WO2013047742A1 - 面状発光装置 - Google Patents

面状発光装置 Download PDF

Info

Publication number
WO2013047742A1
WO2013047742A1 PCT/JP2012/075069 JP2012075069W WO2013047742A1 WO 2013047742 A1 WO2013047742 A1 WO 2013047742A1 JP 2012075069 W JP2012075069 W JP 2012075069W WO 2013047742 A1 WO2013047742 A1 WO 2013047742A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
bus line
connection
cathode
light emitting
Prior art date
Application number
PCT/JP2012/075069
Other languages
English (en)
French (fr)
Inventor
隆雄 宮井
佐々木 博之
Original Assignee
パナソニック出光Oled照明 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック出光Oled照明 株式会社 filed Critical パナソニック出光Oled照明 株式会社
Priority to JP2013536422A priority Critical patent/JP5833661B2/ja
Priority to EP12835986.6A priority patent/EP2763502A4/en
Priority to US14/348,477 priority patent/US9313835B2/en
Publication of WO2013047742A1 publication Critical patent/WO2013047742A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/82Interconnections, e.g. terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80516Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/84Parallel electrical configurations of multiple OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/86Series electrical configurations of multiple OLEDs

Definitions

  • the present invention relates to a planar light emitting device.
  • the light-emitting device includes a pair of electrodes and an organic EL layer that is sandwiched between the pair of electrodes and includes an organic light-emitting layer.
  • the light emitting device causes the organic EL layer to emit light by a current flowing through the organic EL layer in accordance with a voltage applied between the pair of electrodes.
  • at least two sets of terminals are formed on the substrate. Each set of terminals is connected to a conductor and connected to a pair of electrodes. Thereby, a voltage is supplied to the organic EL layer.
  • An object of the present invention is to provide a planar light emitting device capable of reducing the area of a power feeding unit.
  • the present invention provides a transparent substrate having a rectangular shape in plan view, an organic EL element formed on one main surface of the transparent substrate and having an anode and a cathode, and at least one side of the transparent substrate.
  • a light emitting panel including a plurality of power supply units connected to the anode and the cathode of the organic EL element, an insulating substrate disposed opposite to the plurality of power supply units, and the plurality of power supply units.
  • a plurality of connection electrodes formed on the first main surface of the insulating substrate facing the portion, and a plurality of connection terminals formed on the second main surface of the insulating substrate opposite to the first main surface An anode bus line that electrically connects a connection terminal and a connection electrode corresponding to an anode of the organic EL element among the plurality of connection terminals and the plurality of connection electrodes, and the plurality of connection terminals and The plurality of connection electrodes Among them, a plurality of connection substrates including a connection terminal corresponding to the cathode of the organic EL element and a bus line for cathodes for electrically connecting the connection electrodes to each other, a plurality of power feeding portions of the light emitting panel, and the plurality of connections And a connection member that electrically connects the plurality of connection electrodes of the substrate.
  • the anode bus line and the cathode bus line are formed to face the insulating substrate.
  • the first main surface of the insulating substrate includes the anode bus line and the cathode bus line that have the same polarity as the anode bus line and the cathode bus line.
  • the plurality of anode bus lines and the cathode bus lines having different polarities from the anode bus lines and the cathode bus lines on the second main surface of the insulating substrate.
  • the insulating substrate is electrically connected so that the same pole is paired with the anode bus line and the cathode bus line formed on both surfaces of the insulating substrate, respectively. It is preferable to include a plurality of through holes.
  • the plurality of power supply units include at least one anode power supply unit connected to the anode of the organic EL element and at least one cathode power supply unit connected to the cathode of the organic EL element.
  • the anode bus line is disposed on the first main surface of the insulating substrate so as to face the power supply portion of the at least one anode, and the cathode bus line is provided with the power supply portion of the at least one cathode.
  • the cathode bus line is arranged on the second main surface of the insulating substrate so as to correspond to the power supply part of the at least one anode, and the anode bus line is the at least one It arrange
  • a through hole it is preferable and at least one second through hole electrically connecting the cathode bus line formed on both surfaces of the insulating substrate.
  • each of the power supply portions includes a power supply auxiliary electrode formed on a main surface facing the insulating substrate, and each through hole is connected to each through hole. Or it is preferable to arrange
  • the plurality of power supply units include at least two power supply units having the same polarity respectively provided at both ends of two predetermined parallel sides of the transparent substrate, and the plurality of connection terminals are: It is preferable to include at least two connection terminals having different polarities respectively provided at both ends of two predetermined parallel sides of the insulating substrate.
  • the transparent substrate is formed in a rectangular shape, and the plurality of power feeding units are arranged along two predetermined parallel sides of the four sides of the transparent substrate, and the organic EL
  • the element includes one main surface of the anode, and is formed on the one main surface of the anode of the organic EL element so as to extend along two different sides from the two predetermined parallel sides, and is electrically connected to the anode. It is preferable to provide a plurality of auxiliary electrodes connected to each other.
  • connection terminals having different polarities are disposed at both ends of two predetermined parallel sides of the two connection substrates.
  • the plurality of connection electrodes are arranged apart from each other along the anode bus line or the cathode bus line connected to the plurality of connection electrodes, and the anode bus line Alternatively, it preferably includes a plurality of sub-electrodes extending along a direction orthogonal to the cathode bus line.
  • the light emitting panel of the planar light emitting device 1 has a transparent substrate 11 having a rectangular shape in plan view (in the illustrated example, a rectangular shape in plan view).
  • a cover glass 12 having a rectangular shape in plan view (square shape in plan view in the illustrated example) is fixed to one main surface of the transparent substrate 11 with, for example, a non-conductive adhesive.
  • the cover glass 12 is a sealing member that seals the organic EL element 13 formed on one main surface of the transparent substrate 11.
  • the planar light emitting device 1 uses a surface (non-fixed surface) to which the cover glass 12 is not fixed among a plurality of main surfaces of the transparent substrate 11 as a light emitting surface (light emitting surface).
  • the transparent substrate 11 is a glass substrate, for example.
  • the transparent substrate 11 may be a transparent resin film substrate other than a glass substrate, for example.
  • connection substrates 40 and 50 for supplying power to the organic EL element 13 are disposed on one main surface of the transparent substrate 11.
  • the length of one side of the cover glass formed in a square shape is set to be equal to the length of the short side of the transparent substrate 11 formed in a rectangular shape.
  • the cover glass 12 is fixed to the center of the transparent substrate 11 in the longitudinal direction. Accordingly, both ends in the longitudinal direction of the transparent substrate 11 are exposed from the cover glass 12.
  • the two connection substrates 40 and 50 are arranged in a portion exposed from the cover glass 12 on one main surface of the transparent substrate 11.
  • the two connection substrates 40 and 50 are formed so as to extend along the side (short side) of the transparent substrate 11.
  • connection substrate 40 is pressure-bonded to one main surface of the transparent substrate 11 with a conductive connection member (for example, anisotropic conductive film (ACP) 14).
  • connection substrate 50 is pressure-bonded to one main surface of the transparent substrate 11 with a conductive adhesive.
  • connection terminals 42a to 42e are formed on one main surface (non-adhesive surface) of the connection substrate 40.
  • Each of the connection terminals 42a to 42e is formed in a rectangular shape in plan view (in the illustrated example, a rectangular shape in plan view).
  • Each of the connection terminals 42a to 42e is connected to either the anode or the cathode of the organic EL element 13.
  • connection terminals 42a, 42b, and 42d are connected to the anode of the organic EL element 13, and the two connection terminals 42c and 42e are connected to the cathode of the organic EL element 13. Therefore, the connection terminal 42a connected to the anode and the connection terminal 42e connected to the anode are arranged at both ends of the connection substrate 40. In addition, a connection terminal 42c connected to the cathode is disposed substantially at the center of the connection substrate 40. Two connection terminals 42b and 42d connected to the anode are disposed on both sides of the connection terminal 42c.
  • connection terminals 52a to 52e are formed on one main surface (non-adhesive surface) of the connection substrate 50.
  • Each of the connection terminals 52a to 52e is connected to either the anode or the cathode of the organic EL element 13.
  • the planar anode 21 of the organic EL element 13 is formed in a rectangular shape in plan view (for example, a square shape in plan view) on one main surface of the transparent substrate 11.
  • the planar anode 21 is made of a transparent conductive film such as an ITO film or an IZO film, for example.
  • the organic layer 22 is formed on the main surface opposite to the main surface of the planar anode 21 facing the transparent substrate 11.
  • the organic layer 22 includes at least a light emitting layer, and is formed in a planar rectangular shape (for example, a square shape in plan view).
  • the planar cathode 23 is formed on the main surface opposite to the main surface of the organic layer 22 facing the planar anode 21, facing the planar anode 21, and having a rectangular shape in plan view (for example, a square shape in plan view). Yes.
  • the planar cathode 23 is a metal film having a smaller resistivity and a smaller work function than the transparent conductive film.
  • the metal film is an aluminum (Al) film, a laminated film of a magnesium (Mg) film and a silver (Ag) film.
  • a plurality of (five in the drawing) power feeding units are provided along the short sides (sides extending in the horizontal direction in the drawing) of the transparent substrate 11 at both ends in the longitudinal direction of the transparent substrate 11.
  • 24a to 24e and 25a to 25e are arranged apart from each other.
  • Each of the power feeding units 24a to 24e and 25a to 25e is formed in the rectangular shape in plan view using the same material as that of the planar anode 21.
  • the six power feeding portions 24 a, 24 c, 24 e, 25 a, 25 c, 25 e are disposed at both ends and the center of the short side of the transparent substrate 11 and are electrically connected to the planar anode 21.
  • these power feeding units 24a, 24c, 24e, 25a, 25c, and 25e are referred to as anode power feeding units as necessary.
  • the four power feeding units 24b, 24d, 25b, and 25d are disposed between the six anode power feeding units 24a, 24c, 24e, 25a, 25c, and 25e, respectively.
  • Each of the power feeding portions 24b, 24d, 25b, and 25d is electrically connected to a lead wire 23a that extends from the planar cathode 23 along the longitudinal direction (vertical direction in the drawing) of the transparent substrate 11.
  • these power feeding units 24b, 24d, 25b, and 25d are referred to as cathode power feeding units as necessary.
  • the organic EL element 13 is configured such that the light emitting layer in the organic layer 22 emits light when a DC voltage is applied between the planar anode 21 and the planar cathode 23.
  • the organic layer 22 includes a light emitting layer formed of an organic molecular material capable of obtaining light of a desired light emitting color, a hole transport layer interposed between the light emitting layer and the planar anode 21, a light emitting layer, and a planar cathode. And an electron transport layer interposed therebetween.
  • the layer structure of the organic layer 22 is not particularly limited. For example, when the desired light emission color of the organic layer 22 is white, the hole transport layer is formed by doping the light emitting layer with three kinds of dopant dyes of red, green, and blue.
  • a laminated structure of a light emitting layer and an electron transport layer may be adopted.
  • the layer structure of the organic layer 22 may employ a laminated structure of a blue hole transporting light emitting layer, a green electron transporting light emitting layer, and a red electron transporting light emitting layer.
  • the layer structure of the organic layer 22 may employ a laminated structure of a hole transport layer, a blue electron transport light emitting layer, a green electron transport light emitting layer, and a red electron transport light emitting layer.
  • the transparent substrate 11 may contain one or more phosphors. The one or more phosphors are excited by light from the light emitting layer of the organic layer 22 and emit light having a longer wavelength than the light from the light emitting layer.
  • the organic layer 22 may be configured by only the light emitting layer without providing the hole transport layer and the electron transport layer.
  • An electrode is formed.
  • the auxiliary electrode is electrically connected to the planar anode 21.
  • the auxiliary electrode includes a plurality of auxiliary electrodes 26a extending along the outer periphery of the organic layer 22 and having a rectangular shape in plan view at the base end portions of the anode power feeding portions 24a, 24c, 24e, 25a, 25d, and 25e, and transparent And a plurality of auxiliary electrodes 26b formed to extend along the long side of the substrate 11.
  • the plurality of auxiliary electrodes 26 a and 26 b are made of a material having a resistivity lower than that of the planar anode 21, for example, a laminated film of a chromium (Cr) film and a gold (Au) film.
  • the auxiliary electrodes 26a and 26b may be formed of a laminated film of a molybdenum (Mo) film, an Al film, and a Mo film.
  • the plurality of auxiliary electrodes 26a and 26b have substantially the same potential around the planar anode 21. That is, the plurality of auxiliary electrodes 26 a and 26 b improve the voltage non-uniformity of the planar anode 21 in the longitudinal direction of the transparent substrate 11.
  • a driving current is supplied to the planar anode 21 made of a transparent conductive film through three anode power feeding portions 24 a, 24 c, and 24 e formed at the end in the longitudinal direction of the transparent substrate 11. For this reason, a potential gradient is generated in the planar anode 21 due to the resistance value along the longitudinal direction of the transparent substrate 11.
  • the plurality of auxiliary electrodes 26 a and 26 b are formed so as to extend along the longitudinal sides of the transparent substrate 11 and are electrically connected to the planar anode 21. Accordingly, the driving current flows from the plurality of auxiliary electrodes 26a and 26b formed in a substantially frame shape toward the planar anode 21, and the potential gradient is improved. Thereby, the luminance unevenness in the light emission surface of the organic EL element 13 resulting from a potential gradient is reduced.
  • the power supply auxiliary electrodes 27a to 27e and 28a to 28e are formed on the main surfaces of the power supply portions 24a to 24e and 25a to 25e facing the connection substrate 40.
  • Each of the power feeding auxiliary electrodes 27a to 27e and 28a to 28e is formed in a rectangular shape in plan view extending along the side of the transparent substrate 11 (short side, the side that is up and down in the figure and extends in the left-right direction). .
  • the power supply auxiliary electrodes 27a to 27e and 28a to 28e are electrically connected to the corresponding power supply units 24a to 24e and 25a to 25e.
  • Each of the power feeding auxiliary electrodes 27a to 27e, 28a to 28e is formed of a laminated film of a chromium (Cr) film and a gold (Au) film, for example.
  • Each auxiliary power supply electrode may be formed of a laminated film of a molybdenum (Mo) film, an Al film, and a Mo film.
  • Each of the power feeding auxiliary electrodes 27a to 27e and 28a to 28e is electrically connected to the corresponding power feeding portions 24a to 24e and 25a to 25e by contacting an external conductor (electrodes formed on the connection substrates 40 and 50). Compared to the case, contact resistance with the external conductor and variation in contact resistance are reduced. Thereby, the improvement of the luminous efficiency of the planar light-emitting device 1 is achieved.
  • connection boards 40 and 50 are the same structures, the structure is demonstrated about the connection board 40, The description with respect to the connection board 50 is abbreviate
  • connection substrate 40 includes an insulating substrate 41 having a rectangular shape in plan view (for example, rectangular shape in plan view).
  • the insulating substrate 41 is a flexible substrate such as a polyimide resin film.
  • connection terminals 42a to 42e are formed on one main surface of the insulating substrate 41. Further, connection electrodes 43a to 43e are formed on the main surface opposite to the main surface of the insulating substrate 41 facing the connection terminals 42a to 42e. Each of the connection electrodes 43a to 43e is connected to the power feeding portions 24a to 24e via the connection member 14 shown in FIG. 1B and the power feeding auxiliary electrodes 27a to 27e.
  • the insulating substrate 41 has an anode bus line extending along the direction in which the connection terminals 42a to 42e and the connection electrodes 43a to 43e are arranged, that is, the longitudinal direction of the insulating substrate 41 (short direction of the transparent substrate 11). 44 and a cathode bus line 45 are formed. The anode bus line 44 and the cathode bus line 45 are formed on the insulating substrate 41 substantially on the same line in plan view.
  • the anode bus line 44 and the cathode bus line 45 are formed on the two main surfaces of the insulating substrate 41 so as to face each other.
  • a bus line having the same polarity as each of the power feeding units 24a to 24e is formed on a surface facing each of the power feeding units 24a to 24e, and the bus line having a different polarity is a surface opposite to the facing surface. Is formed.
  • an anode bus line 44 is formed on the main surface of the insulating substrate 41 facing the power feeding portion 24 a connected to the planar anode 21.
  • a cathode bus line 45 is formed so as to face the anode bus line 44 with the insulating substrate 41 interposed therebetween.
  • a cathode bus line 45 is formed on the main surface of the insulating substrate 41 adjacent to the power supply unit 24 a and facing the power supply unit 24 b connected to the planar cathode 23.
  • An anode bus line 44 is formed so as to face the cathode bus line 45 with the insulating substrate 41 interposed therebetween.
  • the anode bus lines 44 respectively formed on the two main surfaces of the insulating substrate 41 are electrically connected to each other through the through holes 44a, and the cathode bus lines 45 are electrically connected to each other through the through holes 45a.
  • the through hole 44a connecting the anode bus line 44 is formed so as to overlap with the power feeding parts 24a, 24c, and 24e having the same polarity.
  • the through hole 45a connecting the cathode bus line 45 is formed so as to overlap with the corresponding power feeding portions 24b and 24d.
  • the anode bus line 44 and the cathode bus line 45 are formed so as to bypass bus lines and through holes having opposite polarities on the same surface.
  • connection electrode 43 a includes a plurality of sub-electrodes 46 formed so as to extend along a direction orthogonal to the anode bus line 44.
  • each of the connection electrodes 43b to 43e includes a plurality of sub-electrodes 46 formed in the same manner as the connection electrode 43a.
  • the connection electrodes 43a to 43e formed in this manner improve the pressure-bonding property with the connection member 14. That is, each of the connection electrodes 43a to 43e includes a plurality of sub-electrodes, and makes it difficult for the connection substrate 40 to be peeled off from the transparent substrate 11.
  • connection terminals 42a to 42e, the connection electrodes 43a to 43e, the bus lines 44 and 45, and the through holes 44a and 45a are made of, for example, copper (Cu), an alloy of silver (Ag) and copper, a multi-layered metal foil, or the like. It becomes more. Note that gold or the like may be plated.
  • a plurality of polarity marks 47 and 48 indicating the polarities of the plurality of connection terminals 42a to 42e are formed on the main surface of the connection substrate 40 on which the plurality of connection terminals 42a to 42e are formed.
  • a “+” polarity mark 47 indicating that the connection is made to the planar anode 21 is formed in the vicinity of each of the connection terminals 42a, 42b, and 42d.
  • a “ ⁇ ” polarity mark 48 indicating that the connection is made with the planar cathode 23 is formed.
  • connection substrates 40 and 50 are respectively crimped to two parallel sides of a transparent substrate 11 formed in a rectangular shape.
  • connection substrate 40 five connection terminals 42a to 42e are arranged.
  • connection board 50 is provided with five connection terminals 52a to 52e.
  • the connection terminal 42 a disposed at the first end (left end) of one of the two parallel sides (upper side in the drawing) is a planar anode of the organic EL element 13.
  • the connection terminal 42e connected to the second end 21 and disposed at the second end (right end) is connected to the planar cathode 23 of the organic EL element 13.
  • connection terminal 52 a disposed at the first end (left end) is connected to the planar cathode 23 of the organic EL element 13.
  • the connection terminal 52e disposed at the second end (right end) is connected to the planar anode 21 of the organic EL element 13.
  • a connection terminal connected to the planar anode 21 is called an anode terminal
  • a connection terminal connected to the planar cathode is called a cathode terminal.
  • the transparent substrate 11 of the planar light emitting device 1 has three feeding parts connected to the planar anode 21 on one of the two opposing sides (upper side in the figure). 24a, 24c, 24e and two power feeding parts 24b, 24d connected to the planar cathode 23 (see FIG. 2) are alternately arranged. Similarly, on the other of the two opposing sides of the transparent substrate 11 (the lower side in the figure), three power feeding portions 25a, 25c, 25e connected to the planar anode 21 and a planar cathode 23 (see FIG. 2) and the two power feeding portions 25b and 25d connected to each other are alternately arranged. Accordingly, in the transparent substrate 11, four power feeding portions 24 a, 24 e, 25 a, and 25 e connected to the planar anode 21 are disposed at both ends of the two opposing sides.
  • connection terminals 42a to 42e shown in FIG. 4A three connection terminals 42a, 42b, and 42d having the same polarity are connected via a bus line 44 (see FIG. 3) formed on the connection board 40. They are electrically connected to each other. Similarly, the two connection terminals 42c and 42e having the same polarity are electrically connected to each other via a bus line 45 (see FIG. 3) formed on the connection substrate 40.
  • connection terminals for example, two connection terminals 42b and 42c
  • connection terminals for example, two connection terminals 42b and 42c
  • drive power is supplied to a pair of connection terminals via a pair of external wiring.
  • the drive voltage supplied to the connection terminal 42b is supplied almost evenly to the three power feeding units 24a, 24c, and 24e shown in FIG. 4B through the bus line 44 and the like formed on the connection substrate 40.
  • the drive voltage supplied to the connection terminal 42c is supplied almost evenly to the two power supply units 24b and 24d shown in FIG. 4B through the bus line 45 formed on the connection board 40 and the like. .
  • the drive voltage supplied to the three power supply units 24a, 24c, and 24e is transmitted to the three power supply units 25a, 25c, and 25e via the two auxiliary electrodes 26a and 26b (see FIG. 2).
  • the power feeding units 25 a, 25 c, and 25 e are electrically connected via bus lines formed on the connection substrate 50. In this way, by supplying a driving voltage to one of the two connection substrates 40 and 50, the six power feeding portions 24a, 24c, 24e, 25a, and 25c for the anode formed on the transparent substrate 11 are provided. , 25e can be supplied with a driving voltage.
  • connection terminal 42a formed on the connection substrate 40 and the connection terminal 52a formed on the connection substrate 50 the drive voltage is supplied in the same manner as described above.
  • the planar light emitting device 1 can be arbitrarily set. Driving power can be supplied by the external wiring connected from the direction. That is, it is possible to increase the degree of freedom in the direction in which the driving power is supplied to the planar light emitting device 1.
  • connection substrates 40 and 50 in which the plurality of connection terminals 42a to 42e and 52a to 52e are arranged as described above, the plurality of planar light emitting devices 1 can be easily connected. .
  • planar light emitting devices 1a, 1b, and 1c are arranged adjacent to each other along the arrangement direction of the connection terminals (the short direction of the transparent substrate 11).
  • the cathode terminal 42e of the planar light emitting device 1a and the anode terminal 42a of the planar light emitting device 1b are adjacent to each other.
  • the cathode terminal 42e of the planar light emitting device 1b and the anode terminal 42a of the planar light emitting device 1c are adjacent to each other.
  • a DC voltage is applied as driving power by the external wiring 61 connected to the anode terminal 42a of the planar light emitting device 1a and the external wiring 64 connected to the cathode terminal 42e of the planar light emitting device 1c.
  • the three planar light emitting devices 1a to 1c are connected in series with respect to the DC voltage, and the current values flowing through the planar light emitting devices 1a to 1c are equal to each other. Accordingly, the light emission luminances of the respective planar light emitting devices 1a to 1c can be made equal.
  • planar light emitting devices 1a to 1c are arranged adjacently along a direction (longitudinal direction of the transparent substrate 11) perpendicular to the arrangement direction of the connection terminals.
  • the cathode terminal 52a of the planar light emitting device 1a and the anode terminal 42a of the planar light emitting device 1b are adjacent to each other.
  • the cathode terminal 52a of the planar light emitting device 1b and the anode terminal 42a of the planar light emitting device 1c are adjacent to each other.
  • planar light emitting devices 1a to 1c are connected by four external wirings 61 to 64.
  • Each of the planar light emitting devices 1a to 1c has six anode terminals 42a, 42b, 42d, 52a, 52b, 52d and four cathode terminals 42c, 42e, 52c, 52e as shown in FIG. ing.
  • the anode terminal 42 d of the planar light emitting device 1 a and the anode terminal 42 a of the planar light emitting device 1 b are connected to each other by the external wiring 61.
  • the anode terminal 42 d of the planar light emitting device 1 b and the anode terminal 42 a of the planar light emitting device 1 c are connected to each other by the external wiring 62.
  • the cathode terminal 52 c of the planar light emitting device 1 a and the cathode terminal 52 a of the planar light emitting device 1 b are connected to each other by an external wiring 63.
  • the cathode terminal 52c of the planar light emitting device 1b and the cathode terminal 52a of the planar light emitting device 1c are connected to each other by an external wiring 64. In this manner, the three planar light emitting devices 1a to 1c can be easily connected in parallel.
  • planar light emitting devices 1a to 1f arranged in a matrix can be easily connected in series.
  • the three planar light emitting devices 1a to 1c are connected in series, and the three planar light emitting devices 1d to 1f are connected.
  • the three planar light emitting devices 1a to 1c and the three planar light emitting devices 1d to 1f connected in series can be connected in parallel to each other.
  • planar light emitting devices 1a and 1b are arranged adjacent to each other.
  • the cathode terminal 42e of the planar light emitting device 1a and the anode terminal 42a of the planar light emitting device 1b are connected to each other by an external wiring 63.
  • the anode terminal 52e of the planar light emitting device 1a and the cathode terminal 52a of the planar light emitting device 1b are connected to each other by an external wiring 64.
  • the planar light emitting devices 1a and 1b are connected as shown in FIG. 9B. Therefore, as shown in FIG.
  • the anode terminal 42a and the cathode terminal 52a of the planar light emitting device 1a are connected to the AC power source 70 (see FIG. 9B) by the two external wirings 61 and 62.
  • the planar light emitting devices 1a and 1b can be easily connected so that light can be emitted from the AC power supply.
  • the external wiring for supplying power to the planar light emitting device and the external wiring for connecting a plurality of planar light emitting devices in series or in parallel are provided, for example, in a case that accommodates the planar light emitting device.
  • the case 100 that houses the planar light emitting device 1 has a connecting member 101.
  • the connection member 101 is, for example, a wiring cable or a wiring board.
  • the terminals of the connection member 101 are in contact with the connection terminals 42 e provided on the connection substrate 40 of the planar light emitting device 1 accommodated in the case 100.
  • the connection terminal 42e is shown in FIG. 11, the other connection terminals 42a to 42d and 52a to 52e (see FIG.
  • connection terminals 42a to 42e and 52a to 52e are also in contact with the terminals of the connection member 101.
  • the planar light emitting device 1 by housing the planar light emitting device 1 in the case 100, it is possible to supply power to the connection terminals 42a to 42e and 52a to 52e and to be connected to other planar light emitting devices.
  • a plurality of power feeding units 24a to 24e (a plurality of power supply units 24a to 24e electrically connected to the planar anode 21 or the planar cathode 23 of the organic EL element 13 along one side of the transparent substrate 11 having a rectangular shape in plan view)
  • Auxiliary power supply electrodes 27a to 27e are formed, and a plurality of power supply portions 25a to 25e (electrically connected to the planar anode 21 or the planar cathode 23 of the organic EL element 13 along a side parallel to the side thereof.
  • a plurality of power feeding auxiliary electrodes 28a to 28e) are formed.
  • a connection board 40 is connected to the plurality of power supply units 24a to 24e (the plurality of power supply auxiliary electrodes 27a to 27e) by the connection member 14.
  • connection electrodes 43a to 43e are formed on the main surface of the connection substrate 40 facing the five power feeding portions 24a to 24e, and the main surface opposite to the main surface of the connection substrate 40 facing the power feeding portion is formed on the main surface.
  • Five connection terminals 42a to 42e are formed.
  • the five connection terminals 42a to 42e and the five connection electrodes 43a to 43e are electrically connected by the anode bus line 44 or the cathode bus line 45.
  • the three power feeding units 24a, 24c, 24e (three power feeding auxiliary electrodes 27a, 27c, 27e) are electrically connected to each other via the anode bus line 44 of the connection substrate 40, and the two power feeding units 24b, 24d ( The two auxiliary power supply electrodes 27 b and 27 d) are electrically connected to each other via the cathode bus line 45 of the connection substrate 40. Accordingly, since it is not necessary to connect the power supply units having the same polarity among the five power supply units 24a to 24e on the transparent substrate 11, the power supply units 24a to 24e can be narrowed. As a result, the area of the region that does not emit light in the transparent substrate 11 can be reduced.
  • the anode bus line 44 and the cathode bus line 45 are formed so as to face the insulating substrate 41. Therefore, it is possible to suppress the width of the insulating substrate 41 from increasing.
  • a bus line having the same polarity as each of the power supply units 24a to 24e is formed on the portion of the insulating substrate 41 facing each of the power supply units 24a to 24e, and is opposite to the portion of the insulating substrate 41 facing the power supply unit.
  • bus lines having different polarities are formed.
  • the plurality of through holes 44a and 45a formed in the insulating substrate 41 electrically connect the bus lines formed on both surfaces of the insulating substrate 41 to each other. Accordingly, the anode bus line 44 and the cathode bus line 45 can be formed on substantially the same straight line in a plan view, and an increase in the width of the insulating substrate 41 can be suppressed.
  • the through holes 44a and 45a are formed so as to overlap the anode bus line 44 connected to the through holes 44a and 45a or the power supply auxiliary electrodes 27a to 27e having the same polarity as the cathode bus line 45. Yes. Therefore, it is possible to suppress the size of the insulating substrate 41 from being increased as compared with the case where the place where the through hole is formed is not overlapped with the auxiliary electrode for power supply. Further, it is not necessary to provide a member for insulation between the power supply auxiliary electrode and the through hole having different polarities.
  • Two feeding parts 24a and 24e having the same polarity are formed at both ends of two predetermined parallel sides of the transparent substrate 11, and the connecting substrates 40 and 50 have different polarities at both ends.
  • Two connection terminals 42a, 42e, 52a, 52e are formed. Therefore, when a plurality of planar light emitting devices 1 are arranged along the longitudinal direction of the connection substrates 40 and 50, the connection terminals having different polarities are adjacent to each other in the two adjacent planar light emitting devices 1. Two planar light emitting devices 1 can be easily connected in series.
  • a plurality of power feeding sections 24a to 24e and 25a to 25e are formed along two predetermined parallel sides of the four sides of the rectangular transparent substrate 11.
  • An auxiliary electrode 26b is formed on one main surface of the planar anode 21 of the organic EL element 13 so as to extend along two different sides from two predetermined parallel sides, and the auxiliary electrode 26b is formed on the planar anode 21. And are electrically connected. Therefore, the potential gradient caused by the resistance value of the planar anode 21 can be improved by the auxiliary electrode 26b, and the luminance unevenness caused by the potential gradient can be reduced.
  • connection terminals 42a and 52a (42e and 52e) having different polarities are formed at the end portions in the same direction of the two connection substrates 40 and 50, respectively. Therefore, when a plurality of planar light emitting devices 1 are arranged along the direction in which the connection substrates 40 and 50 are arranged, connection terminals having different polarities are adjacent to each other in the two adjacent planar light emitting devices 1. Two planar light emitting devices 1 can be easily connected in series.
  • connection electrode 43 a includes a plurality of sub-electrodes 46 that are spaced apart from each other along the corresponding bus line 44 and extend in a direction orthogonal to the bus line 44.
  • the connection electrode 43a formed in this manner improves the crimping property with the connection member 14. Therefore, each of the connection electrodes 43a to 43e includes a plurality of sub-electrodes, and the connection substrate 40 can be made difficult to peel off from the transparent substrate 11.
  • connection terminals 42a to 42e and 52a to 52e may be changed as appropriate.
  • the external wirings 61 to 64 (see FIG. 5) or the like may be formed into a shape that can be directly soldered. Moreover, it is good also as a shape which can connect a connector in order to attach or detach an external wiring easily.
  • a narrow pitch connector is preferable. The narrow pitch connector can connect two substrates to each other, and can connect the substrate and the flexible substrate to each other.
  • each connection terminal may be changed as appropriate.
  • the connection terminals 42a to 42e may be shifted in the width direction of the insulating substrate 41.
  • a plurality of connection terminals 42 a, 42 b, 42 d having the same polarity (anode) can be connected to each other by a bus line 44 a formed on one main surface of the insulating substrate 41.
  • the interval between the connection terminals 41a to 42e may be appropriately changed.
  • the number of power feeding units may be changed as appropriate. Needless to say, the number of auxiliary electrodes for power supply and the number of connection electrodes formed on each connection substrate are changed corresponding to the changed power supply unit.
  • connection terminals formed on each connection board may be changed as appropriate.
  • the organic EL element 13 may be sealed with resin instead of the cover glass 12.
  • the connecting member 14 may be used as the connecting member 14.
  • the power feeding auxiliary electrode and the connection electrode may be electrically connected by solder.
  • the insulating substrate 41 may be a multilayer substrate.
  • the insulating substrate 41 is formed by laminating a plurality of films such as polyimide resins.
  • the width of the bus lines 44 and 45 can be increased, and the resistance value in the bus lines 44 and 45 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

平面視矩形状の透明基板11の1つの辺に沿って複数の給電部(給電用補助電極27a~27e)が形成され、その辺と平行な辺に沿って給電部(給電用補助電極)が形成される。給電部には接続基板40が接続部材により接続されている。接続基板40には、複数の給電部と対向する主面に5つの接続用電極43a~43eが形成され、複数の給電部と対向する接続基板40の主面と反対側の主面には第5の接続端子42a~42eが形成されている。そして、5つの接続端子42a~42eと第5の接続用電極43a~43eは、陽極用バスライン44又は陰極用バスライン45により電気的に接続されている。複数の給電部(給電用補助電極27a,27c,27e)は接続基板40の陽極用バスライン44を介して互いに電気的に接続され、給電部(給電用補助電極27b,27d)は接続基板40の陰極用バスライン45を介して互いに電気的に接続される。

Description

面状発光装置
 本発明は、面状発光装置に関する。
 従来、有機エレクトロルミネッセンス素子(有機EL素子)を用いた面状発光装置は、照明等の用途に提案されている。この発光装置は、一対の電極と、この一対の電極間に挟まれ、且つ有機発光層を含む有機EL層とを備える。発光装置は、一対の電極間に印加される電圧に応じて有機EL層に流れる電流により、有機EL層を発光させる。例えば、基板上には少なくとも2組の端子が形成されている。各組の端子が互いに導電体に接続され、それぞれ一対の電極に接続される。これにより、有機EL層に対して電圧が供給される。(例えば、特許文献1参照)。
特表2007-536708号公報
 ところが、上記の発光装置では、端子数が増加する場合、各端子間及び電極を接続する導電体を形成するための面積が大きくなる、つまり給電のために必要な基板の面積が大きくなる。このことは、発光する有機EL層の面積と比べ、基板の大型化を招く。
 本発明の目的は、給電部の面積縮小が可能な面状発光装置を提供することにある。
 上記目的を達成するため、この発明は、平面視矩形状の透明基板と、前記透明基板の一主面に形成され、且つ陽極及び陰極を有する有機EL素子と、前記透明基板の少なくとも1つの辺に沿って形成され、且つ前記有機EL素子の陽極及び陰極にそれぞれ接続された複数の給電部と、を含む発光パネルと、前記複数の給電部と対向配置される絶縁基板と、前記複数の給電部と対向する前記絶縁基板の第1の主面に形成された複数の接続用電極と、前記第1主面と反対側の前記絶縁基板の第2の主面に形成された複数の接続端子と、前記複数の接続端子及び前記複数の接続用電極のうち前記有機EL素子の陽極に対応する接続端子及び接続用電極を互いに電気的に接続する陽極用バスラインと、前記複数の接続端子及び前記複数の接続用電極のうち前記有機EL素子の陰極に対応する接続端子及び接続用電極を互いに電気的に接続する陰極用バスラインと、を含む複数の接続基板と、前記発光パネルの複数の給電部と前記複数の接続基板の複数の接続用電極とを電気的に接続する接続部材と、を備えた。
 この面状発光装置において、前記陽極用バスラインと前記陰極用バスラインは前記絶縁基板に対向するように形成されてなることが好ましい。
 この面状発光装置において、前記絶縁基板の第1の主面には、前記陽極用バスライン及び前記陰極用バスラインが前記陽極用バスライン及び前記陰極用バスラインと同一極性の前記複数の給電部と対向するように配置され、前記絶縁基板の第2の主面には、前記陽極用バスライン及び前記陰極用バスラインが前記陽極用バスライン及び前記陰極用バスラインと異なる極性の前記複数の給電部と対応するように配置され、前記絶縁基板は、前記絶縁基板の両面にそれぞれ形成された前記陽極用バスライン及び前記陰極用バスラインを同一極が対となるように電気的に接続する複数のスルーホールを含むことが好ましい。
 この面状発光装置において、複数の給電部は、前記有機EL素子の陽極に接続された少なくとも1つの陽極の給電部、及び前記有機EL素子の陰極に接続された少なくとも1つの陰極の給電部を含み、前記絶縁基板の第1の主面には、前記陽極用バスラインが前記少なくとも1つの陽極の給電部と対向するように配置され、前記陰極用バスラインが前記少なくとも1つの陰極の給電部と対向するように配置され、前記絶縁基板の第2の主面には、前記陰極用バスラインが前記少なくとも1つの陽極の給電部と対応するように配置され、前記陽極用バスラインが前記少なくとも1つの陰極の給電部と対応するように配置され、前記絶縁基板は、前記絶縁基板の両面に形成された前記陽極用バスラインを電気的に接続する少なくとも1つの第1のスルーホールと、前記絶縁基板の両面に形成された前記陰極用バスラインを電気的に接続する少なくとも1つの第2のスルーホールとを含むことが好ましい。
 この面状発光装置において、前記各給電部は、前記絶縁基板と対向する主面上に形成された給電用補助電極を含み、各スルーホールは、各スルーホールと接続された前記陽極用バスライン又は前記陰極用バスラインと同一極性の前記給電用補助電極と重なるように配置されることが好ましい。
 この面状発光装置において、前記複数の給電部は、前記透明基板における所定の平行な2辺の両端にそれぞれ設けられた同一極性を有する少なくとも2つの給電部を含み、前記複数の接続端子は、前記絶縁基板における所定の平行な2辺の両端にそれぞれ設けられた互いに異なる極性を有する少なくとも2つの接続端子を含むことが好ましい。
 この面状発光装置において、前記透明基板は、矩形状に形成され、前記複数の給電部は、前記透明基板の4つの辺のうち所定の平行な2つの辺に沿って配置され、前記有機EL素子は、陽極の一主面を含み、前記有機EL素子の陽極の一主面に前記所定の平行な2つの辺と異なる2つの辺に沿って延びるように形成され、且つ前記陽極と電気的に接続された複数の補助電極を備えることが好ましい。
 この面状発光装置において、前記2つの接続基板における所定の平行な2辺の両端にはそれぞれ互いに異なる極性の前記2つの接続端子が配置されることが好ましい。
 この面状発光装置において、前記複数の接続用電極は、該複数の接続用電極と接続された前記陽極用バスライン又は前記陰極用バスラインに沿って離間して配列され、該陽極用バスライン又は陰極用バスラインと直交する方向に沿って延びる複数のサブ電極を含むことが好ましい。
 本発明によれば、給電部の面積縮小が可能な面状発光装置を提供することができる。
一実施形態の面状発光装置の(a)背面図、(b)一部概略断面図である。 発光パネルの端部拡大図である。 発光パネルの端部、及び接続基板の模式図である。 (a)(b)は電極配列の説明図である。 面状発光装置の接続状態を示す模式図である。 面状発光装置の接続状態を示す模式図である。 面状発光装置の接続状態を示す模式図である。 面状発光装置の接続状態を示す模式図である。 面状発光装置の接続状態を示す(a)模式図、(b)等価回路図である。 面状発光装置の接続状態を示す模式図である。 発光パネル及びケースの一部拡大断面図である。 接続基板の模式図である。
 以下、一実施形態の面状発光装置を図1~図9に従って説明する。
 図1(a)に示すように、面状発光装置1の発光パネルは、平面視矩形状(図示例では、平面視長方形状)の透明基板11を有している。この透明基板11の一主面には、平面視矩形状(図示例では平面視正方形状)のカバーガラス12が、例えば非導電性接着剤により固着されている。カバーガラス12は、透明基板11の一主面に形成された有機EL素子13を封止する封止部材である。
 この面状発光装置1は、透明基板11の複数の主面のうち、カバーガラス12が固着されていない面(非固着面)を光出射面(発光面)として用いる。透明基板11は例えばガラス基板である。なお、透明基板11には、ガラス基板以外、例えば透明な樹脂フィルム基板が用いられても良い。
 また、透明基板11の一主面には、有機EL素子13に対して給電するための2つの接続基板40,50が配設されている。この実施形態において、正方形状に形成されたカバーガラスの一辺の長さは、長方形状に形成された透明基板11の短辺の長さと等しくなるように設定されている。カバーガラス12は、透明基板11の長手方向中央に固着されている。従って、透明基板11の長手方向両端は、カバーガラス12から露出している。2つの接続基板40,50は、透明基板11の一主面において、カバーガラス12から露出した部分に配置されている。2つの接続基板40,50は、透明基板11の辺(短辺)に沿って延びるように形成されている。
 図1(b)に示すように、接続基板40は、導電性を有する接続部材(例えば、異方導電性フィルム(ACP:Anisotropic Conductive Film)14により透明基板11の一主面に圧着されている。なお、図示しないが、同様に、接続基板50は、導電性を有する接着剤により透明基板11の一主面に圧着されている。
 図1(a)に示すように、接続基板40の一主面(非接着面)には、複数(図において5つ)の接続端子42a~42eが形成されている。各接続端子42a~42eは平面視矩形状(図示例では平面視長方形状)に形成されている。各接続端子42a~42eは、有機EL素子13の陽極及び陰極の何れかと接続される。
 なお、本実施形態において、3つの接続端子42a,42b,42dは有機EL素子13の陽極と接続され、2つの接続端子42c,42eは有機EL素子13の陰極と接続される。従って、接続基板40の両端に、陽極に接続される接続端子42aと、陽極に接続される接続端子42eが配置されている。また、接続基板40の略中央に、陰極に接続される接続端子42cが配置されている。接続端子42cの両側には、陽極に接続される2つの接続端子42b,42dが配置されている。
 同様に、接続基板50の一主面(非接着面)には、複数(図において5つ)の接続端子52a~52eが形成されている。各接続端子52a~52eは、有機EL素子13の陽極及び陰極の何れかと接続される。
 次に、発光パネルの構成を説明する。
 図2に示すように、有機EL素子13の面状陽極21は、透明基板11の一主面に、平面視矩形状(例えば平面視正方形状)に形成されている。面状陽極21は、例えば、ITO膜、IZO膜などの透明導電膜からなる。有機層22は、透明基板11と対向する面状陽極21の主面と反対側の主面に形成されている。有機層22は、少なくとも発光層を含み、平面器矩形状(例えば、平面視正方形状)に形成されている。面状陰極23は、面状陽極21と対向する有機層22の主面と反対側の主面に、面状陽極21に対向し、平面視矩形状(例えば平面視正方形状)に形成されている。面状陰極23は、透明導電膜と比べて小さな抵抗率、及び小さな仕事関数を有する金属の膜である。例えば、金属の膜は、アルミニウム(Al)膜、マグネシウム(Mg)膜と銀(Ag)膜の積層膜、である。
 上記透明基板11の一主面において、透明基板11の長手方向の両端部には、透明基板11の短辺(図において左右方向に延びる辺)に沿って複数(図において5つ)の給電部24a~24e,25a~25eが互いに離間して配設されている。各給電部24a~24e,25a~25eは、面状陽極21と同一の材料により、平面視矩形状に形成されている。
 6つの給電部24a,24c,24e,25a,25c,25eは、透明基板11の短辺の両端部及び中央部に配置され、面状陽極21と電気的に接続されている。以下の説明において、必要に応じて、これらの給電部24a,24c,24e,25a,25c,25eを、陽極給電部と呼ぶ。
 4つの給電部24b,24d,25b,25dは、6つの陽極給電部24a,24c,24e,25a,25c,25eの間にそれぞれ配設されている。各給電部24b,24d,25b,25dは、面状陰極23から透明基板11の長手方向(図において上下方向)に沿って延設された引出配線23aと電気的に接続されている。以下の説明において、必要に応じて、これらの給電部24b,24d,25b,25dを、陰極給電部と呼ぶ。
 有機EL素子13は、面状陽極21と面状陰極23との間に直流電圧を通電したときに有機層22における発光層が発光するように構成されている。有機層22は、所望の発光色の光が得られる有機分子材料により形成された発光層と、発光層と面状陽極21との間に介在する正孔輸送層と、発光層と面状陰極23との間に介在する電子輸送層とを備えている。なお、有機層22の層構造は特に限定するものではない。例えば、有機層22の層構造は、有機層22の所望の発光色が白色の場合には、発光層中に赤色、緑色、青色の3種類のドーパント色素をドーピングするようにして正孔輸送層と発光層と電子輸送層との積層構造を採用するようにしてもよい。また、有機層22の層構造は、青色正孔輸送性発光層と緑色電子輸送性発光層と赤色電子輸送性発光層との積層構造を採用してもよい。また、有機層22の層構造は、正孔輸送層と青色電子輸送性発光層と緑色電子輸送性発光層と赤色電子輸送性発光層との積層構造を採用してもよい。また、透明基板11中に1ないし複数の蛍光体を含有させてもよい。1ないし複数の蛍光体は、有機層22の発光層からの光によって励起されて、発光層からの光に比べて長波長の光を放射する。この場合、発光層の発光色を青色、蛍光体の発光色を黄色とすれば、白色光を得ることが可能となる。また、有機層22は、正孔輸送層および電子輸送層を設けずに発光層のみにより構成してもよい。
 透明基板11と対向する面状陽極21の主面と反対側の主面、つまり、面状陽極21と有機層22との間には、有機層22の外周に沿って略矩形枠状の補助電極が形成されている。補助電極は、面状陽極21と電気的に接続されている。補助電極は、各陽極給電部24a,24c,24e,25a,25d,25eの基端部において、有機層22の外周に沿って延び、且つ平面視矩形状を有する複数の補助電極26aと、透明基板11の長辺に沿って延びるように形成された複数の補助電極26bとを含む。複数の補助電極26a,26bは、面状陽極21よりも抵抗率の小さな材料、例えば、クロム(Cr)膜と金(Au)膜との積層膜により構成されている。なお、補助電極26a,26bを、モリブデン(Mo)膜とAl膜とMo膜との積層膜により構成してもよい。
 複数の補助電極26a,26bは、面状陽極21の周辺における電位をほぼ等しくする。即ち、複数の補助電極26a,26bは、透明基板11の長手方向において、面状陽極21の電圧の不均一性を改善する。透明導電膜からなる面状陽極21には、透明基板11の長手方向の端部に形成された3つの陽極給電部24a,24c,24eを介して駆動電流が供給される。このため、面状陽極21には、透明基板11の長手方向に沿って、抵抗値により電位勾配が生じる。複数の補助電極26a,26bは、透明基板11の長手方向の辺に沿って延びるように形成され、面状陽極21と電気的に接続されている。従って、駆動のための電流は、略枠状に形成された複数の補助電極26a,26bから面状陽極21に向って流れ、電位勾配が改善される。これにより、電位勾配に起因する有機EL素子13の発光面における輝度むらが低減される。
 接続基板40と対向する各給電部24a~24e,25a~25eの主面には、給電用補助電極27a~27e,28a~28eが形成されている。各給電用補助電極27a~27e,28a~28eは、透明基板11の辺(短辺、図において上下にあって左右方向に沿って延びる辺)に沿って延びる平面視矩形状に形成されている。各給電用補助電極27a~27e,28a~28eは、対応する給電部24a~24e,25a~25eと電気的に接続されている。各給電用補助電極27a~27e,28a~28eは、例えば、クロム(Cr)膜と金(Au)膜との積層膜により構成されている。なお、各給電用補助電極を、モリブデン(Mo)膜とAl膜とMo膜との積層膜により構成してもよい。
 各給電用補助電極27a~27e,28a~28eは、対応する給電部24a~24e,25a~25eに外部導体(接続基板40,50に形成された電極)を接触させて、電気的に接続する場合に比べ、外部導体との接触抵抗と、接触抵抗のばらつきを低減する。これにより、面状発光装置1の発光効率の向上が図られている。
 次に、2つの接続基板40,50の構成を説明する。
 なお、両接続基板40,50は同じ構造であるため、接続基板40についてその構造を説明し、接続基板50に対する説明を省略する。
 図3に示すように、接続基板40は、平面視矩形状(例えば、平面視長方形状)の絶縁基板41を有している。絶縁基板41は、例えば、ポリイミド樹脂フィルムなどのように、可撓性を有する基板である。
 絶縁基板41の一主面には、上記の接続端子42a~42eが形成されている。また、接続端子42a~42eと対向する絶縁基板41の主面と反対側の主面には、接続用電極43a~43eが形成されている。各接続用電極43a~43eは、図1(b)に示す接続部材14、及び給電用補助電極27a~27eを介して給電部24a~24eと接続される。
 複数の接続端子42a~42e及び複数の接続用電極43a~43eのうち、同じ極性の端子及び電極はバスラインを介して互いに電気的に接続されている。詳述すると、絶縁基板41には、接続端子42a~42e及び接続用電極43a~43eの配列方向、即ち絶縁基板41の長手方向(透明基板11の短手方向)に沿って延びる陽極用バスライン44と陰極用バスライン45が形成されている。陽極用バスライン44と陰極用バスライン45は、絶縁基板41において、ほぼ平面視同一線上に形成されている。つまり、陽極用バスライン44と陰極用バスライン45は、絶縁基板41の2つの主面において互いに対向するように形成されている。絶縁基板41において、各給電部24a~24eと対向する面には、各給電部24a~24eと同極のバスラインが形成され、異極のバスラインは、対向する面とは反対側の面に形成されている。
 例えば、面状陽極21と接続された給電部24aと対向する絶縁基板41の主面には陽極用バスライン44が形成されている。陽極用バスライン44と絶縁基板41を介して対向するように陰極用バスライン45が形成されている。給電部24aと隣接し面状陰極23と接続された給電部24bと対向する絶縁基板41の主面には陰極用バスライン45が形成されている。その陰極用バスライン45と絶縁基板41を介して対向するように陽極用バスライン44が形成されている。
 絶縁基板41の2つの主面にそれぞれ形成された陽極用バスライン44は、スルーホール44aを介して互いに電気的に接続され、陰極用バスライン45はスルーホール45aを介して互いに電気的に接続されている。陽極用バスライン44を接続するスルーホール44aは、同じ極性の給電部24a,24c,24eと重なるように形成されている。同様に、陰極用バスライン45を接続するスルーホール45aは、対応する給電部24b,24dと重なるように形成されている。なお、陽極用バスライン44と陰極用バスライン45は、同一面において互いに逆極性のバスライン及びスルーホールを迂回するように形成されている。
 絶縁基板41において、透明基板11と対向する一主面に形成された5つの接続用電極43a~43eは、それぞれ対応する極のバスラインと電気的に接続されている。接続用電極43aは、陽極用バスライン44と直交する方向に沿って延びるように形成された複数のサブ電極46を含む。なお、図示しないが、各接続用電極43b~43eは、接続用電極43aと同様に形成された複数のサブ電極46を含む。このように形成された接続用電極43a~43eは、接続部材14との圧着性を良くする。つまり、各接続用電極43a~43eは、複数のサブ電極を含んで、透明基板11に対して接続基板40を剥がれ難くする。
 各接続端子42a~42e、各接続用電極43a~43e、バスライン44,45、スルーホール44a,45aは、例えば銅(Cu)、銀(Ag)と銅等の合金、複数層の金属箔などよりなる。なお、金等のめっきが施されていても良い。
 また、複数の接続端子42a~42eが形成された接続基板40の主面には、複数の接続端子42a~42eの極性を示すそれぞれ複数の極性マーク47,48が形成されている。例えば、各接続端子42a,42b,42dの近傍には、面状陽極21に接続されることを示す「+」の極性マーク47が形成されている。また、各接続端子42c,42eの近傍には、面状陰極23と接続されることを示す「-」の極性マーク48が形成されている。
 次に、面状発光装置1の作用を説明する。
 図4(a)に示すように、この面状発光装置1では、矩形状に形成された透明基板11の平行な2つの辺に2つの接続基板40,50がそれぞれ圧着されている。接続基板40には、5つの接続端子42a~42eが配設されている。また、接続基板50には、5つの接続端子52a~52eが配設されている。矩形状の面状発光装置1において、平行な2つの辺の一方(図において上側の辺)において、第1端(左端)に配設された接続端子42aは、有機EL素子13の面状陽極21と接続され、第2端(右端)に配設された接続端子42eは、有機EL素子13の面状陰極23と接続されている。面状発光装置1の平行な2つの辺の他方(図において下側の辺)において、第1端(左端)に配設された接続端子52aは、有機EL素子13の面状陰極23と接続され、第2端(右端)に配設された接続端子52eは、有機EL素子13の面状陽極21と接続されている。なお、以下の説明において、面状陽極21に接続される接続端子を陽極端子、面状陰極に接続される接続端子を陰極端子と呼ぶ。
 図4(b)に示すように、面状発光装置1の透明基板11には、対向する2つの辺の一方(図において上側の辺)に、面状陽極21と接続された3つの給電部24a,24c,24eと、面状陰極23(図2参照)と接続された2つの給電部24b,24dが交互に配設されている。同様に、透明基板11の対向する2つの辺の他方(図において下側の辺)には、面状陽極21と接続された3つの給電部25a,25c,25eと、面状陰極23(図2参照)と接続された2つの給電部25b,25dが交互に配設されている。従って、透明基板11において、対向する2つの辺の両端には、面状陽極21と接続された4つの給電部24a,24e,25a,25eが配設されている。
 図4(a)に示す各接続端子42a~42eのうち、同じ極性を有する3つの接続端子42a,42b,42dは、接続基板40上に形成されたバスライン44(図3参照)を介して互いに電気的に接続されている。同様に、同じ極性を有する2つの接続端子42c,42eは、接続基板40上に形成されたバスライン45(図3参照)を介して互いに電気的に接続されている。
 接続基板40に形成された複数の接続端子42a~42eのうち一対の接続端子(例えば、2つの接続端子42b,42c)に一対の外部配線の端部が接続される。これにより、駆動電力が一対の外部配線を介して一対の接続端子に供給される。接続端子42bに供給された駆動電圧は、接続基板40に形成されたバスライン44等を介して、図4(b)に示す3つの給電部24a,24c,24eにほぼ均等に供給される。同様に、接続端子42cに供給された駆動電圧は、接続基板40に形成されたバスライン45等を介して、図4(b)に示す2つの給電部24b,24dにほぼ均等に供給される。更に、3つの給電部24a,24c,24eに供給された駆動電圧は、2つの補助電極26a,26b(図2参照)を介して3つの給電部25a,25c,25eに伝達される。そして、各給電部25a,25c,25eは、接続基板50に形成されたバスラインを介して電気的に接続されている。このように、2つの接続基板40,50のうちの一方の接続基板に駆動電圧を供給することで、透明基板11に形成された陽極用の6つの給電部24a,24c,24e,25a,25c,25eに対して駆動電圧を供給することができる。
 接続基板40に形成された接続端子42aと、接続基板50に形成された接続端子52aとのそれぞれに外部配線を接続した場合、上記と同様に駆動電圧が供給される。
 このように、バスライン44,45を介して互いに接続された接続端子42a~42eを有する接続基板40と、同様に構成された接続基板50を用いることにより、面状発光装置1に対して任意の方向から接続した外部配線により駆動電力を供給することができる。つまり、面状発光装置1に対する駆動電力の供給方向について自由度を高くすることができる。
 また、上記のように複数の接続端子42a~42e,52a~52eが配列された2つの接続基板40,50を用いることにより、複数の面状発光装置1を容易に接続することが可能となる。
 例えば、図5に示すように、同様に形成された3つの面状発光装置1a,1b,1cを、接続端子の配列方向(透明基板11の短手方向)に沿って隣接配置する。これにより、面状発光装置1aの陰極端子42eと、面状発光装置1bの陽極端子42aとが隣接する。同様に、面状発光装置1bの陰極端子42eと、面状発光装置1cの陽極端子42aとが隣接する。陽極端子42aと陰極端子42eとを外部配線62,63により接続することで、3つの面状発光装置1a~1cを、容易に直列に接続することができる。また、隣接した3つの面状発光装置1a~1cにおいて、陰極端子42eと陰極端子42aが隣接するため、短い外部配線62,63によりそれぞれを接続することができる。
 面状発光装置1aの陽極端子42aに接続した外部配線61と、面状発光装置1cの陰極端子42eに接続した外部配線64とにより、駆動電力として直流電圧を印加する。この場合、3つの面状発光装置1a~1cは、直流電圧に対して直列に接続され、各面状発光装置1a~1cに流れる電流値は互いに等しくなる。従って、各面状発光装置1a~1cの発光輝度を等しくすることができる。
 また、図6に示すように、同様に形成された3つの面状発光装置1a~1cを、接続端子の配列方向と直交する方向(透明基板11の長手方向)に沿って隣接配置する。これにより、面状発光装置1aの陰極端子52aと、面状発光装置1bの陽極端子42aとが隣接する。同様に、面状発光装置1bの陰極端子52aと、面状発光装置1cの陽極端子42aとが隣接する。陽極端子42aと陰極端子52aとを外部配線62,63により接続することで、3つの面状発光装置1a~1cを、容易に直列に接続することができる。
 また、図10に示すように、同様に形成された3つの面状発光装置1a~1cを、4つの外部配線61~64により接続する。各面状発光装置1a~1cは、図4(a)に示すように、6つの陽極端子42a,42b,42d,52a,52b,52dと4つの陰極端子42c,42e,52c,52eを有している。面状発光装置1aの陽極端子42dと面状発光装置1bの陽極端子42aを外部配線61により互いに接続する。同様に、面状発光装置1bの陽極端子42dと面状発光装置1cの陽極端子42aを外部配線62により互いに接続する。また、面状発光装置1aの陰極端子52cと面状発光装置1bの陰極端子52aを外部配線63により互いに接続する。面状発光装置1bの陰極端子52cと面状発光装置1cの陰極端子52aを外部配線64により互いに接続する。このように、3つの面状発光装置1a~1cを、容易に並列に接続することができる。
 また、図7に示すように、マトリックス状に配列された6つの面状発光装置1a~1fを、容易に直列接続することができる。
 また、図8に示すように、マトリックス状に配列された6つの面状発光装置1a~1fにおいて、3つの面状発光装置1a~1cを直列接続し、3つの面状発光装置1d~1fを直列接続し、直列接続された3つの面状発光装置1a~1cと3つの面状発光装置1d~1fとを互いに並列に接続することができる。
 図9(a)に示すように、2つの面状発光装置1a,1bを隣接配置する。面状発光装置1aの陰極端子42eと面状発光装置1bの陽極端子42aを外部配線63により互いに接続する。また、面状発光装置1aの陽極端子52eと面状発光装置1bの陰極端子52aを外部配線64により互いに接続する。この場合、各面状発光装置1a,1bは、図9(b)に示すように接続される。従って、図9(a)に示すように、面状発光装置1aの陽極端子42aと陰極端子52aを2つの外部配線61,62によって交流電源70(図9(b)参照)に接続する。このように、交流電源により発光させることが可能なように、面状発光装置1a,1bを容易に接続することができる。
 なお、面状発光装置に対して給電するための外部配線、複数の面状発光装置を直列または並列に接続するための外部配線は、例えば、面状発光装置を収容するケースに設けられる。図11に示すように、面状発光装置1を収容するケース100は、接続部材101を有している。接続部材101は、例えば、配線用ケーブルや配線基板である。接続部材101の端子は、ケース100に収容された面状発光装置1の接続基板40に設けられた接続端子42eと接触する。図11には接続端子42eを示したが、他の接続端子42a~42d,52a~52e(図1(a)参照)も同様に接続部材101の端子と接触する。このように、面状発光装置1をケース100に収容することにより、各接続端子42a~42e,52a~52eに対する給電や他の面状発光装置と互いに接続することが可能となる。
 以上記述したように、本実施形態によれば、以下の効果を奏する。
 (1)平面視矩形状の透明基板11の1つの辺に沿って、有機EL素子13の面状陽極21又は面状陰極23と電気的に接続された複数の給電部24a~24e(複数の給電用補助電極27a~27e)が形成され、その辺と平行な辺に沿って有機EL素子13の面状陽極21又は面状陰極23と電気的に接続された複数の給電部25a~25e(複数の給電用補助電極28a~28e)が形成される。複数の給電部24a~24e(複数の給電用補助電極27a~27e)には接続基板40が接続部材14により接続されている。
 5つの給電部24a~24eと対向する接続基板40の主面には、5つの接続用電極43a~43eが形成され、給電部と対向する接続基板40の主面と反対側の主面には5つの接続端子42a~42eが形成されている。5つの接続端子42a~42eと5つの接続用電極43a~43eは、陽極用バスライン44又は陰極用バスライン45により電気的に接続されている。3つの給電部24a,24c,24e(3つの給電用補助電極27a,27c,27e)は接続基板40の陽極用バスライン44を介して互いに電気的に接続され、2つの給電部24b,24d(2つの給電用補助電極27b,27d)は接続基板40の陰極用バスライン45を介して互いに電気的に接続される。従って、5つの給電部24a~24eのうち、同じ極性の給電部を透明基板11上で接続する必要がないため、各給電部24a~24eを狭くすることができる。ひいては、透明基板11において、発光しない領域の面積を縮小することができる。
 (2)陽極用バスライン44と陰極用バスライン45は絶縁基板41に対向するように形成されている。従って、絶縁基板41の幅が拡大するのを抑制することができる。
 (3)各給電部24a~24eと対向する絶縁基板41の部分には、各給電部24a~24eと同じ極性となるバスラインが形成され、給電部と対向する絶縁基板41の部分と反対側の部分には、異なる極性となるバスラインが形成されている。絶縁基板41に形成された複数のスルーホール44a,45aは、絶縁基板41の両面に形成されたバスラインを互いに電気的に接続する。従って、陽極用バスライン44と陰極用バスライン45を平面視においてほぼ同一直線上に形成することができ、絶縁基板41の幅が拡大するのを抑制することができる。
 (4)各スルーホール44a,45aは、各スルーホール44a,45aと接続された陽極用バスライン44又は陰極用バスライン45と同一極性の給電用補助電極27a~27eと重なるように形成されている。従って、スルーホールを形成する場所を給電用補助電極と重ならない位置にする場合と比べ、絶縁基板41の大きさが拡大するのを抑制することができる。また、異なる極性となる給電用補助電極とスルーホールとの間に絶縁のための部材を設ける必要がない。
 (5)透明基板11における所定の平行な2辺の両端には、同一極性を有する2つの給電部24a,24eがそれぞれ形成され、各接続基板40,50の両端には、互いに異なる極性を有する2つの接続端子42a,42e,52a,52eが形成されている。従って、複数の面状発光装置1を接続基板40,50の長手方向に沿って配列した場合、隣接する2つの面状発光装置1において、極性の異なる接続端子が隣接することとなるため、2つの面状発光装置1を容易に直列接続することができる。
 (6)矩形状の透明基板11の4つの辺のうち所定の平行な2つの辺に沿って複数の給電部24a~24e,25a~25eが形成されている。有機EL素子13の面状陽極21の一主面には、所定の平行な2つの辺と異なる2つの辺に沿って延びるように補助電極26bが形成され、その補助電極26bは面状陽極21と電気的に接続されている。従って、補助電極26bによって、面状陽極21の抵抗値により生じる電位勾配を改善し、電位勾配に起因する輝度むらを低減することができる。
 (7)2つの接続基板40,50における同一方向の端部には、互いに異なる極性を有する2つの接続端子42a,52a(42e,52e)がそれぞれ形成されている。従って、複数の面状発光装置1を接続基板40,50が配置された方向に沿って配列した場合、隣接する2つの面状発光装置1において、極性の異なる接続端子が隣接することとなるため、2つの面状発光装置1を容易に直列接続することができる。
 (8)接続用電極43aは、対応するバスライン44に沿って離間して配列され、バスライン44と直交する方向に沿って延びる複数のサブ電極46を含む。このように形成された接続用電極43aにより、接続部材14との圧着性が良くなる。従って、各接続用電極43a~43eは、複数のサブ電極を含んで、透明基板11に対して接続基板40を剥がれ難くすることができる。
 尚、上記実施形態は、以下の態様で実施してもよい。
 ・各接続端子42a~42e,52a~52eの形状を適宜変更してもよい。例えば、外部配線61~64(図5参照)等を直接半田付け可能な形状としてもよい。また、外部配線を容易に着脱するためにコネクタを接続できる形状としてもよい。コネクタの種類は限定されないが、狭ピッチコネクタが好ましい。狭ピッチコネクタは、2つの基板を互いに接続すること、及び基板とフレキシブル基板を互いに接続することができる。
 また、各接続端子の位置を適宜変更してもよい。例えば、図12に示すように、絶縁基板41の幅方向に各接続端子42a~42eをずらして配置してもよい。このように配置した場合、同極(陽極)の複数の接続端子42a,42b,42dを、絶縁基板41の1つの主面に形成したバスライン44aにより互いに接続することができる。なお、図示しないが、各接続端子41a~42eの互いの間隔を適宜変更してもよい。
 ・給電部の数を適宜変更してもよい。変更した給電部に対応して給電用補助電極、各接続基板に形成する接続用電極の数を変更することは言うまでもない。
 ・各接続基板に形成する接続端子の数を適宜変更してもよい。
 ・カバーガラス12に替えて樹脂により有機EL素子13を封止するようにしてもよい。
 ・接続部材14として、異方導電性フィルム以外を用いるようにしてもよい。例えば、半田により、給電用補助電極と接続用電極とを電気的に接続するようにしてもよい。
 ・絶縁基板41を多層基板としてもよい。例えば、ポリイミド樹脂等のフィルムを複数積層して絶縁基板41を形成する。この場合、内層にバスライン44,45を形成することで、接続基板40の幅を狭くすることが可能となる。また、バスライン44,45の幅を広くすることが可能となり、バスライン44,45における抵抗値を少なくすることが可能となる。

Claims (9)

  1.  面状発光装置であって、
     平面視矩形状の透明基板と、前記透明基板の一主面に形成され、且つ陽極及び陰極を有する有機EL素子と、前記透明基板の少なくとも1つの辺に沿って形成され、且つ前記有機EL素子の陽極及び陰極にそれぞれ接続された複数の給電部と、を含む発光パネルと、
     前記複数の給電部と対向配置される絶縁基板と、前記複数の給電部と対向する前記絶縁基板の第1の主面に形成された複数の接続用電極と、前記第1の主面と反対側の前記絶縁基板の第2の主面に形成された複数の接続端子と、前記複数の接続端子及び前記複数の接続用電極のうち前記有機EL素子の陽極に対応する接続端子及び接続用電極を互いに電気的に接続する陽極用バスラインと、前記複数の接続端子及び前記複数の接続用電極のうち前記有機EL素子の陰極に対応する接続端子及び接続用電極を互いに電気的に接続する陰極用バスラインと、を含む複数の接続基板と、
     前記発光パネルの複数の給電部と前記複数の接続基板の複数の接続用電極とを電気的に接続する接続部材と、
    を備える、面状発光装置。
  2.  前記陽極用バスラインと前記陰極用バスラインは前記絶縁基板に対向するように形成される、請求項1に記載の面状発光装置。
  3.  前記絶縁基板の第1の主面には、前記陽極用バスライン及び前記陰極用バスラインが前記陽極用バスライン及び前記陰極用バスラインと同一極性の前記複数の給電部と対向するように配置され、
     前記絶縁基板の第2の主面には、前記陽極用バスライン及び前記陰極用バスラインが前記陽極用バスライン及び前記陰極用バスラインと異なる極性の前記複数の給電部と対応するように配置され、
     前記絶縁基板は、前記絶縁基板の両面にそれぞれ形成された前記陽極用バスライン及び前記陰極用バスラインを同一極が対となるように電気的に接続する複数のスルーホールを含む、請求項1又は2に記載の面状発光装置。
  4.  複数の給電部は、前記有機EL素子の陽極に接続された少なくとも1つの陽極の給電部、及び前記有機EL素子の陰極に接続された少なくとも1つの陰極の給電部を含み、
     前記絶縁基板の第1の主面には、前記陽極用バスラインが前記少なくとも1つの陽極の給電部と対向するように配置され、前記陰極用バスラインが前記少なくとも1つの陰極の給電部と対向するように配置され、
     前記絶縁基板の第2の主面には、前記陰極用バスラインが前記少なくとも1つの陽極の給電部と対応するように配置され、前記陽極用バスラインが前記少なくとも1つの陰極の給電部と対応するように配置され、
     前記絶縁基板は、前記絶縁基板の両面に形成された前記陽極用バスラインを電気的に接続する少なくとも1つの第1のスルーホールと、前記絶縁基板の両面に形成された前記陰極用バスラインを電気的に接続する少なくとも1つの第2のスルーホールとを含む、請求項1又は2に記載の面状発光装置。
  5.  前記各給電部は、前記絶縁基板と対向する主面上に形成された給電用補助電極を含み、
     各スルーホールは、各スルーホールと接続された前記陽極用バスライン又は前記陰極用バスラインと同一極性の前記給電用補助電極と重なるように配置される、請求項1~4のうち何れか一項に記載の面状発光装置。
  6.  前記複数の給電部は、
     前記透明基板における所定の平行な2辺の両端にそれぞれ設けられた同一極性を有する少なくとも2つの給電部を含み、
     前記複数の接続端子は、
     前記絶縁基板における所定の平行な2辺の両端にそれぞれ設けられた互いに異なる極性を有する少なくとも2つの接続端子を含む、請求項1~5のうち何れか一項に記載の面状発光装置。
  7.  前記透明基板は、矩形状に形成され、
     前記複数の給電部は、前記透明基板の4つの辺のうち所定の平行な2つの辺に沿って配置され、
     前記有機EL素子は、陽極の一主面を含み、
     前記有機EL素子の陽極の一主面に前記所定の平行な2つの辺と異なる2つの辺に沿って延びるように形成され、且つ前記陽極と電気的に接続された複数の補助電極を備える、請求項1~6のうち何れか一項に記載の面状発光装置。
  8.  前記2つの接続基板における所定の平行な2辺の両端にはそれぞれ互いに異なる極性の前記2つの接続端子が配置される、請求項7に記載の面状発光装置。
  9.  前記複数の接続用電極は、該複数の接続用電極と接続された前記陽極用バスライン又は前記陰極用バスラインに沿って離間して配列され、該陽極用バスライン又は陰極用バスラインと直交する方向に沿って延びる複数のサブ電極を含む、請求項1~8のうちの何れか一項に記載の面状発光装置。
PCT/JP2012/075069 2011-09-30 2012-09-28 面状発光装置 WO2013047742A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013536422A JP5833661B2 (ja) 2011-09-30 2012-09-28 面状発光装置
EP12835986.6A EP2763502A4 (en) 2011-09-30 2012-09-28 PLANAR LIGHT-EMITTING DEVICE
US14/348,477 US9313835B2 (en) 2011-09-30 2012-09-28 Planar light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-218124 2011-09-30
JP2011218124 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047742A1 true WO2013047742A1 (ja) 2013-04-04

Family

ID=47995767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075069 WO2013047742A1 (ja) 2011-09-30 2012-09-28 面状発光装置

Country Status (4)

Country Link
US (1) US9313835B2 (ja)
EP (1) EP2763502A4 (ja)
JP (1) JP5833661B2 (ja)
WO (1) WO2013047742A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079737A (ja) * 2013-09-11 2015-04-23 パナソニックIpマネジメント株式会社 発光モジュール
WO2016013160A1 (ja) * 2014-07-23 2016-01-28 パナソニックIpマネジメント株式会社 発光装置
WO2016132870A1 (ja) * 2015-02-20 2016-08-25 株式会社カネカ 有機elパネル
WO2020085368A1 (ja) * 2018-10-26 2020-04-30 シーシーエス株式会社 Oled照明装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014187896A1 (en) * 2013-05-23 2014-11-27 Koninklijke Philips N.V. Light-emitting device with alternating arrangement of anode pads and cathode pads
CN111095593B (zh) 2018-01-25 2022-07-05 Oled沃克斯有限责任公司 用于无掩模oled沉积和制造的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228455A (ja) * 2005-02-15 2006-08-31 Koizumi Sangyo Corp El光源体およびel光源装置
JP2007536708A (ja) 2004-05-04 2007-12-13 イーストマン コダック カンパニー タイル式フラット・パネル照明システム
WO2008062645A1 (fr) * 2006-11-21 2008-05-29 Konica Minolta Holdings, Inc. Panneau électroluminescent organique et élément de scellement
WO2011136262A1 (ja) * 2010-04-27 2011-11-03 Lumiotec株式会社 有機el照明装置
WO2011136205A1 (ja) * 2010-04-28 2011-11-03 Necライティング株式会社 有機エレクトロルミネッセンス照明装置、およびその製造方法
JP2012104316A (ja) * 2010-11-09 2012-05-31 Lumiotec Kk 有機el照明装置
WO2012121251A1 (ja) * 2011-03-07 2012-09-13 パナソニック株式会社 面状発光装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100560792B1 (ko) * 2004-03-23 2006-03-13 삼성에스디아이 주식회사 전면 발광 구조를 갖는 유기 전계 발광 표시 장치 및 이의제조방법
JP4148182B2 (ja) * 2004-05-17 2008-09-10 ソニー株式会社 表示装置
JP5240718B2 (ja) 2009-02-20 2013-07-17 パナソニック株式会社 有機elモジュール
JP5541872B2 (ja) * 2009-02-26 2014-07-09 パナソニック株式会社 面状発光装置および照明器具
KR101084246B1 (ko) * 2009-12-28 2011-11-16 삼성모바일디스플레이주식회사 유기 발광 조명 장치
US8253329B2 (en) * 2010-01-21 2012-08-28 General Electric Company Enhanced edge seal design for organic light emitting diode (OLED) encapsulation
KR102215092B1 (ko) * 2014-06-05 2021-02-15 삼성디스플레이 주식회사 유기 발광 표시 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536708A (ja) 2004-05-04 2007-12-13 イーストマン コダック カンパニー タイル式フラット・パネル照明システム
JP2006228455A (ja) * 2005-02-15 2006-08-31 Koizumi Sangyo Corp El光源体およびel光源装置
WO2008062645A1 (fr) * 2006-11-21 2008-05-29 Konica Minolta Holdings, Inc. Panneau électroluminescent organique et élément de scellement
WO2011136262A1 (ja) * 2010-04-27 2011-11-03 Lumiotec株式会社 有機el照明装置
WO2011136205A1 (ja) * 2010-04-28 2011-11-03 Necライティング株式会社 有機エレクトロルミネッセンス照明装置、およびその製造方法
JP2012104316A (ja) * 2010-11-09 2012-05-31 Lumiotec Kk 有機el照明装置
WO2012121251A1 (ja) * 2011-03-07 2012-09-13 パナソニック株式会社 面状発光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2763502A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079737A (ja) * 2013-09-11 2015-04-23 パナソニックIpマネジメント株式会社 発光モジュール
WO2016013160A1 (ja) * 2014-07-23 2016-01-28 パナソニックIpマネジメント株式会社 発光装置
JPWO2016013160A1 (ja) * 2014-07-23 2017-04-27 パナソニックIpマネジメント株式会社 発光装置
WO2016132870A1 (ja) * 2015-02-20 2016-08-25 株式会社カネカ 有機elパネル
WO2020085368A1 (ja) * 2018-10-26 2020-04-30 シーシーエス株式会社 Oled照明装置
JP2020068155A (ja) * 2018-10-26 2020-04-30 シーシーエス株式会社 Oled照明装置
JP7215875B2 (ja) 2018-10-26 2023-01-31 シーシーエス株式会社 Oled照明装置

Also Published As

Publication number Publication date
EP2763502A4 (en) 2015-12-30
US20140312764A1 (en) 2014-10-23
JP5833661B2 (ja) 2015-12-16
EP2763502A1 (en) 2014-08-06
US9313835B2 (en) 2016-04-12
JPWO2013047742A1 (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
JP5541872B2 (ja) 面状発光装置および照明器具
JP5833661B2 (ja) 面状発光装置
JP4455904B2 (ja) 両面表示装置及びその製造方法
JP2010199005A (ja) Ledモジュール及びled光源装置
JP2011119239A (ja) 発光モジュール
JP5698362B2 (ja) プリント回路基板上の光源デバイスおよび複数の光源デバイスを備えた光源装置
JP2017116885A (ja) Led表示装置
JP2013535803A (ja) 有機発光装置
JP2011119771A (ja) Ledモジュール及びled光源装置
EP2634474A1 (en) Light emitting module
TWI556484B (zh) 有機發光二極體模組
JP6703544B2 (ja) 面状発光装置
JPWO2013160985A1 (ja) 有機elパネル
EP2706587B1 (en) Organic light-emitting element and light-emitting device including same
JP2011142023A (ja) 有機el発光パネル
JP2011142022A (ja) 有機el発光パネル
JP2003017245A (ja) 有機elディスプレイ及びその駆動回路接続方法
JP2013115213A (ja) 面状発光装置、照明装置、及び面状発光装置の製造方法
KR101512218B1 (ko) 유기 발광 소자
JP3066629U (ja) 回路基板
JP2014154365A (ja) 面発光モジュール
TW201415690A (zh) 亮度均勻的有機發光二極體平面照明裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536422

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012835986

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14348477

Country of ref document: US