WO2013047595A1 - 電力接続制御システム及び方法 - Google Patents

電力接続制御システム及び方法 Download PDF

Info

Publication number
WO2013047595A1
WO2013047595A1 PCT/JP2012/074732 JP2012074732W WO2013047595A1 WO 2013047595 A1 WO2013047595 A1 WO 2013047595A1 JP 2012074732 W JP2012074732 W JP 2012074732W WO 2013047595 A1 WO2013047595 A1 WO 2013047595A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
time
electric
power system
instruction
Prior art date
Application number
PCT/JP2012/074732
Other languages
English (en)
French (fr)
Inventor
稔彦 本林
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP12836086.4A priority Critical patent/EP2763267A4/en
Priority to CN201280057059.3A priority patent/CN103947069B/zh
Priority to JP2013519295A priority patent/JP5376092B2/ja
Priority to US14/000,565 priority patent/US9583941B2/en
Publication of WO2013047595A1 publication Critical patent/WO2013047595A1/ja
Priority to IN3202DEN2014 priority patent/IN2014DN03202A/en
Priority to US15/405,439 priority patent/US10432019B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0073Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source when the main path fails, e.g. transformers, busbars
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/248UPS systems or standby or emergency generators

Definitions

  • the present invention relates to a power connection control system and method including an energy providing device capable of supplying power to a load.
  • Renewable power sources are usually operated in conjunction with a power (distribution) system in order to maintain the quality of power supplied to consumers because the amount of power generation varies depending on the weather. In that case, surplus power generated by the renewable power source and not consumed by the consumer is provided to the power system via the power line (transmission line) (reverse power flow). However, when a consumer has signed a contract that does not generate a reverse power flow with an electric power company that manages the power system, if the surplus power is generated by the renewable power source, the renewable power source is disconnected from the power system.
  • the renewable power source may be used in combination with a storage battery in order to suppress the waste of discarding the generated surplus power and stabilize the amount of power supplied to consumers.
  • a consumer is a unit connected to an electric power system such as a house, company, building, factory, etc., and has a power supply / demand contract with an electric power company that manages the house, company, building, factory, etc.
  • an electric power company that manages the house, company, building, factory, etc.
  • the term “customer” may refer to either a unit connected to the power system of the above-mentioned housing, company, building, factory, etc., or both an individual, a corporation, an organization, etc. that manage it. Sometimes refers to one.
  • the renewable power source that is operated in conjunction with the power system stops operation in order to prevent the reverse power flow when the power supply from the power system to the customer is stopped due to an accident or the like (at the time of power failure). Or it must be disconnected from the power grid. This is because, if there is a reverse power flow from a renewable power source, a voltage is generated on the distribution line even during a power outage, making it difficult to identify the cause of the power outage and recognizing that there is a power outage. This is because access to the grid increases the risk of an electric shock accident or failure of electrical equipment.
  • a power conditioner that enables a renewable power source to be linked to a power system is provided with a function (for example, a circuit breaker) for separating the renewable power source from the power system. If the renewable power source is disconnected from the power system, power can be supplied to the load from an emergency outlet provided in the power conditioner by starting up the self-sustaining operation function.
  • the renewable power source is not used for the power generation facility
  • the configuration for supplying the power generated by the private power generator or the gas cogeneration system to each load (electric equipment) provided by the consumer at the time of power failure of the power system is, for example, It is described in Patent Documents 1 and 2.
  • Patent Document 1 discloses a load (electrical equipment) that receives power from a private power generator in response to whether a power failure is restored in a short time or in a long time according to whether the power failure is restored in a short time or in a long time. ) Is selected.
  • Patent Document 2 accepts input of predicted power outage time and predicted power demand fluctuation value for each load by an operator when a power outage occurs, and based on the predicted time and predicted value, the amount of power generation and storage battery of the gas cogeneration system In other words, it is described that the amount of electricity stored and discharged is controlled and a load as a power supply destination is selected.
  • the renewable power source that is operated in conjunction with the power system stops operation to prevent reverse power flow when power supply from the power system to the customer is stopped (at the time of power failure). Or it must be disconnected from the power grid.
  • many power conditioners are equipped with a circuit breaker for disconnecting the renewable power source from the power system when a power failure is detected. In a state where the renewable power source is disconnected from the power system, it is possible to supply power to the load from an emergency outlet by starting up the self-sustaining operation function.
  • the self-sustaining operation function is not automatically switched at the time of a power failure, and the customer needs to perform an operation for starting up the self-sustaining operation function. Also, when recovering from a power outage, when a renewable power source is reconnected to the power system and operated, the customer stops the operation of the self-sustained operation function and connects the renewable power source to the power system. Is required. Therefore, there is a problem that the operation of switching the operation mode of the renewable power source is troublesome.
  • an object of the present invention is to provide a power connection control system and method that can easily switch a self-sustained operation function by a consumer's energy providing device in the event of a power system power failure.
  • a power connection control system of the present invention is a power connection control system including energy providing devices that are connected to an electric power system and capable of supplying power to electric devices provided by consumers, A switch for connecting or disconnecting between the electric power system and the consumer, and a connection control device for disconnecting the electric power system and the consumer by the switch according to an instruction received from the outside during a power failure of the electric power system; At the time of a power failure of the power system, a power supply control device that supplies power from the energy providing device to the electrical device; Have
  • a power connection control system equipped with an energy providing device capable of supplying power to an electric device provided by a consumer, which is linked to a power system, At the time of a power outage of the power system, a disconnection instruction for disconnecting the power system and the customer is transmitted, and at the time of recovery from the power failure, a connection instruction for connecting the power system and the customer is transmitted.
  • a power outage management device A connection control that includes a switch that connects or disconnects the power system and the consumer, and that disconnects the power system and the consumer by the switch according to a disconnection instruction from the power failure management device in the event of a power failure of the power system Equipment, At the time of a power failure of the power system, a power supply control device that supplies power from the energy providing device to the electrical device; Have
  • the power connection control method of the present invention is a power connection control method for separating an energy providing device capable of supplying power to an electric device provided by a consumer from an electric power system, A switch for connecting or disconnecting between the electric power system and the consumer is provided, The control unit At the time of a power failure of the power system, the power system and the customer are separated by the switch according to an instruction received from the outside, The first computer It is a method of supplying electric power from the energy providing device to the electric device at the time of a power failure of the power system.
  • FIG. 1 is a block diagram showing a configuration example of a power connection control system of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration example of the consumer illustrated in FIG.
  • FIG. 3 is a block diagram illustrating a configuration example of the connection control device illustrated in FIGS. 1 and 2.
  • FIG. 4 is a block diagram illustrating a configuration example of the power supply control apparatus illustrated in FIGS. 1 and 2.
  • FIG. 5 is a block diagram illustrating a configuration example of an information processing apparatus that implements the power supply control apparatus illustrated in FIGS. 1 and 2.
  • FIG. 6 is a block diagram illustrating a configuration example of the power failure management apparatus illustrated in FIG. 1.
  • FIG. 7 is a flowchart illustrating an example of a processing procedure of the power supply control device illustrated in FIGS. 1 and 2.
  • FIG. 1 is a block diagram showing a configuration example of the power connection control system of the present invention
  • FIG. 2 is a block diagram showing a configuration example of the consumer shown in FIG.
  • FIG. 2 is a diagram showing the configuration of customer 2 extracted from the power connection control system shown in FIG.
  • the power connection control system of the present invention is a power company in which a customer 2 equipped with an energy providing device capable of supplying power to a load (electrical device) manages a power system when a power failure occurs. It is the structure connected with the power failure management apparatus (2nd computer) 1 with which etc. are equipped.
  • FIG. 1 shows an example in which a single customer 2 is connected to the power system and power failure management device 1, but a plurality of consumers 2 are connected to the actual power system and power failure management device 1.
  • the consumer 2 includes a connection control device 21, a power supply control device (first computer) 22, an energy providing device 23, and one or a plurality of electric devices (loads) 24. .
  • the energy providing device 23 and the electric device 24 are usually connected to power wiring in the customer 2 via a distribution board (not shown).
  • the distribution board includes a known earth leakage circuit breaker, a circuit breaker, and the like, and distributes the power supplied from the power system or the energy providing device 23 to the electric device 24 provided in the customer's house. As shown in FIG.
  • the consumer 2 only needs to be able to send and receive various types of information to and from the server device managed by the power company, for example, via the connection control device 21, and the devices connected to the connection control device 21 are It is not limited to the power failure management device 1 shown in FIG. Moreover, in FIG.1 and FIG.2, although the energy provision apparatus 23 is equipped with the exterior (outside of the consumer) 2 and all the electrical devices 24 are equipped with the inside of the consumer 2 (inside the house), the example of a structure is shown. The energy providing device 23 may be provided inside the consumer 2, and a part of the electrical device 24 may be provided outside the consumer 2.
  • Electric appliances 24 include electric appliances such as electric lights, air conditioners, television receivers, refrigerators, washing machines, microwave ovens, rice cookers, vacuum cleaners, copiers, facsimile transmitters, office equipment such as computers, machine tools and manufacturing. These are various devices provided in the consumer 2 that consumes power, such as factory equipment such as machines.
  • the electric device 24 is equipped with, for example, a power detection unit that measures each power consumption and an information communication unit that transmits a measurement value of the power detection unit to the power supply control device 22.
  • a power detection means for example, a well-known electronic type electric energy sensor including a current transformer and a transformer can be used.
  • information communication means when using wireless communication, for example, Zigbee (registered trademark), WiFi (Wireless Fidelity), UWB (Ultra Wide Band), Bluetooth (registered trademark), etc. may be used, and wired communication is used. In this case, Ethernet (registered trademark), PLC, or the like may be used.
  • the power consumption of the electric device 24 may be measured not in units of the electric device 24 but in units of outlets or wiring breakers, for example.
  • the power detection means and the information communication means may be provided for each outlet or wiring breaker instead of being mounted on the electrical device 24.
  • the smart home appliance often includes power detection means and information communication means.
  • the power consumption of each smart home appliance may be transmitted from the smart home appliance in response to a request from the power supply control device 22 or at predetermined intervals.
  • the power detection unit and the information communication unit may be provided as necessary, and need not be included in all the electric devices 24 included in the consumer 2.
  • the energy providing device 23 is a known renewable power source such as a solar power generation device or a wind power generation device, a storage battery, or the like.
  • the energy providing device 23 is not limited to a renewable power source or a storage battery, and may be a well-known distributed power source such as a fuel cell, a power generation device using fossil energy, a cogeneration system, or the like.
  • the energy providing device 23 is connected to the distribution board via a generally known power conditioner (not shown), and is connected to the power wiring in the customer 2.
  • the power conditioner is a device that enables the power generated by the renewable power source and the distributed power source to be linked to the power system, and controls the power generation amount of the renewable power source and the distributed power source as necessary.
  • the energy providing device 23 is a storage battery
  • the power conditioner has a function of controlling charging / discharging of the storage battery.
  • the power conditioner should just be connected with the energy provision apparatus 23, may be provided in the energy provision apparatus 23, and may be provided in the exterior of the energy provision apparatus 23.
  • the energy providing device 23 of the present embodiment transmits power measurement means for measuring the amount of output power, and the measured value of the power measurement means to the power supply control device 22, and the power supply control device 22 and various information (instructions).
  • Information communication means for transmitting and receiving (including signals and the like).
  • the value of the output power amount of the energy providing device 23 measured by the power measuring unit is transmitted to the power supply control device 22.
  • the information communication unit transmits the measurement value of the power measurement unit to the power supply control device 22 in accordance with an instruction from the power supply control device 22 or at predetermined intervals.
  • the power measuring unit and the information communication unit may be provided in the energy providing device 23, for example, in the power conditioner.
  • the power measuring means for example, a well-known electronic power sensor having a current transformer and a transformer may be used.
  • information communication means for example, when using wireless communication, Zigbee (registered trademark), WiFi (Wireless Fidelity), UWB (Ultra Wide Band), Bluetooth (registered trademark), etc. may be used, and wired communication is used. In this case, Ethernet (registered trademark), PLC (Power Line Communication), or the like may be used.
  • 1 and 2 show a configuration example in which the consumer 2 includes one energy providing device 23, the consumer 2 may include a plurality of energy providing devices 23.
  • the power measuring unit and the information communication unit may be provided as necessary, and need not be included in all the energy providing devices 23 included in the consumer 2.
  • connection control device 21 shown in FIGS. 1 and 2 controls a switch 211 inserted between a lead-in line from the power system and the distribution board, and the operation of the switch 211.
  • a communication device 213 for transmitting and receiving information to and from the power failure management device 1 and the power supply control device 22 via a communication line.
  • a watt-hour meter (not shown) for measuring the amount of power supplied from the power system to the customer 2 is usually installed at a connection node between the power system and the customer 2. For example, a well-known smart meter is used as the watt-hour meter.
  • the watt-hour meter When a smart meter is used as the watt-hour meter, the watt-hour meter is connected to a well-known MDMS (Meter Data Management System) that manages the electricity charge for each consumer via a communication line, and is changed at predetermined intervals. The measured amount of power is notified to the MDMS.
  • MDMS Method Data Management System
  • the control device 212 of the connection control device 21 can be realized by, for example, a well-known LSI equipped with a drive circuit for controlling the operation of the memory and the switch 211.
  • a device compliant with a well-known communication protocol using the Internet or a dedicated line may be used.
  • connection control device 21 shown in FIG. 3 can be realized by, for example, a known transfer blocking reception device. Further, when the watt-hour meter includes a switch and control means for controlling the operation of the switch, the function of the connection control device 21 can be realized by the watt-hour meter.
  • FIG. 1 shows a configuration example in which the connection control device 21 is connected to the power failure management device 1 via a dedicated communication line
  • the connection control device 21 and the power failure management device 1 use known wireless communication means. Information may be sent and received.
  • a communication line is unnecessary.
  • the control device 212 of the connection control device 21 sets the switch 211 to “closed” (short circuit) during normal power transmission from the power system according to the instruction from the power failure management device 1, and the switch 211 during power failure of the power system. Is set to “open” (open).
  • the switch 211 is “closed” (short circuit)
  • the customer 2 is connected to the power system
  • the switch 211 is “open” (open)
  • the customer 2 is disconnected from the power system.
  • the power failure control device 1 is notified of “power failure recovery” when the control device 212 recovers from the power failure
  • the power supply control device 22 “recovers the power failure” with the switch 211 maintained “open”.
  • the switch 211 is switched to “closed”.
  • connection control device 21 switches the switch 211 to “closed” when the “interconnection instruction” is notified from the power failure management device 1 managed by the power company or the like, the energy provided by each consumer is provided.
  • the power failure management device 1 can control the timing at which the device 23 is connected to the power system.
  • the power failure management device 1 controls each energy providing device 23 so as not to be connected to the power system at the same time, the deterioration of the distribution power quality due to the reverse power flow from each energy providing device 23 at the time of recovery from the power failure is suppressed. it can.
  • the power supply control device 22 includes a processing unit 221, a storage unit 222, and a communication unit 223.
  • the storage unit 222 stores the amount of power that can be output from the energy providing device 23, the power consumption for each electrical device 24, and information on “importance” preset for each electrical device 24 described later.
  • the communication unit 223 can transmit / receive information to / from the connection control device 21, the energy providing device 23, and the electrical device 24.
  • Zigbee registered trademark
  • WiFi Wireless Fidelity
  • UWB Ultra Wide Band
  • Bluetooth registered trademark
  • Ethernet registered trademark
  • PLC Packet Control Controller
  • the processing unit 221 manages the power supply to each electric device 24 by the energy providing device 23 provided in the customer 2. For example, when the customer 2 is disconnected from the power system by the connection control device 21 in accordance with an instruction from the power failure management device 1, the energy providing device 23 is shifted to the self-sustained operation mode and power is supplied to the electric device 24. On the other hand, when "power failure recovery” is notified from the power failure management device 1 via the connection control device 21, the self-sustained operation mode by the energy providing device 23 is stopped and connected to the power system.
  • the processing unit 221 controls the power on / off of each electrical device 24.
  • the on / off of the power supply of the electric device 24 may be controlled in units of the electric device 24, or may be controlled in units of outlets, earth leakage breakers, or circuit breakers.
  • the power supply can be turned on / off as long as it is an electrical device 24 having a function that enables control from the outside.
  • the electrical device 24 without such a function can be opened and closed on the power line. You may control by providing a container etc.
  • the process part 221 does not need to control ON / OFF of the power supply of all the electric equipments 24 with which the consumer 2 is provided, and it is good also considering some electric equipments 24 as a control object.
  • the processing unit 221 acquires the amount of power that can be provided from the energy providing device 23 such as the predicted power generation amount by the renewable power source and the storage amount of the storage battery, and also acquires the power consumption for each electrical device 24 To do. Based on the amount of power that can be provided from the energy providing device 23, the power consumption for each electrical device 24, and the importance set in advance for each electrical device 24, the importance is within the range that can be provided from the energy providing device 23. Electric power is supplied from the energy providing device 23 to the high electric device 24.
  • the processing unit 221 when the processing unit 221 receives the “predicted power failure time” from the power failure management device 1 via the connection control device 21, the processing unit 221 maintains power supply to the electrical device 24 with high importance that can be operated according to the predicted power failure time.
  • the power supply to the other electrical devices 24 is stopped.
  • the predicted power generation amount is calculated by taking into account the loss etc. caused by the installation conditions etc. in the relationship between the weather data for each region and the predicted power generation amount provided by the manufacturer. Good. If there are public institutions or companies that provide the predicted power generation amount, they may be acquired from those public institutions or companies via a communication line such as the Internet.
  • a database may be created by acquiring and storing the power generation amount of the renewable power source at predetermined intervals by the power supply control device 22, and the predicted power generation amount may be determined based on the database.
  • the power generation amount in the past time zone that coincides with or is close to the weather condition in the predicted power outage time may be set as the predicted power generation amount. What is necessary is just to acquire the electrical storage amount of a storage battery from the power conditioner which controls charging / discharging with respect to this storage battery.
  • the predicted power generation amount and the stored power amount may be acquired when the predicted power outage time is received, or may be acquired and stored (updated) for each preset period.
  • the processing unit 221 of the power supply control device 22 receives the “power failure recovery” from the power failure management device 1 via the connection control device 21 and stops the self-sustained operation by the energy providing device 23, the processing unit 221 passes through the connection control device 21.
  • the power failure management apparatus 1 is notified of “ready for connection” and “interconnection operation” indicating the time from when the “connection instruction” is received until the energy providing device 23 can be actually connected to the power system.
  • the power failure management device 1 is notified of “time” and “predicted reverse power flow” indicating the power flow of the reverse power flow to the power system expected at the time of interconnection.
  • the interconnection operation time is a time required for processing (frequency adjustment, phase adjustment, etc.) from when the energy providing device 23 is connected to the power system until the energy providing device 23 can be connected. What is necessary is just to set beforehand according to the characteristic of the provision apparatus 23 or a power conditioner. For the predicted reverse power flow, a predicted power generation amount of the renewable power source at the time of interconnection and a surplus power amount (predicted value) calculated from the predicted total power consumption of each electrical device 24 at the time of interconnection may be used.
  • the power failure management device 1 when the power failure management device 1 receives the “interconnection operation time” and the “predicted reverse power flow” via the connection control device 21, the power outage management device 1 is based on the “interconnection operation time” and the “predicted reverse power flow”.
  • the interconnection time for the power system for each customer is scheduled, and a “connection indication” is transmitted to the connection control device 21 of each customer 2 according to the scheduled time.
  • the power failure management device 1 is configured so that the adjustment amount of power generation by the adjustment power source (thermal power plant etc.) necessary for stabilizing the distribution voltage and distribution frequency is minimized so that the adjustment load of the power system is minimized.
  • what is necessary is just to schedule the time of the connection instruction
  • the power supply control device 22 shown in FIG. 4 can be realized by, for example, an information processing device (computer) shown in FIG.
  • FIG. 5 is a block diagram illustrating a configuration example of an information processing apparatus that implements the power supply control apparatus illustrated in FIGS. 1 and 2.
  • the information processing apparatus illustrated in FIG. 5 includes a processing apparatus 100 that executes predetermined processing according to a program, an input apparatus 200 for inputting commands and information to the processing apparatus 100, and processing results of the processing apparatus 100. And an output device 300 for outputting.
  • the input device 200 is, for example, a keyboard or a pointing device such as a mouse, a touch pad, or a touch panel.
  • the output device 300 is a display device such as a liquid crystal display or a printing device such as a printer.
  • the processing device 100 includes a CPU 110, a main storage device 120 that temporarily holds information necessary for processing by the CPU 110, a recording medium 130 on which a program for causing the CPU 110 to execute processing of the present invention is recorded, and energy provision
  • a data storage device 140 that stores information such as the amount of power that can be provided from the device 23, the power consumption for each electrical device 24, and the “importance” for each electrical device 24, the main storage device 120, the recording medium 130, and the data storage device 140, a memory control interface unit 150 that controls data transfer, an I / O interface unit 170 that is an interface device between the input device 200 and the output device 300, and information on the connection control device 21 and the electrical device 24 via a communication line.
  • a communication control device 170 for transmitting and receiving the data, and they are connected via a bus 180. It is formed.
  • the processing apparatus 100 implements the power connection control method shown in the present embodiment by executing processing according to the program recorded on the recording medium 130.
  • the recording medium 130 may be a magnetic disk, a semiconductor memory, an optical disk, or other recording medium.
  • the data storage device 140 does not need to be provided in the processing device 100 and may be an independent device.
  • the function of the processing unit 221 shown in FIG. 4 is realized by the processing device 100 shown in FIG. 5, the function of the storage unit 222 shown in FIG. 4 is realized by the data storage device 140, and the function of the communication unit 223 shown in FIG. The function is realized by the communication control device 170.
  • the power failure management device 1 includes a processing unit 11, a storage unit 12, and a communication unit 13.
  • a distribution automation system (not shown) for managing the operation of the power system is connected to the power failure management apparatus 1 via a communication line.
  • system customer accommodation information which is information indicating the customer 2 accommodated in the power system is provided via the communication unit 13.
  • Power outage section information and “system customer accommodation information” provided from the distribution automation system are stored in the storage unit 12.
  • the power distribution automation system for example, “Internet power course for university students”; Distribution technology, Distribution automation system (Internet URL: http://www.tepco.co.jp/kouza/haiden/haiden-j.html).
  • the processing unit 11 of the power outage management apparatus 1 obtains the current “power outage section information” from the power distribution automation system and also stores the “system customer accommodation information” provided from the power distribution automation system. Based on this, the customer 2 accommodated in the power outage section is extracted, and the connection control device 21 of the extracted customer 2 is instructed to disconnect (disconnect) from the power system via the communication unit 13. “Disconnect instruction” is transmitted. At this time, the processing unit 11 transmits information on the predicted power failure time (predicted power failure time) to the power supply control device 22 via the connection control device 21.
  • the power failure management device 1 is configured such that the operator of the power failure management device 1 can input the predicted power failure time corresponding to the latest recovery state.
  • the processing unit 11 of the power failure management device 1 transmits the predicted power failure time to the connection control device 21 included in the customer 2 in the power failure section.
  • the processing part 11 of the power failure management apparatus 1 will show the recovery from a power failure with respect to the connection control apparatus 21 of the customer 2 which has transmitted the said "disconnection instruction
  • the power failure management device 1 can be realized by, for example, the information processing device (computer) shown in FIG. 5, similarly to the power supply control device 22.
  • the function of the processing unit 11 shown in FIG. 6 is realized by the processing device 100 shown in FIG. 5, and the function of the storage unit 12 shown in FIG. 140, and the function of the communication unit 13 illustrated in FIG.
  • the input of the predicted power outage time by the operator of the power outage management apparatus 1 may be performed using the input device 200 shown in FIG.
  • the power supply control device 22 stores information indicating the importance for each electric appliance 24 set in advance by the customer 2.
  • the importance may be set in a plurality of stages, and the highest importance may be set in a security system, emergency equipment such as an emergency light, fire fighting equipment, or the like. Other importance levels may be assigned to the electrical devices 24 in the order that the customer 2 wants to operate with priority during a power failure.
  • the electric equipment 24 that sets the highest importance includes the power supply control device 22, the connection control device 21, the power conditioner included in the energy providing device 23, and the like. The importance does not need to be set for each electrical device 24.
  • the importance may be set for each outlet, for each earth leakage breaker or for each circuit breaker, and for a predetermined area including a plurality of loads (electric devices) or You may set by a predetermined place unit.
  • a high importance level may be set for each light of the emergency staircase, emergency light of the common corridor on each floor, or the like.
  • the power supply control device 22 collects the power consumption of each electrical device 24 and the value of the amount of power that can be provided from the energy providing device 23 at a predetermined timing or periodically and stores them in the storage unit 222. To do.
  • FIG. 7 is a flowchart illustrating an example of a processing procedure of the power supply control device illustrated in FIGS. 1 and 2.
  • FIG. 7 shows three levels of importance [A] having the highest importance for each electrical device 24, importance [B] having the second highest importance, and importance [C] having the lowest importance.
  • An example of setting is shown.
  • the degree of importance given to the electrical device 24 is not limited to three levels, and may be any number of levels as long as it is two or more levels.
  • the processing of the power supply control device 22 shown below is executed by the processing unit 221 shown in FIG.
  • connection control device 21 sets the switch 211 to “open” in accordance with the “disconnection instruction” from the power failure management device 1 or the like, and the power supply control device 22. Is notified of disconnection from the power system, and the “predicted power failure time” received from the power failure management device 1 is transferred to the power supply control device 22. Further, when the “predicted power failure time” updated from the power failure management device 1 is received during a power failure, the “predicted power failure time” is transferred to the power supply control device 22.
  • connection control device 21 performs “power failure recovery” with the switch 211 maintained “open”. 22 to transfer. Thereafter, when the “interconnection instruction” is transmitted from the power failure management device 1, the switch 211 is set to “closed” and the connection to the power system is notified to the power supply control device 22.
  • the power supply control device 22 determines whether or not a disconnection instruction is notified from the connection control device 21 (step S1). If the disconnection instruction is not notified, the power supply control device 22 performs step S1. Repeat the process. When the disconnection instruction is notified from the power system (power failure management device 1 or the like), the power supply control device 22 shifts the energy providing device 23 to the independent operation mode (step S2).
  • the power supply control device 22 first determines whether or not a power failure recovery has been notified (step S3), and if a power failure recovery is notified, proceeds to the processing of step S12.
  • step S4 the power supply control device 22 determines whether or not the predicted power failure time or the updated predicted power failure time is notified.
  • the processing from step S3 is repeated.
  • the power supply control device 22 provides from the energy providing device 23 such as the predicted power generation amount of the renewable power source and the storage amount of the storage battery during the predicted power outage time. Information on possible electric energy is acquired (step S5).
  • the power supply control device 22 calculates the amount of power that can be provided from the energy providing device 23 during the predicted power outage time, and the total amount of power consumed by the load of importance [A] (electrical device 24) within the predicted power outage time. Are compared to determine whether or not the electrical device 24 of importance [A] can be operated within the predicted power outage time (step S6). If it can be operated, power is supplied to the electrical device 24 of importance [A] (step S7), and the process proceeds to step S8.
  • the power supply control device 22 performs the processing from step S3 without performing power supply from the energy providing device 23 to the electrical device 24 of importance [A]. repeat. Even when the operation cannot be performed during the predicted power outage time, the electrical device 24 having the importance [A] may be operated within the time that can be provided from the energy providing device 23.
  • step S8 the power supply control device 22 determines the value of the amount of power that can be provided from the energy providing device 23, and the total amount of power that the electrical devices 24 of importance [A] and [B] consume within the predicted power outage time. Are compared, and it is determined whether or not the electrical devices 24 of importance [A] and [B] can be operated within the predicted power outage time. If it can be operated, power is supplied to the electrical devices 24 of importance [A] and [B] (step S9), and the process proceeds to step S10.
  • step S3 If the electrical devices 24 having the importance levels [A] and [B] cannot be operated, the process from step S3 is repeated without supplying power from the energy providing device 23 to the electrical devices 24 having the importance level [B].
  • step S ⁇ b> 10 the power supply control device 22 consumes the value of the amount of power that can be provided from the energy providing device 23 and the electrical devices 24 of importance [A], [B], and [C] within the predicted power outage time.
  • the total electric energy is compared, and it is determined whether or not the electrical devices 24 of importance [A], [B], and [C] can be operated within the predicted power outage time. If it can be operated, power is supplied to the electrical devices 24 of importance [A], [B], and [C] (step S11), and the process proceeds to step S3.
  • the power supply device 23 When the electrical devices 24 having the importance levels [A], [B], and [C] cannot be operated, the power supply device 23 does not supply power to the electrical devices 24 having the importance level [C], and the process from step S3 is performed. repeat.
  • step S4 upon receiving the updated predicted power outage time from the connection control device 21, the power supply control device 22 repeats the processes in steps S5 to S11 based on the amount of power that can be provided from the energy providing device 23 at that time. Then, power is supplied to the highly important electrical equipment 24 that can be operated within the predicted power outage time.
  • step S ⁇ b> 3 when the “power failure recovery” is notified from the power failure management device 1 via the connection control device 21, the power supply control device 22 stops the self-sustained operation mode of the energy providing device 23, and the connection control device 21 is turned off.
  • the power failure management apparatus 1 is notified of “ready for connection” and “interconnection” indicating the time from when the “connection instruction” is received until the energy providing device 23 can actually be connected to the power system.
  • the power failure management device 1 is notified of the “operating time” and the “predicted reverse power flow” indicating the amount of power of the reverse power flow to the power system expected at the time of interconnection (step S12).
  • step S13 the power supply control device 22 shifts to the interconnection operation mode (step S13), and then repeats the processing from step S1.
  • the connection control device 21 disconnects the energy providing device 23 from the power system by opening the switch 211 according to the disconnection instruction from the power failure management device 1,
  • the connection control device 21 links the energy providing device 23 to the power system by closing the switch 211 in accordance with the interconnection instruction from the power failure management device 1.
  • Autonomous operation and interconnection operation can be switched automatically. Therefore, the energy providing device 23 can be operated independently during a power failure while eliminating a troublesome switching operation at the time of a power failure or recovery from the power failure.
  • the power supply control device 22 starts the self-sustaining operation of the energy providing device 23 after being disconnected from the power system by the connection control device 21 at the time of power failure of the power system, and is connected to the power system at the time of recovery from the power failure. Since the providing device 23 is linked to the power system, the power system is not adversely affected.
  • the power failure management device 1 may, for example, distribute the power supply voltage or the like so as to minimize the load on the power system based on the interconnection operation time and the predicted reverse power flow transmitted from the power supply control device 22. Since it is possible to schedule the connection instruction time to be transmitted to the connection control device 21 of each customer 2 so that the adjustment amount of power generation by the adjustment power source (thermal power plant etc.) necessary for stabilizing the distribution frequency is minimized, The energy providing device 23 of each consumer 2 can be linked while reducing the adjustment load of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 電力系統と需要家間を接続または切り離す開閉器を備え、電力系統の停電時、停電管理装置等からの指示にしたがって開閉器により電力系統と需要家を切り離し、電力系統の停電の復旧時、停電管理装置等からの指示にしたがって開閉器により電力系統と需要家を接続する接続制御装置を需要家毎に有する。電力供給制御装置は、電力系統の停電時、エネルギー提供機器から電気機器へ電力を供給させる。

Description

電力接続制御システム及び方法
 本発明は負荷に電力を供給可能なエネルギー提供機器を備えた電力接続制御システム及び方法に関する。
 近年、地球温暖化問題が顕在化し、国や企業、消費者の環境に対する意識やエネルギー消費に伴う温暖化ガス(CO)の排出削減の機運が高まりつつある。そのため、温暖化ガスが排出されず、環境へ与える悪影響も少ない自然エネルギーを利用して発電する太陽光発電(Photo Voltaic generation)や風力発電(Wind Farm)等の再生可能電源が注目されている。
 再生可能電源は、天候に依存して発電量が変動するため、需要家に供給する電力品質を維持するために、通常、電力(配電)系統に連系して運用される。その場合、再生可能電源で発電され、需要家で消費されない余剰電力は、電力線(送電線)を介して電力系統へ提供される(逆潮流)。但し、需要家が電力系統を管理する電力会社と逆潮流を発生させない契約を交わしている場合、再生可能電源で余剰電力が発生すると、該再生可能電源は電力系統から切り離される。また、再生可能電源は、発電された余剰電力を廃棄する無駄を抑制すると共に、需要家に対する電力供給量を安定化するために蓄電池と併用されることもある。なお、需要家とは、住宅、企業、ビルディング、工場等のように電力系統に接続される単位であり、該住宅、企業、ビルディング、工場等を管理する、電力会社と電力の需給契約を結んでいる個人、法人、団体等でもある。以下、「需要家」と称した場合、上記住宅、企業、ビルディング、工場等の電力系統に接続される単位、またはそれを管理する個人、法人、団体等の両方を指す場合もあり、いずれか一方を指す場合もある。
 ところで、電力系統に連系されて運用される再生可能電源は、事故等によって電力系統から需要家に対する電力供給が停止した場合(停電時)、上記逆潮流を防止するために運転を停止する、または電力系統から切り離す必要がある。これは、再生可能電源からの逆潮流があると、停電時であっても配電線上に電圧が発生するため、停電の発生要因の特定が困難になり、また停電中であると認識して電力系統へアクセスすることで感電事故や電気設備の故障等が発生する危険性が増大するためである。
 一方、需要家にとっては、停電時であればこそ、自身が保有する再生可能電源で発電された電力や蓄電池に蓄積された電力を利用できることが望ましい。そのため、再生可能電源を電力系統へ連系可能にするパワーコンディショナーには、多くの場合、再生可能電源を電力系統から切り離すための機能(例えば遮断器)が設けられている。再生可能電源が電力系統から切り離された状態であれば、自立運転機能を立ち上げることでパワーコンディショナーに設けられた非常用のコンセントから負荷に電力を供給することが可能になる。
 なお、発電設備に再生可能電源を用いるものではないが、電力系統の停電時に、自家発電機やガスコージェネレーションシステムで発電した電力を需要家が備える各負荷(電気機器)へ供給する構成は、例えば特許文献1や2に記載されている。
 特許文献1には、停電時に電力会社から復旧予定時刻をオンラインで受信し、停電が短時間で復旧するか長時間で復旧するかに応じて、自家発電機から電力を供給する負荷(電気機器)を選択することが記載されている。
 また、特許文献2には、停電が発生すると、オペレータによる予測停電時間及び負荷毎の電力需要変動予測値の入力を受付け、該予測時間や予測値に基づいて、ガスコージェネレーションシステムの発電量や蓄電池の蓄電・放電量を制御することや電力の供給先である負荷を選択することが記載されている。
 上述したように、電力系統に連系されて運用される再生可能電源は、需要家に対する電力系統からの電力供給が停止した場合(停電時)、逆潮流を防止するために運転を停止する、または電力系統から切り離す必要がある。
 そのため、多くのパワーコンディショナーには、停電を検出すると再生可能電源を電力系統から切り離すための遮断器等を備えている。再生可能電源が電力系統から切り離されている状態では、自立運転機能を立ち上げることで非常用のコンセントから負荷に電力を供給することが可能になる。
 しかしながら、一般に自立運転機能は停電時に自動的に切り換わるものではなく、需要家は自立運転機能を立ち上げるための操作が必要になる。また、停電からの復旧時、再生可能電源を電力系統へ再び連系して連系運転する場合も、需要家は自立運転機能の動作を停止し、再生可能電源を電力系統へ連系する操作が必要になる。そのため、再生可能電源の動作モードの切り換え操作が煩わしいという課題がある。
特開2003-092844号公報 特開2008-011612号公報
 そこで、本発明は、電力系統の停電時において、需要家のエネルギー提供機器による自立運転機能の切り換えを容易にできる電力接続制御システム及び方法を提供することを目的とする。
 上記目的を達成するため本発明の電力接続制御システムは、電力系統に連系される、需要家が備える電気機器へ電力の供給が可能なエネルギー提供機器を備えた電力接続制御システムであって、
 前記電力系統と前記需要家間を接続または切り離す開閉器を備え、前記電力系統の停電時、外部から受信した指示にしたがって前記開閉器により前記電力系統と前記需要家を切り離す接続制御装置と、
 前記電力系統の停電時、前記エネルギー提供機器から前記電気機器へ電力を供給させる電力供給制御装置と、
を有する。
 または、電力系統に連系される、需要家が備える電気機器へ電力の供給が可能なエネルギー提供機器を備えた電力接続制御システムであって、
 前記電力系統の停電時、前記電力系統と前記需要家を切り離すための解列指示を送信し、前記停電の復旧時、前記電力系統と前記需要家を連系させるための連系指示を送信する停電管理装置と、
 前記電力系統と前記需要家間を接続または切り離す開閉器を備え、前記電力系統の停電時、前記停電管理装置からの解列指示にしたがって前記開閉器により前記電力系統と前記需要家を切り離す接続制御装置と、
 前記電力系統の停電時、前記エネルギー提供機器から前記電気機器へ電力を供給させる電力供給制御装置と、
を有する。
 一方、本発明の電力接続制御方法は、需要家が備える電気機器へ電力の供給が可能なエネルギー提供機器を電力系統から切り離すための電力接続制御方法であって、
 前記電力系統と前記需要家間を接続または切り離す開閉器を備えておき、
 制御装置が、
 前記電力系統の停電時、外部から受信した指示にしたがって前記開閉器により前記電力系統と前記需要家を切り離し、
 第1のコンピュータが、
 前記電力系統の停電時、前記エネルギー提供機器から前記電気機器へ電力を供給させる方法である。
図1は、本発明の電力接続制御システムの一構成例を示すブロック図である。 図2は、図1に示した需要家の一構成例を示すブロック図である。 図3は、図1及び図2に示した接続制御装置の一構成例を示すブロック図である。 図4は、図1及び図2に示した電力供給制御装置の一構成例を示すブロック図である。 図5は、図1及び図2に示した電力供給制御装置を実現する情報処理装置の一構成例を示すブロック図である。 図6は、図1に示した停電管理装置の一構成例を示すブロック図である。 図7は、図1及び図2に示した電力供給制御装置の処理手順の一例を示すフローチャートである。
 次に本発明について図面を参照して説明する。
 図1は本発明の電力接続制御システムの一構成例を示すブロック図であり、図2は図1に示した需要家の一構成例を示すブロック図である。図2は、図1に示した電力接続制御システムから需要家2の構成を抜き出して示した図である。
 図1に示すように、本発明の電力接続制御システムは、負荷(電気機器)に電力の供給が可能なエネルギー提供機器を備えた需要家2が、停電発生時の電力系統を管理する電力会社等が備える停電管理装置(第2のコンピュータ)1と接続された構成である。図1は、電力系統及び停電管理装置1に一戸の需要家2が接続された例を示しているが、実際の電力系統及び停電管理装置1には複数の需要家2が接続される。
 図1及び図2に示すように、需要家2は、接続制御装置21、電力供給制御装置(第1のコンピュータ)22、エネルギー提供機器23及び1つあるいは複数の電気機器(負荷)24を有する。エネルギー提供機器23及び電気機器24は、通常、不図示の分電盤を介して需要家2内の電力用配線と接続される。分電盤は、周知の漏電遮断器や配線用遮断器等を備え、電力系統あるいはエネルギー提供機器23から供給される電力を需要家宅内に備える電気機器24へ分配する。なお、図2に示すように、需要家2は、接続制御装置21を介して、例えば電力会社が管理するサーバ装置等と各種の情報を送受信できればよく、接続制御装置21と接続される装置は、図1に示した停電管理装置1に限定されるものではない。また、図1及び図2では、エネルギー提供機器23を需要家2の外部(宅外)に備え、全ての電気機器24を需要家2の内部(宅内)に備える構成例を示しているが、エネルギー提供機器23は需要家2の内部に備えていてもよく、一部の電気機器24を需要家2の外部に備えていてもよい。
 電気機器24は、電灯、エアーコンディショナー、テレビジョン受像機、冷蔵庫、洗濯機、電子レンジ、炊飯器、掃除機等の家電製品、コピー機、ファクシミリ送信機、コンピュータ等の事務機器、工作機械や製造機械等の工場用機器等、電力を消費する需要家2が備える各種の機器である。
 本実施形態の電気機器24には、例えば各々の消費電力を測定する電力検出手段と、該電力検出手段の測定値を電力供給制御装置22へ送信する情報通信手段とがそれぞれ搭載される。電力検出手段には、例えば変流器及び変圧器を備えた周知の電子式電力量センサを用いることができる。情報通信手段には、無線通信を利用する場合は、例えばZigbee(登録商標)、WiFi(Wireless Fidelity)、UWB(Ultra Wide Band)、Bluetooth(登録商標)等を用いればよく、有線通信を利用する場合はイーサネット(Ethernet:登録商標)、PLC等を用いればよい。電気機器24の消費電力は、電気機器24単位ではなく、例えばコンセント単位や配線用遮断器単位で測定してもよい。その場合、電力検出手段や情報通信手段は、電気機器24に搭載するのではなく、コンセントや配線用遮断器毎に設ければよい。電気機器24がスマート家電と呼ばれる機器である場合、該スマート家電には電力検出手段や情報通信手段を備えている場合が多い。その場合、スマート家電毎の消費電力は、電力供給制御装置22からの要求に応じて、または所定の周期毎に該スマート家電から送信させればよい。なお、各電気機器24の消費電力には、電気機器24毎の定格電力を利用してもよい。また、電力検出手段及び情報通信手段は、必要に応じて設ければよく、需要家2が備える全ての電気機器24に備えている必要はない。
 エネルギー提供機器23は、周知の太陽光発電装置や風力発電装置等の再生可能電源、蓄電池等である。エネルギー提供機器23には、再生可能電源や蓄電池に限らず、例えば燃料電池、化石エネルギーを利用する発電装置、コージェネレーションシステム等の周知の分散型電源を用いてもよい。
 エネルギー提供機器23は、一般に周知のパワーコンディショナー(不図示)を介して上記分電盤に接続され、需要家2内の電力用配線と連系される。パワーコンディショナーは、再生可能電源、分散型電源で発電された電力を電力系統に連系可能にする装置であり、必要に応じて再生可能電源や分散型電源の発電量を制御する。エネルギー提供機器23が蓄電池の場合、パワーコンディショナーには該蓄電池に対する充放電を制御する機能を備える。また、パワーコンディショナーは、エネルギー提供機器23と接続されていればよく、エネルギー提供機器23内に設けられていてもよく、エネルギー提供機器23の外部に設けられていてもよい。
 本実施形態のエネルギー提供機器23には、出力電力量を測定する電力測定手段と、電力測定手段の測定値を電力供給制御装置22へ送信すると共に、電力供給制御装置22と各種の情報(指示信号等も含む)を送受信する情報通信手段とを備える。電力測定手段で測定されたエネルギー提供機器23の出力電力量の値は、電力供給制御装置22へ送信される。情報通信手段は、電力供給制御装置22の指示にしたがって、または所定の周期毎に、電力測定手段の測定値を電力供給制御装置22へ送信する。電力測定手段及び情報通信手段は、エネルギー提供機器23に備えていてもよく、例えば上記パワーコンディショナーに備えていてもよい。電力測定手段には、例えば変流器及び変圧器を備えた周知の電子式電力量センサを用いればよい。情報通信手段には、例えば、無線通信を利用する場合は、Zigbee(登録商標)、WiFi(Wireless Fidelity)、UWB(Ultra Wide Band)、Bluetooth(登録商標)等を用いればよく、有線通信を利用する場合はイーサネット(Ethernet:登録商標)、PLC(Power Line Communication)等を用いればよい。なお、図1及び図2では、需要家2が1台のエネルギー提供機器23を備える構成例を示しているが、需要家2は複数台のエネルギー提供機器23を備えていてもよい。また、電力測定手段及び情報通信手段は、必要に応じて設ければよく、需要家2が備える全てのエネルギー提供機器23に備えている必要はない。
 図3に示すように、図1及び図2に示す接続制御装置21は、電力系統からの引込線と上記分電盤との間に挿入される開閉器211と、該開閉器211の動作を制御する制御装置212と、停電管理装置1や電力供給制御装置22と通信線を介して情報を送受信するための通信装置213とを備えている。電力系統と需要家2の接続ノードには、通常、電力系統から需要家2へ供給される電力量を測定する電力量計(不図示)が設置される。電力量計には、例えば周知のスマートメータが用いられる。電力量計にスマートメータを用いた場合、該電力量計は、通信回線を介して需要家毎の電力料金等を管理する周知のMDMS(Meter Data Management System)と接続され、所定の周期毎に測定した電力量を該MDMSへ通知する。
 接続制御装置21の制御装置212は、例えばメモリや開閉器211の動作を制御する駆動回路を備えた周知のLSI等で実現できる。通信装置213には、例えばインターネットや専用回線を利用した周知の通信プロトコルに準拠した装置を用いればよい。
 図3に示す接続制御装置21は、例えば周知の転送遮断受信装置で実現できる。また、上記電力量計が開閉器及び該開閉器の動作を制御するための制御手段を備えている場合、接続制御装置21の機能は該電力量計でも実現できる。
 図1では、接続制御装置21が専用の通信回線を介して停電管理装置1と接続される構成例を示したが、接続制御装置21と停電管理装置1とは周知の無線通信手段を用いて情報を送受信してもよい。接続制御装置21と停電管理装置1間の通信に周知のPLCを利用する場合、通信回線は不要である。
 接続制御装置21の制御装置212は、停電管理装置1からの指示にしたがって電力系統からの通常送電時は開閉器211を「閉」(短絡)に設定し、電力系統の停電時は開閉器211を「開」(開放)に設定する。開閉器211が「閉」(短絡)のとき、需要家2は電力系統と接続され、開閉器211が「開」(開放)のとき、需要家2は電力系統から切り離される。但し、制御装置212は、停電からの復旧時、停電管理装置1から「停電復旧」が通知されると、開閉器211を「開」で維持した状態で電力供給制御装置22に「停電復旧」を転送し、その後、停電管理装置1から電力系統への連系を指示する「連系指示」を受信すると、開閉器211を「閉」に切り換える。
 停電からの復旧時、例えば多数の再生可能電源等のエネルギー提供機器23が電力系統に同時に連系されると、各エネルギー提供機器23からの逆潮流によって配電電力の品質が低下し、最悪の場合は再び停電に追い込まれてしまうおそれがある。上述したように電力会社等が管理する停電管理装置1から「連系指示」が通知された段階で接続制御装置21が開閉器211を「閉」に切り換える構成では、各需要家が備えるエネルギー提供機器23を電力系統へ連系させるタイミングを停電管理装置1によって制御できる。すなわち、停電管理装置1が、各エネルギー提供機器23を同時に電力系統へ連系させないように制御すれば、停電からの復旧時における各エネルギー提供機器23からの逆潮流による配電電力の品質低下を抑制できる。
 図4に示すように、電力供給制御装置22は、処理部221、記憶部222及び通信部223を備える。
 記憶部222は、エネルギー提供機器23から出力可能な電力量、電気機器24毎の消費電力、後述する電気機器24毎に予め設定された「重要度」の情報を保存する。
 通信部223は、接続制御装置21、エネルギー提供機器23及び電気機器24と情報の送受信を可能する。通信部223には、例えば無線通信を利用して情報を送受信する場合は、Zigbee(登録商標)、WiFi(Wireless Fidelity)、UWB(Ultra Wide Band)、Bluetooth(登録商標)等を用いればよく、有線通信を利用して情報を送受信する場合はイーサネット(Ethernet:登録商標)、PLC等を用いればよい。
 処理部221は、需要家2が備えるエネルギー提供機器23による各電気機器24への電力供給を管理する。例えば停電管理装置1からの指示にしたがって接続制御装置21により電力系統から需要家2が切り離されると、エネルギー提供機器23を自立運転モードに移行させて電気機器24に電力を供給させる。一方、接続制御装置21を介して停電管理装置1から「停電復旧」が通知されると、エネルギー提供機器23による自立運転モードを停止させて電力系統に連系させる。
 また、処理部221は、各電気機器24の電源のオン・オフを制御する。電気機器24の電源のオン・オフは、電気機器24単位で制御してもよく、コンセント単位あるいは漏電遮断器や配線用遮断器単位で制御してもよい。電源のオン・オフは、外部からの制御を可能にする機能を備えた電気機器24であれば、その機能を利用すればよく、そのような機能が無い電気機器24は、電源ライン上に開閉器等を設けて制御してもよい。なお、処理部221は、需要家2が備える全ての電気機器24の電源のオン・オフを制御する必要はなく、一部の電気機器24を制御対象外としてもよい。
 電力系統の停電時、処理部221は、再生可能電源による予測発電量や蓄電池の蓄電量等、エネルギー提供機器23から提供可能な電力量を取得し、併せて電気機器24毎の消費電力を取得する。そして、エネルギー提供機器23から提供可能な電力量、電気機器24毎の消費電力及び電気機器24毎に予め設定された重要度に基づき、エネルギー提供機器23から提供可能な範囲内で、重要度が高い電気機器24へエネルギー提供機器23から電力を供給させる。
 また、処理部221は、接続制御装置21を介して停電管理装置1から「予測停電時間」を受信すると、予測停電時間に応じて運転可能な重要度の高い電気機器24に対する電力供給を維持し、それ以外の電気機器24に対する電力供給を停止する。予測発電量は、例えば太陽光発電装置であれば、その製造メーカ等から提供される、地域毎の気象データと予想発電量の関係に設置条件等に起因する損失等を考慮して算出すればよい。また、予測発電量を提供する公共機関や会社等がある場合は、それらの公共機関や会社等からインターネット等の通信回線を介して取得してもよい。あるいは電力供給制御装置22によって再生可能電源の発電量を所定の周期毎に取得して保存することでデータベースを作成しておき、該データベースに基づいて予測発電量を決定してもよい。その場合、予測停電時間における気象条件と一致するまたは近い過去の時間帯の発電量を予測発電量に設定すればよい。蓄電池の蓄電量は、該蓄電池に対する充放電を制御するパワーコンディショナーから取得すればよい。予測発電量や蓄電量は、予測停電時間の受信時に取得してもよく、予め設定した周期毎に取得して保存(更新)しておいてもよい。
 さらに、電力供給制御装置22の処理部221は、接続制御装置21を介して停電管理装置1から「停電復旧」を受信し、エネルギー提供機器23による自立運転を停止すると、接続制御装置21を介して停電管理装置1へ「連系準備完了」を通知すると共に、上記「連系指示」を受信してから実際にエネルギー提供機器23を電力系統へ連系できるまでの時間を示す「連系動作時間」及び連系時に予想される電力系統への逆潮流の電力量を示す「予測逆潮流量」を停電管理装置1に通知する。
 連系動作時間は、エネルギー提供機器23を電力系統へ接続してから該エネルギー提供機器23が連系運転可能になるまでの処理(周波数調整や位相調整等)に必要な時間であり、例えばエネルギー提供機器23やパワーコンディショナーの特性に応じて予め設定しておけばよい。予測逆潮流量には、連系時における再生可能電源の予測発電量と、連系時における各電気機器24の予測総消費電力量から算出した余剰電力量(予測値)を用いればよい。
 この場合、停電管理装置1は、接続制御装置21を介して「連系動作時間」及び「予測逆潮流量」を受信すると、該「連系動作時間」及び「予測逆潮流量」に基づいて需要家毎の電力系統に対する連系時刻をスケジューリングし、該スケジューリングした時刻にしたがって各需要家2の接続制御装置21に「連系指示」を送信する。このとき、停電管理装置1は、電力系統の調整負荷が最も少なくなるように、例えば配電電圧や配電周波数の安定に必要な調整電源(火力発電所等)による発電の調整量が最も少なくなるように、各需要家2の接続制御装置21へ送信する連系指示の時刻をスケジューリングすればよい。
 図4に示す電力供給制御装置22は、例えば図5に示す情報処理装置(コンピュータ)で実現できる。図5は、図1及び2に示した電力供給制御装置を実現する情報処理装置の一構成例を示すブロック図である。
 図5に示す情報処理装置は、プログラムにしたがって所定の処理を実行する処理装置100と、処理装置100に対してコマンドや情報等を入力するための入力装置200と、処理装置100の処理結果を出力するための出力装置300とを有する構成である。
 入力装置200は、例えばキーボード、あるいはマウス、タッチパッド、タッチパネル等のポインティングデバイスである。
 出力装置300は、液晶ディスプレイ等の表示装置やプリンタ等の印刷装置である。
 処理装置100は、CPU110と、CPU110の処理で必要な情報を一時的に保持する主記憶装置120と、CPU110に本発明の処理を実行させるためのプログラムが記録された記録媒体130と、エネルギー提供機器23から提供可能な電力量、電気機器24毎の消費電力、電気機器24毎の「重要度」等の情報を保存するデータ蓄積装置140と、主記憶装置120、記録媒体130及びデータ蓄積装置140のデータ転送を制御するメモリ制御インタフェース部150と、入力装置200及び出力装置300とのインタフェース装置であるI/Oインタフェース部170と、通信回線を介して接続制御装置21や電気機器24と情報を送受信するための通信制御装置170とを備え、それらがバス180を介して接続された構成である。
 処理装置100は、記録媒体130に記録されたプログラムにしたがって処理を実行することで、本実施形態で示す電力接続制御方法を実現する。なお、記録媒体130は、磁気ディスク、半導体メモリ、光ディスクあるいはその他の記録媒体であってもよい。データ蓄積装置140は、処理装置100内に備える必要はなく、独立した装置であってもよい。図4に示した処理部221の機能は図5に示す処理装置100で実現され、図4に示した記憶部222の機能はデータ蓄積装置140で実現され、図4に示した通信部223の機能は通信制御装置170で実現される。
 図6に示すように、停電管理装置1は、処理部11、記憶部12及び通信部13を備える。
 停電管理装置1には、例えば電力系統の運用を管理する配電自動化システム(不図示)が通信回線を介して接続され、電力系統の停電時、該配電自動化システムから停電が発生している配電区間を示す「停電区間情報」や電力系統に収容される需要家2を示す情報である「系統需要家収容情報」が通信部13を介いて提供される。配電自動化システムから提供された「停電区間情報」や「系統需要家収容情報」は、記憶部12で保存される。配電自動化システムについては、例えば、「大学生のためのインターネット電力講座」、4.配電技術、配電自動化システム、(インターネットURL:http://www.tepco.co.jp/kouza/haiden/haiden-j.html)に記載されている。
 停電管理装置1の処理部11は、電力系統で停電が発生すると、上記配電自動化システムから現在の「停電区間情報」を入手すると共に、配電自動化システムから提供された「系統需要家収容情報」に基づいて当該停電区間に収容されている需要家2を抽出し、該抽出した需要家2の接続制御装置21に対して通信部13を介して電力系統からの切り離し(解列)を指示する「解列指示」を送信する。このとき、処理部11は、予想される停電時間(予測停電時間)の情報を、接続制御装置21を介して電力供給制御装置22へ送信する。この段階の予測停電時間は、例えば電力会社等がデータベースとして備える、事故の内容に対応した過去の復旧時間の実績値等を用いればよい。停電管理装置1は、該停電管理装置1の操作者によって最新の復旧状態に対応した予測停電時間が入力可能な構成とする。停電管理装置1の処理部11は、操作者によって予測停電時間が更新されると、該予測停電時間を停電区間内の需要家2が備える接続制御装置21へ送信する。
 また、停電管理装置1の処理部11は、電力系統で発生した停電が復旧すると、上記「解列指示」を送信していた需要家2の接続制御装置21に対して停電からの復旧を示す「停電復旧」を通知し、その後、電力系統への連系を指示する「連系指示」を送信する。
 停電管理装置1は、電力供給制御装置22と同様に、例えば図5に示した情報処理装置(コンピュータ)で実現できる。停電管理装置1を情報処理装置で実現する場合、図6に示した処理部11の機能は図5に示した処理装置100で実現され、図6に示した記憶部12の機能はデータ蓄積装置140で実現され、図6に示した通信部13の機能は通信制御装置170で実現される。停電管理装置1の操作者による予測停電時間の入力は、図5に示した入力装置200を用いればよい。
 このような構成において、電力供給制御装置22には、予め需要家2によって設定された電気機器24毎の重要度を示す情報が保存される。重要度は、複数段階に設定し、最も高い重要度は、例えばセキュリティシステムや非常灯等の防災機器、消防設備等に設定すればよい。その他の重要度は、停電時に需要家2が優先して運転させたい順番に各電気機器24へ付与すればよい。最も高い重要度を設定する電気機器24には、上記電力供給制御装置22、接続制御装置21、エネルギー提供機器23が備えるパワーコンディショナー等を含めるものとする。なお、重要度は、電気機器24毎に設定する必要はなく、例えばコンセント単位あるいは漏電遮断器や配線用遮断器単位で設定してもよく、複数の負荷(電気機器)を含む所定のエリアあるいは所定の場所単位で設定してもよい。例えば需要家2が複数階層から成る商業施設や宿泊施設等の場合、非常階段の各電灯や各階の共用廊下の非常灯等に高い重要度を設定すればよい。
 また、電力供給制御装置22は、各電気機器24の消費電力及びエネルギー提供機器23から提供可能な電力量の値を、それぞれ所定のタイミングあるいは定期的に収集して記憶部222に保存するものとする。
 図7は、図1及び2に示した電力供給制御装置の処理手順の一例を示すフローチャートである。
 図7は、予め各電気機器24に対して重要度が最も高い重要度[A]、重要度が2番目に高い重要度[B]、重要度が最も低い重要度[C]の3段階に設定されている例を示している。電気機器24に付与する重要度は3段階に限定されるものではなく、2段階以上であれば何段階でもよい。以下で示す電力供給制御装置22の処理は、図4に示した処理部221で実行される。
 上述したように、電力系統で停電が発生すると、接続制御装置21は、停電管理装置1等からの「解列指示」にしたがって開閉器211を「開」に設定すると共に、電力供給制御装置22に対して電力系統からの解列を通知し、併せて停電管理装置1から受信した「予測停電時間」を電力供給制御装置22へ転送する。また、停電時、停電管理装置1から更新された「予測停電時間」を受信すると、該「予測停電時間」を電力供給制御装置22へ転送する。
 一方、停電からの復旧時、停電管理装置1から「停電復旧」が通知されると、接続制御装置21は、開閉器211を「開」で維持したまま、「停電復旧」を電力供給制御装置22へ転送する。その後、停電管理装置1から「連系指示」が送信されると、開閉器211を「閉」に設定すると共に、電力供給制御装置22に対して電力系統への連系を通知する。
 図7に示すように、電力供給制御装置22は、接続制御装置21から解列指示が通知された否かを判定し、(ステップS1)、解列指示が通知されていない場合はステップS1の処理を繰り返す。電力系統(停電管理装置1等)から解列指示が通知されると、電力供給制御装置22は、エネルギー提供機器23を自立運転モードへ移行させる(ステップS2)。
 エネルギー提供機器23の自立運転モード時、電力供給制御装置22は、まず停電復旧が通知されたか否かを判定し(ステップS3)、停電復旧が通知された場合はステップS12の処理へ移行する。
 停電復旧が通知されていない場合、電力供給制御装置22は、予測停電時間、または更新された予測停電時間が通知されたか否かを判定する(ステップS4)。予測停電時間、または更新された予測停電時間が通知されていない場合はステップS3からの処理を繰り返す。
 予測停電時間、または更新された予測停電時間が通知されている場合、電力供給制御装置22は、該予測停電時間における再生可能電源の予測発電量や蓄電池の蓄電量等、エネルギー提供機器23から提供可能な電力量の情報を取得する(ステップS5)。
 次に、電力供給制御装置22は、予測停電時間においてエネルギー提供機器23から提供可能な電力量と、重要度[A]の負荷(電気機器24)が予測停電時間内で消費する総電力量とを比較し、重要度[A]の電気機器24が予測停電時間内で運転できるか否かを判定する(ステップS6)。運転できる場合は重要度[A]の電気機器24に電力を供給し(ステップS7)、ステップS8の処理へ移行する。
 重要度[A]の電気機器24が運転できない場合、電力供給制御装置22は、エネルギー提供機器23から重要度[A]の電気機器24に対する電力供給を実施することなく、ステップS3からの処理を繰り返す。なお、予測停電時間内を通して運転できない場合でも、エネルギー提供機器23から提供可能な時間内で重要度[A]の電気機器24を運転させてもよい。
 ステップS8において、電力供給制御装置22は、エネルギー提供機器23から提供可能な電力量の値と、重要度[A]及び[B]の電気機器24が予測停電時間内で消費する総電力量とを比較し、重要度[A]及び[B]の電気機器24が予測停電時間内で運転できるか否かを判定する。運転できる場合は重要度[A]及び[B]の電気機器24に電力を供給し(ステップS9)、ステップS10の処理へ移行する。
 重要度[A]及び[B]の電気機器24が運転できない場合、エネルギー提供機器23から重要度[B]の電気機器24に対する電力供給を実施することなく、ステップS3からの処理を繰り返す。
 ステップS10において、電力供給制御装置22は、エネルギー提供機器23から提供可能な電力量の値と、重要度[A]、[B]及び[C]の電気機器24が予測停電時間内で消費する総電力量とを比較し、重要度[A]、[B]及び[C]の電気機器24が予測停電時間内で運転できるか否かを判定する。運転できる場合は重要度[A]、[B]及び[C]の電気機器24に電力を供給し(ステップS11)、ステップS3の処理へ移行する。
 重要度[A]、[B]及び[C]の電気機器24が運転できない場合、エネルギー提供機器23から重要度[C]の電気機器24に対する電力供給を実施することなく、ステップS3からの処理を繰り返す。
 ステップS4において、接続制御装置21から更新された予測停電時間を受信すると、電力供給制御装置22は、上記ステップS5~S11の処理を繰り返しその時点でエネルギー提供機器23から提供可能な電力量に基づいて予測停電時間内で運転可能な重要度の高い電気機器24に対する電力供給を実施する。
 ステップS3において、接続制御装置21を介して停電管理装置1から「停電復旧」が通知されると、電力供給制御装置22は、エネルギー提供機器23の自立運転モードを停止し、接続制御装置21を介して停電管理装置1へ「連系準備完了」を通知すると共に、上記「連系指示」を受信してから実際にエネルギー提供機器23を電力系統へ連系できるまでの時間を示す「連系動作時間」及び連系時に予想される電力系統への逆潮流の電力量を示す「予測逆潮流量」を停電管理装置1に通知する(ステップS12)。
 その後、停電管理装置1から「連系指示」が通知されると、電力供給制御装置22は、連系運転モードへ移行し(ステップS13)、その後、ステップS1からの処理を繰り返す。
 本実施形態によれば、電力系統の停電時、停電管理装置1からの解列指示にしたがって接続制御装置21が開閉器211を「開」にすることでエネルギー提供機器23を電力系統から切り離し、停電の復旧時、停電管理装置1からの連系指示にしたがって接続制御装置21が開閉器211を「閉」にすることでエネルギー提供機器23を電力系統へ連系するため、エネルギー提供機器23の自立運転及び連系運転を自動で切り換えることができる。したがって、停電時や停電の復旧時に煩わしい切り換え操作を不要にしつつ、停電時にエネルギー提供機器23を自立運転させることができる。
 また、電力供給制御装置22は、電力系統の停電時、接続制御装置21によって電力系統から切り離された後にエネルギー提供機器23の自立運転を開始させ、停電の復旧時は電力系統と接続した後にエネルギー提供機器23を電力系統へ連系させるため、電力系統に悪影響を及ぼすことがない。
 したがって、電力系統の停電時及び停電からの復旧時において、需要家2のエネルギー提供機器23による自立運転機能の切り換えを容易にしつつ、電力系統への悪影響を低減できる。
 さらに、停電の復旧時に、停電管理装置1は、電力供給制御装置22から送信される連系動作時間及び予測逆潮流量に基づいて、電力系統の負荷が最も少なくなるように、例えば配電電圧や配電周波数の安定に必要な調整電源(火力発電所等)による発電の調整量が最も少なくなるように、各需要家2の接続制御装置21へ送信する連系指示の時刻をスケジューリングできるため、電力系統の調整負荷を軽減しつつ各需要家2のエネルギー提供機器23を連系させることができる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細は本願発明のスコープ内で当業者が理解し得る様々な変更が可能である。
 この出願は、2011年9月26日に出願された特願2011-209371号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (19)

  1.  電力系統に連系される、需要家が備える電気機器へ電力の供給が可能なエネルギー提供機器を備えた電力接続制御システムであって、
     前記電力系統と前記需要家間を接続または切り離す開閉器を備え、前記電力系統の停電時、外部から受信した指示にしたがって前記開閉器により前記電力系統と前記需要家を切り離す接続制御装置と、
     前記電力系統の停電時、前記エネルギー提供機器から前記電気機器へ電力を供給させる電力供給制御装置と、
    を有する電力接続制御システム。
  2.  前記電力供給制御装置は、
     前記電力系統の停電時、前記エネルギー提供機器から提供可能な電力量及び前記電気機器毎の消費電力を取得し、該取得した前記エネルギー提供機器から提供可能な電力量及び前記電気機器毎の消費電力、並びに前記電気機器毎に予め設定された重要度に基づき、前記エネルギー提供機器から提供可能な範囲内で、前記重要度が高い電気機器へ前記エネルギー提供機器から電力を供給させる請求項1記載の電力接続制御システム。
  3.  前記接続制御装置は、
     前記電力系統の停電の復旧時、外部から受信した指示にしたがって前記開閉器により前記電力系統と前記需要家を接続する請求項1または2記載の電力接続制御システム。
  4.  前記電力系統の停電時、前記接続制御装置へ前記電力系統と前記需要家を切り離すための解列指示を送信すると共に、停電時間の予測値である予測停電時間を送信し、前記停電の復旧時、前記接続制御装置へ前記電力系統と前記需要家を連系させるための連系指示を送信する停電管理装置をさらに有し、
     前記接続制御装置は、
     前記解列指示にしたがって前記開閉器により前記電力系統と前記需要家を切り離し、前記連系指示にしたがって前記開閉器により前記電力系統と前記需要家を接続し、
     前記電力供給制御装置は、
     前記接続制御装置を介して前記予測停電時間を受信すると、前記予測停電時間内で前記エネルギー提供機器から提供可能な電力量、前記予測停電時間内の前記電気機器毎の消費電力量及び前記電気機器毎の重要度に基づき、前記電力を供給する電気機器を決定する請求項3記載の電力接続制御システム。
  5.  前記停電管理装置は、
     操作者によって前記予測停電時間が更新されると、該更新後の予測停電時間を前記接続制御装置へ送信する請求項4記載の電力接続制御システム。
  6.  前記接続制御装置は、
     前記停電の復旧時、前記停電管理装置から停電復旧が通知されると、前記開閉器を開状態で維持しつつ前記電力供給制御装置へ停電復旧を通知し、前記停電管理装置から連系指示が送信されると、前記開閉器を閉にして前記電力系統と前記需要家を接続し、
     前記電力供給制御装置は、
     前記接続制御装置から前記停電復旧が通知されると、前記連系指示を受信してから実際に前記エネルギー提供機器を前記電力系統へ連系できるまでの時間を示す連系動作時間及び連系時に予想される前記電力系統への逆潮流の電力量を示す予測逆潮流量を前記停電管理装置へ通知し、
     前記停電管理装置は、
     前記連系動作時間及び前記予測逆潮流量に基づき、前記電力系統の調整負荷が最小となるように前記需要家毎の前記連系指示の送信時刻をスケジューリングし、該スケジューリングした時刻にしたがって前記接続制御装置へ前記連系指示を送信する請求項4または5記載の電力接続制御システム。
  7.  需要家が備える電気機器へ電力の供給が可能なエネルギー提供機器を電力系統から切り離すための電力接続制御方法であって、
     前記電力系統と前記需要家間を接続または切り離す開閉器を備えておき、
     制御装置が、
     前記電力系統の停電時、外部から受信した指示にしたがって前記開閉器により前記電力系統と前記需要家を切り離し、
     第1のコンピュータが、
     前記電力系統の停電時、前記エネルギー提供機器から前記電気機器へ電力を供給させる電力接続制御方法。
  8.  前記第1のコンピュータが、
     前記電力系統の停電時、前記エネルギー提供機器から提供可能な電力量及び前記電気機器毎の消費電力を取得し、該取得した前記エネルギー提供機器から提供可能な電力量及び前記電気機器毎の消費電力、並びに前記電気機器毎に予め設定された重要度に基づき、前記エネルギー提供機器から提供可能な範囲内で、前記重要度が高い電気機器へ前記エネルギー提供機器から電力を供給させる請求項7記載の電力接続制御方法。
  9.  前記第1のコンピュータが、
     前記電力系統の停電の復旧時、外部から受信した指示にしたがって前記開閉器により前記電力系統と前記需要家を接続する請求項7または8記載の電力接続制御方法。
  10.  第2のコンピュータが、
     前記電力系統の停電時、前記接続制御装置へ前記電力系統と前記需要家を切り離すための解列指示を送信すると共に、停電時間の予測値である予測停電時間を送信し、前記停電の復旧時、前記制御装置へ前記電力系統と前記需要家を連系させるための連系指示を送信し、
     前記制御装置が、
     前記解列指示にしたがって前記開閉器により前記電力系統と前記需要家を切り離し、前記連系指示にしたがって前記開閉器により前記電力系統と前記需要家を接続し、
     前記第1のコンピュータが、
     前記制御装置を介して前記予測停電時間を受信すると、前記予測停電時間内で前記エネルギー提供機器から提供可能な電力量、前記予測停電時間内の前記電気機器毎の消費電力量及び前記電気機器毎の重要度に基づき、前記電力を供給する電気機器を決定する請求項9記載の電力接続制御方法。
  11.  前記第2のコンピュータが、
     操作者によって前記予測停電時間が更新されると、該更新後の予測停電時間を前記制御装置へ送信する請求項10記載の電力接続制御方法。
  12.  前記制御装置が、
     前記停電の復旧時、前記第2のコンピュータから停電復旧が通知されると、前記開閉器を開状態で維持しつつ前記第1のコンピュータへ停電復旧を通知し、前記第2のコンピュータから連系指示が送信されると、前記開閉器を閉にして前記電力系統と前記需要家を接続し、
     前記第1のコンピュータが、
     前記制御装置から前記停電復旧が通知されると、前記連系指示を受信してから実際に前記エネルギー提供機器を前記電力系統へ連系できるまでの時間を示す連系動作時間及び連系時に予想される前記電力系統への逆潮流の電力量を示す予測逆潮流量を前記第2のコンピュータへ通知し、
     前記第2のコンピュータが、
     前記連系動作時間及び前記予測逆潮流量に基づき、前記電力系統の負荷が最小となるように前記需要家毎の前記連系指示の送信時刻をスケジューリングし、該スケジューリングした時刻にしたがって前記制御装置へ前記連系指示を送信する請求項10または11記載の電力接続制御方法。
  13.  電力系統に連系される、需要家が備える電気機器へ電力の供給が可能なエネルギー提供機器を備えた電力接続制御システムであって、
     電力系統の停電時、前記電力系統と需要家を切り離すための解列指示を送信し、前記停電の復旧時、前記電力系統と前記需要家を連系させるための連系指示を送信する停電管理装置と、
     前記電力系統と前記需要家間を接続または切り離す開閉器を備え、前記電力系統の停電時、前記停電管理装置からの解列指示にしたがって前記開閉器により前記電力系統と前記需要家を切り離す接続制御装置と、
     前記電力系統の停電時、前記エネルギー提供機器から前記電気機器へ電力を供給させる電力供給制御装置と、
    を有する電力接続制御システム。
  14.  電力の供給が可能なエネルギー提供機器から需要家が備える電気機器へ電力を供給させる電力供給制御装置であって、
     前記電力系統の停電時、前記エネルギー提供機器から提供可能な電力量及び前記電気機器毎の消費電力を取得し、該取得した前記エネルギー提供機器から提供可能な電力量及び前記電気機器毎の消費電力、並びに前記電気機器毎に予め設定された重要度に基づき、前記エネルギー提供機器から提供可能な範囲内で、前記重要度が高い電気機器へ前記エネルギー提供機器から電力を供給させる処理部と、
     前記エネルギー提供機器から提供可能な電力量、電気機器毎の消費電力及び前記電気機器毎に予め設定された重要度を保持する記憶部と、
     前記エネルギー提供機器及び電気機器と情報を送受信するための通信部と、
    を有する電力供給制御装置。
  15.  前記処理部は、
     前記電力系統の停電時、外部から予測停電時間を受信すると、前記予測停電時間内で前記エネルギー提供機器から提供可能な電力量、前記予測停電時間内の前記電気機器毎の消費電力量及び前記電気機器毎の重要度に基づき、前記電力を供給する電気機器を決定する請求項14記載の電力供給制御装置。
  16.  電力系統と需要家間を接続または切り離す開閉器と、
     前記電力系統の停電時、外部から供給される、前記停電が発生している配電区間に収容される需要家を前記電力系統から切り離すための解列指示にしたがって前記開閉器により前記電力系統と前記需要家を切り離す制御装置と、
     所定の通信回線を介して前記解列指示及び前記連系指示を受信し、前記制御装置へ出力する通信装置と、
    を有する接続制御装置。
  17.  前記制御装置は、
     前記停電の復旧時、外部から供給される、前記需要家を前記電力系統へ連系させるための連系指示にしたがって前記開閉器により前記電力系統と前記需要家を接続する請求項16記載の接続制御装置。
  18.  電力系統の停電時、外部から提供される、前記停電が発生している配電区間を示す停電区間情報および前記電力系統に収容される需要家を示す情報である系統需要家収容情報を保持する記憶部と、
     前記停電区間情報及び前記系統需要家収容情報に基づき、前記停電が発生している停電区間に収容される需要家を抽出し、前記停電区間の需要家を前記電力系統から切り離すための解列指示および操作者によって入力された停電時間の予測値である予測停電時間を前記抽出した需要家へ送信し、前記停電からの復旧時、前記需要家を前記電力系統へ連系させるための連系指示を前記停電区間の需要家へ送信する処理部と、
     前記処理部の制御により、所定の通信回線を介して前記停電区間情報及び前記系統需要家収容情報を受信すると共に、前記解列指示及び前記連系指示を前記停電が発生している配電区間に収容される需要家に送信する通信部と、
    を有する停電管理装置。
  19.  前記処理部は、
     停電復旧の通知に対して、前記連系指示を受信してから実際に前記エネルギー提供機器を前記電力系統へ連系できるまでの時間を示す連系動作時間及び連系時に予想される前記電力系統への逆潮流の電力量を示す予測逆潮流量を前記需要家から受信すると、
     前記連系動作時間及び前記予測逆潮流量に基づき、前記電力系統の調整負荷が最小となるように前記需要家毎の前記連系指示の送信時刻をスケジューリングし、該スケジューリングした時刻にしたがって前記需要家へ前記連系指示を送信する請求項18記載の停電管理装置。
PCT/JP2012/074732 2011-09-26 2012-09-26 電力接続制御システム及び方法 WO2013047595A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12836086.4A EP2763267A4 (en) 2011-09-26 2012-09-26 SYSTEM AND METHOD FOR POWER CONNECTION CONTROL
CN201280057059.3A CN103947069B (zh) 2011-09-26 2012-09-26 电力连接控制系统和方法
JP2013519295A JP5376092B2 (ja) 2011-09-26 2012-09-26 電力接続制御システム及び方法
US14/000,565 US9583941B2 (en) 2011-09-26 2012-09-26 Power connection control system and method
IN3202DEN2014 IN2014DN03202A (ja) 2011-09-26 2014-04-22
US15/405,439 US10432019B2 (en) 2011-09-26 2017-01-13 Power connection control system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011209371 2011-09-26
JP2011-209371 2011-09-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/000,565 A-371-Of-International US9583941B2 (en) 2011-09-26 2012-09-26 Power connection control system and method
US15/405,439 Continuation US10432019B2 (en) 2011-09-26 2017-01-13 Power connection control system and method

Publications (1)

Publication Number Publication Date
WO2013047595A1 true WO2013047595A1 (ja) 2013-04-04

Family

ID=47995625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074732 WO2013047595A1 (ja) 2011-09-26 2012-09-26 電力接続制御システム及び方法

Country Status (6)

Country Link
US (2) US9583941B2 (ja)
EP (1) EP2763267A4 (ja)
JP (2) JP5376092B2 (ja)
CN (1) CN103947069B (ja)
IN (1) IN2014DN03202A (ja)
WO (1) WO2013047595A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171199A (ja) * 2014-03-05 2015-09-28 パナソニックIpマネジメント株式会社 電力管理システム
WO2021038693A1 (ja) * 2019-08-26 2021-03-04 本田技研工業株式会社 蓄電システム、制御装置及び制御方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160241031A1 (en) * 2015-02-18 2016-08-18 Nec Laboratories America, Inc. Dynamic probability-based power outage management system
US10671134B2 (en) 2018-01-10 2020-06-02 International Business Machines Corporation Memory modules with secondary, independently powered network access path
CN109144214B (zh) * 2018-08-06 2022-05-03 交叉信息核心技术研究院(西安)有限公司 能量管理系统、方法、电子设备、装置及非易失处理器
US20220007213A1 (en) * 2018-11-06 2022-01-06 Telefonaktiebolaget Lm Ericsson (Publ) Methods, apparatus and machine-readable mediums for mitigating power failures in a communication network
TWI710192B (zh) * 2019-07-26 2020-11-11 許俊吉 用於太陽能電力傳送的防災斷路系統
KR102136504B1 (ko) * 2020-02-07 2020-07-21 (주)위 에너지 무정전 전력 공급 관리 시스템
CN111600281B (zh) * 2020-03-31 2022-03-29 国网上海市电力公司 一种配电网小电源切除方法
CN111864904B (zh) * 2020-07-27 2022-04-01 湖南创业德力电气有限公司 一种配电监控终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135577A (ja) * 1995-11-06 1997-05-20 Omron Corp パワーコンディショナおよび分散型電源システム
JP2003092844A (ja) 2001-09-20 2003-03-28 Fujitsu General Ltd 自家電力供給制御システム
JP2004088824A (ja) * 2002-08-23 2004-03-18 Hitachi Ltd 電力設備の協調コントローラ
JP2008011612A (ja) 2006-06-28 2008-01-17 Osaka Gas Co Ltd 分散型発電機の制御システム
JP2008187837A (ja) * 2007-01-30 2008-08-14 Sanyo Electric Co Ltd 系統連系装置及び系統連系システム

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381457A (en) * 1981-04-23 1983-04-26 Ladco Development Co., Inc. Method and apparatus for preventing loss of data from volatile memory
US6167389A (en) * 1996-12-23 2000-12-26 Comverge Technologies, Inc. Method and apparatus using distributed intelligence for applying real time pricing and time of use rates in wide area network including a headend and subscriber
JP2005522164A (ja) * 2002-03-28 2005-07-21 ロバートショー コントロールズ カンパニー エネルギー管理システム及び方法
US6680547B1 (en) 2002-08-01 2004-01-20 Innovations Electrical, Lc Power sharing system including rechargeable power source
US7015599B2 (en) * 2003-06-27 2006-03-21 Briggs & Stratton Power Products Group, Llc Backup power management system and method of operating the same
JP2004357337A (ja) 2004-08-27 2004-12-16 Funai Electric Co Ltd 映像音響機器
JP4286236B2 (ja) 2005-04-28 2009-06-24 三洋電機株式会社 自然エネルギー発電システム
US7547990B2 (en) * 2005-07-12 2009-06-16 Diran Varzhabedian Backup power system for electrical appliances
US7844370B2 (en) * 2006-08-10 2010-11-30 Gridpoint, Inc. Scheduling and control in a power aggregation system for distributed electric resources
US7653443B2 (en) * 2007-03-01 2010-01-26 Daniel Flohr Methods, systems, circuits and computer program products for electrical service demand management
WO2008125696A2 (en) * 2007-04-17 2008-10-23 Timothy Patrick Cooper A load management controller
JP5410037B2 (ja) 2007-05-30 2014-02-05 三洋電機株式会社 系統連系装置、及び系統連系システム
US8049364B2 (en) * 2007-06-04 2011-11-01 Electrikus, Inc. Back-up power system
US20100017045A1 (en) * 2007-11-30 2010-01-21 Johnson Controls Technology Company Electrical demand response using energy storage in vehicles and buildings
US8212405B2 (en) * 2007-12-05 2012-07-03 Officepower, Inc. Metering assembly and customer load panel for power delivery
US7804184B2 (en) * 2009-01-23 2010-09-28 General Electric Company System and method for control of a grid connected power generating system
US8324755B2 (en) * 2009-03-06 2012-12-04 Briggs And Stratton Corporation Power management system and method of operating the same
US8346401B2 (en) * 2009-07-17 2013-01-01 Gridpoint, Inc. Smart charging value and guarantee application
KR101084214B1 (ko) * 2009-12-03 2011-11-18 삼성에스디아이 주식회사 계통 연계형 전력 저장 시스템 및 전력 저장 시스템 제어 방법
US8818566B2 (en) * 2009-12-22 2014-08-26 General Electric Company Appliance demand response randomization after demand response event
US9043038B2 (en) * 2010-02-18 2015-05-26 University Of Delaware Aggregation server for grid-integrated vehicles
KR101097265B1 (ko) * 2010-02-25 2011-12-22 삼성에스디아이 주식회사 전력 저장 시스템 및 그 제어방법
KR101174891B1 (ko) * 2010-06-01 2012-08-17 삼성에스디아이 주식회사 전력 저장 시스템 및 그 제어방법
JP4792120B1 (ja) 2010-06-18 2011-10-12 株式会社東芝 テレビジョン装置、電子機器
US8386087B2 (en) * 2010-08-02 2013-02-26 General Electric Company Load shed system for demand response without AMI/AMR system
US20120046798A1 (en) * 2010-08-19 2012-02-23 Heat Assured Systems, Llc Systems and Methods for Power Demand Management
US20120123604A1 (en) * 2010-11-12 2012-05-17 Nathan Bowman Littrell Systems, methods, and apparatus for demand response of battery-powered devices
US8400113B2 (en) * 2011-02-11 2013-03-19 Mark Andrew Waring Battery enhanced, smart grid add-on for appliance
CN102185526A (zh) * 2011-04-24 2011-09-14 薛建仁 新型的准并网风光电互补电站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135577A (ja) * 1995-11-06 1997-05-20 Omron Corp パワーコンディショナおよび分散型電源システム
JP2003092844A (ja) 2001-09-20 2003-03-28 Fujitsu General Ltd 自家電力供給制御システム
JP2004088824A (ja) * 2002-08-23 2004-03-18 Hitachi Ltd 電力設備の協調コントローラ
JP2008011612A (ja) 2006-06-28 2008-01-17 Osaka Gas Co Ltd 分散型発電機の制御システム
JP2008187837A (ja) * 2007-01-30 2008-08-14 Sanyo Electric Co Ltd 系統連系装置及び系統連系システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2763267A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171199A (ja) * 2014-03-05 2015-09-28 パナソニックIpマネジメント株式会社 電力管理システム
WO2021038693A1 (ja) * 2019-08-26 2021-03-04 本田技研工業株式会社 蓄電システム、制御装置及び制御方法

Also Published As

Publication number Publication date
JP6135376B2 (ja) 2017-05-31
JPWO2013047595A1 (ja) 2015-03-26
EP2763267A1 (en) 2014-08-06
CN103947069A (zh) 2014-07-23
JP2013226046A (ja) 2013-10-31
US20140052306A1 (en) 2014-02-20
CN103947069B (zh) 2017-04-26
US9583941B2 (en) 2017-02-28
JP5376092B2 (ja) 2013-12-25
US10432019B2 (en) 2019-10-01
EP2763267A4 (en) 2015-06-24
US20170133877A1 (en) 2017-05-11
IN2014DN03202A (ja) 2015-05-22

Similar Documents

Publication Publication Date Title
JP5376092B2 (ja) 電力接続制御システム及び方法
CN114361885B (zh) 智能插座
US9118213B2 (en) Portal for harvesting energy from distributed electrical power sources
US9465378B2 (en) Power electronics device, communication device, cooperative control method and computer readable medium
JP5680038B2 (ja) 電力変換装置、協調制御方法、協調制御システムおよびプログラム
JP5792824B2 (ja) 給電システム、分散型電源システム、管理装置、及び給電制御方法
US9385528B2 (en) Power electronics device, cooperative control method, cooperative control system and computer readable medium
US20120235492A1 (en) Power supply system
EP2903216B1 (en) Management system, management method, and device
JP2014064425A (ja) 電力変換装置及びプログラム
US10031496B2 (en) Control system, control apparatus, information equipment, and control method
JPWO2012050206A1 (ja) 管理システム
JP2011101536A (ja) コンセント及び配電システム
JP6738074B1 (ja) 給電制御システム、給電制御方法及び給電制御プログラム
EP2884624B1 (en) Energy management device, and energy-management-device control method
JP5078810B2 (ja) 配電システム、配電システムの制御方法、及び負荷接続用アダプタ
JP4041825B2 (ja) 配電線の遮断制御装置
JP2019176685A (ja) 提供装置、提供方法および提供プログラム
JP2014103813A (ja) 電源システム
JP2024112543A (ja) 分散型電源制御システム
JP2015211503A (ja) 電力制御システム、電力制御装置、および電力制御システムの制御方法
US20190049907A1 (en) Management system and management method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013519295

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836086

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14000565

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012836086

Country of ref document: EP