオン二次電池からの有価物の回収方法である。
 <4> 第1の篩選別工程において、篩の篩上にアルミニウムを回収し、篩の篩下に正極活物質を回収し、第2の篩選別工程において、篩の篩上に銅を回収する前記<3>に記載のリチウムイオン二次電池からの有価物の回収方法である。
 本発明によると、従来における前記諸問題を解決することができ、リチウムイオン二次電池から、アルミニウム、銅などの有価物を簡単かつ効率的に回収することができるリチウムイオン二次電池からの有価物の回収方法を提供することができる。
図1は、実施例1(加熱温度400℃)の回収物における粒径とアルミニウムの濃度との関係、及び回収物における粒径とアルミニウムの積算質量との関係を示すグラフである。 図2は、実施例1(加熱温度400℃)の回収物における粒径と銅の濃度との関係、及び回収物における粒径と銅の積算質量との関係を示すグラフである。 図3は、実施例2(加熱温度300℃)の回収物における粒径とアルミニウムの濃度との関係、及び回収物における粒径とアルミニウムの積算質量との関係を示すグラフである。 図4は、実施例2(加熱温度300℃)の回収物における粒径と銅の濃度との関係、及び回収物における粒径と銅の積算質量との関係を示すグラフである。 図5は、実施例3(加熱温度500℃)の回収物における粒径とアルミニウムの濃度との関係、及び回収物における粒径とアルミニウムの積算質量との関係を示すグラフである。 図6は、実施例3(加熱温度500℃)の回収物における粒径と銅の濃度との関係、及び回収物における粒径と銅の積算質量との関係を示すグラフである。
(リチウムイオン二次電池からの有価物の回収方法)
 本発明のリチウムイオン二次電池からの有価物の回収方法は、加熱工程と、選別工程と、破砕工程と、第1の篩選別工程と、第2の篩選別工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
<加熱工程>
 前記加熱工程としては、リチウムイオン二次電池を、250℃~550℃で加熱して加熱物を得る工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
-リチウムイオン二次電池-
 前記リチウムイオン二次電池としては、正極集電体としてのアルミニウムを有する正極と負極集電体としての銅を有する負極とを有するリチウムイオン二次電池であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、リチウムイオン二次電池の製造過程で発生した不良品のリチウムイオン二次電池、使用機器の不良、使用機器の寿命などにより廃棄されるリチウムイオン二次電池、寿命により廃棄される使用済みのリチウムイオン二次電池などが挙げられる。
 前記リチウムイオン二次電池の構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、正極と、負極と、セパレーターと、電解質と、前記正極、前記負極、前記セパレーター及び前記電解質を収容する金属製の電池ケース、アルミニウムラミネートフィルム等の容器とを備えたものなどが挙げられる。
 前記リチウムイオン二次電池の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ラミネート型、円筒型、ボタン型、コイン型、角型、平型などが挙げられる。
--正極--
 前記正極としては、正極集電体としてのアルミニウムを有する正極であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルミニウムと、前記アルミニウム上に付与された正極活物質を有する正極材とを備えた正極などが挙げられる。
 前記正極の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状などが挙げられる。
---正極集電体---
 前記正極集電体の材質は、アルミニウムである。
 前記正極集電体の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状などが挙げられる。
 前記正極集電体の大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
---正極材---
 前記正極材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、希少有価物を含有する正極活物質を少なくとも含み、必要により導電剤と、結着樹脂とを含む正極材などが挙げられる。
 前記希少有価物としては、特に制限はなく、目的に応じて適宜選択することができるが、マンガン、コバルト、及びニッケルの少なくともいずれかであることが好ましい。
 前記正極活物質としては、例えば、マンガン酸リチウム(LiMn)、コバルト酸リチウム(LiCoO)、コバルトニッケル酸リチウム(LiCo1/2Ni1/2)、LiNiCoMnなどが挙げられる。
 前記導電剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カーボンブラック、グラファイト、カーボンファイバー、金属炭化物などが挙げられる。
 前記結着樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ化ビニリデン、四フッ化エチレン、アクリロニトリル、エチレンオキシド等の単独重合体又は共重合体、スチレン-ブタジエンゴムなどが挙げられる。
--負極--
 前記負極としては、負極集電体としての銅を有する負極であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、銅と、前記銅上に付与された負極材とを備えた負極などが挙げられる。
 前記負極の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状などが挙げられる。
---負極集電体---
 前記負極集電体の材質は、銅である。
 前記負極集電体の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状などが挙げられる。
 前記負極集電体の大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
---負極材---
 前記負極材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、グラファイト、ハードカーボン等の炭素材、チタネイトなどが挙げられる。
-加熱-
 前記加熱の温度は、250℃~550℃であり、300℃~500℃が好ましく、350℃~450℃がより好ましい。
 前記加熱により、リチウムイオン二次電池中の電解質に用いられている有機溶剤が除去される。また、前記加熱は、後述の工程における前記正極集電体と前記正極活物質との分離(前記正極集電体からの前記正極活物質の剥離)を容易にする。前記負極集電体と前記負極材との分離(前記負極集電体からの前記負極材の剥離)を容易にする。
 前記加熱の温度が、250℃未満であると、有機溶剤の除去が十分ではなく、有機溶剤の粘着性により、後述の工程において、前記正極集電体と前記正極活物質との分離(前記正極集電体からの前記正極活物質の剥離)が困難になる。また、同様に前記負極集電体と前記負極材との分離(前記負極集電体からの前記負極材の剥離)が困難になる。
 前記加熱の温度が、550℃を超えると、アルミニウム及び銅の少なくとも一部が酸化されて脆い酸化アルミニウム及び酸化銅になる。そのため、加熱工程の際、後述の選別工程、及び破砕工程においてアルミニウム及び銅が粉々になり、他の物質(例えば、正極活物質、負極材など)との選別が困難になる。その結果、アルミニウム及び銅の回収率が低下する。
 前記加熱の温度が、前記より好ましい範囲内であると、臭気による作業性の低下がなく、前記正極集電体と前記正極活物質との分離(前記正極集電体からの前記正極活物質の剥離)、及び前記負極集電体と前記負極材との分離(前記負極集電体からの前記負極材の剥離)が容易になるとともに、アルミニウム及び銅を良好な回収率で回収できる点で有利である。
 ここで、加熱温度とは、加熱時のリチウムイオン二次電池周辺の気体の温度をいい、例えば、加熱時の加熱炉内においてリチウムイオン二次電池が置かれた付近の気体の温度をいう。
 前記加熱の時間としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5時間~6時間が好ましく、0.5時間~2時間がより好ましい。
 前記加熱の際には、通常、前記リチウムイオン二次電池に備えられている安全弁が開く(作動する)。そうすることにより、リチウムイオン二次電池の内圧が上昇しても破裂することなく、加熱し、かつ有機溶剤を除去できる。なお、有機溶剤は、100%除去される必要はない。
 前記加熱は、炉を用いて行うことが好ましい。前記炉としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ロータリーキルン炉、流動床炉、トンネル炉、マッフル等のバッチ式炉、キュウポラ炉、ストーカー炉などが挙げられる。本発明においては、大気雰囲気下でも加熱することができるので、例えば、ロータリーキルン炉等の普通に用いられている炉を使用することができ、炉の選択幅が広くなる。
<選別工程>
 前記選別工程としては、前記加熱工程で得られた前記加熱物中の前記正極と前記負極とを選別する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、手作業により選別する方法などが挙げられる。
 前記加熱物中の前記正極と前記負極とは、目視でも容易に判別できる。例えば、前記正極の一部はアルミニウムが露出しており、その部分はアルミニウムの金属色を有している。一方、前記負極の一部は銅が露出しており、その部分は銅の金属色を有している。そのため、前記正極と前記負極とは、目視でも容易に判別できる。
 また、前記加熱工程後、アルミニウム及び銅は、粉々になっておらず、その形状(例えば、平板状)を維持しているため、手作業でも容易に前記正極と前記負極を選別できる。
 手作業による選別方法としては、例えば、ラミネート型リチウムイオン二次電池の場合、リチウムイオン二次電池を加熱して得られた加熱物のアルミニウムラミネートフィルム(通常、袋状で4角形)の3辺、又は4辺を裁断し、内容物である正極、セパレーター、及び負極を取り出し、目視により正極と負極とを選別する方法などが挙げられる。
 ラミネート型リチウムイオン二次電池は、通常、正極、セパレーター、及び負極を交互に積層し、正極及び負極それぞれの電極をタブといわれる金属端子に接続し、アルミニウムラミネートフィルムで構成した容器の中に入れ、電解質を注入した後にシールした構造となっている。
 そのため、ラミネート型リチウムイオン二次電池の容器であるアルミニウムラミネートフィルムの3辺、又は4辺を裁断することで、簡単、かつ早急に内容物である正極、セパレーター、及び負極を取り出すことができ、効率的に選別工程を行うことができる。
 ラミネート型リチウムイオン二次電池を積層してアルミニウムラミネートフィルムの3辺、又は4辺を裁断すれば、更に効率的に選別工程を行うことができる。
 前記選別工程は、前記加熱工程において前記正極と前記負極とが破砕されていないため、渦電流装置のような大掛かりな装置を必要とせず、簡単に前記正極と前記負極とを選別できる。
<破砕工程>
 前記破砕工程としては、前記選別工程により選別された前記正極及び前記負極をそれぞれ破砕し、正極破砕物及び負極破砕物をそれぞれ得る工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、破砕機を用いる方法などが挙げられる。
-破砕-
 前記破砕としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、打撃による破砕などが挙げられる。
 前記打撃を行う方法としては、回転する打撃子(ビーター)により、前記正極又は前記負極を叩く方法が挙げられ、例えば、ハンマークラッシャーなどにより行うことができる。また、セラミックなどのボールにより前記正極又は前記負極を叩く方法が挙げられ、ボールミルなどにより行うことができる。
 前記正極を粉砕すると、前記正極活物質は細かく破砕され、一方、前記正極集電体であるアルミニウムはほとんど破砕されない。そのため、破砕により得られる正極破砕物中のアルミニウムと前記正極活物質とは、後述する第1の篩選別工程により、高度に選別される。
 前記負極を粉砕すると、炭素材などの前記負極材は細かく破砕され、一方、前記負極集電体である銅はほとんど破砕されない。そのため、破砕により得られる負極破砕物中の銅と前記負極材とは、後述する第2の篩選別工程により、高度に選別される。
<第1の篩選別工程>
 前記第1の篩選別工程としては、前記正極破砕物を篩分けして、前記アルミニウムを回収する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
-篩分け-
 前記篩分けとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、振動篩、多段式振動篩、サイクロン、JIS Z8801の標準篩などを用いて行うことができる。
 前記篩分けにより、前記アルミニウムとその他の物質(例えば、前記正極活物質)とを分離して回収できる。
 篩の篩目としては、特に制限はなく、目的に応じて適宜選択することができるが、アルミニウムの回収率及び回収物におけるアルミニウムの含有割合に優れる点から、1.18mm以上が好ましい。
 前記篩分けにおいては、通常、前記篩の篩上に前記アルミニウムを回収する。また、前記正極活物質を回収する場合には、前記篩の篩下に前記正極活物質を回収することができる。
 前記篩分けとしては、乾式であってもよいし、湿式であってもよい。
<第2の篩選別工程>
 前記第2の篩選別工程としては、前記負極破砕物を篩分けして、前記銅を回収する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
-篩分け-
 前記篩分けとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、振動篩、多段式振動篩、サイクロン、JIS Z8801の標準篩などを用いて行うことができる。
 前記篩分けにより、前記銅とその他の物質(例えば、前記炭素材などの前記負極材)とを分離して回収できる。
 篩の篩目としては、特に制限はなく、目的に応じて適宜選択することができるが、銅の回収率及び回収物における銅の含有割合に優れる点から、0.6mm以上が好ましい。また、純度がより優れる点からは、1.18mm以上がより好ましい。
 前記篩分けにおいては、通常、前記篩の篩上に前記銅を回収する。また、前記炭素材などの前記負極材を回収する場合には、前記篩の篩下に前記炭素材などの前記負極材を回収することができる。
 前記篩分けとしては、乾式であってもよいし、湿式であってもよい。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(実施例1)
<有価物の回収>
 使用済みのラミネート型リチウムイオン二次電池を用いた。
 このリチウムイオン二次電池における正極は、箔状の正極集電体としてアルミニウム箔を用い、正極集電体に正極活物質(LiNiCoMn)が塗布された正極である。負極は、箔状の負極集電体として銅箔を用い、該負極集電体に炭素材が塗布された負極である。容器は、アルミニウムラミネートフィルムである。
-加熱工程-
 ボックス炉(光洋サーモシステム社製)にリチウムイオン二次電池を入れ、昇温速度10℃/分間で400℃(炉内温度)まで昇温した。加熱温度である400℃(炉内温度)に到達後、1時間加熱した。炉内雰囲気は空気雰囲気とした。
-選別工程-
 前記加熱工程で得られた加熱物について、アルミニウムラミネートフィルムの4辺を裁断した後、内容物を取り出し、目視で見分け、手作業により正極と負極とを選別した。なお、正極の一部はアルミニウムの金属色をしており、負極の一部は銅の金属色をしていることから、正極及び負極を簡単に見分けることができ、容易に選別できた。
 また、リチウムイオン二次電池中の電解質の揮発成分は、加熱工程においてほとんど除去されていた。そのため、選別工程の際に電解質による臭気はほとんどなく、作業に支障をきたさなかった。
-破砕工程-
 前記選別工程により選別された正極及び負極をそれぞれ破砕した。破砕には、ハンマークラッシャー(HC-20、槇野産業株式会社製)を用い、50Hz(約2,500rpm、周速46m/s)で1秒間破砕し、正極破砕物、及び負極破砕物をそれぞれ得た。
-篩選別工程-
--第1の篩選別工程--
 破砕後の正極破砕物を、篩目が0.075mm、0.15mm、0.3mm、0.6mm、1.18mm、2.0mmの各篩をこの順に重ねた多段式篩(6段)を用いて篩選別した。
--第2の篩選別工程--
 破砕後の負極破砕物を、篩目が0.075mm、0.15mm、0.3mm、0.6mm、1.18mm、2.0mmの各篩をこの順に重ねた多段式篩(6段)を用いて篩選別した。
 篩選別後の各篩上及び篩下の回収物について、各種金属の濃度を求めた。また、それら回収物について、粒径の細かい方からの質量積算値を求めた。
 第1の篩選別工程の結果を表1及び図1に示す。
 第2の篩選別工程の結果を表2及び図2に示す。
 なお、金属の濃度については、ICP発光分光分析(Perkin Elmer社製、Optima3300XL)により求めた。
 粒径は、篩目を基準として算出した。即ち、篩目が0.075mmの篩を通過した回収物については、粒径を「0.075mm以下」(なお、図及び表においては、「~0.075」と表記する。)とした。篩目が1.18mmの篩を通過し、かつ篩目が0.6mmの篩上に残った回収物については、粒度を「0.6mmを超え1.18mm以下」(なお、図及び表においては、「1.18/0.6」と表記する。)とした。
Figure JPOXMLDOC01-appb-T000001
 表1及び図1に示すように、正極破砕物の篩分けにより、アルミニウムを簡易かつ効率良く回収することができた。特に、篩目が1.18mmの篩の篩上の回収物は、アルミニウムの回収率が高い(回収率78.42質量%)上にアルミニウムの含有割合(純度)が優れていた。なお、アルミニウムの回収率とは、リチウムイオン二次電池中の正極のアルミニウム量に対する回収したアルミニウム量を表す。
 また、篩下(篩目が1.18mmの篩の篩下)には、正極活物質(LiNiCoMn)中のマンガンが多く含まれていることから、篩下に正極活物質が回収できていることが確認できた。
Figure JPOXMLDOC01-appb-T000002
 表2及び図2に示すように、負極破砕物の篩分けにより、銅を簡易かつ効率良く回収することができた。特に、篩目が0.6mmの篩の篩上の回収物は、銅の回収率が高い(回収率97.87質量%)上に銅の含有割合(純度)が優れていた。なお、銅の回収率とは、リチウムイオン二次電池中の負極の銅量に対する回収した銅量を表す。
(実施例2)
 実施例1において、加熱温度を、300℃に変えた以外は、実施例1と同様にして、アルミニウム及び銅の回収を行った。
 篩選別後の各篩上及び篩下の回収物について、各種金属の濃度を求めた。また、それら回収物について、粒径の細かい方からの質量積算値を求めた。
 第1の篩選別工程の結果を表3及び図3に示す。
 第2の篩選別工程の結果を表4及び図4に示す。
Figure JPOXMLDOC01-appb-T000003
 表3及び図3に示すように、正極破砕物の篩分けにより、アルミニウムを簡易かつ効率良く回収することができた。特に、篩目が1.18mmの篩の篩上の回収物は、アルミニウムの回収率が高かった(回収率81.51質量%)。なお、アルミニウムの回収率とは、リチウムイオン二次電池中の正極のアルミニウム量に対する回収したアルミニウム量を表す。しかし、篩目が1.18mmの篩の篩上の回収物におけるアルミニウムの純度は、400℃で加熱したときほど高くはなかった。
 また、篩下(篩目が1.18mmの篩の篩下)には、正極活物質(LiNiCoMn)中のマンガンが多く含まれていることから、篩下に正極活物質が回収できていることが確認できた。
Figure JPOXMLDOC01-appb-T000004
 表4及び図4に示すように、負極破砕物の篩分けにより、銅を簡易かつ効率良く回収することができた。特に、篩目が0.6mmの篩の篩上の回収物は、銅の回収率が高かった(回収率96.24質量%)。なお、銅の回収率とは、リチウムイオン二次電池中の負極の銅量に対する回収した銅量を表す。しかし、篩目が0.6mmの篩の篩上の回収物における銅の純度は、400℃で加熱したときほど高くはなかった。
(実施例3)
 実施例1において、加熱温度を、500℃に変えた以外は、実施例1と同様にして、アルミニウム及び銅の回収を行った。
 篩選別後の各篩上及び篩下の回収物について、各種金属の濃度を求めた。また、それら回収物について、粒径の細かい方からの質量積算値を求めた。
 第1の篩選別工程の結果を表5及び図5に示す。
 第2の篩選別工程の結果を表6及び図6に示す。
Figure JPOXMLDOC01-appb-T000005
 表5及び図5に示すように、正極破砕物の篩分けにより、アルミニウムを簡易かつ効率良く回収することができた。特に、篩目が1.18mmの篩の篩上の回収物は、アルミニウムの回収率が高かった(回収率86.54質量%)。なお、アルミニウムの回収率とは、リチウムイオン二次電池中の正極のアルミニウム量に対する回収したアルミニウム量を表す。しかし、篩目が1.18mmの篩の篩上の回収物におけるアルミニウムの純度は、400℃で加熱したときほど高くはなかった。
 また、篩下(篩目が1.18mmの篩の篩下)には、正極活物質(LiNiCoMn)中のマンガンが多く含まれていることから、篩下に正極活物質が回収できていることが確認できた。
Figure JPOXMLDOC01-appb-T000006
 表6及び図6に示すように、負極破砕物の篩分けにより、銅を簡易かつ効率良く回収することができた。篩目が0.6mmの篩の篩上の回収物は、銅の回収率が高い(81.98質量%)ものの、400℃で加熱したときほどではなかった。なお、銅の回収率とは、リチウムイオン二次電池中の負極の銅量に対する回収した銅量を表す。
(比較例1)
 実施例1において、加熱温度を、200℃に変えて加熱工程を行った。前記加熱工程で得られた加熱物について、アルミニウムラミネートフィルムの4辺を裁断したところ、電解質の粘着性により、正極と負極との分離が上手くできず選別工程を行うことができなかった。また、正極集電体と正極活物質との分離、負極集電体と負極材との分離も困難であった。
(比較例2)
 実施例1において、加熱温度を、600℃に変えて加熱工程を行った。前記加熱工程で得られた加熱物は、容器であるアルミニウムラミネートフィルム、正極集電体であるアルミニウム箔、負極集電体である銅箔が、酸化により脆化しており、粉々になっていた。
 そのため、正極及び負極を選別することができず、また篩による選別もできなかった。
 本発明のリチウムイオン二次電池からの有価物の回収方法は、リチウムイオン二次電池から、アルミニウム、銅などの有価物を簡単かつ効率的に回収することができることから、使用済みのリチウムイオン二次電池から有価物を回収する方法に好適に適用できる。

Claims (4)

  1.  正極集電体としてのアルミニウムを有する正極と負極集電体としての銅を有する負極とを有するリチウムイオン二次電池を250℃~550℃の温度で加熱して加熱物を得る加熱工程と、
     前記加熱物中の前記正極と前記負極とを選別する選別工程と、
     前記選別工程により選別された前記正極及び前記負極をそれぞれ破砕し、正極破砕物及び負極破砕物をそれぞれ得る破砕工程と、
     前記正極破砕物を篩分けして、前記アルミニウムを回収する第1の篩選別工程と、
     前記負極破砕物を篩分けして、前記銅を回収する第2の篩選別工程とを含むことを特徴とするリチウムイオン二次電池からの有価物の回収方法。
  2.  加熱工程における加熱温度が、300℃~500℃である請求項1に記載のリチウムイオン二次電池からの有価物の回収方法。
  3.  第1の篩選別工程における篩の篩目が、1.18mm以上であり、第2の篩選別工程における篩の篩目が、0.6mm以上である請求項1から2のいずれかに記載のリチウムイオン二次電池からの有価物の回収方法。
  4.  第1の篩選別工程において、篩の篩上にアルミニウムを回収し、篩の篩下に正極活物質を回収し、第2の篩選別工程において、篩の篩上に銅を回収する請求項3に記載のリチウムイオン二次電池からの有価物の回収方法。
PCT/JP2012/062991 2011-10-03 2012-05-22 リチウムイオン二次電池からの有価物の回収方法 WO2013051305A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG11201401216RA SG11201401216RA (en) 2011-10-03 2012-05-22 Method for recovering valuable materials from lithium ion secondary cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011219347A JP2013080595A (ja) 2011-10-03 2011-10-03 リチウムイオン二次電池からの有価物の回収方法
JP2011-219347 2011-10-03

Publications (1)

Publication Number Publication Date
WO2013051305A1 true WO2013051305A1 (ja) 2013-04-11

Family

ID=48043478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062991 WO2013051305A1 (ja) 2011-10-03 2012-05-22 リチウムイオン二次電池からの有価物の回収方法

Country Status (3)

Country Link
JP (1) JP2013080595A (ja)
SG (1) SG11201401216RA (ja)
WO (1) WO2013051305A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103247837A (zh) * 2013-05-08 2013-08-14 国家电网公司 一种微波热解处理废旧锂电池的方法
CN109031130A (zh) * 2018-05-31 2018-12-18 轻客智能科技(江苏)有限公司 一种电量校准方法及装置
CN110690519A (zh) * 2019-09-30 2020-01-14 中南大学 一种锂离子电池负极材料回收利用方法
CN113083848A (zh) * 2021-03-10 2021-07-09 深圳清研装备科技有限公司 废旧磷酸铁锂电池正、负极材料分选回收方法
CN114361637A (zh) * 2022-01-14 2022-04-15 中南大学 一种锂电池电极材料与箔材的分离方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6290633B2 (ja) * 2014-01-22 2018-03-07 Jx金属株式会社 リチウムイオン電池廃棄物の処理方法及び、それを用いる金属回収方法
JP6469362B2 (ja) * 2014-05-14 2019-02-13 松田産業株式会社 リチウムイオン二次電池からの有価物回収方法
JP2016204676A (ja) * 2015-04-15 2016-12-08 Jx金属株式会社 リチウムイオン電池の処理方法
JP6692196B2 (ja) * 2015-05-15 2020-05-13 Dowaエコシステム株式会社 リチウムイオン二次電池からの有価物の回収方法
JP6469547B2 (ja) * 2015-08-13 2019-02-13 Jx金属株式会社 リチウムイオン電池の処理方法
JP6483569B2 (ja) * 2015-08-13 2019-03-13 Jx金属株式会社 リチウムイオン電池の処理方法
JP6716389B2 (ja) * 2016-08-10 2020-07-01 太平洋セメント株式会社 廃リチウムイオン電池からの有価物の回収方法及びデータベースの作成方法
JP7242581B2 (ja) * 2020-01-22 2023-03-20 Jx金属株式会社 リチウムイオン電池の処理方法
KR102703136B1 (ko) * 2022-12-13 2024-09-05 성일하이텍 주식회사 리튬이차전지 재활용 공정을 위한 전처리 방법
WO2024128714A1 (ko) * 2022-12-13 2024-06-20 성일하이텍 주식회사 리튬이차전지 재활용 공정을 위한 전처리 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245126A (ja) * 1994-03-07 1995-09-19 Sumitomo Metal Mining Co Ltd 使用済みリチウム二次電池からのコバルトの回収方法
JPH1197076A (ja) * 1997-09-18 1999-04-09 Toshiba Corp 電池の処理方法
JP2003157913A (ja) * 2001-08-20 2003-05-30 Ind Technol Res Inst 廃リチウムイオン電池中金属の回収方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3634927B2 (ja) * 1996-09-11 2005-03-30 ソニー株式会社 電極の製造方法
JP3079287B2 (ja) * 1997-12-25 2000-08-21 日鉱金属株式会社 使用済みリチウム電池からの有価物回収方法
JP4492222B2 (ja) * 2004-06-21 2010-06-30 トヨタ自動車株式会社 リチウム電池処理方法
JP5139167B2 (ja) * 2008-06-19 2013-02-06 トヨタ自動車株式会社 電池パックのリサイクル方法および電池パックのリサイクル装置
JP5487930B2 (ja) * 2009-12-11 2014-05-14 トヨタ自動車株式会社 電池パックのリサイクル方法および電池パックのリサイクル装置
JP2011171014A (ja) * 2010-02-16 2011-09-01 Sumitomo Chemical Co Ltd 新規電池およびその利用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245126A (ja) * 1994-03-07 1995-09-19 Sumitomo Metal Mining Co Ltd 使用済みリチウム二次電池からのコバルトの回収方法
JPH1197076A (ja) * 1997-09-18 1999-04-09 Toshiba Corp 電池の処理方法
JP2003157913A (ja) * 2001-08-20 2003-05-30 Ind Technol Res Inst 廃リチウムイオン電池中金属の回収方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103247837A (zh) * 2013-05-08 2013-08-14 国家电网公司 一种微波热解处理废旧锂电池的方法
CN109031130A (zh) * 2018-05-31 2018-12-18 轻客智能科技(江苏)有限公司 一种电量校准方法及装置
CN109031130B (zh) * 2018-05-31 2021-04-09 轻客小觅机器人科技(成都)有限公司 一种电量校准方法及装置
CN110690519A (zh) * 2019-09-30 2020-01-14 中南大学 一种锂离子电池负极材料回收利用方法
CN110690519B (zh) * 2019-09-30 2023-03-14 中南大学 一种锂离子电池负极材料回收利用方法
CN113083848A (zh) * 2021-03-10 2021-07-09 深圳清研装备科技有限公司 废旧磷酸铁锂电池正、负极材料分选回收方法
CN114361637A (zh) * 2022-01-14 2022-04-15 中南大学 一种锂电池电极材料与箔材的分离方法
CN114361637B (zh) * 2022-01-14 2023-05-19 中南大学 一种锂电池电极材料与箔材的分离方法

Also Published As

Publication number Publication date
JP2013080595A (ja) 2013-05-02
SG11201401216RA (en) 2014-10-30

Similar Documents

Publication Publication Date Title
WO2013051305A1 (ja) リチウムイオン二次電池からの有価物の回収方法
JP6198027B1 (ja) 使用済みリチウムイオン電池からの有価物回収方法
JP6748274B2 (ja) リチウムイオン二次電池からの有価物の回収方法
JP6650806B2 (ja) リチウムイオン二次電池からの有価物の回収方法
JP6859598B2 (ja) 使用済みリチウムイオン電池からの有価物回収方法
JP5651462B2 (ja) リチウムイオン二次電池からの有価物の回収方法、及び有価物を含有する回収物
JP2012079630A (ja) リチウムイオン二次電池からの有価物の回収方法、及び有価物を含有する回収物
JP6840512B2 (ja) リチウムイオン二次電池からの有価物の回収方法
US11482737B2 (en) Method for recovering valuable material from lithium ion secondary battery
JP6676124B1 (ja) リチウムイオン二次電池からの有価物の回収方法
JP6888130B1 (ja) 有価物の選別方法
JP6100991B2 (ja) リチウムイオン二次電池の正極からの有価物の回収方法
EP3836288B1 (en) Method for recovering valuable material from lithium ion secondary battery
EP3832781A1 (en) Method for recovering valuable material from lithium ion secondary battery
JP2019153561A (ja) リチウムイオン電池廃棄物の処理方法
US12107244B2 (en) Method for recovering valuable material from lithium ion secondary battery
JP7316411B1 (ja) リチウムイオン二次電池からの有価物の回収方法
WO2023243385A1 (ja) 再生正極材およびその製造方法、ならびに再生正極材の使用方法、再生正極、およびリチウムイオン二次電池
TW202247521A (zh) 有價物的選別方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838069

Country of ref document: EP

Kind code of ref document: A1