WO2013051177A1 - 室外機、その室外機を備えた空気調和機及び給湯機 - Google Patents

室外機、その室外機を備えた空気調和機及び給湯機 Download PDF

Info

Publication number
WO2013051177A1
WO2013051177A1 PCT/JP2012/004707 JP2012004707W WO2013051177A1 WO 2013051177 A1 WO2013051177 A1 WO 2013051177A1 JP 2012004707 W JP2012004707 W JP 2012004707W WO 2013051177 A1 WO2013051177 A1 WO 2013051177A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
outdoor
refrigerant
outdoor unit
heating means
Prior art date
Application number
PCT/JP2012/004707
Other languages
English (en)
French (fr)
Inventor
雄亮 田代
航祐 田中
相武 李
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013537381A priority Critical patent/JP5744219B2/ja
Publication of WO2013051177A1 publication Critical patent/WO2013051177A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/36Drip trays for outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/18Details or features not otherwise provided for combined with domestic apparatus
    • F24F2221/183Details or features not otherwise provided for combined with domestic apparatus combined with a hot-water boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0096Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the present invention relates to, for example, an outdoor unit having a defrosting function, an air conditioner including the outdoor unit, and a water heater.
  • the outdoor heat exchanger operates as an evaporator during heating operation, and in the case of a water heater, the air heat exchanger operates as an evaporator during hot water operation.
  • These heat exchangers have a lower temperature than the air that exchanges heat, so they receive heat from the outdoor air and heat up to the indoor heat exchanger (water heat exchanger in the case of a water heater). Hot water operation).
  • the surface temperature of the outdoor heat exchanger (air heat exchanger in the case of a water heater) is 0
  • the frosting phenomenon occurs, where moisture in the inflowing air becomes frost on the surface of the outdoor heat exchanger (air heat exchanger). "Low outdoor air conditions").
  • Each heat exchanger described above has a reduced frosting phenomenon, which increases the ventilation resistance and decreases the amount of inflow air, so that the performance of the air conditioner and water heater decreases. Therefore, the air conditioner (water heater) performs a defrosting operation to remove the attached frost.
  • a defrosting method there are generally a reverse method for an air conditioner and a hot gas method for a hot water heater.
  • the heating operation hot water supply operation
  • the comfort of the indoor heating is impaired, or the hot water storage temperature is lowered, and it is a problem to reduce the number of defrosting times under low outside air conditions. It has become.
  • the heat exchange surface (fin surface) of the outdoor heat exchanger is provided with a frosting suppression layer on the heat exchange surface that increases slidability and water repellency and suppresses frost formation.
  • a method for suppressing frost formation in an outdoor heat exchanger under low outdoor air conditions has been proposed (see, for example, Patent Document 1).
  • JP 2002-323298 A (Abstract) JP 60-60466 (2nd page, Fig. 3)
  • the frost suppression method described in Patent Document 1 has a problem that frost and ice generated between a heat exchanger subjected to water sliding or water repellent treatment and a drain pan cannot be treated. Further, in the technique described in Patent Document 2, it is possible to prevent freezing in the drain pan by the refrigerant pipe disposed in the drain pan, but it is difficult to completely melt freezing of water dripping from the heat exchanger. there were.
  • the present invention has been made in order to solve the above-described problems, and is capable of reliably melting frost and ice generated between the heat exchanger and the drain pan without reducing the air flow rate to the heat exchanger.
  • An object is to provide an air conditioner and a water heater equipped with an outdoor unit.
  • the outdoor unit according to the present invention includes at least a heat exchanger whose heat exchange surface has been subjected to drought or water repellent treatment, a drain pan installed below the heat exchanger, and a space between the heat exchanger and the drain pan.
  • the heating means is disposed above the drain pan and has a flat outer appearance.
  • the lower portion of the heat exchanger and the drain pan are not reduced without reducing the amount of ventilation to the heat exchanger.
  • the frost and ice generated between them can be melted reliably.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigeration cycle apparatus for an air conditioner according to Embodiment 2.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigeration cycle apparatus for an air conditioner according to Embodiment 3.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigeration cycle apparatus for an air conditioner according to Embodiment 4.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigeration cycle apparatus for an air conditioner according to Embodiment 2.
  • FIG. 1 is a refrigerant circuit diagram showing a refrigeration cycle apparatus of a general air conditioner.
  • a general air conditioner includes an indoor unit 11 and an outdoor unit 12 that constitutes a refrigerant circuit with the indoor unit 11.
  • the indoor unit 11 includes an indoor heat exchanger 22, an indoor blower fan 23, and the like.
  • the outdoor unit 12 includes a compressor 21, a four-way valve 27 for switching between cooling operation / heating operation, an outdoor heat exchanger 25, an outdoor fan 26, a first expansion unit 24, a second expansion unit 28, and the like. ing.
  • the indoor heat exchanger 22 operates as an evaporator
  • the outdoor heat exchanger 25 operates as a condenser.
  • the indoor heat exchanger 22 operates as a condenser
  • the outdoor heat exchanger 25 operates as an evaporator.
  • the heat exchange surface (fin surface) of the outdoor heat exchanger 25 is subjected to water sliding or water repellent treatment.
  • the first expansion means 24 is composed of, for example, an expansion valve that converts the high-pressure liquid refrigerant flowing from the indoor unit 11 during the heating operation into a medium-pressure gas-liquid two-phase refrigerant.
  • the second expansion means 28 uniformly distributes the medium-pressure gas-liquid two-phase refrigerant flowing in through the first expansion means 24 during the heating operation, and lowers the refrigerant to the outdoor heat exchanger 25.
  • it consists of a capillary tube to be fed.
  • the second expansion means 28 described above uses an expansion valve equivalent to the first expansion means 24.
  • the refrigerant in the refrigeration cycle apparatus is compressed by the compressor 21 and flows into the indoor heat exchanger 22 as a high-temperature and high-pressure gas refrigerant. .
  • the gas refrigerant exchanges heat (radiates heat) with the indoor air sent by the indoor fan 23 in the indoor heat exchanger 22 and becomes a high-pressure liquid refrigerant.
  • the liquid refrigerant is expanded to a predetermined pressure by the first expansion means 24 and the second expansion means 28 to become a low-pressure gas-liquid two-phase refrigerant and flows into the outdoor heat exchanger 25.
  • the gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 25 exchanges heat (absorbs heat) with the outdoor air sent by the outdoor fan 26 and returns to the compressor 21 as a low-temperature and low-pressure gas refrigerant.
  • FIG. 2 is a schematic configuration diagram showing the outdoor unit of FIG. 2A is a rear view showing the interior of the outdoor unit as viewed from the back
  • FIG. 2B is a left side view of the interior of the outdoor unit as viewed from the left side
  • FIG. 2C is a diagram of the outdoor unit.
  • FIG. 4D is a plan view showing the bottom of the outdoor unit from above.
  • each component of the refrigerant circuit such as the compressor 21, the four-way valve 27, the outdoor heat exchanger 25, the outdoor fan 26, the first expansion unit 24, the second expansion unit 28, and the like described above is a unit.
  • a drain pan 32 is provided at the bottom of the unit case 31.
  • the drain pan 32 is formed in a dish shape for receiving drain water generated by the outdoor heat exchanger 25, and is provided with a drain hole 33 for draining the drain water to the outside of the unit case 31.
  • one, two, or more drain holes 33 are provided below the outdoor heat exchanger 25.
  • the outdoor heat exchanger 25 of the outdoor unit 12 configured in this manner is subjected to water sliding or water repellent treatment, thereby suppressing frost formation of the outdoor heat exchanger 25 that occurs under low outdoor air conditions.
  • the outdoor heat exchanger 25 is operated as an evaporator under low outdoor air conditions, the condensed water (water droplets) generated on the outdoor heat exchanger 25 is solidified before frosting. Water droplets are dropped from above the outdoor heat exchanger 25 by sliding or water repellent treatment. Thereby, the amount of water droplets (ice droplets) adhering to the outdoor heat exchanger 25 is reduced, and the amount of frost formation is reduced.
  • FIG. 3 is a schematic diagram showing the installation position of the heating means provided in the outdoor unit of FIG. 3A is a front view showing the inside of the outdoor unit as viewed from the front
  • FIG. 3B is a left side view showing the inside of the outdoor unit as viewed from the left side
  • FIG. 3C is a view of the outdoor unit. It is a top view which shows a bottom part seeing from upper direction.
  • the heating means 41 is composed of a circular refrigerant pipe as shown in FIG.
  • the installation position of the heating means 41 is based on the above-described knowledge, because frost and ice are generated between the lower part (lowermost fin) of the outdoor heat exchanger 25 and the drain pan 32. It can be seen that the drain pan 32 is preferably above the drain pan 32.
  • the heating means 41 is required immediately below each row. In that case, as shown in FIG. 5, a space 52 is formed between the heating means 41, and frost and ice are generated in the lower portion of the space 52 and cannot be melted. Further, if one heating means 41 is used to deal with a plurality of rows of heat exchangers, the diameter of the heating means 41 increases, and accordingly, the space 51 between the outdoor heat exchanger 25 and the drain pan 31 also increases. Become.
  • the diameter of the heating means 41 is increased, when the height of the outdoor unit 12 is limited, the height of the outdoor heat exchanger 25 is reduced, and the area of the heat exchanger is reduced. In that case, in order to ensure an equivalent area, the width of the unit case 31 of the outdoor unit 12 must be widened, and the outdoor unit 12 cannot be made compact.
  • FIG. 6 is a schematic configuration diagram of the outdoor unit according to Embodiment 1 and a cross-sectional view showing the shape of the heating means provided in the outdoor unit.
  • FIG. 6A is a front view showing the inside of the outdoor unit as seen from the front
  • FIG. 6B is a left side view showing the inside of the outdoor unit as seen from the left side.
  • FIG. 4C shows a cross section of the heating means
  • FIG. 4D shows a modification of the heating means.
  • the outdoor unit 12 in the first embodiment includes a compressor 21, a four-way valve 27, an outdoor heat exchanger 25 (first heat exchanger), an outdoor fan 26, Each component of the refrigerant circuit such as the first expansion means 24 and the second expansion means 28 and the heating means 61 are provided.
  • a drain pan 32 having a drain hole 33 is provided at the bottom of the unit case 31.
  • the heating means 61 is disposed between the lower part (lowermost fin) of the outdoor heat exchanger 25 and the drain pan 32 and above the drain pan 32.
  • the heating means 61 is composed of a flat tube having a long diameter in the direction of the air flow from the outdoor blower fan 26 orthogonal to the outdoor heat exchanger 25.
  • the direction in which the diameter of the flat tube is long is defined as a width D, which is substantially the same as the depth of the outdoor heat exchanger 25 in the direction of the air flow.
  • the height H can be kept low with respect to the width D, and the generation of the space 51 can be eliminated.
  • a heat source for the heating means any one of a medium-pressure gas-liquid two-phase refrigerant, a high-pressure liquid refrigerant, and a high-temperature / high-pressure gas refrigerant is used.
  • the heating means 61 By using a flat tube for the heating means 61, it is possible to suppress the height that can achieve an outside area equivalent to a plurality of circular tubes, and it is not necessary to increase the depth of the outdoor heat exchanger 25. Also, for the outdoor heat exchanger 25 in two rows and three rows, the flattening ratio of the flat tube (ratio of width D to height H) and a plurality of refrigerant flows inside as shown in FIG. By using the flat tube 61b having a path, the same heating is possible even when the number of rows of the outdoor heat exchangers 25 is increased.
  • the heating means 61 is installed between the lower part of the outdoor heat exchanger 25 and the drain pan 32, and the ambient temperature between the lower part of the outdoor heat exchanger 25 and the drain pan 32 is set to 0 ° C. or higher by the refrigerant.
  • the frost and ice generated between the lower portion of the outdoor heat exchanger 25 and the drain pan 32 are melted even under low outdoor air conditions without reducing the amount of ventilation to the outdoor heat exchanger 25. be able to.
  • FIG. 7 is a refrigerant circuit diagram showing a refrigeration cycle apparatus for an air conditioner according to Embodiment 2.
  • the air conditioner according to Embodiment 2 includes an indoor unit 11 and an outdoor unit 12 that forms a refrigerant circuit with the indoor unit 11, as in FIG. 1.
  • the indoor unit 11 includes an indoor heat exchanger 22 (second heat exchanger), an indoor fan 23, and the like.
  • the outdoor unit 12 includes a compressor 21, a four-way valve 27 for switching between cooling operation / heating operation, an outdoor heat exchanger 25 (first heat exchanger), an outdoor fan 26, a first expansion means 24, 2 expansion means 28, heating means 61, and the like.
  • the heating means 61 is composed of a flat tube as shown in FIG. 6C, and as shown in FIGS. 6A and 6B, the lower part of the outdoor heat exchanger 25 (final fin), the drain pan 32, It is installed between.
  • the heating means 61 is inserted into the refrigerant pipe between the first expansion means 24 and the second expansion means 28. With this connection, the medium-pressure gas-liquid two-phase refrigerant flows through the heating means 61 during the heating operation.
  • the heating means 61 uses an intermediate-pressure gas-liquid two-phase refrigerant as a heat source, sets the ambient temperature to 0 ° C. or higher, melts frost and ice generated in the outdoor heat exchanger 25, and maintains the state.
  • the flat tube heating means 61 is installed between the lower part (lowermost fin) of the outdoor heat exchanger 25 and the drain pan 32.
  • the frost and ice generated in the outdoor heat exchanger 25 can be reliably melted and the state maintained without reducing the air flow rate. Therefore, the operation can be continued without stopping the heating operation under the low outside air condition, and the comfort of the indoor heating is improved. Further, the defrosting time can be shortened, and the power consumption can be reduced accordingly.
  • FIG. FIG. 8 is a refrigerant circuit diagram showing a refrigeration cycle apparatus for an air conditioner according to Embodiment 3.
  • the outdoor unit 12 in the third embodiment includes a compressor 21, a four-way valve 27, an outdoor heat exchanger 25 (first heat exchanger), an outdoor fan 26, and one first expansion means 24 (expansion valve).
  • Two check valves 71a and 71b, a heating means 61 and the like are provided.
  • the first expansion means 24 and the check valve 71a are connected to a refrigerant pipe connecting the indoor heat exchanger 22 (second heat exchanger) and the outdoor heat exchanger 25.
  • the heating means 61 is constituted by a flat tube as described above, and is installed between the lower part (lowermost fin) of the outdoor heat exchanger 25 and the drain pan 32.
  • One end of the heating means 61 is connected to a refrigerant pipe between the first expansion means 24 and the check valve 71a via a conduit, and the other end is a refrigerant between the indoor heat exchanger 22 and the first expansion means 24. It is connected to a pipe branching from the pipe.
  • a check valve 71b is connected to the pipe line.
  • the aforementioned check valve 71a blocks high-pressure liquid refrigerant flowing from the indoor heat exchanger 22 during heating operation.
  • the check valve 71 b prevents low-pressure gas-liquid two-phase refrigerant from flowing from the first expansion means 24 to the heating means 61 during the cooling operation.
  • the heating means 61 uses a high-pressure liquid refrigerant as a heat source, sets the ambient temperature to 0 ° C. or higher, melts frost and ice generated in the outdoor heat exchanger 25, and maintains the state.
  • the outdoor heat exchanger 25 is moved to the outdoor heat exchanger 25.
  • the frost and ice generated in the outdoor heat exchanger 25 can be reliably melted and the state maintained without reducing the air flow rate. Therefore, the operation can be continued without stopping the heating operation under the low outside air condition, and the comfort of the indoor heating is improved. Further, the defrosting time can be shortened, and the power consumption can be reduced accordingly.
  • FIG. 9 is a refrigerant circuit diagram illustrating a refrigeration cycle apparatus for an air conditioner according to Embodiment 4.
  • the outdoor unit 12 in the fourth embodiment includes a compressor 21, a four-way valve 27, an outdoor heat exchanger 25 (first heat exchanger), an outdoor fan 26, and one first expansion means 24 (expansion valve). And an on-off valve 81, a heating means 61, and the like.
  • the heating means 61 is composed of a flat tube as described above, and is installed between the lower part (lowermost fin) of the outdoor heat exchanger 25 and the drain pan 32.
  • One end of the heating means 61 is connected to a pipe branching from the refrigerant pipe between the indoor heat exchanger 22 (second heat exchanger) and the first expansion means 24, and the other end is hot gas via the pipe. It is connected to the bypass pipe 82.
  • the hot gas bypass pipe 82 has an on-off valve 81 and is connected to the discharge port side of the compressor 21.
  • the on-off valve 81 opens the valve during heating operation.
  • the opening / closing of the on-off valve 81 is performed by control of a control circuit of the air conditioner, although not shown in FIG.
  • the heating means 61 uses a high-temperature and high-pressure gas refrigerant as a heat source, sets the ambient temperature to 0 ° C. or higher, melts frost and ice generated in the outdoor heat exchanger 25, and maintains the state.
  • the flat tube heating means 61 is installed between the lower part (lowermost fin) of the outdoor heat exchanger 25 and the drain pan 32.
  • the frost and ice generated in the outdoor heat exchanger 25 can be reliably melted and the state maintained without reducing the air flow rate. Therefore, the operation can be continued without stopping the heating operation under the low outside air condition, and the comfort of the indoor heating is improved. Further, the defrosting time can be shortened, and the power consumption can be reduced accordingly.
  • R410A is used as the refrigerant of the air conditioner, but in Embodiments 1 to 4, R32 having a higher gas specific heat ratio than R410A is used as the refrigerant.
  • R32 having a higher gas specific heat ratio than R410A
  • the above effect is not only when R32 is used as a refrigerant.
  • a mixed refrigerant of R32 and HFO123yf which has a higher gas specific heat ratio than R410A, is used, the refrigerant is similarly converted into hot gas.
  • the heating capacity when used as can be increased, and frost and ice generated in the outdoor heat exchanger 25 can be reliably melted.
  • FIG. 5 it has been described that outdoor unit 12 of Embodiment 1 is used as an air conditioner.
  • outdoor unit 12 is used as a water heater (heat pump type water heater). Is applied.
  • the four-way valve 27 is removed, and the indoor heat exchanger 22 of the indoor unit 11 is used as the water heat exchanger 22 and connected to the discharge port side of the compressor 21.
  • the outdoor heat exchanger 25 (air heat exchanger 25) of the outdoor unit 12 is connected to the inlet side of the compressor.
  • cold water flowing through the water pipe is exchanged with the water heat exchanger 22 to form high temperature water, and the hot water is stored in a hot water storage tank (not shown).
  • the high-pressure liquid refrigerant flowing out of the water heat exchanger 22 becomes a medium-pressure gas-liquid two-phase refrigerant by the first expansion means 24, and the heating means 61.
  • the second expansion means 28 becomes a low-pressure gas-liquid two-phase refrigerant.
  • the refrigerant flows into the air heat exchanger 25 and becomes a low-temperature and low-pressure gas refrigerant and returns to the compressor 21.
  • the heating means 61 of the flat tube installed between the lower part (lowermost fin) of the air heat exchanger 25 and the drain pan 32 uses a medium-pressure gas-liquid two-phase refrigerant as a heat source, and the ambient temperature is 0.
  • the frost and ice generated in the evaporator 25 are melted and maintained in a temperature state.
  • the flat tube heating means 61 is installed between the lower portion (lowermost fin) of the air heat exchanger 25 and the drain pan 32. It is possible to reliably melt frost and ice generated in the air heat exchanger 25 and maintain the state without reducing the air flow rate. Therefore, the operation can be continued without stopping the hot water supply operation under the low outside air condition, and a stable hot water storage can be obtained. Further, the defrosting time can be shortened, and the power consumption can be reduced accordingly.
  • the refrigeration cycle apparatus of FIG. 7 is applied to a water heater, but the refrigeration cycle apparatus shown in FIGS. 8 and 9 can also be used as a water heater.
  • the heating means 61 using the refrigerant flowing into the outdoor heat exchanger (air heat exchanger) 25 as the heat source has been described.
  • the outdoor heat exchanger (air heat exchange) The electric heater may be disposed between the lower portion of the device 25 and the drain pan 32 and above the drain pan 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

 熱交換器への通風量を減少させることなく、室外熱交換器とドレンパンの間に生じる霜や氷を確実に融解できる室外機を提供する。 少なくとも、熱交換面に渇水または撥水処理が施された室外熱交換器25と、室外熱交換器25の下方に設置されたドレンパン32と、 室外熱交換器25とドレンパン32の間であって、ドレンパン32の上方に配置され、外観形状が扁平形の加熱手段61とを備えている。

Description

室外機、その室外機を備えた空気調和機及び給湯機
 本発明は、例えば、除霜機能を有する室外機、その室外機を備えた空気調和機及び給湯機に関するものである。
 空気調和機の場合は、暖房運転時に室外熱交換器が蒸発器として動作し、給湯機の場合は、給湯運転時に空気熱交換器が蒸発器として動作する。これら熱交換器は熱交換を行う空気より温度が低くなることで、室外空気から熱を受け取り、室内熱交換器(給湯機の場合は水熱交換器)へと熱をくみ上げることで暖房運転(給湯運転)を行っている。
 例えば、室外空気の温度が低い(例えば、JIS暖房低温条件では乾球温度2℃、湿球温度1℃)ときには、室外熱交換器(給湯機の場合は空気熱交換器)の表面温度は0℃以下となり、流入空気中の水分が室外熱交換器(空気熱交換器)の表面上で霜となって付着する「着霜現象」が生じる(以後、着霜現象が生じる外気空気温度条件を「低外気条件」という)。
 前述した各熱交換器は着霜現象により、通風抵抗が増加して流入空気量が低下するため、空気調和機や給湯機の能力は低下する。そのため、その空気調和機(給湯機)は、付着した霜を取り除く除霜運転を行っている。除霜方式として、一般的には、空気調和機ではリバース方式、給湯機ではホットガス方式がある。しかし、除霜運転中、暖房運転(給湯運転)を休止するため、室内暖房の快適性が損なわれたり、貯湯温度が低下してしまい、低外気条件下では除霜回数を減らすことが課題となっている。
 従来、その課題を解決するために、室外熱交換器の熱交換面(フィンの表面)に滑水性及び撥水性を大きくして着霜を抑制する着霜抑制層を熱交換面に設けることで、低外気条件下での室外熱交換器に発生する着霜を抑制する方法が提案されている(例えば、特許文献1参照)。
 また、暖房運転時に生じる除霜融解水(ドレン水)を受けるドレンパンに、低外気条件下でのドレン水の凍結を防止するための冷媒配管を配設した技術が提案されている(例えば、特許文献2参照)。
特開2002-323298号公報(要約書) 特開昭60-60466号公報(第2頁、第3図)
 しかしながら、特許文献1に記載の着霜抑制方法では、滑水または撥水処理した熱交換器とドレンパンとの間で発生する霜や氷を処理できないという課題がある。また、特許文献2に記載の技術では、ドレンパン内に配設した冷媒配管によりドレンパン内の凍結を防止することができるが、熱交換器から滴下する水の凍結を完全に融解することが困難であった。
 本発明は、前記のような課題を解決するためになされたもので、熱交換器への通風量を減少させることなく、熱交換器とドレンパンの間に生じる霜や氷を確実に融解できる室外機、その室外機を備えた空気調和機及び給湯機を提供することを目的とする。
 本発明に係る室外機は、少なくとも、熱交換面に渇水または撥水処理が施された熱交換器と、熱交換器の下方に設置されたドレンパンと、熱交換器とドレンパンの間であって、そのドレンパンの上方に配置され、外観形状が扁平形の加熱手段とを備えたものである。
 本発明においては、熱交換器とドレンパンの間に外観形状が扁平形の加熱手段を配置しているので、熱交換器への通風量を減少させることなく、熱交換器の下部とドレンパンとの間に生じる霜や氷を確実に融解することができる。
一般的な空気調和機の冷凍サイクル装置を示す冷媒回路図である。 図1の室外機を示す概略構成図である。 図1の室外機に設けられた加熱手段の設置位置を示す概略構成図である。 加熱手段の設置により室外熱交換器とドレンパンの間に生じた空間の状態を示す室外機の概略構成図である。 2列の室外熱交換器の下部にそれぞれ加熱手段を設置したときに双方の間に生じた空間の状態を示す室外機の概略構成図である。 実施の形態1に係る室外機の概略構成図及び室外機に設けられた加熱手段の形状を示す断面図である。 実施の形態2に係る空気調和機の冷凍サイクル装置を示す冷媒回路図である。 実施の形態3に係る空気調和機の冷凍サイクル装置を示す冷媒回路図である。 実施の形態4に係る空気調和機の冷凍サイクル装置を示す冷媒回路図である。
 以下、本発明に係る室外機、その室外機を備えた空気調和機及び給湯機の実施の形態について説明する。なお、本発明の実施の形態1を説明する前に、一般的な空気調和機の冷凍サイクル装置及びその冷凍サイクル装置に使用されている室外機について説明する。
 図1は一般的な空気調和機の冷凍サイクル装置を示す冷媒回路図である。
 一般的な空気調和機は、図1に示すように、室内機11と、室内機11とで冷媒回路を構成する室外機12とを備えている。室内機11は、室内熱交換器22、室内用送風ファン23等を備えている。室外機12は、圧縮機21、冷房運転/暖房運転を切り替えるための四方弁27、室外熱交換器25、室外用送風ファン26、第1の膨張手段24、第2の膨張手段28等を備えている。冷房運転の場合、室内熱交換器22は蒸発器として動作し、室外熱交換器25は凝縮器として動作する。また、暖房運転の場合、室内熱交換器22は凝縮器として動作し、室外熱交換器25は蒸発器として動作する。なお、室外熱交換器25の熱交換面(フィンの表面)には、滑水または撥水処理が施されている。
 第1の膨張手段24は、暖房運転時に室内機11から流入する高圧の液冷媒を中圧の気液二相の冷媒にする例えば膨張弁からなっている。第2の膨張手段28は、暖房運転時に第1の膨張手段24を介して流入する中圧の気液二相の冷媒を均一に分配すると共に、その冷媒を低圧にして室外熱交換器25に送り込む例えばキャピラリーチューブからなっている。なお、前述の第2の膨張手段28は、冷媒液を貯えるレシーバを備えた冷凍サイクル装置の場合、第1の膨張手段24と同等の膨張弁が使用される。
 前記のように構成された空気調和機において、暖房運転を行った場合、冷凍サイクル装置内の冷媒は、圧縮機21で圧縮され、高温高圧のガス冷媒となって室内熱交換器22へと流れ込む。そのガス冷媒は、室内熱交換器22で室内用送風ファン23にて送り込まれる室内空気と熱交換(放熱)し高圧の液冷媒となる。その後、その液冷媒は、第1の膨張手段24と第2の膨張手段28により所定の圧力まで膨張されて低圧の気液二相の冷媒となり、室外熱交換器25に流入する。室外熱交換器25に流入した気液二相の冷媒は、室外用送風ファン26により送り込まれる室外空気と熱交換(吸熱)し、低温低圧のガス冷媒となって圧縮機21へと戻る。
 次に、図1に示す空気調和機の室外機の構成について説明する。
 図2は図1の室外機を示す概略構成図である。なお、図2(a)は室外機の内部を背面から見て示す背面図、同図(b)は室外機の内部を左側から見て示す左側面図、同図(c)は室外機の内部を右側から見て示す右側面図、同図(d)は室外機の底部を上方から見て示す平面図である。
 室外機12には、前述した圧縮機21、四方弁27、室外熱交換器25、室外用送風ファン26、第1の膨張手段24、第2の膨張手段28等の冷媒回路の各部品がユニットケース31内に配置されている。また、その各部品に加えて、ユニットケース31の底部にはドレンパン32が設けられている。ドレンパン32は、室外熱交換器25で発生するドレン水を受けるために皿状に形成され、ドレン水をユニットケース31の外へ排水するドレン穴33が設けられている。ドレン穴33は、一般的には室外熱交換器25の下方に1箇若しくは2箇、あるいはそれ以上設けられている。
 このように構成された室外機12の室外熱交換器25を滑水または撥水処理することで、低外気条件下で生じる室外熱交換器25の着霜を抑制している。具体的には、低外気条件下で室外熱交換器25を蒸発器として動作させた場合、室外熱交換器25上に発生する凝縮水(水滴)が凝固して着霜するに前に、その水滴を滑水または撥水処理により室外熱交換器25の上方から下方に向けて落下させる。これにより、室外熱交換器25に付着する水滴(氷滴)の量が減少し、着霜量が低減する。
 しかしながら、低外気条件下において、滑水または撥水処理した室外熱交換器25の着霜・除霜の様子を観察すると、滑水または撥水処理による水滴の滴下により、室外熱交換器25の下部とドレンパン32との間に霜が発生し、これが成長して氷になることを確認した。その霜や氷が融解されずに除霜運転を終了して暖房運転を行った場合、その霜や氷が室外熱交換器25の下部から成長し、室外熱交換器25の通風量が減少する。つまり、滑水または撥水処理が施された室外熱交換器25において、霜や氷を確実に融解させて、ドレンパン32のドレン穴33から排出できれば、滑水または撥水処理による着霜量を低減でき、低外気条件下での冷凍サイクル装置の性能向上を図ることが可能となる。
 次に、霜や氷を融解するための加熱手段について説明する。
 図3は図1の室外機に設けられた加熱手段の設置位置を示す概略構成図である。なお、図3(a)は室外機の内部を前面から見て示す正面図、同図(b)は室外機の内部を左側から見て示す左側面図、同図(c)は室外機の底部を上方から見て示す平面図である。
 加熱手段41は、図3に示すように円形の冷媒配管よりなっている。その加熱手段41の設置位置は、前述した知見から、霜や氷が室外熱交換器25の下部(最下段のフィン)とドレンパン32との間に生じることから、室外熱交換器25の下部とドレンパン32との間であって、ドレンパン32の上方が望ましいことがわかる。
 しかしながら、加熱手段41を室外熱交換器25の下部とドレンパン32との間に設置した際、図4に示すように、室外熱交換器25とドレンパン31との間に空間51が必要になる。この空間51により、室外用送風ファン26から室外熱交換器25に送風される室外空気の一部が空間51を通過することとなる。そのため、室外熱交換器25への通風量が減少し、室外熱交換器25の熱交換量が減少する。
 また、室外熱交換器25が2列または3列の熱交換器である場合、各列の直下に加熱手段41が必要となる。その場合、図5に示すように加熱手段41の間に空間52ができ、空間52の下部に霜や氷が発生し融解できない。また、複数列の熱交換器に対して1つの加熱手段41で対処しようとすると、加熱手段41の径が大きくなり、これに伴い室外熱交換器25とドレンパン31との間の空間51も大きくなる。
 また、加熱手段41の径を大きくすると、室外機12の高さが制限されている場合、室外熱交換器25の高さが縮小され、熱交換器の面積が減少する。その場合、同等の面積を確保するためには、室外機12のユニットケース31の幅を広げなければならず、室外機12のコンパクト化を図ることができない。
実施の形態1.
 ここで、以上の観点から除霜に最適な加熱手段を備えた室外機12の実施の形態について説明する。
 図6は実施の形態1に係る室外機の概略構成図及び室外機に設けられた加熱手段の形状を示す断面図である。図6(a)は室外機の内部を前面から見て示す正面図、同図(b)は室外機の内部を左側から見て示す左側面図である。また、同図(c)は加熱手段の断面を示し、同図(d)は加熱手段の変形例を示す。
 実施の形態1における室外機12は、図2と同様にユニットケース31内に、圧縮機21、四方弁27、室外熱交換器25(第1の熱交換器)、室外用送風ファン26、第1の膨張手段24、第2の膨張手段28等の冷媒回路の各部品と加熱手段61が設けられている。ユニットケース31の底部には、ドレン穴33を有するドレンパン32が設けられている。加熱手段61は、室外熱交換器25の下部(最下段のフィン)とドレンパン32との間であって、ドレンパン32の上方に配置されている。
 加熱手段61は、室外熱交換器25に対して直交する室外用送風ファン26からの空気流の方向に径の長い扁平管からなっている。その扁平管の径の長い方向を幅Dとして、室外熱交換器25の空気流の方向の奥行きとほぼ同じ長さになっている。その扁平管を用いることで、幅Dに対して高さHを低く抑えることができ、空間51の発生を無くすことができる。また、扁平管の扁平方向を空気流と平行にすることで通風抵抗を抑制することが可能である。加熱手段の熱源として、中圧の気液二相の冷媒、高圧の液冷媒、高温高圧のガス冷媒の何れかが使用されている。
 加熱手段61に扁平管を用いることで、複数の円管と同等の管外面積を達成しうる高さを抑制でき、室外熱交換器25の奥行きを長くする必要はない。また、2列3列の室外熱交換器25に対しては、扁平管の扁平率(幅Dと高さHの比率)や、図6(d)に示すように、内部に複数の冷媒流路を有する扁平管61bとすることで、室外熱交換器25の列数の増加に対しても同等の加熱が可能である。
 実施の形態1においては、室外熱交換器25の下部とドレンパン32との間に加熱手段61を設置し、冷媒によって室外熱交換器25の下部とドレンパン32との間の周囲温度を0℃以上に維持することで、室外熱交換器25への通風量を減少させることなく、低外気条件下であっても室外熱交換器25の下部とドレンパン32との間に生じる霜や氷を融解させることができる。
 なお、扁平管の幅Dを、室外熱交換器25の奥行きと同等にすることが望ましいが、それ以上となっても前述した効果は十分に得られる。
実施の形態2.
 次に、実施の形態1で述べた室外機12を備えた空気調和機について説明する。
 図7は実施の形態2に係る空気調和機の冷凍サイクル装置を示す冷媒回路図である。
 実施の形態2に係る空気調和機は、図1と同様に、室内機11と、室内機11とで冷媒回路を構成する室外機12とを備えている。室内機11は、室内熱交換器22(第2の熱交換器)、室内用送風ファン23等を備えている。室外機12は、圧縮機21、冷房運転/暖房運転を切り替えるための四方弁27、室外熱交換器25(第1の熱交換器)、室外用送風ファン26、第1の膨張手段24、第2の膨張手段28、加熱手段61等を備えている。
 加熱手段61は、図6(c)に示すように扁平管より構成され、同図(a)、(b)に示すように室外熱交換器25の下部(最下段のフィン)とドレンパン32との間に設置されている。加熱手段61は、第1の膨張手段24と第2の膨張手段28の間の冷媒配管に挿入されている。この接続により、暖房運転時に、加熱手段61に中圧の気液二相の冷媒が流れる。
 前記のように構成された空気調和機において、暖房運転時に、室内熱交換器22を流出する高圧の液冷媒は、第1の膨張手段24により中圧の気液二相の冷媒となり、加熱手段61を通過して第2の膨張手段28により低圧の気液二相の冷媒となる。そして、その冷媒は室外熱交換器25に流入して低温低圧のガス冷媒となり、四方弁27を介して圧縮機21へと戻る。一方、加熱手段61は、中圧の気液二相の冷媒を熱源として、周囲温度を0℃以上とし、室外熱交換器25に生じる霜や氷を融解し、その状態を維持する。
 以上のように実施の形態2においては、室外熱交換器25の下部(最下段のフィン)とドレンパン32との間に扁平管の加熱手段61を設置しているので、室外熱交換器25への通風量を減少させることなく、室外熱交換器25に生じる霜や氷を確実に融解し、その状態を維持することができる。そのため、低外気条件下での暖房運転を停止することなく運転を続けることができ、室内暖房の快適性が向上する。また、除霜時間の短縮も可能になり、これに伴い消費電力を低減できる。
実施の形態3.
 図8は実施の形態3に係る空気調和機の冷凍サイクル装置を示す冷媒回路図である。なお、本実施の形態においては、実施の形態2と異なる室外機12について説明する。
 実施の形態3における室外機12は、圧縮機21、四方弁27、室外熱交換器25(第1の熱交換器)、室外用送風ファン26、1つの第1の膨張手段24(膨張弁)、2つの逆止弁71a、71b、加熱手段61等を備えている。
 室内熱交換器22(第2の熱交換器)と室外熱交換器25を接続する冷媒配管に第1の膨張手段24と逆止弁71aが接続されている。加熱手段61は、前述したように扁平管より構成され、室外熱交換器25の下部(最下段のフィン)とドレンパン32との間に設置されている。加熱手段61の一端が第1の膨張手段24と逆止弁71aの間の冷媒配管に管路を介して接続され、他端が室内熱交換器22と第1の膨張手段24の間の冷媒配管から分岐する管路と接続されている。その管路には逆止弁71bが接続されている。前述の逆止弁71aは、暖房運転時に室内熱交換器22から流入する高圧の液冷媒を阻止する。また、逆止弁71bは、冷房運転時に第1の膨張手段24から加熱手段61へ低圧の気液二相の冷媒が流れないようにしている。
 前記のように構成された空気調和機において、暖房運転時に、室内熱交換器22を流出する高圧の液冷媒は、逆止弁71aによってもう一方の逆止弁71bに流入し、加熱手段61を通って第1の膨張手段24により低圧の気液二相の冷媒となり、室外熱交換器25に流入する。そして、その冷媒は室外熱交換器25に流入して低温低圧のガス冷媒となり、四方弁27を介して圧縮機21へと戻る。一方、加熱手段61は、高圧の液冷媒を熱源として、周囲温度を0℃以上とし、室外熱交換器25に生じる霜や氷を融解し、その状態を維持する。
 以上のように実施の形態3においては、室外熱交換器25の下部(最下段のフィン)とドレンパン32との間に扁平管の加熱手段61を設置しているので、室外熱交換器25への通風量を減少させることなく、室外熱交換器25に生じる霜や氷を確実に融解し、その状態を維持することができる。そのため、低外気条件下での暖房運転を停止することなく運転を続けることができ、室内暖房の快適性が向上する。また、除霜時間の短縮も可能になり、これに伴い消費電力を低減できる。
実施の形態4.
 図9は実施の形態4に係る空気調和機の冷凍サイクル装置を示す冷媒回路図である。なお、本実施の形態においては、実施の形態2、3と異なる室外機12について説明する。 実施の形態4における室外機12は、圧縮機21、四方弁27、室外熱交換器25(第1の熱交換器)、室外用送風ファン26、1つの第1の膨張手段24(膨張弁)、開閉弁81、加熱手段61等を備えている。
 加熱手段61は、前述したように扁平管より構成され、室外熱交換器25の下部(最下段のフィン)とドレンパン32との間に設置されている。加熱手段61の一端が室内熱交換器22(第2の熱交換器)と第1の膨張手段24の間の冷媒配管から分岐する管路と接続され、他端が管路を介してホットガスバイパス管82に接続されている。ホットガスバイパス管82は、開閉弁81を有し、圧縮機21の吐出口側に接続されている。開閉弁81は、暖房運転時に弁を開放する。その開閉弁81の開閉は、図9には示していないが、空気調和機の制御回路の制御により行われる。
 前記のように構成された空気調和機において、暖房運転時に、圧縮機から吐出される一部の高温高圧のガス冷媒は、ホットガスバイパス管82に流入し、加熱手段61を通って第1の膨張手段24により低圧の気液二相の冷媒となり、室外熱交換器25に流入する。そして、その冷媒は室外熱交換器25に流入して低温低圧のガス冷媒となり、四方弁27を介して圧縮機21へと戻る。一方、加熱手段61は、高温高圧のガス冷媒を熱源として、周囲温度を0℃以上とし、室外熱交換器25に生じる霜や氷を融解し、その状態を維持する。
 以上のように実施の形態4においては、室外熱交換器25の下部(最下段のフィン)とドレンパン32との間に扁平管の加熱手段61を設置しているので、室外熱交換器25への通風量を減少させることなく、室外熱交換器25に生じる霜や氷を確実に融解し、その状態を維持することができる。そのため、低外気条件下での暖房運転を停止することなく運転を続けることができ、室内暖房の快適性が向上する。また、除霜時間の短縮も可能になり、これに伴い消費電力を低減できる。
 なお、一般的に空気調和機の冷媒にはR410Aが使用されているが、実施の形態1~4では、R410Aよりもガス比熱比の高いR32を冷媒として用いている。このように、R410Aよりもガス比熱比の高い冷媒を用いることにより、冷媒をホットガスとして利用したときの加熱能力を高めることができ、室外熱交換器25に生じた霜や氷を確実に融解することができる。なお、上記のような効果は、冷媒としてR32を用いたときだけのものではなく、例えばR410Aよりもガス比熱比が高くなるR32とHFO123yfの混合冷媒を用いた場合でも、同様に冷媒をホットガスとして利用したときの加熱能力を高めることができ、室外熱交換器25に生じた霜や氷を確実に融解することができる。
実施の形態5.
 前述した実施の形態2~4では、実施の形態1の室外機12を空気調和機に用いたことを述べたが、本実施の形態は、その室外機12を給湯機(ヒートポンプ式給湯機)に適用したものである。
 例えば図7の冷凍サイクル装置を給湯機として用いる場合、四方弁27を撤去し、室内機11の室内熱交換器22を水熱交換器22とし、圧縮機21の吐出口側と接続する。また、室外機12の室外熱交換器25(空気熱交換器25)を圧縮機の流入口側と接続する。給湯運転時には、水管路を流れる冷水を水熱交換器22とで熱交換して高温水とし、貯湯タンク(図示せず)に高温水を貯える。
 前記のように構成された給湯機において、給湯運転時に、水熱交換器22を流出する高圧の液冷媒は、第1の膨張手段24により中圧の気液二相の冷媒となり、加熱手段61を通過して第2の膨張手段28により低圧の気液二相の冷媒となる。そして、その冷媒は空気熱交換器25に流入して低温低圧のガス冷媒となり、圧縮機21へと戻る。一方、空気熱交換器25の下部(最下段のフィン)とドレンパン32との間に設置された扁平管の加熱手段61は、中圧の気液二相の冷媒を熱源とし、周囲温度を0℃以上とし、蒸発器25に生じる霜や氷を融解し、その状態を維持する。
 以上のように実施の形態5においては、空気熱交換器25の下部(最下段のフィン)とドレンパン32との間に扁平管の加熱手段61を設置しているので、空気熱交換器25への通風量を減少させることなく、空気熱交換器器25に生じる霜や氷を確実に融解し、その状態を維持することができる。そのため、低外気条件下での給湯運転を停止することなく運転を続けることができ、安定した貯湯を得ることができる。また、除霜時間の短縮も可能になり、これに伴い消費電力を低減できる。
 なお、実施の形態5では、図7の冷凍サイクル装置を給湯機に適用して説明したが、図8及び図9に示す冷凍サイクル装置を給湯機として用いることも可能である。
 また、実施の形態1乃至5では、室外熱交換器(空気熱交換器)25に流入する冷媒を熱源とする加熱手段61について述べたが、これに代えて、室外熱交換器(空気熱交換器)25の下部とドレンパン32との間であって、ドレンパン32の上方に電気ヒーターを配置するようにしても良い。
 11 室内機、12 室外機、21 圧縮機、22 室内熱交換器(水熱交換器)、23 室内用送風ファン、24 第1の膨張手段、25 室外熱交換器(空気熱交換器)、26 室外用送風ファン、27 四方弁、28 第2の膨張手段、31 ユニットケース、32 ドレンパン、33 ドレン穴、41 加熱手段、51 空間、52 加熱手段の間の空間、61 加熱手段、71a、71b 逆止弁、81 開閉弁、82 ホットガスバイパス管。

Claims (12)

  1.  少なくとも、熱交換面に渇水または撥水処理が施された熱交換器と、
     前記熱交換器の下方に設置されたドレンパンと、
     前記熱交換器と前記ドレンパンの間であって、該ドレンパンの上方に配置され、外観形状が扁平形の加熱手段と
    を備えたことを特徴とする室外機。
  2.  前記熱交換機を第1の熱交換器として、該第1の熱交換器に少なくとも圧縮機及び膨張手段を加えて、別途に設けられた第2の熱交換器とで冷媒回路を構成し、
     前記加熱手段は、前記第1の熱交換器が蒸発器として動作しているときに当該第1の熱交換器に流入する冷媒を熱源とすることを特徴とする請求項1記載の室外機。
  3.  さらに、前記第1の熱交換器の熱交換面に平行に室外空気を送風する送風手段を有し、
     前記加熱手段に、前記送風手段からの室外空気の流れ方向に径の長い扁平管が用いられていることを特徴とする請求項2記載の室外機。
  4.  前記扁平管の径の長い方向の幅は、前記第1の熱交換器の室外空気の流れ方向の奥行きとほぼ同じ長さ,あるいは奥行きより長いことを特徴とする請求項3記載の室外機。
  5.  前記扁平管は、内部に複数の冷媒流路が設けられていることを特徴とする請求項3又は4記載の室外機。
  6.  前記加熱手段の熱源は、気液二相の冷媒であることを特徴とする請求項2乃至5の何れかに記載の室外機。
  7.  前記加熱手段の熱源は、液冷媒であることを特徴とする請求項2乃至5の何れかに記載の室外機。
  8.  前記加熱手段の熱源は、ガス冷媒であることを特徴とする請求項2乃至5の何れかに記載の室外機。
  9.  前記冷媒は、R32冷媒を使用することを特徴とする請求項2乃至5の何れか一項に記載の室外機。
  10.  前記冷媒は、R32とHFO1234yfの混合冷媒を使用することを特徴とする請求項2乃至5の何れかに記載の室外機。
  11.  請求項1乃至10の何れか一項に記載の室外機を備えたことを特徴とする空気調和機。
  12.  請求項1乃至8の何れか一項に記載の室外機を備えたことを特徴とする給湯機。
PCT/JP2012/004707 2011-10-03 2012-07-24 室外機、その室外機を備えた空気調和機及び給湯機 WO2013051177A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013537381A JP5744219B2 (ja) 2011-10-03 2012-07-24 室外機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011219653 2011-10-03
JP2011-219653 2011-10-03

Publications (1)

Publication Number Publication Date
WO2013051177A1 true WO2013051177A1 (ja) 2013-04-11

Family

ID=48043363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004707 WO2013051177A1 (ja) 2011-10-03 2012-07-24 室外機、その室外機を備えた空気調和機及び給湯機

Country Status (2)

Country Link
JP (1) JP5744219B2 (ja)
WO (1) WO2013051177A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081747A (ja) * 2013-10-24 2015-04-27 ダイキン工業株式会社 空気調和装置
JP2015206575A (ja) * 2014-04-23 2015-11-19 三菱電機株式会社 空気調和機の室外機
WO2016002009A1 (ja) * 2014-07-01 2016-01-07 三菱電機株式会社 空気調和装置
EP3040642A1 (en) * 2013-08-28 2016-07-06 Mitsubishi Electric Corporation Air conditioner
WO2017018272A1 (ja) * 2015-07-29 2017-02-02 三菱電機株式会社 室外ユニット
JP2017058071A (ja) * 2015-09-16 2017-03-23 ダイキン工業株式会社 熱交換器及び冷凍装置
JPWO2018037452A1 (ja) * 2016-08-22 2019-04-04 三菱電機株式会社 空気調和装置
EP3705811A1 (en) * 2019-03-08 2020-09-09 Daikin Industries, Ltd. Outdoor unit for a heat pump
WO2020194677A1 (ja) * 2019-03-28 2020-10-01 三菱電機株式会社 冷凍サイクル装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102354891B1 (ko) * 2017-05-31 2022-01-25 삼성전자주식회사 공기 조화기 및 그 제어 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178762U (ja) * 1987-05-12 1988-11-18
JP2003254564A (ja) * 2002-03-04 2003-09-10 Mitsubishi Electric Corp 空気調和機の配管構造
JP2006046694A (ja) * 2004-07-30 2006-02-16 Daikin Ind Ltd 冷凍装置
JP2010048526A (ja) * 2008-08-25 2010-03-04 Sharp Corp 空気調和機
JP2010112575A (ja) * 2008-11-04 2010-05-20 Panasonic Corp 空気調和機
JP2010175163A (ja) * 2009-01-30 2010-08-12 Panasonic Corp 液体循環式暖房システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3418891B2 (ja) * 1995-02-08 2003-06-23 三菱電機株式会社 冷凍装置
JPH1183374A (ja) * 1997-09-08 1999-03-26 Hitachi Ltd 熱交換装置
JP2012122652A (ja) * 2010-12-07 2012-06-28 Mitsubishi Electric Corp 冷蔵庫

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178762U (ja) * 1987-05-12 1988-11-18
JP2003254564A (ja) * 2002-03-04 2003-09-10 Mitsubishi Electric Corp 空気調和機の配管構造
JP2006046694A (ja) * 2004-07-30 2006-02-16 Daikin Ind Ltd 冷凍装置
JP2010048526A (ja) * 2008-08-25 2010-03-04 Sharp Corp 空気調和機
JP2010112575A (ja) * 2008-11-04 2010-05-20 Panasonic Corp 空気調和機
JP2010175163A (ja) * 2009-01-30 2010-08-12 Panasonic Corp 液体循環式暖房システム

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3040642A1 (en) * 2013-08-28 2016-07-06 Mitsubishi Electric Corporation Air conditioner
JP6058145B2 (ja) * 2013-08-28 2017-01-11 三菱電機株式会社 空気調和装置
US10107514B2 (en) 2013-08-28 2018-10-23 Mitsubishi Electric Corporation Air-conditioning apparatus including multiple expansion devices
JPWO2015029160A1 (ja) * 2013-08-28 2017-03-02 三菱電機株式会社 空気調和装置
EP3040642A4 (en) * 2013-08-28 2017-03-29 Mitsubishi Electric Corporation Air conditioner
JP2015081747A (ja) * 2013-10-24 2015-04-27 ダイキン工業株式会社 空気調和装置
JP2015206575A (ja) * 2014-04-23 2015-11-19 三菱電機株式会社 空気調和機の室外機
JPWO2016002009A1 (ja) * 2014-07-01 2017-04-27 三菱電機株式会社 空気調和装置
WO2016002009A1 (ja) * 2014-07-01 2016-01-07 三菱電機株式会社 空気調和装置
GB2542971B (en) * 2014-07-01 2020-04-01 Mitsubishi Electric Corp Air-conditioning apparatus
GB2542971A (en) * 2014-07-01 2017-04-05 Mitsubishi Electric Corp Air conditioning apparatus
GB2557075A (en) * 2015-07-29 2018-06-13 Mitsubishi Electric Corp Exterior unit
GB2557075B (en) * 2015-07-29 2020-09-09 Mitsubishi Electric Corp Outdoor unit
CN107923661A (zh) * 2015-07-29 2018-04-17 三菱电机株式会社 室外单元
WO2017017813A1 (ja) * 2015-07-29 2017-02-02 三菱電機株式会社 室外ユニット
US10386082B2 (en) 2015-07-29 2019-08-20 Mitsubishi Electric Corporation Outdoor unit
WO2017018272A1 (ja) * 2015-07-29 2017-02-02 三菱電機株式会社 室外ユニット
CN107923661B (zh) * 2015-07-29 2020-06-16 三菱电机株式会社 室外单元
JPWO2017018272A1 (ja) * 2015-07-29 2018-02-08 三菱電機株式会社 室外ユニット
JP2017058071A (ja) * 2015-09-16 2017-03-23 ダイキン工業株式会社 熱交換器及び冷凍装置
JPWO2018037452A1 (ja) * 2016-08-22 2019-04-04 三菱電機株式会社 空気調和装置
EP3705811A1 (en) * 2019-03-08 2020-09-09 Daikin Industries, Ltd. Outdoor unit for a heat pump
WO2020184491A1 (en) * 2019-03-08 2020-09-17 Daikin Industries, Ltd. Outdoor unit for a heat pump
US20220136750A1 (en) * 2019-03-08 2022-05-05 Daikin Industries, Ltd. Outdoor unit for a heat pump
US12055330B2 (en) 2019-03-08 2024-08-06 Daikin Industries, Ltd. Outdoor unit for a heat pump
WO2020194677A1 (ja) * 2019-03-28 2020-10-01 三菱電機株式会社 冷凍サイクル装置
JPWO2020194677A1 (ja) * 2019-03-28 2021-10-14 三菱電機株式会社 冷凍サイクル装置
JP7123238B2 (ja) 2019-03-28 2022-08-22 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
JP5744219B2 (ja) 2015-07-08
JPWO2013051177A1 (ja) 2015-03-30

Similar Documents

Publication Publication Date Title
JP5744219B2 (ja) 室外機
JP5791807B2 (ja) 空気調和装置
JP6768073B2 (ja) 空気調和装置
JP5357418B2 (ja) ヒートポンプ式空気調和機
JP5625691B2 (ja) 冷凍装置
WO2014083867A1 (ja) 空気調和装置
JP4874223B2 (ja) 空気調和機
JP4946948B2 (ja) ヒートポンプ式空気調和装置
JPWO2013111177A1 (ja) 空気調和装置
WO2013051166A1 (ja) 冷凍サイクル装置
JP2008256304A (ja) 冷凍装置
JP6285172B2 (ja) 空気調和機の室外機
CN108369072A (zh) 热交换器和制冷循环装置
CN209042809U (zh) 热泵系统及空调器
JP2017125628A (ja) 空気調和装置
JP2007107771A (ja) 冷凍サイクル装置
JP2014020568A (ja) 空気調和機
JP5998894B2 (ja) 空気調和装置
JP6044310B2 (ja) 空気調和装置
WO2018207321A1 (ja) 熱交換器及び冷凍サイクル装置
JP2014115005A (ja) 空気調和装置
JP6102724B2 (ja) 熱交換器
JP2007155203A (ja) 空気調和機
JP6608946B2 (ja) 空気調和装置及び空気調和装置の室外機
JP2020165581A (ja) 非共沸冷媒回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838853

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013537381

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838853

Country of ref document: EP

Kind code of ref document: A1