WO2013047810A1 - 合金化溶融亜鉛めっき鋼板 - Google Patents
合金化溶融亜鉛めっき鋼板 Download PDFInfo
- Publication number
- WO2013047810A1 WO2013047810A1 PCT/JP2012/075198 JP2012075198W WO2013047810A1 WO 2013047810 A1 WO2013047810 A1 WO 2013047810A1 JP 2012075198 W JP2012075198 W JP 2012075198W WO 2013047810 A1 WO2013047810 A1 WO 2013047810A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- temperature
- hot
- plating
- Prior art date
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims abstract description 21
- 239000008397 galvanized steel Substances 0.000 title claims abstract description 21
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 89
- 239000010959 steel Substances 0.000 claims abstract description 89
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 16
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 15
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 12
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 8
- 238000007747 plating Methods 0.000 claims description 98
- 238000010438 heat treatment Methods 0.000 claims description 31
- 238000005275 alloying Methods 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 21
- 238000005246 galvanizing Methods 0.000 claims description 20
- 238000005096 rolling process Methods 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 238000005098 hot rolling Methods 0.000 claims description 15
- 238000000137 annealing Methods 0.000 claims description 13
- 238000007654 immersion Methods 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 230000036961 partial effect Effects 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 239000010960 cold rolled steel Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 238000004804 winding Methods 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 230000014509 gene expression Effects 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims description 2
- 230000000717 retained effect Effects 0.000 abstract description 8
- 229910045601 alloy Inorganic materials 0.000 abstract description 2
- 239000000956 alloy Substances 0.000 abstract description 2
- 239000011248 coating agent Substances 0.000 abstract 2
- 238000000576 coating method Methods 0.000 abstract 2
- 238000003754 machining Methods 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 23
- 238000005728 strengthening Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 17
- 239000011701 zinc Substances 0.000 description 10
- 229910000905 alloy phase Inorganic materials 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005097 cold rolling Methods 0.000 description 6
- 238000005554 pickling Methods 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 229910052761 rare earth metal Inorganic materials 0.000 description 6
- 230000009467 reduction Effects 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 229910001562 pearlite Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 150000002910 rare earth metals Chemical group 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/18—Layered products comprising a layer of metal comprising iron or steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0463—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0478—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12785—Group IIB metal-base component
- Y10T428/12792—Zn-base component
- Y10T428/12799—Next to Fe-base component [e.g., galvanized]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12958—Next to Fe-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12972—Containing 0.01-1.7% carbon [i.e., steel]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
- Y10T428/24967—Absolute thicknesses specified
Definitions
- the present invention relates to an alloyed hot-dip galvanized steel sheet. More specifically, the present invention can easily realize high strength (for example, tensile strength of 980 MPa or more), has excellent plating adhesion, and can be suitably used as a member in the fields of automobiles, home appliances, and building materials.
- the present invention relates to a high-strength galvannealed steel sheet.
- alloyed hot-dip galvanized steel sheets have been used mainly in the automotive field, but there are Zn-Fe alloy layers that are less ductile than the base steel sheet in the plated layers of alloyed hot-dip galvanized steel sheets. It was. For this reason, for example, when a tensile strength of 980 MPa or more is required, the plating adhesion is inferior, and the plating is easily peeled off from the interface between the plating and the underlying steel plate during processing such as press molding. It was regarded as a problem because it tends to be defective.
- Patent Document 1 mentions a method of improving the plating adhesion by a so-called anchor effect that increases the unevenness of the interface between the plating and the base steel sheet.
- Patent Document 2 describes that the adhesion can be improved by heating the steel sheet and then performing a pickling treatment and plating after removing the oxide layer on the surface.
- Patent Document 3 discloses a high-strength, high-ductile molten zinc containing a ferrite phase of 30 to 90% by volume fraction, 5% or more of bainite, 10% or less of martensite, and 5 to 30% of retained austenite phase.
- a plated steel sheet is disclosed.
- the density of dislocations contained in the steel sheet is 8 ⁇ 10 11 (pieces / mm 2 ) or less, the quasi-static strength (FS1) at a strain rate of 0.0067 (s ⁇ 1 ),
- Fe 8 to 12%
- Al 0.05 to 0.25%.
- An alloyed hot dip galvanized steel sheet having a balance Zn composition, a ⁇ phase at the base iron interface of 1.0 / ⁇ m or less, and a specific plating layer having no ⁇ phase or ⁇ phase on the surface of the plating layer on at least one side. It is disclosed. However, in the prior art, the difference in the ductility between the plating layer and the underlying steel plate, which is basically the main factor of the plating adhesion, cannot be solved.
- An object of the present invention is to provide an alloyed hot-dip galvanized steel sheet having high strength (for example, a tensile strength of 980 MPa or more) that can suppress plating peeling during processing.
- Another object of the present invention is to provide a high-strength galvannealed steel sheet having excellent plating adhesion.
- the inventors reduced the ductility of the steel sheet itself by controlling the structure of the steel sheet, and further increased the ductility of the plating itself by controlling the amounts of ⁇ 1 phase and ⁇ phase in the plating phase. It was found that peeling can be suppressed.
- the present inventor made the total thickness of the ⁇ 1 phase and the ⁇ phase present in the alloyed hot-dip galvanized layer to be 2 ⁇ m or less, and among the Zn—Fe alloy phases. It has also been found that the plating adhesion can be further improved by making the thickness of the ⁇ 1 phase, which is the least ductile, smaller than the ⁇ phase.
- the mechanism by which the above effect can be obtained in the present invention is estimated as follows. That is, basically, even if the ductility of the plating layer is improved, the ⁇ 1 phase (Fe 5 Zn 21 , Fe content of 18%) inevitably generated at the interface between the plating in the alloyed hot-dip galvanized layer and the underlying steel plate. Since it is difficult to make the ductility of the ⁇ phase (Fe 3 Zn 10 , Fe 24% or more, 32% or less) larger than the ductility of the base steel plate, plating is applied to deformation of the base steel plate during processing. The present inventor has found that plating peeling occurs without following.
- the ductility of the steel sheet itself is decreased by controlling the structure of the steel sheet, and the ductility of the plating itself is increased by controlling the amount of ⁇ 1 phase and ⁇ phase in the plating phase, plating peeling is suppressed.
- the inventor has found that this is possible.
- the present inventor further assumes that the ductility of the steel sheet itself is lowered, so that the workability is lower than before, the base steel sheet itself is cracked earlier, and may break, but in the present invention, ⁇ 1 It has also been found that fracture can be suppressed more than the conventional level by applying plating in which the amounts of the phase and the ⁇ phase are controlled. The reason why such a phenomenon occurs is not necessarily clear, but although cracking of the underlying steel sheet may occur early, the presence of plating with excellent ductility on the steel sheet causes stress concentration on the cracked part. The present inventor estimates that it is suppressed.
- the present invention is a high-strength galvannealed steel sheet excellent in elongation and plating adhesion.
- the present invention can include, for example, the following aspects.
- An alloyed hot-dip galvanized steel sheet that has been subjected to alloyed hot-dip galvanizing on the surface of a steel sheet made of a mechanical structure,
- the total thickness of the ⁇ 1 layer thickness T ⁇ 1 and the ⁇ layer thickness T ⁇ in the alloyed hot-dip galvanized layer is 2 ⁇ m or less, and the ratio of the thickness of the ⁇ 1 phase to the ⁇ phase (T ⁇ 1 / T ⁇ ) is 1 or less.
- the steel sheet after annealing is cooled to a plating bath immersion temperature at a cooling rate of 3 to 200 ° C./second in a range of 500 to 750 ° C., and then held at 350 to 500 ° C. for 10 to 1000 seconds; Steel temperature during the immersion plating bath, from a low 40 ° C. than hot-dip galvanizing bath temperature temperature, in a temperature range up to high 50 ° C.
- Ar3 901-325 ⁇ C + 33 ⁇ Si ⁇ 92 ⁇ (Mn + Ni / 2 + Cr / 2 + Cu / 2 + Mo / 2), and C, Si, Mn, Ni, Cr, Cu, and Mo are the contents of the respective components. (Mass%) is shown, and it is set to 0 when not containing.
- an galvannealed steel sheet having high strength for example, tensile strength of 980 MPa or more
- high-strength galvannealed steel sheet of the present invention can be manufactured relatively easily and stably. For this reason, the high-strength galvannealed steel sheet can be optimally used as a steel sheet for automobiles aiming at weight reduction in recent years, and its industrial value is extremely large.
- ⁇ Tensile strength 980 Mpa or more, 1.5 ⁇ ⁇ (T ⁇ + T ⁇ ) / (T ⁇ 1 + T ⁇ ) ⁇ ⁇ 90 ⁇ : Tensile strength 980 Mpa or more; ⁇ (T ⁇ + T ⁇ ) / (T ⁇ 1 + T ⁇ ) ⁇ ⁇ 1.5, or ⁇ (T ⁇ + T ⁇ ) / ( T ⁇ 1 + T ⁇ ) ⁇ > 90 ⁇ : Tensile strength 980 Mpa or more, 1.5 ⁇ ⁇ (T ⁇ + T ⁇ ) / (T ⁇ 1 + T ⁇ ) ⁇ ⁇ 90 X: Tensile strength less than 980 Mpa, 1.5 ⁇ ⁇ (T ⁇ + T ⁇ ) / (T ⁇ 1 + T ⁇ ) ⁇ ⁇ 90
- C is an element that can increase the strength of the steel sheet. However, if it is less than 0.1%, it becomes difficult to achieve both a tensile strength of 980 MPa or more and workability. On the other hand, if it exceeds 0.40%, it becomes difficult to ensure spot weldability. Therefore, the range is 0.1 to 0.40%.
- the C content is preferably from 0.13 to 0.3, and more preferably from 0.19 to 0.28.
- Si is a strengthening element and is effective in increasing the strength of the steel sheet. Moreover, since it suppresses precipitation of cementite and contributes to stabilization of a retained austenite, addition is essential. If it is less than 0.01%, the effect of increasing the strength is small, and if it exceeds 0.5%, the workability decreases. Therefore, the Si content is in the range of 0.01 to 0.5%. The Si content is preferably 0.2 to 0.45%, and more preferably 0.25 to 0.42%.
- Mn is a strengthening element and is effective in increasing the strength of the steel sheet. However, if it is less than 1.0%, it is difficult to obtain a tensile strength of 980 MPa or more. On the contrary, if the amount is too large, co-segregation with P and S is promoted, and the workability is remarkably deteriorated, so 3.0% is made the upper limit. Therefore, the Mn content is in the range of 1.0 to 3.0%. The Mn content is preferably 2.0 to 2.7%, and more preferably 2.1 to 2.45%.
- O forms an oxide and degrades elongation, bendability and hole expandability, so it is necessary to suppress the addition amount.
- oxides often exist as inclusions, and when they are present on the punched end surface or cut surface, they form notched scratches and coarse dimples on the end surface, so when expanding holes or during strong processing, It causes stress concentration and becomes the starting point of crack formation, resulting in a significant deterioration of hole expansibility or bendability.
- the upper limit of the O content is set to 0.006% or less. That is, O is limited to 0.006% or less as an impurity.
- the O content is preferably 0.004% or less, and more preferably 0.003% or less.
- the O content is less than 0.0001%, an excessive cost increase is caused and this is not economically preferable, so this is a practical lower limit.
- P tends to segregate in the central part of the plate thickness of the steel sheet, causing the weld to become brittle. If it exceeds 0.04%, the brittleness of the weld becomes remarkable, so the appropriate range is made 0.04% or less. That is, P is limited to 0.04% or less as an impurity.
- the P content is preferably 0.03% or less, and more preferably 0.025% or less.
- the lower limit value of P is not particularly defined, it is preferable to set this value as the lower limit value because it is economically disadvantageous to set it to less than 0.0001%.
- S adversely affects weldability and manufacturability during casting and hot rolling. For this reason, the upper limit is made 0.01% or less. That is, S is limited to 0.01% or less as an impurity. The S content is preferably 0.008% or less, and more preferably 0.006% or less. Although the lower limit of S is not particularly defined, it is preferable to set this value as the lower limit because it is economically disadvantageous to make it less than 0.0001%. Further, since S is combined with Mn to form coarse MnS, it is preferable to reduce it as much as possible in order to deteriorate the bendability and hole expandability.
- Al may be added because it promotes ferrite formation and improves ductility. It can also be used as a deoxidizer. If it is less than 0.1%, the effect is insufficient. On the other hand, excessive addition increases the number of Al-based coarse inclusions, causing deterioration of hole expansibility and surface damage. For this reason, the Al content is 0.1% or more and 3.0% or less. The Al content is preferably 0.2 to 1.5%, more preferably 0.3 to 1.0%.
- N forms coarse nitrides and degrades bendability and hole expandability, so it is necessary to suppress the addition amount. This is because when N exceeds 0.01%, this tendency becomes remarkable, so the range of N content is set to 0.01% or less.
- the N content is preferably 0.008% or less, and more preferably 0.006% or less. From the viewpoint of reducing the occurrence of blowholes during welding, it is better that the N content is small. Although the lower limit is not particularly defined, the effect of the present invention is exhibited. However, if the N content is less than 0.0005%, the manufacturing cost is significantly increased, and this is a substantial lower limit.
- Cr is a strengthening element and is important for improving hardenability. However, if it is less than 0.05%, these effects cannot be obtained, so the lower limit is made 0.05%. On the other hand, if the content exceeds 1.0%, the manufacturability during production and hot rolling is adversely affected, so the upper limit is made 1.0%.
- the Cr content is preferably 0.5% or less, and more preferably 0.45% or less.
- Ni is a strengthening element and is important for improving hardenability. However, if it is less than 0.05%, these effects cannot be obtained, so the lower limit is made 0.05%. On the other hand, if the content exceeds 1.0%, the manufacturability during production and hot rolling is adversely affected, so the upper limit is made 1.0%. In addition, it may be added because it improves the wettability of hot-dip plating and promotes the alloying reaction.
- the Ni content is preferably 0.6% or less, and more preferably 0.52% or less.
- Cu is a strengthening element and is important for improving hardenability. However, if it is less than 0.05%, these effects cannot be obtained, so the lower limit is made 0.05%. On the other hand, if the content exceeds 1.0%, the manufacturability during production and hot rolling is adversely affected, so the upper limit was made 1.0%. In addition, it may be added because it improves the wettability of hot-dip plating and promotes the alloying reaction.
- the Cu content is preferably 0.5% or less, and more preferably 0.35% or less.
- Nb is a strengthening element. It contributes to increasing the strength of steel sheets by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization. If the addition amount is less than 0.005%, these effects cannot be obtained, so the lower limit is made 0.005%. If the content exceeds 0.3%, carbonitride precipitates increase and the formability deteriorates, so the upper limit is made 0.3%.
- the Nb content is preferably 0.005% to 0.25%, and more preferably 0.005% to 0.20%.
- Ti is a strengthening element. It contributes to increasing the strength of steel sheets by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization. If the addition amount is less than 0.005%, these effects cannot be obtained, so the lower limit is made 0.005%. If the content exceeds 0.3%, carbonitride precipitates increase and the formability deteriorates, so the upper limit is made 0.3%.
- the Ti content is preferably 0.005 to 0.25%, and more preferably 0.005 to 0.20%.
- V is a strengthening element. It contributes to increasing the strength of steel sheets by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization. If the addition amount is less than 0.005%, these effects cannot be obtained, so the lower limit is made 0.005%. If the content exceeds 0.5%, the carbonitride precipitates more and the formability deteriorates, so the upper limit is made 0.5%.
- the V content is preferably 0.005 to 0.4%, and more preferably 0.005 to 0.3%.
- B is effective for strengthening grain boundaries and strengthening steel by addition of 0.0001% or more, but when the addition amount exceeds 0.01%, the effect is not only saturated but also during hot rolling.
- the upper limit is set to 0.01% because manufacturing is reduced.
- One or more selected from Ca, Mg, and REM can be added in a total amount of 0.0005 to 0.04%.
- Ca, Mg, and REM are elements used for deoxidation, and it is preferable to contain one or two or more in total of 0.0005% or more.
- REM is Rare Earth Metal.
- the content of Ca, Mg and REM exceeds 0.04% in total, it causes deterioration of molding processability. Therefore, the total content is made 0.0005 to 0.04%.
- REM is often added by misch metal and may contain lanthanoid series elements in combination with La and Ce. Even if these lanthanoid series elements other than La and Ce are included as inevitable impurities, the effect of the present invention is exhibited. However, the effects of the present invention are exhibited even when metal La or Ce is added.
- the total content of bainite and martensite is 40% or more in terms of volume fraction.
- the total content of bainite and martensite is necessary to ensure elongation and strength, and the lower limit is 40%.
- the steel sheet of the present invention needs to contain retained austenite having a volume fraction of 8% or more and 60% or less. By including residual austenite, high strength and further improvement in ductility are achieved at the same time. If the volume fraction is less than 8%, it is difficult to obtain the effect, so the lower limit is made 8% or more.
- the upper limit is set to 60% or less because if it exceeds 60%, the volume fraction of bainite or martensite is less than 40% and sufficient elongation and strength cannot be secured.
- the retained austenite ( ⁇ ) is preferably 9 to 40%, more preferably 10 to 35%.
- ferrite should be less than 40%. Ferrite improves ductility, but strength cannot be ensured at 40% or more. As a form of ferrite, acicular ferrite may be included in addition to polygonal ferrite.
- the remaining inevitable structure in the present invention refers to a pearlite structure.
- the total of the thickness T ⁇ 1 of the ⁇ 1 phase and the thickness T ⁇ of the ⁇ phase in the galvannealed layer of the present invention needs to be 2 ⁇ m or less as shown in FIG. Both the ⁇ 1 phase and the ⁇ phase are inevitably generated at the time of alloying hot dip galvanizing, but if the total thickness exceeds 2 ⁇ m, the ductility is insufficient and the plating adhesion deteriorates.
- the ⁇ 1 phase and the ⁇ phase are preferably thinner if they are thin. However, since production is difficult to sufficiently suppress the formation of the ⁇ 1 phase and ⁇ , the lower limit value of T ⁇ 1 + T ⁇ is 0.1 ⁇ m from the viewpoint of actual manufacturing. It is preferable that
- the thickness ratio (T ⁇ 1 / T ⁇ ) of the ⁇ 1 phase and the ⁇ phase needs to be 1 or less as shown in FIG. When it exceeds 1, the influence of the ⁇ 1 phase, which is extremely inferior in ductility, is large, and plating peeling cannot be suppressed.
- This ratio (T ⁇ 1 / T ⁇ ) is preferably 0.9 or less, and more preferably 0.8 or less.
- a smaller thickness ratio (T ⁇ 1 / T ⁇ ) between the ⁇ 1 phase and the ⁇ phase is preferable for improving the adhesion of the plating.
- increasing the thickness of the ⁇ phase while sufficiently suppressing the formation of the ⁇ 1 phase is a manufacturing factor. From the viewpoint of actual production, the lower limit is preferably set to 0.005.
- the ratio of the total thickness of the ⁇ layer (FeZn 13 ) in the alloyed hot-dip galvanized layer, the thickness T ⁇ of the ⁇ layer (FeZn 7 ), and the total thickness of the ⁇ 1 layer and ⁇ layer (T ⁇ 1 + T ⁇ ), ⁇ (T ⁇ + T ⁇ ) / (T ⁇ 1 + T ⁇ ) ⁇ is preferably 1.5 or more and 90 or less as shown in FIG. If it is less than 1.5, the influence margin of the ⁇ 1 phase and the ⁇ phase having poor ductility is large, and the plating adhesion is slightly inferior. If it exceeds 90, the effect is no longer saturated, and the control becomes more restrictive in production.
- This ratio, ⁇ (T ⁇ + T ⁇ ) / (T ⁇ 1 + T ⁇ ) ⁇ is preferably 2 to 80, and more preferably 3 to 75.
- the surface was etched by dipping in a nital solution (0.5% ethanolic acid ethanol solution) for 10 seconds, and the thickness of each alloy phase was determined by observing with a SEM.
- the thickness of each alloy phase mentioned here means the value obtained by obtaining the thickness of each alloy phase from the plating layers at arbitrary 10 positions separated from each other by 1 mm or more and averaging the obtained thickness of each alloy phase. To do.
- the thickness of each layer can also be measured using the “cross-sectional structure observation method”.
- the “cross-sectional structure observation method” refers to an observation using an optical microscope or a scanning electron microscope after embedding and polishing a sample, etching with a corrosive solution, for example, 0.5% hydrochloric acid to which nital or an inhibitor is added. This method is requested from the organization.
- the thickness of each tissue can be an average value of thicknesses at arbitrary 10 locations in an observation range of 10 mm in length.
- tissue a composition or a structure can be investigated by EPMA, an X-ray diffraction method, a transmission electron microscope, etc., and the kind of alloy phase can be identified.
- EPMA electrospray diffraction method
- transmission electron microscope etc.
- the kind of alloy phase can be identified.
- the production method preceding hot rolling is not particularly limited. That is, various secondary smelting may be performed following the smelting by a blast furnace or an electric furnace, and then the casting may be performed by a method such as a thin slab casting in addition to a normal continuous casting and an ingot method. In the case of continuous casting, after cooling to low temperature once, it may be heated again and then hot rolled, or the cast slab may be continuously hot rolled. Scrap may be used as a raw material.
- the hot rolling slab heating temperature is not particularly defined, and the effects of the present invention can be exhibited. However, since it is not economically preferable to make the heating temperature too high, the upper limit of the heating temperature is preferably less than 1300 ° C. Moreover, since it will become difficult to make finishing rolling temperature more than Ar3 temperature if it heats too low temperature, it is desirable to make minimum temperature into 1100 degreeC.
- the cooling after rolling is not particularly specified, and the effect of the present invention can be obtained even if a cooling pattern for controlling the structure suitable for each purpose is taken.
- the winding temperature must be 700 ° C or lower.
- the temperature exceeds 700 ° C. coarse ferrite and pearlite structure is present in the hot rolled structure, and the retained austenite is not within the scope of the present invention, and not only the base steel sheet within the scope of the present invention is obtained, but also after annealing.
- the tissue non-uniformity to increase and the material anisotropy of the final product to increase.
- winding at a temperature exceeding 700 ° C. is not preferable because the thickness of the oxide formed on the steel sheet surface is excessively increased, resulting in poor pickling properties.
- the effect of the present invention can be exhibited without any particular limitation on the lower limit. However, since it is technically difficult to wind at a temperature below room temperature, this is a practical lower limit. Note that rough rolling sheets may be joined to each other during hot rolling to continuously perform finish rolling. Moreover, you may wind up a rough rolling board once.
- the surface scale is usually removed by pickling.
- One pickling may be performed, or pickling may be performed in a plurality of times.
- the pickled hot-rolled steel sheet is usually cold-rolled.
- the rolling reduction is preferably 40% or more and 80% or less. If the rolling reduction is less than 40%, it is difficult to keep the shape flat, and the ductility of the final product becomes poor. On the other hand, when the cold rolling exceeds 80%, the cold rolling load becomes too large, and the cold rolling becomes difficult.
- the effect of the present invention can be exhibited without particularly defining the number of rolling passes and the rolling reduction for each pass.
- Cold-rolled steel sheets are usually annealed and plated in a continuous annealing plating line.
- the heating rate at the time of passing the plate can exhibit the effect of the present invention without any particular definition. However, a heating rate of less than 0.5 ° C./second is not preferable because productivity is greatly impaired. On the other hand, the temperature exceeding 100 ° C. invites excessive capital investment and is not economically preferable.
- the maximum heating temperature (annealing temperature) needs to be 750 ° C or higher and 900 ° C or lower.
- the maximum heating temperature is less than 750 ° C., it takes too much time for the carbide formed during hot rolling to re-dissolve, and the carbide or a part thereof remains, so it is difficult to ensure a strength of 980 MPa or more.
- the base steel sheet within the scope of the present invention cannot be obtained. Therefore, 750 ° C. is the lower limit of the maximum heating temperature.
- excessively high temperature heating not only is economically undesirable because it leads to an increase in cost, but also induces troubles such as deterioration of the plate shape at the time of hot plate passing and reduction in the life of the roll. Therefore, the upper limit of the maximum heating temperature is set to 900 ° C.
- the heat treatment time in this temperature range is not particularly limited, but a heat treatment of 10 seconds or more is desirable for dissolution of carbides. On the other hand, if the heat treatment time exceeds 600 seconds, the cost increases, which is not economically preferable.
- the isothermal holding may be performed at the maximum heating temperature, or even if cooling is started immediately after the gradient heating is performed and the maximum heating temperature is reached, the effects of the present invention can be exhibited.
- the average cooling rate from the highest heating temperature to 750 ° C. is preferably 0.1 ° C./second or more and 200 ° C./second or less.
- a cooling rate of less than 0.1 ° C./second is not desirable because productivity is greatly impaired. Raising the cooling rate excessively increases the manufacturing cost, so the upper limit is preferably set to 200 ° C./second.
- the cooling rate in the range of 500 ° C. or more and 750 ° C. or less needs to be 3 ° C./second or more and 200 ° C./second or less. If the cooling rate is too low, austenite transforms into a pearlite structure during the cooling process, making it difficult to secure an austenite volume ratio of 8% or more. Therefore, the lower limit was set to 3 ° C./second or more. Even if the cooling rate is increased, there is no problem in terms of the material. However, excessively increasing the cooling rate leads to an increase in manufacturing cost, so the upper limit is preferably set to 200 ° C./second.
- the cooling method may be roll cooling, air cooling, water cooling, or any combination of these methods.
- the holding temperature needs to be in the range of 350 ° C. or higher and 500 ° C. or lower.
- the lower limit is set to 10 seconds.
- the holding time is less than 10 seconds, the progress of the bainite transformation is not sufficient, the retained austenite cannot be stabilized, and it is difficult to obtain excellent formability.
- holding for more than 1000 seconds is not preferable because productivity decreases. Note that holding does not only mean isothermal holding, but also includes cooling and heating in this temperature range.
- the plating bath immersion plate temperature is preferably in the temperature range from 40 ° C. lower than the hot dip galvanizing bath temperature to 50 ° C. higher than the hot dip galvanizing bath temperature. If the bath immersion plate temperature is less than (hot dip galvanizing bath temperature ⁇ 40) ° C., the heat removal at the time of immersion into the plating bath is large, and some of the molten zinc may solidify and deteriorate the plating appearance. In addition, since a brittle ⁇ 1 phase is easily generated at the interface between the base steel plate and the plating, the lower limit is set to (hot dip galvanizing bath temperature ⁇ 40) ° C.
- the plate temperature before immersion is lower than (hot dip galvanizing bath temperature ⁇ 40) ° C.
- reheating is performed before immersion in the plating bath and the plate temperature is set to (hot dip galvanizing bath temperature ⁇ 40) ° C. or higher. It may be immersed in.
- the plating bath immersion temperature exceeds (hot dip galvanizing bath temperature +50) ° C.
- a thick Fe—Al alloy layer is formed at the interface between the plating and the base steel sheet, and not only is the load applied to the subsequent alloying heating applied. , ⁇ 1 phase and ⁇ phase are easily generated, and plating having a hardness within the range of the present invention cannot be obtained.
- the plating bath may contain Fe, Al, Mg, Mn, Si, Cr, etc. in addition to pure zinc.
- the atmosphere when the steel sheet is immersed in the plating bath is such that the logarithm log of the hydrogen partial pressure P H2 and the water vapor partial pressure P H2O (P H2O / P H2 ) is ⁇ 5 to ⁇ 2 and the nitrogen content is 95% by volume or more. Nitrogen atmosphere. If the value of log (P H2O / P H2 ) is less than ⁇ 5, it is not economically preferable, and the reactivity of the steel plate surface or plating bath surface becomes high, and ⁇ and ⁇ 1 in the subsequent alloying process are thick. The plating within the range of the present invention is not obtained.
- the atmosphere when the steel sheet is immersed in the plating bath here means the atmosphere in the furnace at least 10 seconds before being immersed in the plating bath, based on the time when the steel sheet is immersed in the plating bath. It means the entire atmosphere during the immersion from the annealing of the continuous annealing plating line to the plating bath.
- the Al concentration W Al and the Fe concentration W Fe of the plating bath are hot dip galvanizing baths satisfying the following relational expressions (1) and (2) in mass%. 0.01 ⁇ W Fe ⁇ 0.05 (1) 0.07 ⁇ (W Al —W Fe ) ⁇ 0.30 (2) If W Fe is less than 0.01, the ⁇ 1 phase and the ⁇ phase are formed thick at the interface between the plating layer and the steel sheet, and plating within the range of the present invention cannot be obtained.
- the alloying heating temperature of the plating layer is 440 ° C. or more and 600 ° C. or less.
- the alloying treatment temperature is less than 440 ° C., the progress of alloying is slow and not only the productivity is poor, but also the brittle ⁇ 1 phase is preferentially produced, and plating within the range of the present invention cannot be obtained.
- the temperature exceeds 600 ° C. carbides are formed, the volume fraction of austenite is reduced, and it becomes difficult not only to secure a maximum tensile strength of 980 MPa or more and excellent ductility, but also to generate a ⁇ 1 phase and a ⁇ phase exceeding 2 ⁇ m. In this range, plating cannot be obtained.
- a preferable range is 480 ° C. or higher and 580 ° C. or lower, more preferably 520 ° C. or higher and 560 ° C. or lower.
- the time from when the steel sheet is removed from the plating bath until it enters the alloying furnace is 0.5 seconds or more and 6 seconds or less. If it exceeds 6 seconds, a thick Fe—Al alloy layer is formed at the interface between the plating and the underlying steel sheet, and not only is the load applied to the subsequent alloying heating applied, but a brittle ⁇ 1 phase is easily generated, and ⁇ Therefore, it is difficult to obtain a plating having good adhesion within the range of the present invention.
- the time from when the steel plate is removed from the plating bath until it enters the alloying furnace is shorter. However, since the manufacturing load is large in less than 0.5 seconds, the lower limit is set to 0. 5 seconds.
- the upper limit of the preferred range is 5 seconds or less, more preferably 4 seconds or less.
- the material of the high strength alloyed hot dip galvanized steel sheet with excellent plating adhesion of the present invention is manufactured through refining, steel making, casting, hot rolling and cold rolling processes, which are ordinary iron making processes. Even if manufactured by omitting some or all of them, the effects of the present invention can be obtained as long as the conditions according to the present invention are satisfied.
- a slab having the components shown in Table 1 was heated to 1200 ° C., water-cooled in a water-cooling zone, and then wound up at a temperature shown in Table 2.
- the thickness of the hot rolled plate was in the range of 2 to 4.5 mm.
- the sheet was cold-rolled at a predetermined cold rolling rate so that the sheet thickness after cold rolling was 1.2 mm to obtain a cold-rolled sheet.
- these cold-rolled sheets were subjected to heat treatment and hot dip galvanizing treatment in a continuous alloying hot dip galvanizing facility under the conditions shown in Table 2.
- Table 2 shows the measured tensile properties and plating properties. It can be seen that the steel sheets of the present invention are all excellent in plating adhesion.
- a high-strength galvannealed steel sheet having excellent plating adhesion is provided.
- the high-strength galvannealed steel sheet can be manufactured relatively easily and stably.
- the high-strength alloyed hot-dip galvanized steel sheet according to the present invention is particularly suitable as a steel sheet for automobiles aiming at weight reduction in recent years, and its industrial value is extremely large.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
このため、めっき密着性を改善する手法として、めっきと下地鋼板の界面の凹凸を大きくする、所謂アンカー効果によって、めっき密着性を向上させる方法が特許文献1に挙げられている。また、特許文献2には、鋼板を加熱後に酸洗処理をし、表面の酸化物層を除去後にめっきをすることで、密着性を改善できると記載されている。
また、特許文献3には、体積分率で30~90%のフェライト相、5%以上のベイナイト、10%以下のマルテンサイト、および5~30%の残留オーステナイト相を含む高強度高延性溶融亜鉛めっき鋼板が開示されている。特許文献4には、鋼板に含まれる転位の密度が8×1011(個/mm2)以下であり、歪速度0.0067(s-1)での準静的強度(FS1)と、歪速度1000(s-1)での動的強度(FS2)との比からなる静動比(=FS2/FS1)が1.05以上である高強度冷延鋼板が開示されている。特許文献5には、Fe:8~12%,Al:0.05~0.25%.残部Zn組成であって、かつ地鉄界面のΓ相が1.0/μm以下、めっき層表面にη相、ζ相が存在しない特定のめっき層を少くとも片面に有する合金化溶融めっき鋼板が開示されている。
しかしながら、先行技術においては、基本的にめっき密着性の主たる要因である、めっき層と下地の鋼板の延性の差は解決出来ていないため、強加工時には、めっきの剥離が抑制出来なかった。
本発明の他の目的は、めっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板を提供することにある。
すなわち、基本的に、めっき層の延性を向上させたとしても、合金化溶融亜鉛めっき層中のめっきと下地鋼板の界面に不可避的に生成するΓ1相(Fe5Zn21、Fe含有率18%以上、24%未満)とΓ相(Fe3Zn10、Fe24%以上、32%以下)の延性を下地鋼板の延性よりも大きくすることは困難であるため、加工時の下地鋼板の変形にめっきが追従出来ずにめっき剥離が生ずることを、本発明者は見出した。
これに対して、鋼板の組織制御によって鋼板自体の延性を低下させ、さらにめっき相中のΓ1相とΓ相の量を制御してめっき自体の延性を増加させた場合には、めっき剥離を抑制出来ることを本発明者は見出した。本発明者は、更に、鋼板自体の延性低下によって、従来よりも加工性が低下し下地鋼板自体に早期に割れが発生し、破断に至る可能性もことが想定されるものの、本発明においてΓ1相とΓ相の量を制御しためっきを付与することで、従来同等以上に破断を抑制出来ることをも見出した。
このような現象を生ずる理由については必ずしも明確ではないが、下地鋼板の割れは早期に発生する可能性があるものの、延性に優れるめっきが鋼板上に存在することで、割れ部への応力集中が抑制されるためと、本発明者は推定している。
C:0.10%以上、0.4%以下、
Si:0.01%以上、0.5%以下、
Mn:1.0%以上、3.0%以下、
O:0.006%以下、
P:0.04%以下、
S:0.01%以下、
Al:0.1以上、3.0%以下、
N:0.01%以下を含有し、残部Feおよび不可避不純物からなる鋼板であって、
さらに、当該鋼板の組織が体積分率でベイナイトとマルテンサイトの含有率の合計を40%以上とし、残留オーステナイトを8%以上~60%以下含有し、且つフェライトを40%未満含有し、残部不可避的組織より成る鋼板の表面に合金化溶融亜鉛めっきが施された合金化溶融亜鉛めっき鋼板であり、
前記合金化溶融亜鉛めっき層中のΓ1層の厚みTγ1と、Γ層の厚みTγとの合計厚みが2μm以下であり、かつ、Γ1相とΓ相の厚みの比率(Tγ1/Tγ)が1以下であることを特徴とする合金化溶融亜鉛めっき鋼板。
〔3〕 さらに、鋼板中に質量%で、
Cr:0.05%以上、1.0%以下、
Ni:0.05%以上、1.0%以下、
Cu:0.05%以上、1.0%以下、
Nb:0.005%以上、0.3%以下、
Ti:0.005%以上、0.3%以下、
V:0.005%以上、0.5%以下、
B:0.0001%以上、0.01%以下、
Ca:0.0005%以上、0.04%以下、
Mg:0.0005%以上、0.04%以下、
La:0.0005%以上、0.04%以下、
Ce:0.0005%以上、0.04%以下、
Y:0.0005%以上、0.04%以下、
の1種または2種以上を含有することを特徴とする〔1〕または〔2〕に記載の合金化溶融亜鉛めっき鋼板。
〔4〕 質量%で、
C:0.10%以上、0.4%以下、
Si:0.01%以上、0.5%以下、
Mn:1.0%以上、3.0%以下、
O:0.006%以下、
P:0.04%以下、
S:0.01%以下、
Al:0.1以上、3.0%以下、
N:0.01%以下を含有し、残部Feおよび不可避不純物からなる鋼材を1100~1300℃に加熱し、仕上げ圧延温度がAr3温度以上で熱間圧延処理を施し、
前記熱間圧延後の鋼板を、巻き取り温度700℃以下で巻き取り、その後冷間圧延し;
前記冷間圧延後の鋼板を、最高加熱温度750℃~900℃で焼鈍し;
前記焼鈍後の鋼板を、500~750℃の範囲における冷却速度が3~200℃/秒でめっき浴浸漬温度まで冷却し、その後350~500℃で10~1000秒で保持し;
めっき浴浸漬する際の鋼板温度が、溶融亜鉛めっき浴温度より40℃低い温度から、溶融亜鉛めっき浴温度より50℃高い温度までの温度範囲で、前記鋼板を、水素分圧PH2、水蒸気分圧PH2Oの比の対数log(PH2O/PH2)の値が-5以上-2以下、窒素含有量が95質量%以上の窒素雰囲気中で、Al濃度WAl、Fe濃度WFeが質量%で下記関係式(1)、(2)を満足する溶融亜鉛めっき浴中に浸漬し、めっき処理し、
0.01≦WFe≦0.05・・・(1)
0.07≦(WAl-WFe)≦0.30・・・(2)
その後、合金化処理をするに際し、前記鋼板がめっき浴から出てから合金化加熱炉に入るまでの時間が、0.5秒以上6秒以下の範囲にあり、
前記めっき層の合金化加熱温度が440℃以上、600℃以下の範囲にあることを特徴とする、合金化溶融亜鉛めっき鋼板の製造方法。
ここで、Ar3=901-325×C+33×Si-92×(Mn+Ni/2+Cr/2+Cu/2+Mo/2)であり、C、Si、Mn、Ni、Cr、Cu、Moは、それぞれの成分の含有量(質量%)を示し、含有していない場合は0とする。
まず、成分の限定理由について説明する。なお、%は質量%を意味する。
Ca、Mg、REMから選ばれる1種または2種以上を合計で0.0005~0.04%添加できる。Ca、MgおよびREMは脱酸に用いる元素であり、1種または2種以上を合計で0.0005%以上含有することが好ましい。ここに、REMとは、Rare Earth Metalである。しかしながら、Ca、MgおよびREMの含有量が合計で0.04%を超えると、成形加工性の悪化の原因となる。そのため、この含有量を合計で0.0005~0.04%とする。
なお、本発明において、REMはミッシュメタルにて添加されることが多く、LaやCeの他にランタノイド系列の元素を複合で含有する場合がある。不可避不純物として、これらLaやCe以外のランタノイド系列の元素を含んだとしても本発明の効果は発揮される。ただし、金属LaやCeを添加したとしても本発明の効果は発揮される。
本鋼板では、ベイナイトとマルテンサイトの含有量の合計は、体積分率で40%以上である。ベイナイトとマルテンサイトの含有率の合計は、伸びと強度を確保させるために必要であり、下限値を40%とする。
本発明の合金化溶融亜鉛めっき層中のΓ1相の厚みTγ1と、Γ相の厚みTγの合計は、図1に示すように2μm以下とする必要がある。Γ1相、Γ相のいずれも合金化溶融亜鉛めっき時に不可避的に生成するものであるが、その合計厚みが2μm超では延性が不十分でめっき密着性が劣化する。Γ1相とΓ相の厚みの合計は、Tγ1+Tγ=0.1~1.9μmであることが好ましく、0.1~1.5μmであることが更に好ましい。このΓ1相とΓ相は薄ければ薄い方が好ましいが、Γ1相およびΓの生成を十分抑制するには製造に困難を伴うため、実製造上の観点から、Tγ1+Tγの下限値は0.1μmとすることが好ましい。
本発明においては、テクノビット4002(株式会社マルトー社製)に埋め込み、#240、#320、#400、#600、#800、#1000の研磨紙(JIS R 6001)で順に研磨した後、研磨面をナイタール液(0.5%硝酸エタノール溶液)で10秒浸すことでエッチングし、SEMで観察することで各合金相の厚みを求めた。
ただし、ここで言う各合金相の厚みとは、互いに1mm以上離れた任意の10箇所の位置のめっき層から各合金相の厚みをそれぞれ求め、求めた合金相の厚み各々で平均した値を意味する。
また合金相のζ相(FeZn13),δ1相(FeZn7),Γ1相(Fe5Zn21),Γ相(Fe3Zn10)は、組成、構造がそれぞれ異なるため、EPMAやX線回折法(XRD)、透過型電子顕微鏡(TEM)などで分析し、各合金相の種類を同定することが出来る。
本発明においては、TEMで分析することで各合金相の種類を同定した(例えば、Hong, M.N., and Saka,H.;1998,Proc. 4th Intern. Conf. On Zn and Zn Alloy Coated Steel Sheet, Galvatech‘98,p.248や;Kato, T., Hong, M.H., Nunome, K., Sasaki, K., Kuroda, K., and Saka, H.;1998,Thin Solid Films,319,132に記載のものと同様の分析である)。よって、このTEMによる分析方法の詳細に関しては、必要に応じて、これらの文献を参照することができる。
熱間圧延に先行する製造方法は特に限定するものではない。すなわち、高炉や電炉等による溶製に引き続き各種の2次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造などの方法で鋳造すればよい。連続鋳造の場合には一度低温まで冷却したのち、再度加熱してから熱間圧延しても良いし、鋳造スラブを連続的に熱延しても良い。原料にはスクラップを使用しても構わない。
Ar3=901-325×C+33×Si-92×(Mn+Ni/2+Cr/2+Cu/2+Mo/2)
0.01≦WFe≦0.05・・・(1)
0.07≦(WAl-WFe)≦0.30・・・(2)
WFeが0.01未満では、めっき層と鋼板界面にΓ1相とΓ相が厚く生成し、本発明の範囲のめっきが得られない。WFeが0.05超では、めっき層と鋼板界面にΓ1相とΓ相が十分に生成せず、本発明の範囲のめっきが得られないことに加え、めっき浴にFe2Al5のトップドロスが形成されめっき後の外観を低下させる。
(WAl-WFe)を0.07以上、0.30以下にする理由は、(WAl-WFe)が0.07未満ではめっき層と鋼板界面にΓ1相とΓ相が厚く生成し、その後の合金化加熱に負荷がかかるだけでなく、本発明の範囲のめっきが得られないからである。一方、(WAl-WFe)が0.30超では合金化が遅く、生産性に劣るだけでなく、めっき全体が合金化するまで加熱した場合に、めっき層と鋼板界面にΓ1相とΓ相が厚く生成してしまい、本発明の範囲の硬度を有するめっきが得られない。
表1に示す成分を有するスラブを、1200℃に加熱し、水冷帯にて水冷の後、表2に示す温度で巻き取った。熱延板の厚みは、2~4.5mmの範囲とした。
熱延板を酸洗した後、冷間圧延後の板厚が1.2mmとなるように、所定の冷延率で冷延を行い、冷延板とした。
その後、これらの冷延板に表2に示す条件で連続合金化溶融亜鉛めっき設備で、熱処理と溶融亜鉛めっき処理を施した。焼鈍温度から500~750℃までを表2の冷却速度で冷却し、その後、350℃~500℃の温度範囲で5~300秒保持を行った後、所定の条件に制御した亜鉛めっき浴に浸漬し、
各条件にて合金化処理を行い、室温まで冷却した。その際の目付け量としては、両面とも約45g/m2とした。最後に、得られた鋼板について0.4%の圧下率でスキンパス圧延を行った。
めっき密着性は、任意の位置、方向で40×100mmに切断した鋼板を、90度に折り曲げ(曲げ半径R=1mmまたは3mm)加工した後、平に戻し、曲げ部にテープを貼った後、直ちに剥がし、テープに付着しためっきの剥離幅を測定しめっき密着性の良否を下記の基準で評価し、「○」と「△」を合格とした。
○:めっき剥離なし
△:めっき剥離僅かにあり(剥離幅:0mm超5mm以下)
×:めっき剥離大(剥離幅:5mm超)
Claims (4)
- 質量%で、
C:0.10%以上、0.4%以下、
Si:0.01%以上、0.5%以下、
Mn:1.0%以上、3.0%以下、
O:0.006%以下、
P:0.04%以下、
S:0.01%以下、
Al:0.1以上、3.0%以下、
N:0.01%以下を含有し、残部Feおよび不可避不純物からなる鋼板であって、
さらに、当該鋼板の組織が体積分率でベイナイトとマルテンサイトの含有率の合計を40%以上とし、残留オーステナイトを8%以上~60%以下含有し、且つフェライトを40%未満含有し、残部不可避的組織より成る鋼板の表面に合金化溶融亜鉛めっきが施された合金化溶融亜鉛めっき鋼板であり、
前記合金化溶融亜鉛めっき層中のΓ1層の厚みTγ1と、Γ層の厚みTγとの合計厚みが2μm以下であり、かつ、Γ1相とΓ相の厚みの比率(Tγ1/Tγ)が1以下であることを特徴とする合金化溶融亜鉛めっき鋼板。 - 前記合金化溶融亜鉛めっき層中のζ層の厚みTζと、δ層厚みTδの合計厚みと、Γ1層とΓ層の合計厚みの比率、{(Tζ+Tδ)/(Tγ1+Tγ)}が、1.5以上、90以下であることを特徴とする請求項1に記載の合金化溶融亜鉛めっき鋼板。
- さらに、鋼板中に質量%で、
Cr:0.05%以上、1.0%以下、
Ni:0.05%以上、1.0%以下、
Cu:0.05%以上、1.0%以下、
Nb:0.005%以上、0.3%以下、
Ti:0.005%以上、0.3%以下、
V:0.005%以上、0.5%以下、
B:0.0001%以上、0.01%以下、
Ca:0.0005%以上、0.04%以下、
Mg:0.0005%以上、0.04%以下、
La:0.0005%以上、0.04%以下、
Ce:0.0005%以上、0.04%以下、
Y:0.0005%以上、0.04%以下、
の1種または2種以上を含有することを特徴とする請求項1または2に記載の合金化溶融亜鉛めっき鋼板。 - 質量%で、
C:0.10%以上、0.4%以下、
Si:0.01%以上、0.5%以下、
Mn:1.0%以上、3.0%以下、
O:0.006%以下、
P:0.04%以下、
S:0.01%以下、
Al:0.1以上、3.0%以下、
N:0.01%以下を含有し、残部Feおよび不可避不純物からなる鋼材を1100~1300℃に加熱し、仕上げ圧延温度がAr3温度以上で熱間圧延処理を施し、
前記熱間圧延後の鋼板を、巻き取り温度700℃以下で巻き取り、その後冷間圧延し;
前記冷間圧延後の鋼板を、最高加熱温度750℃~900℃で焼鈍し;
前記焼鈍後の鋼板を、500~750℃の範囲における冷却速度が3~200℃/秒でめっき浴浸漬温度まで冷却し、その後350~500℃で10~1000秒で保持し;
めっき浴浸漬する際の鋼板温度が、溶融亜鉛めっき浴温度より40℃低い温度から、溶融亜鉛めっき浴温度より50℃高い温度までの温度範囲で、前記鋼板を、水素分圧PH2、水蒸気分圧PH2Oの比の対数log(PH2O/PH2)の値が-5以上-2以下、窒素含有量が95質量%以上の窒素雰囲気中で、Al濃度WAl、Fe濃度WFeが質量%で下記関係式(1)、(2)を満足する溶融亜鉛めっき浴中に浸漬し、めっき処理し、
0.01≦WFe≦0.05・・・(1)
0.07≦(WAl-WFe)≦0.30・・・(2)
その後、合金化処理をするに際し、前記鋼板がめっき浴から出てから合金化加熱炉に入るまでの時間が、0.5秒以上6秒以下の範囲にあり、
前記めっき層の合金化加熱温度が440℃以上、600℃以下の範囲にあることを特徴とする、合金化溶融亜鉛めっき鋼板の製造方法。
ここで、Ar3=901-325×C+33×Si-92×(Mn+Ni/2+Cr/2+Cu/2+Mo/2)であり、C、Si、Mn、Ni、Cr、Cu、Moは、それぞれの成分の含有量(質量%)を示し、含有していない場合は0とする。
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2849286A CA2849286C (en) | 2011-09-30 | 2012-09-28 | Alloyed hot-dip galvanized steel sheet |
MX2014003663A MX352497B (es) | 2011-09-30 | 2012-09-28 | Lamina de acero aleada, galvanizada por inmersion en caliente. |
BR112014007543-3A BR112014007543B1 (pt) | 2011-09-30 | 2012-09-28 | Chapa de aço galvanizada por imersão a quente ligada e seu processo de produção |
EP12836371.0A EP2762602B1 (en) | 2011-09-30 | 2012-09-28 | Alloyed hot-dip galvanized steel sheet |
KR1020147007330A KR101609331B1 (ko) | 2011-09-30 | 2012-09-28 | 합금화 용융 아연 도금 강판 |
PL12836371T PL2762602T3 (pl) | 2011-09-30 | 2012-09-28 | Stopowa blacha stalowa cienka cynkowana ogniowo |
CN201280047327.3A CN103827343B (zh) | 2011-09-30 | 2012-09-28 | 合金化热浸镀锌钢板 |
US14/348,247 US9181598B2 (en) | 2011-09-30 | 2012-09-28 | Alloyed hot-dip galvanized steel sheet |
JP2013516045A JP5304966B1 (ja) | 2011-09-30 | 2012-09-28 | 合金化溶融亜鉛めっき鋼板 |
RU2014117653/02A RU2576567C2 (ru) | 2011-09-30 | 2012-09-28 | Легированный, гальванизированный погружением стальной лист |
ES12836371.0T ES2686569T3 (es) | 2011-09-30 | 2012-09-28 | Lámina de acero galvanizada en caliente aleada |
ZA2014/02308A ZA201402308B (en) | 2011-09-30 | 2014-03-27 | Alloyed hot-dip galvanized steel sheet |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011217145 | 2011-09-30 | ||
JP2011-217145 | 2011-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013047810A1 true WO2013047810A1 (ja) | 2013-04-04 |
Family
ID=47995833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/075198 WO2013047810A1 (ja) | 2011-09-30 | 2012-09-28 | 合金化溶融亜鉛めっき鋼板 |
Country Status (14)
Country | Link |
---|---|
US (1) | US9181598B2 (ja) |
EP (1) | EP2762602B1 (ja) |
JP (1) | JP5304966B1 (ja) |
KR (1) | KR101609331B1 (ja) |
CN (1) | CN103827343B (ja) |
BR (1) | BR112014007543B1 (ja) |
CA (1) | CA2849286C (ja) |
ES (1) | ES2686569T3 (ja) |
MX (1) | MX352497B (ja) |
PL (1) | PL2762602T3 (ja) |
RU (1) | RU2576567C2 (ja) |
TW (1) | TWI507535B (ja) |
WO (1) | WO2013047810A1 (ja) |
ZA (1) | ZA201402308B (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023506476A (ja) * | 2019-12-13 | 2023-02-16 | アルセロールミタル | 熱処理冷間圧延鋼板及びその製造方法 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150132208A (ko) | 2013-03-11 | 2015-11-25 | 타타 스틸 이즈무이덴 베.뷔. | 고강도 용융 침지 아연도금 복합상 강 스트립 |
US9976196B2 (en) * | 2014-03-31 | 2018-05-22 | Nippon Steel & Sumitomo Metal Corporation | Hot-stamped steel |
US9932652B2 (en) * | 2014-03-31 | 2018-04-03 | Nippon Steel & Sumitomo Metal Corporation | Hot-stamped steel |
BR112017008311A2 (pt) | 2014-11-05 | 2017-12-19 | Nippon Steel & Sumitomo Metal Corp | folha de aço galvanizada por mergulho a quente |
ES2748019T3 (es) | 2014-11-05 | 2020-03-12 | Nippon Steel Corp | Lámina de acero galvanizada por inmersión en caliente |
US10507629B2 (en) | 2014-11-05 | 2019-12-17 | Nippon Steel Corporation | Hot-dip galvanized steel sheet |
CN105239074B (zh) * | 2015-06-10 | 2018-02-13 | 浙江连翔五金科技股份有限公司 | 电缆桥架表面处理方法 |
KR102035525B1 (ko) * | 2016-06-27 | 2019-10-24 | 한국기계연구원 | 필름형 잔류 오스테나이트를 포함하는 강재 |
KR102451383B1 (ko) * | 2018-03-30 | 2022-10-11 | 닛폰세이테츠 가부시키가이샤 | 합금화 용융 아연 도금 강판 |
CN115404406A (zh) | 2018-03-30 | 2022-11-29 | 杰富意钢铁株式会社 | 高强度镀锌钢板、高强度部件及它们的制造方法 |
TW201945556A (zh) * | 2018-05-01 | 2019-12-01 | 日商日本製鐵股份有限公司 | 鋅系鍍敷鋼板及其製造方法 |
MX2021009365A (es) * | 2019-02-06 | 2021-09-10 | Nippon Steel Corp | Lamina de acero galvanizada por inmersion en caliente y metodo para producir la misma. |
WO2020245626A1 (en) * | 2019-06-03 | 2020-12-10 | Arcelormittal | Cold rolled and coated steel sheet and a method of manufacturing thereof |
JP2023506845A (ja) | 2019-12-17 | 2023-02-20 | モメンティブ パフォーマンス マテリアルズ ゲーエムベーハー | 繊維状アミノ酸ベースの基質、特に毛髪のトリートメントのための非イオン性高分子脂肪酸化合物 |
CN115323275B (zh) * | 2022-09-05 | 2023-07-04 | 东北大学 | 一种高强高韧的稀土温轧低碳低锰trip钢及其制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59219473A (ja) | 1983-05-26 | 1984-12-10 | Nippon Steel Corp | カラ−エツチング液及びエツチング方法 |
JPS6468456A (en) | 1987-09-08 | 1989-03-14 | Nippon Steel Corp | Alloyed and zinc hot dipped steel sheet having excellent powdering resistance and flaking resistance |
JP2002030403A (ja) | 2000-07-14 | 2002-01-31 | Sumitomo Metal Ind Ltd | 合金化溶融亜鉛めっき鋼板とその製造方法 |
JP2002173756A (ja) | 2000-12-05 | 2002-06-21 | Kawasaki Steel Corp | めっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法 |
JP2005133201A (ja) | 2003-08-29 | 2005-05-26 | Kobe Steel Ltd | 加工性に優れた高張力鋼板およびその製法 |
JP2007211279A (ja) * | 2006-02-08 | 2007-08-23 | Nippon Steel Corp | 耐水素脆性に優れた超高強度鋼板とその製造方法及び超高強度溶融亜鉛めっき鋼板の製造方法並びに超高強度合金化溶融亜鉛めっき鋼板の製造方法 |
JP2007231373A (ja) * | 2006-03-01 | 2007-09-13 | Nippon Steel Corp | 溶接部の耐水素脆性に優れる高強度鋼板及びその製造方法 |
JP2008127637A (ja) * | 2006-11-21 | 2008-06-05 | Kobe Steel Ltd | 耐パウダリング性と加工性に優れた高強度合金化溶融亜鉛めっき鋼板 |
JP2011094215A (ja) | 2009-10-30 | 2011-05-12 | Kobe Steel Ltd | めっき密着性に優れた合金化溶融亜鉛めっき高張力鋼板、およびその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3557810B2 (ja) * | 1996-09-17 | 2004-08-25 | Jfeスチール株式会社 | 摺動性及び電着塗装時の耐クレータリング性に優れた合金化溶融亜鉛めっき鋼板及びその製造方法 |
JP3968011B2 (ja) * | 2002-05-27 | 2007-08-29 | 新日本製鐵株式会社 | 低温靱性および溶接熱影響部靱性に優れた高強度鋼とその製造方法および高強度鋼管の製造方法 |
JP2004027263A (ja) * | 2002-06-24 | 2004-01-29 | Sumitomo Metal Ind Ltd | 表面外観に優れた溶融亜鉛めっき鋼板とその製造方法 |
ATE526424T1 (de) | 2003-08-29 | 2011-10-15 | Kobe Steel Ltd | Hohes stahlblech der dehnfestigkeit ausgezeichnet für die verarbeitung und proze für die produktion desselben |
JP4221023B2 (ja) | 2005-12-06 | 2009-02-12 | 株式会社神戸製鋼所 | 耐パウダリング性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法 |
KR100992225B1 (ko) | 2005-12-06 | 2010-11-05 | 가부시키가이샤 고베 세이코쇼 | 내파우더링성이 우수한 고강도 합금화 용융 아연 도금 강판및 그 제조 방법 |
JP5365112B2 (ja) * | 2008-09-10 | 2013-12-11 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
-
2012
- 2012-09-28 TW TW101135892A patent/TWI507535B/zh not_active IP Right Cessation
- 2012-09-28 CA CA2849286A patent/CA2849286C/en not_active Expired - Fee Related
- 2012-09-28 ES ES12836371.0T patent/ES2686569T3/es active Active
- 2012-09-28 BR BR112014007543-3A patent/BR112014007543B1/pt not_active IP Right Cessation
- 2012-09-28 CN CN201280047327.3A patent/CN103827343B/zh active Active
- 2012-09-28 MX MX2014003663A patent/MX352497B/es active IP Right Grant
- 2012-09-28 RU RU2014117653/02A patent/RU2576567C2/ru not_active IP Right Cessation
- 2012-09-28 US US14/348,247 patent/US9181598B2/en active Active
- 2012-09-28 WO PCT/JP2012/075198 patent/WO2013047810A1/ja active Application Filing
- 2012-09-28 KR KR1020147007330A patent/KR101609331B1/ko active IP Right Grant
- 2012-09-28 EP EP12836371.0A patent/EP2762602B1/en active Active
- 2012-09-28 PL PL12836371T patent/PL2762602T3/pl unknown
- 2012-09-28 JP JP2013516045A patent/JP5304966B1/ja active Active
-
2014
- 2014-03-27 ZA ZA2014/02308A patent/ZA201402308B/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59219473A (ja) | 1983-05-26 | 1984-12-10 | Nippon Steel Corp | カラ−エツチング液及びエツチング方法 |
JPS6468456A (en) | 1987-09-08 | 1989-03-14 | Nippon Steel Corp | Alloyed and zinc hot dipped steel sheet having excellent powdering resistance and flaking resistance |
JP2002030403A (ja) | 2000-07-14 | 2002-01-31 | Sumitomo Metal Ind Ltd | 合金化溶融亜鉛めっき鋼板とその製造方法 |
JP2002173756A (ja) | 2000-12-05 | 2002-06-21 | Kawasaki Steel Corp | めっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法 |
JP2005133201A (ja) | 2003-08-29 | 2005-05-26 | Kobe Steel Ltd | 加工性に優れた高張力鋼板およびその製法 |
JP2007211279A (ja) * | 2006-02-08 | 2007-08-23 | Nippon Steel Corp | 耐水素脆性に優れた超高強度鋼板とその製造方法及び超高強度溶融亜鉛めっき鋼板の製造方法並びに超高強度合金化溶融亜鉛めっき鋼板の製造方法 |
JP2007231373A (ja) * | 2006-03-01 | 2007-09-13 | Nippon Steel Corp | 溶接部の耐水素脆性に優れる高強度鋼板及びその製造方法 |
JP2008127637A (ja) * | 2006-11-21 | 2008-06-05 | Kobe Steel Ltd | 耐パウダリング性と加工性に優れた高強度合金化溶融亜鉛めっき鋼板 |
JP2011094215A (ja) | 2009-10-30 | 2011-05-12 | Kobe Steel Ltd | めっき密着性に優れた合金化溶融亜鉛めっき高張力鋼板、およびその製造方法 |
Non-Patent Citations (2)
Title |
---|
HONG, M.N.; SAKA, H.: "Proc. 4th Intern. Conf. On Zn and Zn Alloy Coated Steel Sheet", GALVATECH '98, 1998, pages 248 |
KATO, T.; HONG, M.H.; NUNOME, K.; SASAKI, K.; KURODA, K.; SAKA, H., THIN SOLID FILMS, vol. 319, 1998, pages 132 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023506476A (ja) * | 2019-12-13 | 2023-02-16 | アルセロールミタル | 熱処理冷間圧延鋼板及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
MX2014003663A (es) | 2014-04-30 |
MX352497B (es) | 2017-11-28 |
EP2762602B1 (en) | 2018-06-06 |
RU2014117653A (ru) | 2015-11-10 |
KR20140064893A (ko) | 2014-05-28 |
RU2576567C2 (ru) | 2016-03-10 |
TWI507535B (zh) | 2015-11-11 |
CA2849286A1 (en) | 2013-04-04 |
PL2762602T3 (pl) | 2018-11-30 |
BR112014007543B1 (pt) | 2020-09-15 |
TW201319267A (zh) | 2013-05-16 |
EP2762602A4 (en) | 2015-09-02 |
CN103827343B (zh) | 2016-01-27 |
ZA201402308B (en) | 2015-03-25 |
EP2762602A1 (en) | 2014-08-06 |
US20140255725A1 (en) | 2014-09-11 |
CA2849286C (en) | 2015-12-01 |
KR101609331B1 (ko) | 2016-04-05 |
JPWO2013047810A1 (ja) | 2015-03-30 |
JP5304966B1 (ja) | 2013-10-02 |
CN103827343A (zh) | 2014-05-28 |
ES2686569T3 (es) | 2018-10-18 |
US9181598B2 (en) | 2015-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5304966B1 (ja) | 合金化溶融亜鉛めっき鋼板 | |
JP5370617B2 (ja) | 高強度溶融亜鉛めっき鋼板 | |
JP6409917B2 (ja) | 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法 | |
JP4659134B2 (ja) | 穴拡げ性と延性のバランスが極めて良好で、疲労耐久性にも優れた高強度鋼板及び亜鉛めっき鋼板、並びにそれらの鋼板の製造方法 | |
JP5545414B2 (ja) | 冷延鋼板及び冷延鋼板の製造方法 | |
KR101608163B1 (ko) | 인장 최대 강도 980㎫ 이상을 갖는 재질 이방성이 적은 성형성이 우수한 고강도 용융 아연 도금 강판, 고강도 합금화 용융 아연 도금 강판 및 그 제조 방법 | |
JP4589880B2 (ja) | 成形性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板と高強度合金化溶融亜鉛めっき鋼板及び高強度溶融亜鉛めっき鋼板の製造方法並びに高強度合金化溶融亜鉛めっき鋼板の製造方法 | |
JP5114747B2 (ja) | 穴拡げ性と延性のバランスが極めて良好な高強度鋼板の製造方法と亜鉛めっき鋼板の製造方法 | |
JP5708884B2 (ja) | 合金化溶融亜鉛めっき鋼板とその製造方法 | |
JP4837604B2 (ja) | 合金化溶融亜鉛めっき鋼板 | |
JP2004211157A (ja) | 高強度高延性溶融亜鉛めっき鋼板とその製造方法 | |
KR20180119638A (ko) | 박강판 및 도금 강판, 그리고 열연 강판의 제조 방법, 냉연 풀하드 강판의 제조 방법, 열 처리판의 제조 방법, 박강판의 제조 방법 및 도금 강판의 제조 방법 | |
WO2017033901A1 (ja) | 合金化溶融亜鉛めっき鋼板及びその製造方法 | |
KR20180120715A (ko) | 박 강판 및 도금 강판, 그리고, 열연 강판의 제조 방법, 냉연 풀 하드 강판의 제조 방법, 박 강판의 제조 방법 및 도금 강판의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013516045 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12836371 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2849286 Country of ref document: CA Ref document number: 20147007330 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/003663 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14348247 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014117653 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012836371 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014007543 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014007543 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140328 |